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Abstract

Let �k
n denote the set of (0; 1)-matrices of order n with exactly k ones in each row and

column. Let Ji be such that �i
i = {Ji} and for A∈�k

n de�ne A∈�n−k
n by A = Jn − A. We are

interested in the matrices in �k
n which maximise the permanent function. Consider the sets

Mk
n = {A∈�k

n: per(A)¿per(B); for all B∈�k
n};

M
k
n = {A∈�k

n: per(A)¿per(B); for all B∈�k
n}:

For k �xed and n su�ciently large we prove the following results.

1. Modulo permutations of the rows and columns, every member of Mk
n ∪M

k
n is a direct sum

of matrices of bounded size of which fewer than k di�er from Jk .
2. A∈Mk

n if and only if A⊕ Jk ∈Mk
n+k .

3. A∈M
k
n if and only if A⊕ Jk ∈M

k
n+k .

4. M 3
n =M

3
n if n ≡ 0 or 1 (mod 3) but M 3

n ∩M
3
n = ∅ if n ≡ 2 (mod 3).

We also conjecture the exact composition of M
k
n for large n, which is equivalent to identifying

regular bipartite graphs with the maximum number of 4-cycles. c© 1999 Elsevier Science B.V.
All rights reserved.
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1. Background

We use �k
n to denote the set of (0; 1)-matrices of order n which have exactly k ones

in each row and column. The permanent function on �k
n is de�ned by

per(A) =
∑
�

n∏
i=1

Ai;�(i);
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where the sum is over all permutations � in the symmetry group on n objects. The
subpermanent sum �i(A) is the sum of the permanents of all the order i submatrices
of A. We adopt the convention that �0(A) = 1.
Let In be the order n identity, Jn the order n matrix in which every entry is 1, and

Pn the permutation matrix corresponding to the full cycle permutation (123 · · · n). We
de�ne the complement of a matrix A∈�k

n by A=Jn−A∈�n−k
n . Let Dn= In. We use ⊕

to denote the direct sum operator, and use rA as shorthand for A⊕A⊕ · · · ⊕A (where
there are r copies of A). We trust that this notation will not mislead; there being no
call for scalar multiplication of matrices in this paper.
With A∈�k

n we associate a bipartite graph G(A) where the two vertex sets corre-
spond to the rows and columns respectively of A, and the edges of G(A) correspond
to the positive entries in A. Note that G(A) is a k-regular spanning subgraph of the
complete bipartite graph Kn;n. The permanent of A is the number of perfect matchings
in G(A). More generally, �i(A) is the number of i-matchings in G(A).
We �nd it useful to apply graph theoretic terminology to our matrices. For ex-

ample, we say that A; B∈�k
n are isomorphic (written A ∼= B) when we really mean

that G(A) and G(B) are isomorphic. Since the permanent function is invariant over
isomorphic matrices we are only interested in the structure of any matrix up to iso-
morphism. We also refer to the components of a matrix. If A ∼= C1 ⊕ C2 ⊕ · · · ⊕ Ca

where each Ci is fully indecomposable, then we say that the Ci are the components
of A. Of course the connected components of G(A) in this case are G(C1); G(C2); : : : ;
G(Ca). Note that when we refer to the order of a component Ci, denoted by
ord(Ci), we mean the order of the matrix Ci not the order of G(Ci), which is
2 ord(Ci).
We are interested in identifying the matrices A in �k

n which maximise per(A), and
also those which maximise per(A). Note that since A∈�n−k

n we are essentially asking
the same question twice. However, we still �nd this a constructive approach. Formally,
we de�ne

Mk
n = {A∈�k

n: per(A)¿per(B); for all B∈�k
n};

M
k
n = {A∈�k

n: per(A)¿per(B); for all B∈�k
n}:

Our aim is to investigate elements of the two sets above; which turn out to have a
number of common features. Our answers will involve the function s(A), being the
number of 4-cycles in G(A) and Sk

n , the subset of matrices which maximise s(·) in �k
n.

