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a b s t r a c t

It is well known that if n is even, the addition table for the integersmodulo n (whichwe de-
note by Bn) possesses no transversals.We show that ifn is odd, then the number of transver-
sals in Bn is at least exponential in n. Equivalently, for odd n, the number of diagonally cyclic
latin squares of order n, the number of completemappings or orthomorphisms of the cyclic
group of order n, the number of magic juggling sequences of period n and the number of
placements of n non-attacking semi-queens on an n × n toroidal chessboard are at least
exponential in n. For all large nwe show that there is a latin square of order nwith at least
(3.246)n transversals.
We diagnose all possible sizes for the intersection of two transversals in Bn and use this

result to complete the spectrum of possible sizes of homogeneous latin bitrades.
We also briefly explore potential applications of our results in constructing random

mutually orthogonal latin squares.
© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Given an n× n array of symbols, a transversal of the array is a selection of n entries such that exactly one entry is chosen
from each row and each column and no symbol is chosen more than once. The arrays of most interest in this paper are
latin squares. A latin square of order n is an n × n array of symbols such that each cell contains one symbol and each
symbol occurs once in each row and once in each column. In this paper, rows, columns and symbols are indexed by the
set N = {0, 1, . . . , n − 1} and all calculations of indices are performed modulo n. We often consider a latin square as a set
of ordered (row, column, symbol) triples; in other words, a subset of N × N × N . A partial latin square is a partially filled-in
n × n array of symbols such that each cell contains at most one symbol and each symbol occurs at most once in each row
and at most once in each column. Two partial latin squares are said to be isotopic if one can be obtained from the other by
relabelling rows, columns and/or symbols. The transpose of a partial latin square is obtained by interchanging rows with
columns. Combinatorial properties of partial latin squares are, in general, invariant under isotopy and transpose, a fact we
use in this paper.
In this work we are chiefly interested in transversals in the specific latin square Bn, which is the addition table for the

integers modulo n. Such transversals are equivalent, under easy bijections, to a number of other combinatorial objects
including:

• diagonally cyclic latin squares of order n. A latin square L is said to be diagonally cyclic if (i, j, k) ∈ L ⇐⇒ (i + 1, j + 1,
k+ 1) ∈ L.
• complete mappings of the cyclic group of order n.
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• orthomorphisms of the cyclic group of order n.
• magic juggling sequences of period n, as defined in [26, p.35].
• placements of n non-attacking semi-queens on a n × n toroidal chessboard. (A semi-queen attacks any piece in its row
and column, or on the same ascending diagonal; i.e. the diagonal which begins in the lower left and finishes in the upper
right. On a toroidal chessboard these diagonals ‘‘wrap around’’ in the obvious fashion).

For more details on the bijections, see for example [11] or [34], and for a recent survey on transversals see [35].
Let tn denote the number of transversals in Bn. It is well known that tn = 0 when n is even (see [14] or [34] for a concise

proof). For odd n, Vardi [33] posed the following conjecture:

Conjecture 1 (Vardi). There exist two real constants c1 and c2 such that

cn1n! 6 tn 6 c
n
2n!

where 0 < c1 < c2 < 1 and n > 3 is odd.

The upper bound of this conjecture has been verified [13,17,22]. The current best result is by McKay, et al. [22] who showed
that tn = o(0.614nn!). However, the lower bound remains an open problem. In [22], non-cyclic latin squares which contain
exponentially many transversals are constructed for each n. We improve on that result in Theorem 2. Statistical estimates
for the growth rate of tn have been found by Cooper et al. [12] and Kuznetsov [18–20]. Certain congruences satisfied by tn
can be found in [32] and results on enumerating partial transversals of Bn are given in [31].
An exponential lower bound for tn has been found in special cases [27], such as when n is prime but (n − 1)/2 is not

prime, or when n is divisible by a prime congruent to 1 (mod 4). However the results in this paper apply for all odd n
and give stronger bounds than [27] (although in fairness to the authors of [27], they were solving a different problem that
happens to imply bounds on tn).
Our first major result is:

Theorem 1. If n is a sufficiently large odd integer then tn > (3.246)n and Bn has at least (3.246)n orthogonal mates.

We do not count orthogonal mates as different if they differ only by a symbol permutation. The numbers of orthogonal
mates for Bn is sequence A091261 in [29]. These numbers were computed for n 6 11 in [21] and almost certainly grow faster
than exponentially, but a lower bound does not appear to have been given before now.
The lower bound for tn in Theorem 1 is weaker than the bound conjectured by Vardi. However, it is the first exponential

lower bound for tn that applies for general odd n. With the aid of Theorem 1 we are able to show a result that holds for even
orders as well.

Theorem 2. If n is a sufficiently large integer then there exists a latin square of order n that has at least (3.246)n transversals.

The constructions leading to Theorem 1 have several immediate applications. In Section 4 we use them to determine
all possible sizes of the intersection between two transversals in Bn. In Section 5 we will then use that result to prove the
following theorem, whose meaning is explained in Section 5:

Theorem 3. For all k > 3, a k-homogeneous latin bitrade of size s exists if and only if k divides s and s > k2.

We give a number of constructions in this paper but all are variants of the same basic idea. We consider blocks centered
on the main diagonal of Bn. In each block we choose a transversal which uses a particular set of symbols, ensuring that we
obtain a transversal of Bn from the union of the transversals of the blocks. In most cases the transversals that we use in each
block can be chosen independently and this allows us to obtain exponential lower bounds on tn.
In almost all cases our bounds could be improved by a linear factor by ‘‘shifting’’ our blocks sideways. In other words, by

considering blocks centered on diagonals parallel to the main diagonal and showing that different choices of diagonal give
rise to disjoint sets of transversals. A more careful analysis, allowing the blocks to ‘‘slide down’’ the diagonals as well, might
even yield a quadratic improvement. However, we have chosen not to bother about polynomial factors, since it is clear that
tn grows fast enough to make them insignificant.

2. Our first construction

We beginwith a simple construction, yielding an exponential lower bound for tn. We then examine two different ways of
generalizing the basic result, in the process obtaining slightly better lower bounds for tn. In this section n is always odd and
rows, columns and symbols are each evaluated modulo n. The j× j block of Bn at the intersection of the rows and columns
with indices i, i+ 1, . . . , i+ j− 1, is denoted byMi,j.

Lemma 1. Let n ≡ 3(mod 6) and n > 3. Then there are at least 2n/3 transversals in Bn.
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Proof. Consider blocks of the form M3i,3, where 0 6 i < n/3. Within each such block, we choose a transversal on symbol
set S(i) = {6i+ 1, 6i+ 2, 6i+ 3}. Since, ∪i S(i) = N , any such choice yields a transversal in Bn. Moreover, for eachMi, there
are two such choices, so there are at least 2n/3 transversals in Bn. �

In practice it is easy to do much better than the previous lemma. If n = pq for odd p, q > 1 then the latin square Bn
can be partitioned into latin subsquares of order p (or, similarly, for order q). These subsquares can be used to show that
tn > max

(
(tp)qtq, (tq)ptp

)
. So if 3 divides n, we have immediately that tn > 3n/3tn/3 > 3n/3, as t3 = 3. We included the previ-

ous lemma to accompany the following two lemmas, which are not so easily beaten. For example, they apply for infinitely
many prime orders where Bn has no non-trivial latin subsquares.

Lemma 2. Let n ≡ 1(mod 6). Then there are at least 2(n−4)/3 transversals in Bn.

Proof. The result is trivial for n = 1 so assume n > 7. For 0 6 i 6 (n − 13)/6, consider transversals in blocks M3i,3 and
M(n+3)/2+3i,3, on symbol sets {6i+ 1, 6i+ 2, 6i+ 3} and {6i+ 4, 6i+ 5, 6i+ 6}, respectively. There are two choices for each
such transversal. It remains to use symbols from the set

{n− 6, n− 5, n− 4, n− 3, n− 2, n− 1, 0}.