The problem was partly solved by Br�egman [2] who showed that if A is a (0; 1)-matrix
of order n with column sums c1; c2; : : : ; cn, then

per(A)6
n∏

i=1

(ci!)1=ci : (1)

Moreover equality holds in (1) if and only if A ∼= mJk ∈�k
n for some integers k, m

and n = mk. More recently, in [6] it was proved that if n = mk for m¿5 then M
k
n
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consists of those A for which A ∼= mJk . Hence M
k
n =Mk

n in this instance; raising the
question of whether the two sets are equal under more general conditions. Interestingly,
it was also shown in [6] that M

2
6 ∩M 2

6 = ∅ and M
3
9 ∩M 3

9 = ∅, meaning that the general
pattern excludes some small cases. This paper extends these ideas to cases when n is
not necessarily a multiple of k.
One of our tools is the rook polynomial �(A) given by

�(A) = �(A; x) =
n∑

i=0

(−1)i�i(A)xn−i :

The following important property of the rook polynomial is given by Godsil [4]. For
any A∈�k

n,

per(A) =
∫ ∞

0
�(A)e−x dx: (2)

We note two other properties of the rook polynomial. Firstly, it is multiplicative on
components. That is, if {Ci}i is the set of components of A then �(A) =

∏
i �(Ci).

Secondly, for each positive integer a,

�(Ja) =La(x) = (−1)aa!
a∑

i=0

(a
i

) (−x)i

i!
: (3)

Note that La(x) is a Laguerre polynomial, normalised to be monic. It is intimately
involved with the theory of rook polynomials, as demonstrated by the following result
from [4],

�(A) =
n∑

i=0

�n−i(A)Li(x): (4)

Another result we need comes from [5], where it was proved in the context of
extensions to Latin rectangles. For �xed k,

per(A) = n!(1− k=n)n exp
(

k
2n
+

k(3k − 1)
n2

+ f +
s(A)
n4

+
(4k − 2)s(A)

n5
+ O(n−5)

)
; (5)

uniformly over A∈�k
n, as n → ∞. The function f is speci�ed in [5], but we only

need to know that it is independent of A and that f =O(n−3).
In the next section we prove a number of results about Mk

n and M
k
n , often �nding

similarities between the two sets. In Section 3 we pose some conjectures regarding
the exact composition of M

k
n for n� k. We follow with a section containing speci�c

examples for small k. In the �nal section we examine the rami�cations of our results
for previously posed problems from [6,8].
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2. The results

Our �rst goal is to show that components of matrices in Mk
n or M

k
n cannot be

arbitrarily large. We begin by proving a technical lemma, involving the functions

F(a; b) = (a!)b=a;

D(k) = F(k; 1)=F(k − 1; 1);
C(k) = D(k)=D(k − 1);
B(k; v) = C(k)v((k − v)2 + 2v(k − v)D(k − 1) + v(v− 1)(D(k − 1))2):

(6)

Lemma 1. For every integer k¿3 there exists �k ¿ 0 such that B(k; v)¡k2 − �k for
each integer v satisfying 0¡v¡k.

Proof. We start by showing that D(k) is a decreasing function of k (interpolating
factorials by using the gamma function). Note,

d
dk
logD(k) =

2k − 1
k2(k − 1)2 log(k!) +

1−  (k + 1)
k(k − 1) − log k

(k − 1)2 ;

where  (k + 1) = d
d k log(k!)¿log k. Now by 6:1:42 of [1],

(k + 1
2) log k − k + 1

2 log(2�)6log(k!)6(k +
1
2) log k − k + 1 (7)

for k¿2. Hence for k¿3,

d
dk
logD(k)6− (2k − 1)(2k − 2 log k − 3) + 1

k2(k − 1)2 ¡ 0:

It follows that D(k) is a decreasing function, that D(k)¿ limx→∞D(x) = 1 and that
0¡C(k)¡ 1 for k¿4.
Next we consider B(k; v) as a continuous function of v. Observe that B(k; v) has a

critical point in the interval [0; k] because B(k; 0) = B(k; k) = k2. Also

@
@v

B(k; v) = C(k)v((� logC(k))v2 + (2�− � logC(k))v− �+ k2 logC(k)); (8)

where �= (D(k − 1)− 1)2 and �= (D(k − 1))2 − 2kD(k − 1) + 2k. We conclude that
@
@vB(k; v) has precisely two roots, and that they are placed symmetrically about

v= v0 =
−1

logC(k)
+

�
2�

: (9)

If we can show that v0¿k then the lemma will follow from Eq. (8), since 0¡C(k)¡ 1
implies that @

@vB(k; v) is negative whenever |v| is su�ciently large.
Considering �=� as a function of a single variable D(k−1)∈ (1;∞) it is elementary

to show that �=�¿− k(k − 2). Also, by applying Eq. (7) to

logC(k) =
1
k
log k − 1

k − 2 log(k − 1) + 2
k(k − 1)(k − 2) log(k − 1)!