In blockM(n−7)/2,5 we choose one of 2 transversals on symbol set {n− 6, n− 5, n− 3, n− 1, 0}. Finally, in blockMn−2,2
we choose the transversal on symbol set {n− 4, n− 2}. All together, we have 2(n−4)/3 choices for transversals of the entire
latin square. �

As an example of the previous lemma, the boxed entries in (1) show a transversal for n = 13. The 3× 3 blocks (M0,3 and
M(n+3)/2,3) are lightly shaded, while the two special blocks (M(n−7)/2,5 andMn−2,2) are shown with darker shading.

(1)

Lemma 3. Let n ≡ 5(mod 6). Then there are at least 2(n−2)/3 transversals in Bn.

Proof. The construction is very similar to Lemma 2. For 0 6 i 6 (n − 11)/6, consider transversals in blocks M3i,3 and
M(n+3)/2+3i,3, on symbol sets {6i+ 1, 6i+ 2, 6i+ 3} and {6i+ 4, 6i+ 5, 6i+ 6}, respectively. There are two choices for each
such transversal. It remains to use symbols from the set {n− 4, n− 3, n− 2, n− 1, 0}.
In block M(n−5)/2,4 we choose one of 2 transversals on symbol set {n − 4, n − 3, n − 1, 0}. Finally, in block Mn−1,1 we

choose the trivial transversal which uses symbol n− 2. In total, we have 2(n−2)/3 choices for transversals of Bn. �

Next we consider a generalisation of the above constructions. The following theorem allows the blocks of size 3 in the
lemmas above to be combined into two larger blocks, in the upper left-hand and lower right-hand quadrants of Bn. We do
not choose the transversals from these large blocks independently. However, it turns out there is a recursive formula for the
number of such transversals.

Theorem 4. Suppose m > 0. Within B2m+5, let f (m) be the number of ways of choosing a transversal from block M0,m and
another transversal from Mm+4,m, while overall using each symbol from the set {1, 2, . . . , 2m} exactly once. Then f (0) = 1,
f (1) = f (2) = 0 and for m > 3, f (m) satisfies the recurrence relation:

f (m) = f (m− 1)+ 4
m−3∑
i=0

f (i). (2)

Proof. By observation, f (0) = 1 (the empty set is the only suitable transversal) and f (1) = f (2) = 0. Henceforthwe assume
thatm > 3. Let T be one of the transversals enumerated by f (m). Symbols 0 and 2m+1 are excluded, so neither (0, 0, 0) ∈ T
nor (2m+ 3, 2m+ 3, 2m+ 1) ∈ T .
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There are precisely two choices for symbol 1: either (0, 1, 1) ∈ T or (1, 0, 1) ∈ T , implying (2, 0, 2) ∈ T or (0, 2, 2) ∈ T ,
respectively. Similarly, there are precisely two choices for symbol 2m: either (2m+2, 2m+3, 2m) ∈ T or (2m+3, 2m+2,
2m) ∈ T , implying (2m+ 3, 2m+ 1, 2m− 1) ∈ T or (2m+ 1, 2m+ 3, 2m− 1) ∈ T , respectively.
Let g(m) be the number of transversals T satisfying the same conditions as those counted by f (m), but in addition we

specify that: (0, 1, 1), (2, 0, 2), (2m+2, 2m+3, 2m), (2m+3, 2m+1, 2m−1) ∈ T . Then, by the symmetry of interchanging
rows with columns, f (m) = 4g(m). For the remainder of this proof T denotes one of the transversals counted by g(m). Let

P(k) =
{
(0, 1, 1)

}
∪
{
(2+ 2i, 0+ 2i, 2+ 4i) : 0 6 i 6 dk/2e − 1

}
∪
{
(1+ 2i, 3+ 2i, 4+ 4i) : 0 6 i 6 bk/2c − 1

}
∪
{
(i, i, 2i− (2m+ 5)) : m+ 4 6 i 6 m+ 3+ k

}
∪
{
(2m+ 1, 2m+ 2, 2m− 2), (2m+ 2, 2m+ 3, 2m), (2m+ 3, 2m+ 1, 2m− 1)

}
.

For 0 6 k 6 m−3wewill showby induction that if P(k) 6⊆ T then there are g(m−1)+f (m−3)+f (m−4)+· · ·+f (m−k−2)
distinct choices for T .
Suppose P(0) 6⊆ T . Then (2m+ 1, 2m+ 2, 2m− 2) 6∈ T so (m− 1,m− 1, 2m− 2) ∈ T and then the only way to include

symbol 2m− 3 is if (2m, 2m+ 2, 2m− 3) ∈ T . We claim that the number of remaining choices is equal to g(m− 1). To see
this, observe that it remains to place symbols 3, 4, . . . , 2m− 4 in the blocksM0,m−1 andMm+4,m−1, where (0, 1, 1), (2, 0, 2)
and (2m, 2m+ 2, 2m− 3) ∈ T , and row 2m+ 2 and column 2m+ 1 are excluded. SinceMm+4,m−1 is symmetric, we could
equally assume that (2m+2, 2m, 2m−3) ∈ T and that row 2m+1 and column 2m+2 are excluded. Now, blockM0,m−1 in
B2m+5 is equal to block M0,m−1 in B2m+3. Also, block Mm+4,m−1 in B2m+5 is equivalent to the block Mm+3,m−1 in B2m+3 under
the map (i, j, k)→ (i − 1, j − 1, k). So, working in B2m+3 rather than B2m+5, we have that (2m + 1, 2m − 1, 2m − 3) ∈ T
and that row 2m and column 2m+ 1 are excluded. The number of ways to complete T then is exactly g(m− 1). This proves
our claim, and thus also the base case of the induction.
To show the inductive step, we now count the choices of T for which P(k) ⊆ T but P(k+ 1) 6⊆ T .
If k is even (respectively, odd), the only choice for symbol 2k + 2 is cell (k + 2, k) (respectively, (k, k + 2)). Now

(m + 4 + k,m + 4 + k, 2k + 3) 6∈ T since P(k + 1) 6⊆ T , so the only choice for symbol 2k + 3 is cell (k + 1, k + 2),
for k even, or (k+ 2, k+ 1), for k odd. The remaining elements of T must come from cells

{k+ 3, k+ 4, . . . ,m− 1} × {k+ 3, k+ 4, . . . ,m− 1}

and

{m+ k+ 4,m+ k+ 5, . . . , 2m} × {m+ k+ 4,m+ k+ 5, . . . , 2m}.

Thus, by isotopism, the number of ways of choosing the remaining elements of T is f (m− k− 3).
Employing induction, we see that there are g(m− 1)+ f (m− 3)+ f (m− 4)+ · · · + f (1) distinct choices of T for which

P(m− 3) 6⊆ T . There is a unique choice of T for which P(m− 3) ⊆ T : ifm is even T = P(m− 3)∪ {(m− 3,m− 1, 2m− 4),
(m− 1,m− 2, 2m− 3)}, while ifm is odd T = P(m− 3) ∪ {(m− 1,m− 3, 2m− 4), (m− 2,m− 1, 2m− 3)}.
Since f (0) = 1 and f (m) = 4g(m), the recurrence relation (2) follows. �

Next, we analyse the recurrence relation (2) to obtain a better lower bound for tn.

Corollary 1. Let w = (181+ 24
√
78)1/3 and c = 12w/(w2 + w − 23). Then

f (n) =
2+ o(1)
c2 − c + 6

cn ≈ 0.221× (2.31)n. (3)

In particular, tn > 2f
( 1
2 (n− 5)

)
>
(
0.0542+ o(1)

)
× (1.52)n for n > 5.