I.M. Wanless / Discrete Mathematics 205 (1999) 191–205 195

for k¿3 we get

k(k − 1)(k − 2) logC(k)¿ (k2 − 3k + 1) log k
k − 1 − 2k + 2 + log(2�k)

¿ (k2 − 3k + 1)1
k
− 2k + 3

¿−k:

Hence Eq. (9) yields

v0¿ (k − 1)(k − 2)− 1
2k(k − 2) = 1

2 (k − 2)2:
Note that 1

2 (k − 2)2¿k for all k¿3 +
√
5≈ 5:2. The lemma can be checked by

enumeration for k = 3; 4 and 5.

Theorem 1. For each A∈�k
a there exists m(A) such that per(A ⊕ tJk)¿ per(B) for

every integer t such that a + tk¿m(A) and every B∈�k
a+tk which does not contain

Jk as a component.

Proof. The statement is vacuous when k = 1. If k = 2 it follows easily from the fact
that per(A⊕ tJ2)¿2t+1 whereas per(B)62(2t+a)=3. Henceforth we assume k¿3.
Suppose B∈�k

n does not contain Jk as a component. Let U be the vertex set of
G(B) corresponding to rows of B, and let d be the standard metric on G(B). Choose
X = {xi}⊂U such that d(xi; xj)¿ 6 for i 6= j. Note that we do not specify |X |. All
that is important is that we can make |X | arbitrarily large provided we choose our
initial value of n large enough. This follows from the observation that the diameter of
a k-regular connected component increases without bound as its order increases.
Next for each xi ∈X we choose yi ∈U so that yi has a proper subset of its neighbours

in common with xi. This is always possible given that no xi is in a complete component.
Let vi be the number of common neighbours of xi and yi. Note that 16vi6k − 1.
Also, by choice d(xi; yi) = 2 for all i and the neighbourhoods of {xi; yi} and {xj; yj}
are disjoint provided i 6= j.
We consider a partial expansion of per(B) along the rows x1, y1, x2, y2, x3, y3; : : : ,

of B and use (1) to bound the unexpanded part (see Fig. 1); giving

per(B)6 F
(
k; n−

∑
i
(2k − vi)

)∏
i

[(k − vi)2F(k − 1; 2k − 2vi − 2)F(k − 2; vi)

+2vi(k − vi)F(k − 1; 2k − 2vi − 1)F(k − 2; vi − 1)
+ vi(vi − 1)F(k − 1; 2k − 2vi)F(k − 2; vi − 2)]:

Hence

per(B)6 F(k; n)
∏
i

[
F(k − 1; 2k − 2)

F(k; 2k)
F(k; vi)F(k − 2; vi)

F(k − 1; 2vi)

×
[(
(k − vi)2 + 2vi(k − vi)

F(k − 1; 1)
F(k − 2; 1) + vi(vi − 1)F(k − 1; 2)

F(k − 2; 2)
)]

;
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Fig. 1. Partial expansion of per(B). In this example |X |=2, and the rows and columns have (possibly) been
permuted for the sake of convenience. We expand the permanent through the four rows: x1, y1, x2 and y2.

The k positive entries in each of these rows are represented schematically by a box . The over-
lap structure of these boxes determines 7 = 3|X | + 1 distinct vertical regions. The number of columns in
each region is listed above the matrix.
The rows below y2 in our diagram collectively form the unexpanded part. Column sums (c:s:) in the

unexpanded part are given for each region. Each term in our expansion of per(B) selects one entry from each
box together with the permanent of the appropriate submatrix of the unexpanded part. We use Br�egman’s
theorem (1) to bound this permanent. The bound depends only on the regions from which the entries in
each box were selected.

which in the language of Eq. (6) simpli�es to

per(B)6F(k; n)
∏
i

1
k2

B(k; vi): (10)

Now we apply Lemma 1 to see that we can make per(B) less than an arbitrarily small
fraction of F(k; n) by taking |X | large enough.
By contrast, for n= a+ tk,

per(A⊕ tJk) = (k!)tper(A) = F(k; n)per(A)=F(k; a):

Speci�cally per(A ⊕ tJk) remains a �xed fraction of F(k; n) as t varies. We conclude
that when t and hence n is su�ciently large, per(B)¡ per(A⊕ tJk) as required.

We next show the equivalent result to Theorem 1 for the case of complementary
permanents. Note that for any matrices A, B and X the inequality per(A)¿ per(B) im-
plies per(A⊕X )¿ per(B⊕X ). However, from per(A)¿ per(B) it does not necessarily
follow that per(A⊕ X )¿ per(B⊕ X ). To deal with this obstacle we de�ne a vacuous
matrix V such that A⊕ V = A for all A; and the set

�k = {V} ∪ �k
k ∪ �k

k+1 ∪ �k
k+2 ∪ · · ·

Theorem 2. For any A∈�k
n there exists m(A) such that per(A⊕ tJk ⊕ X )¿ per(B⊕ X )

for every X ∈�k and t such that n + tk¿m(A) and any B∈�k
n+tk which does not

contain Jk as a component.
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Proof. Let k be �xed. For A; B∈�k
n, where n is su�ciently large, we know from (5)

that per(A)¿ per(B) whenever s(A)¿s(B). It follows that when n is large enough,

M
k
n ⊆ Sk

n : (11)

It is shown in [6] (and is easy to verify) that a vertex of a k-regular bipartite
graph can be contained in at most (k − 1)

(k
2

)
cycles of length 4. Moreover this

bound is achieved uniquely when the vertex is in a complete component, Kk;k . Hence
by taking t su�ciently large, the average number of 4-cycles incident with a ver-
tex in G(A ⊕ tJk) can be made arbitrarily close to (k − 1)(k2). By contrast, for any
B∈�k

n+tk which does not contain Jk as a component, the average number of 4-cycles
per vertex in G(B) is certainly no more than (k − 1)(k2) − 1. Thus when t is large
enough s(A⊕ tJk)¿s(B).

Theorem 3. For each integer k there exists bk such that for any n and any
A∈Mk

n ∪M
k
n the largest component in A is of order at most bk .

Proof. For each integer i in the interval [k; 2k) select any Ai ∈�k
i . De�ne bk by

bk =max{m(Ak); m(Ak+1); : : : ; m(A2k−1)};

where m(·) is de�ned by Theorem 1. Now suppose that A∈Mk
n contains a component

C bigger than bk . Since C is connected it does not contain a Jk . Hence Theorem 1
tells us that per(A) can be increased by substituting Ai⊕ tJk for C, where k6i62k−1,
i ≡ ord(C) modk and t=(ord(C)− i)=k. This contradicts A’s membership of Mk

n . The

above proof can now be repeated for A∈M
k
n using Theorem 2.

We de�ne b∗k to be the smallest integer having the property of bk in Theorem 3. Note
that b∗k¿2k − 1 because every element of Mk

2k−1 consists of a single component. We
now know that the size of components is bounded and hence the number of components
grows with n. Our next goal is to characterise these components. But �rst, we prove
another technical lemma.

Lemma 2. For any A∈�k
n and 06a¡n;

�a(A)
�a+1(A)

¿
a+ 1
(n− a)2

:

Proof. Each (a + 1)-matching M in G(A) can be converted to an a-matching by
removing any one of the a + 1 edges in M . By contrast, any a-matching M ′ can be
extended to an (a+1)-matching in at most (n−a)2 ways. This is because the subgraph
induced by the vertices left uncovered by M ′ is isomorphic to a subgraph of Kn−a;n−a,
and hence has no more than (n− a)2 edges. The result follows.
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For our next result we need a new de�nition. We de�ne an ordering � on �k
n as

follows. For A; B∈�k
n we say that A � B if there exists j such that �j(A)¿�j(B) and

�i(A) = �i(B) for all i¡ j. We say that A∈�k
n is �-maximal if there does not exist

B∈�k
n such that B � A.

Theorem 4. For positive integers k and m there exists Nk;m ¿ 2m with the following
property. If A ∼= C ⊕ D∈M

k
n where n¿Nk;m and ord(C)6m then C is �-maximal.