Proof. It is a standard exercise in generating functions to solve the recurrence (2). Let F(x) =
∑
m>0 f (m)x

m. Then (2) implies
that

F(x)− 1 = x
(
F(x)− 1

)
+
4x3F(x)
1− x

and hence F(x) = (1 − x)2/(1 − 2x + x2 − 4x3). Now c is the reciprocal of the real root of 1 − 2x + x2 − 4x3. Applying
standard methods (e.g. Theorem 9.2 of [25] or Theorem 4 of [5]) to F(x) gives (3).
To obtain the lower bound for tn observe that f (m) is thenumber of transversals inB2m+5within blocksM0,m,Mm,4,Mm+4,m

andM2m+4,1, such thatMm,4 andM2m+4,1 contain transversals on the symbol set {2m+1, 2m+2, 2m+3, 2m+4, 0}. There
is only one cell in M2m+4,1 and two choices for the transversal in Mm,4, as in Lemma 3. This shows that B2m+5 has at least
2f (m) transversals. In other words,

tn > 2f
(
1
2
(n− 5)

)
=
4+ o(1)
c2 − c + 6

c(n−5)/2 >
(
0.0542+ o(1)

)
× (1.52)n

for n > 5. �
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Table 1
Transversals of standard blocks.

b βb (βb)
1/b

3 2 1.259
5 6 1.430
7 28 1.609
9 244 1.841
11 2544 2.039
13 35600 2.239
15 659632 2.443
17 15106128 2.644
19 425802176 2.845
21 14409526080 3.046
23 577386122880 3.246

3. A more general construction

In this section we give a more general construction which produces a better lower bound on tn. The disadvantage is that
we will be forced to rely on computational evidence whereas the constructions in Section 2 can be analysed entirely by
hand. Nevertheless, the idea is similar.
As in previous constructions, we look for certain transversals that lie within blocks placed down themain diagonal. Most

of these blocks will be of order b 6 n − 2, but because we cannot rely on b dividing n, we use two blocks R and S of other
sizes. We refer to the blocks other than R and S as standard blocks. The construction used in Lemmas 1–3 is the case b = 3.
In (1) the standard blocks are lightly shaded while R and S are the darker shade.
Let Mi,j be as defined in the previous section. For a standard block we have j = b, which we choose to be odd. In a

standard block Mi,b we use the symbols 2i + 1
2 (b − 1), . . . , 2i +

3
2 (b − 1) in our transversal. In other words, we choose a

set of consecutive symbols that is symmetric about 2i + b − 1, the symbol in the middle cell of Mi,b. The number of ways
of choosing a transversal of Mi,b that contains the desired symbols is independent of i. We denote it by βb. The first few
values of βb are given in Table 1, together with the first 4 digits of the decimal expansion of (βb)1/b, which will be relevant
in subsequent calculations. Note that by rounding down we have given a lower bound on (βb)1/b in each case.
A useful check of program correctness is that βb forms sequence A002047 in Sloane’s encyclopedia [29], which had

previously been computed by other people for s 6 19. In [3], A002047 is the number of 3 × b zero-sum arrays, defined
as follows. Let b = 2c + 1. A 3 × b zero-sum array is one in which each row is a permutation of −c,−c + 1, . . . , c − 1, c
and each column adds to zero. There is an easy bijection between such arrays and our transversals. We simply identify the
array A = [aij]with the transversal

{
(c + a1j, c + a2j, 2c − a3j) : j = 1, . . . , b

}
ofM0,b.

Returning to our construction, we take k = b n−b2b c, s =
1
2 (n− b− 2bk) and r = s+ b. This means that n = 2kb+ r + s

and we can take 2k standard blocks, together with R = Mkb,r and S = Mn−s,s to make up the blocks for our transversal T .
That is, T is a union of transversals of the stated blocks.
The standard blocks we use areMib,b andM(k+i)b+r,b for i = 0, . . . , k−1. Between them they will contribute the symbols

1
2 (b− 1),

1
2 (b− 1)+ 1, . . . , 2kb+

1
2 (b− 3) to T . Therefore, in R ∪ S we need to select the symbols

Ω =

{
0, 1, . . . ,

1
2
(b− 3)

}
∪

{
2kb+

1
2
(b− 1), . . . , n− 1

}
.

Note that every symbol that occurs in S is also inΩ (in general, R does not have this property). This facilitates the following
algorithm for calculating the number γs,b of transversals of R ∪ S that use the symbols inΩ .