Proof. Suppose A∈M
k
n and that A ∼= C⊕D where ord(C)6m¡ ord(D). Consider the

rook polynomials �(A)=�(C)�(D). We express �(C) and �(D) in the Laguerre basis,
so that �(C) =

∑
ciLi(x) and �(D) =

∑
diLi(x). Then

per(A) =
∫ ∞

0
e−x�(C)�(D) dx =

ord(C)∑
i=1

(i!)2cidi (12)

by Eq. (2) and the orthogonality of the Laguerre polynomials. Also by Eq. (4) we
know that di = �ord(D)−i(D) so Lemma 2 applied for i¡ ord(C)6m gives,

di+1

di
¿
ord(D)− m

m2
:

By similar reasoning ci+1=ci¿(ord(C)− i)=(i+1)2¿1=m2. It follows that when ord(D)
is su�ciently large the sum in Eq. (12) is dominated by the latter terms, in the sense
that

c1d1� c2d2� · · · � cord(C)dord(C):

Noting that ci = �ord(C)−i(C), we see that C must be �-maximal.

From [5] the subpermanents �i(A) for i¡ 4 are independent of the choice of A∈�k
n,

whereas �4(A)=f+s(A) for a function f of n and k only. Hence �-maximality implies
membership of Sk

n . Indeed we will see from Lemma 4 that �-maximality of C implies
that both s(C) and s(C) are maximised. Thus Theorem 4 is concordant with (11). In
general A � B does not imply A � B. As an example consider A = (I8 + P8 + P28) ⊕
(I8 + P8 + P38) and B= 2(I8 + P8 + P48).

Theorem 5. Let k6n be positive integers. Every A∈Mk
n is of the form

A ∼= aJk ⊕ C1 ⊕ C2 ⊕ · · · ⊕ Ch

where a¿0 and 06h6k − 1. Moreover G(Ci) is connected; Ci ∈Mk
ord(Ci) and

ord(Ci)6b∗k for each i = 1; 2; : : : ; h.

Proof. Theorem 3 tells us that every component of A∈Mk
n is of order at most b

∗
k . Sup-

pose C1; C2; : : : ; Ck are distinct components of A. Consider the sums si=
∑i

j=1 ord(Cj).
By the pigeon hole principle either there is j for which sj ≡ 0 (mod k) or there are i
and j for which si ≡ sj (mod k). In either case there must be 16a6b6k for which
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∑b
i=a ord(Ci)= lk for some positive integer l. Since the permanent is multiplicative on

components we know each Ci ∈Mk
ord(Ci) and that Ca ⊕ Ca+1 ⊕ · · · ⊕ Cb must achieve

the maximum permanent of any matrix of its size, so Ca ⊕ Ca+1 ⊕ · · · ⊕ Cb
∼= lJk

by Br�egman’s Theorem, (1). As the above reasoning holds for any collection of k
components from A, it follows that A has at most k − 1 components which are not
isomorphic to Jk .

The analogous result for permanents of the complement is:

Theorem 6. Fix k. For su�ciently large n every A∈M
k
n is of the form

A ∼= aJk ⊕ C1 ⊕ C2 ⊕ · · · ⊕ Ch;

where a¿1 and 06h6k − 1. Moreover G(Ci) is connected; Ci is �-maximal and
ord(Ci)6b∗k for each i = 1; 2; : : : ; h.

Proof. The proof is along the same lines as Theorem 5. We choose n su�ciently
large that Eq. (11) holds. Then for any set of k components we know that there
is some subset which can be replaced by lJk , which uniquely maximises s(·) for a
matrix of that size. If we also choose n¿Nk;b∗k then each Ci must be �-maximal
by Theorem 4.

We are now ready to prove a kind of periodicity in the composition of Mk
n and M

k
n .

Theorem 7. For each positive integer k there exists �k such that Mk
n is periodic for

n¿�k in the sense that A∈Mk
n if and only if A⊕ Jk ∈Mk

n+k .

Proof. If A⊕ Jk maximises the permanent in �k
n+k then any subset of the components

of A⊕ Jk necessarily maximises its own permanent. In particular A∈Mk
n . To prove the

other direction, assume that A∈Mk
n and B∈Mk

n+k . If n¿ (k − 1)b∗k then Theorem 5
tells us that B ∼= Jk ⊕ B′ for some B′ ∈�k

n. But now per(B
′)6per(A) since A∈Mk

n so
per(B)=per(B′⊕Jk)6per(A⊕Jk). By our choice of B this means per(A⊕Jk)=per(B)
and A⊕ Jk ∈Mk

n+k .

Lemma 3. If A; B∈�k
n and both A and B are �-maximal then per(A⊕ X )=per(B⊕ X )

for any X ∈�k .