(0) Initialise γs,b to zero.
(1) Find all transversals of S and categorising them into types according to which symbols they use.
(2) For each type from (1), we see how many transversals of R use the remaining symbols fromΩ .
(3) Multiply the number of transversals of a given type (from (1)) by the number of ways to complete each such transversal
(from (2)) and add this to γs,b.

Step (1) is independent of b, so it need only be performed once for each value of s. The number of transversals of S and
the number of different types that they fall into, is given in Table 2 for s 6 18. The last column shows the maximum number
of transversals that there are in a type. The corresponding minimum is 1, since in all cases the transversal formed by the
main diagonal of S is in a type on its own.
A useful check of program correctness is that the numbers in the second column of Table 2 form sequence A099152 in

Sloane’s encyclopedia [29], which had previously been computed by other people for s 6 13.
Next we give, in Table 3, the values of γs,b calculated by the above algorithm for small values of s and b. Questionmarks in

the table denote that the value was not computed exactly. However, for all s < b 6 15 we did at least a partial computation
to locate some transversals. The lower bound on γs,b thereby obtainedwas sufficient for our next calculation to be performed.
For any given n we can form transversals of Bn by taking a suitable transversal of R ∪ S in γs,b ways, together with

independently chosen transversals of the standard blocks, each of which has βb options. For each s, b this gives a lower
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Table 2
Transversals of S.

s Transversals of S Types Largest type

1 1 1 1
2 1 1 1
3 3 2 2
4 7 4 2
5 23 9 6
6 83 22 8
7 405 59 28
8 2113 167 48
9 12657 490 244
10 82297 1486 476
11 596483 4639 2544
12 4698655 14805 5952
13 40071743 48107 35600
14 367854835 158808 94456
15 3622508685 531469 659632
16 38027715185 1799659 1984176
17 424060091065 6157068 15106128
18 5006620130753 21258104 51493696

Table 3
Values of γs,b for some s < b 6 15.

s b
3 5 7 9 11 13 15

1 2 6 44 396 4568 73544 1493440
2 2 14 100 852 11272 193240 4228944
3 62 452 4948 71800 1357000 32368208
4 206 2452 32956 531208 10758584 270818864
5 14860 251836 4758168 108243880 2968949584
6 94028 2166924 52310968 1390993352 42462117232
7 22500132 686097704 21764575960 758409431888
8 233196484 9290502504 364185909592 ?
9 132763306520 6488289379176 ?
10 1922269430872 ? ?

Table 4
Lower bounds on tn for different block sizes.

b Lower bound on tn

3 0.398(1.259)n
5 0.490(1.430)n
7 0.534(1.609)n
9 0.305(1.841)n
11 0.257(2.039)n
13 0.216(2.239)n
15 0.180(2.443)n

bound on tn. The bound is of the form c(βb)n/b where c = γs,b/β
1+2s/b
b depends only on s and b. Thus the bound grows

exponentially in n, with base constant β1/bb as given in Table 1. Taking the worst bound over the different choices of s, we
get the lower bounds given in Table 4, which apply for all odd n 6= 5. (Our method only shows the bounds hold for odd
n > b+ 2, but we can use the known values of tn (from, e.g. [22]) to show that the bounds also hold for smaller orders, with
the single exception that t5 does not obey the bound derived from b = 15.)
It seems likely that choosing larger and larger block sizes will continue to improve the lower bound derived in this way,

but at present we have no method to prove this.