Proof. Since both A and B are �-maximal, we know that �(A) = �(B). By (4) it
follows that �(A) = �(B). The result then follows from Eq. (2).

Theorem 8. For each positive integer k there exists �k such that M
k
n is periodic for

n¿�k in the sense that A∈M
k
n if and only if A⊕ Jk ∈M

k
n+k .
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Proof. Suppose integers n; a; k and r satisfy n = ak + r ¿Nk;� where 06r ¡k, � =
(k − 1)b∗k and Nk;� is de�ned by Theorem 4. If we also suppose n is large enough to

apply Theorem 6, then every A∈M
k
n can be written in the form A ∼= C⊕lJk where l is

some integer. By including some copies of Jk in our choice of C (if necessary) we can
ensure that �−k ¡ ord(C)6�. Together with ord(C) ≡ nmod k, this completely deter-
mines ord(C). Moreover, by Theorem 4 we know C is �-maximal. Now by applying
Lemma 3 we see that the existence of a C satisfying the above conditions is both
necessary and su�cient to ensure A∈M

k
n . Finally, we note C depends on r but not

on a.

3. Conjectured composition of M
k
n

In this section we conjecture the exact structure of matrices in Sk
n . If this structure

is unique up to isomorphism and n is large then by Eq. (11) we will have identi�ed
M

k
n . The basis of our conjecture is this:

Conjecture 1. Suppose n¿2k. If A∈ Sk
n then A contains Jk as a component.

If Conjecture 1 is true (which we know it is when k divides n and when n is large)
then we can completely characterise Sk

n , using the following result, which must have
been discovered many times.

Lemma 4. If A∈ Sk
n then A∈ Sn−k

n .

Proof. If A∈�n−k
n then there are precisely k zeroes in each row and column of A.

Using just this information, we can count s(A) by inclusion-exclusion. We do this by
counting the order 2 submatrices of A according to how many zeroes they contain,
yielding

s(A) =
(n
2

)2
− nk(n− 1)2 +

[
2n(n− 1)

(
k
2

)
+
1
2
nk(nk − 2k + 1)

]

− 2n
(
k
2

)
(k − 1) + s(A): (13)

This shows that s(A)− s(A) is a function of n and k only and does not depend on the
structure of A.

Armed with Conjecture 1 and Lemma 4 we can inductively �nd the matrices in Sk
n .

If n¿2k we can strip o� a copy of Jk and otherwise we consider the complementary
case Sn−k

n and note that n¡ 2k ⇒ n¿ 2(n − k). This process yields the following
corollary of Conjecture 1:
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Conjecture 2. Let qi and ri be the quotients and remainders derived by applying the
division algorithm to n=k. Speci�cally, we de�ne r0 = n and r1 = k and then proceed
inductively using 06ri+1 = ri−1 − qiri ¡ ri until a zero remainder is found. Let rz be
the last non-zero remainder. If A∈ Sk

n then

A ∼= (q1 − 1) Jr1 ⊕ q2Jr2 ⊕ q3Jr3 ⊕ · · · ⊕ qz−1Jrz−1 ⊕ (qz + 1) Jrz : (14)

Let {bi}i be the block sizes in (14) arranged in non-increasing order. That is, let
b1=b2= · · ·=bq1−1=r1 and bq1 =bq1+1= · · ·=bq1+q2−1=r2 etc. A simple consequence
of Conjecture 2 would be:

Conjecture 3. If A∈�k
n then

s(A)6
(
k
2

)∑
i

(
bi

2

)
+
∑
i¡j

(
k − bi

2

)
bibj

with equality if and only if A satis�es (14).

Our next result shows that Conjecture 2 implies a distinction between Mk
n and M

k
n

in many cases.

Theorem 9. Let d¿2 be �xed. For t su�ciently large; per(dDt+1)¿ per((d−1) Jt⊕X )
regardless of the choice of X ∈�t

t+d.

Proof. We use two particular instances of (5):

per(Dt+1) = (t + 1)!
(
1− 1

t + 1

)t+1

exp
(

1
2(t + 1)

+
1

3(t + 1)2
+ O(t−3)

)

and

per(X ) = (t + d)!
(
1− d

t + d

)t+d

exp
(

d
2(t + d)

+
d(3d− 1)
6(t + d)2

+ O(t−3)
)

for X ∈�t
t+d. Now applying 6:1:47 of [1] for t → ∞, gives
(t + 1)!d

t!d−1(t + d)!
= 1− d(d− 1)

2(t + 1)
+

d(d+ 1)(d− 1)(3d− 2)
24(t + 1)2

+ O(t−3):

Combining the above results yields

per(Dt+1)d

per(Jt)d−1per(X )
= 1 +

d(d− 1)
4t2

+ O(t−3)

from which the result follows.

Note that Conjecture 2 implies that matrices in M
k
n are constructed by taking the

maximum possible number of copies of Jk , together with a single component which



202 I.M. Wanless / Discrete Mathematics 205 (1999) 191–205

uses the remainder of the space. However, Theorem 9 shows this approach does not
(always) work for constructing matrices in Mk

n .

Further evidence for a distinction in general between Mk
n and M

k
n is provided by

considering an arbitrary X ∈�k
k+2 for some k ¿ 1. By (13),

s(Jk ⊕ X )− s(2Dk+1) = k − 1 + s(X )− 2s(Ik+1)¿k − 1¿ 0; (15)

which demonstrates that no matrix in Sk
n can contain more than one copy of Dk+1. Of

course, for large n the same is true for elements of M
k
n by (11).

Suppose n = tk − r for 0¡r6k and t ¿ k − r. Let A∈�k
n be de�ned by (14)

and let B ∼= (t − k + r − 1) Jk ⊕ (k − r)Dk+1. For k¿5 Merriell [7] conjectured that
A∈Mk

n when r=1 and that B∈Mk
n when r¿3. Some known counterexamples to this

conjecture are discussed is [6]. For moderate values of n and k it is easy to compare
per(A) to per(B) using Eq. (2). Such a computation suggests that

per(A)¿ per(B) for




k¿3r + 2 when r = 1; 2;

k¿3r + 1 when r = 3; 4; : : : ; 39;

k¿3r when r = 40; 41; : : : ; 50;

(16)

whereas per(A)¡ per(B) otherwise (provided r650). In particular, Eq. (16) provides a
wealth of counterexamples to Merriell’s conjecture when r ¿ 2 and k ¿ 3r, the smallest
being A=6J10⊕ J7 ⊕ 2J3 ⊕ D4 ∈�1077. By contrast Theorem 9 provides strong evidence
to support the conjecture when k − r� k.

4. Some examples

We examine the relationship between Mk
n and M

k
n for some particular values of k.

The smallest case of interest is k = 2. Here it is known (e.g. [3,6]) that Mk
n =M

k
n for

n= 2; 3; 4 and for n¿8.
We look next at the k = 3 case. It follows from (1) and [6] that M

3
3t =M 3

3t for all
integers t¿4. So consider the cases n=3t+1 and n=3t+2. Merriell [7] showed for
r=1; 2 and t¿r that M 3

3t+r consists of precisely those A for which A ∼= rD4⊕(t−r) J3.
The one unusual case is M 3

5 which consists of I5 + P5 and its permutations. Clearly,

if we choose n large then M 3
3t+2 ∩M

3
3t+2 = ∅ by (15).

In fact it is not hard to establish Conjecture 1 for k = 3 (it is trivial for k ¡ 3).
Suppose A∈ S3n for n¿ 6 and A does not contain J3 as a component. Let K be the graph
K3;3 with one edge removed. Then G(A) cannot contain K as an induced subgraph; if
it did then an edge switching argument could increase s(A). Since G(A) contains no
copies of K3;3 or K , the number of 4-cycles incident with a vertex never exceeds 3,
so s(A)63n=2. Now observe that

s(D4 ⊕ (t − 1) J3) = 3n− 6;
s(J2 ⊕ D3 ⊕ (t − 1) J3) = 3n− 9 (17)
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and in either case these values exceed s(A). This is su�cient to prove Conjecture 1 for
k = 3, namely that the matrices shown in (17) (and their permutations) constitute M

3
n

for large n not divisible by 3. The evidence in [6] suggests that ‘large’ in this context
may mean n¿10.
Next we conjecture the answers for k = 4 and 5. By developing the arguments of

the previous case, it is possible to �nd S4n . However, to determine M 4
n we need to

assume a speci�c bound on component size, say b∗469. Under this assumption, when
t is large:

M 4
4t =M

4
4t = {A ∼= tJ4};

M 4
4t+1 =M

4
4t+1 = {A ∼= D5 ⊕ (t − 1) J4};

M 4
4t+2 = {A ∼= 2D3 ⊕ (t − 1) J4}; M

4
4t+2 = {A ∼= 3J2 ⊕ (t − 1) J4};

M 4
4t+3 = {A ∼= 2D3 ⊕ D5 ⊕ (t − 2) J4}; M

4
4t+3 = {A ∼= J3 ⊕ D4 ⊕ (t − 1) J4}:

Known exceptions to the above rules for small n are M 4
7 , M

4
9 , M

4
10 and M

4
11. From [6]

there are no other exceptions for n¡ 17 unless b∗4 ¿ 11.
Similarly we handle the k = 5 case by assuming b∗569. Then for large t,

M 5
5t =M

5
5t = {A ∼= tJ5};

M 5
5t+1 =M

5
5t+1 = {A ∼= D6 ⊕ (t − 1) J5};

M 5
5t+2 = {A ∼= 2D6 ⊕ (t − 2) J5}; M

5
5t+2 = {A ∼= 2J2 ⊕ D3 ⊕ (t − 1) J5};

M 5
5t+3 = {A ∼= 2D4 ⊕ (t − 1) J5}; M

5
5t+3 = {A ∼= J3 ⊕ J2 ⊕ D3 ⊕ (t − 1) J5};

M 5
5t+4 = {A ∼= Q ⊕ (t − 1) J5}; M

5
5t+4 = {A ∼= J4 ⊕ D5 ⊕ (t − 1) J5};

where

Q =




1 1 1 1 1 0 0 0 0
1 1 1 1 1 0 0 0 0
1 1 1 1 0 0 1 0 0
1 1 1 1 0 1 0 0 0
1 1 0 0 1 0 0 1 1
0 0 0 1 0 1 1 1 1
0 0 1 0 0 1 1 1 1
0 0 0 0 1 1 1 1 1
0 0 0 0 1 1 1 1 1




:

The exceptions in [6] are M 5
7 , M

5
8 , M

5
12, M

5
13 and M

5
14.
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5. Consequences

The characterisations in Theorems 5 and 6 show that elements of the sets Mk
n and

M
k
n are similar (although Theorem 9 pointed to a likely distinction). That both sets

exhibit a kind of periodicity in n was demonstrated by Theorems 7 and 8.
All our results help to answer problem 4 of [8], which asks for the maximum

permanent in �k
n, in the case when k does not divide n. We have also partly answered

problem 12 from the same source. Let �k
n ⊂�k

n denote the set of all circulant matrices
in �k

n; that is the matrices which are sums of powers of Pn. Minc’s problem 12 asks,
in part, whether there exists a matrix in �k

n whose permanent strictly exceeds the
permanent of every circulant in �k

n. Note that the number of rows of a circulant which
are equal to a given row does not depend on which row is chosen. Hence, if C ∈�k

n

contains Jk as a component, then k divides n and C ∼= (n=k) Jk . Thus by Theorem 5
we see that Mk

n and �k
n are disjoint provided n 6≡ 0mod k is large enough. Finally, we

observe that a matrix is a circulant if and only if its complement is a circulant, and
that M

k
n and �k

n are also disjoint for large n 6≡ 0mod k, by Theorem 6. In other words
the answer to Minc’s problem 12 is that the maximum permanent in �k

n is generally
not achieved by a circulant. The cases when k divides n or (n− k) divides n are thus
exceptional in this regard, [6].
We also draw attention to the rami�cations of Conjecture 2 for the four part research

problem given in [6]. If true it would con�rm that when n is large enough A∈M
k
n

(a) is unique up to isomorphism,
(b) contains the maximum possible number of components and
(d) can be constructed up to isomorphism, using only zero matrices, complementation

and the direct sum operator.

However the third part [(c) that A∈Mk
n ] would often fail, according to Theorem 9.

Note that if Conjecture 2 turns out to be false then Lemma 3 leaves open the possibility
of (a) failing. Also, Theorem 3 represents a proof of a weakened form of (b).
Our �nal comment pertains to the opposite problem to the one we have dealt with.

Although Schrijver [9] recently proved a nice lower bound on the permanent in �k
n,

little is known about the matrices which achieve the minimum value. Such questions
are beyond the scope of this paper. However, some day it may be possible to shed light
on them by employing some of the same techniques we have used for the maximising
problem.
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