Proof of Theorems 1 and 2. Suppose n is an odd integer. Let b = 23 and define k, r, s, R, S as above. Counting only transver-
sals of Bn within R, S and the standard blocks, we find that tn > c(β

1/b
b )n, where β1/bb > 3.246.We choose n sufficiently large

that c(β1/bb )n > n(3.246)n. Now in the Cayley table of any group every entry is contained in the same number of transversals,
so Bn has at least (3.246)n transversals through each entry. For every transversal T that includes the entry (0, 0, 0) there is
a corresponding latin square{

(i, j+ k, k) : (i, j, i+ j) ∈ T , k ∈ N
}

(with calculations modulo n) that is orthogonal to Bn. Different latin squares arise from different choices of T , but all of them
have their first row in natural order. Theorem 1 follows.
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To prove Theorem 2, define P = [pij], a latin square indexed by Zn ∪ {∞}, by

pij =


i+ j if i, j ∈ Zn and j 6≡ i+ r,
∞ if i, j ∈ Zn and j ≡ i+ r,
2i+ r if i ∈ Zn; j = ∞,
2j− r if i = ∞; j ∈ Zn,
∞ i = j = ∞,

where r is the order of block R as defined earlier in this section. Then P is what is known as a prolongation of Bn, along a
transversal that is disjoint from all the blocks used in bounding tn. Hence every transversal of Bn through those blocks ex-
tends to a transversal of P by simply adjoining the entry (∞,∞,∞). It follows that P has at least n(3.246)n > (3.246)n+1
transversals, proving Theorem 2. �

4. Intersection of transversals in Bn

In this section, we examine the possible sizes of intersections of pairs of transversals in Bn. This is trivial for n even, so
henceforth in this section we assume that n is odd. Rows, columns and symbols are always evaluated modulo n. Let I(n) be
the set of integers t for which there exist transversals T and T ′ in Bn such that |T ∩ T ′| = t . The main result of this section is
the following.

Theorem 5. For each odd n 6= 5, I(n) = {t : 0 6 t 6 n− 3} ∪ {n}, while I(5) = {0, 1, 5}.

It is not hard to see that it is impossible for two transversals from any n × n latin square to intersect in precisely n − 1 or
precisely n − 2 elements. To see that 0 ∈ I(n) for n > 3, take any transversal T ∈ Bn, and construct a second transversal
T ′ = {(r, c + 1, r + c + 1) : (r, c, r + c) ∈ T }, which avoids T .
The next lemma verifies that 1 ∈ I(n) for n > 5.

Lemma 4. For odd n > 5 there exist two transversals T and T ′ in Bn such that T ∩ T ′ = {(0, 0, 0)}.

Proof. First suppose that n is not divisible by 3. Then let T be the transversal in Bn defined by T = {(x,−2x,−x) : 0 6 x 6
n− 1} and let T ′ be the transpose of T . As n is not divisible by 3, the unique solution to x ≡ −2x mod n is x = 0, so T and T ′
intersect only at (0, 0, 0).
Otherwise suppose that n is divisible by 3 and n > 3. For each i such that 0 6 i 6 n/3− 2, within Bn choose a transversal

Pi using symbols {2 + 3i, 3 + 3i, 4 + 3i} in the intersection of rows {n − 5 − 3i, n − 4 − 3i, n − 3 − 3i} with columns
{6+6i, 7+6i, 8+6i}. There are two choices for each Pi, and at least one of these choices will avoid any cells where the row
and column are equal. Thus it is possible to define transversals

T = {(0, 0, 0), (n− 2, 1, n− 1), (n− 1, 2, 1)} ∪
n/3−2⋃
i=0

Pi

and T ′ the transpose of T , so that T ∩ T ′ = {(0, 0, 0)}. �

Having dealt with intersections of size 0 or 1 we now pursue a proof of Theorem 5 using the transversals identified in
Section 3 in the case when b = 7. Consider the following four transversals ofM0,7:

T1 = [3, 6, 4, 9, 8, 5, 7],
T2 = [3, 6, 8, 5, 4, 9, 7],

T3 = [3, 7, 6, 4, 9, 5, 8],
T4 = [5, 3, 8, 6, 4, 9, 7],

wherewehave specified the transversals simply by listing the symbols to be chosen fromeach row in turn. Then |T1∩T1| = 7,
|T1 ∩ T2| = 3, |T1 ∩ T3| = 2, |T2 ∩ T3| = 1, |T2 ∩ T4| = 4, and |T3 ∩ T4| = 0. Hence, transversals of a standard block of
order 7 have {0, 1, 2, 3, 4, 7} as their set of possible intersection sizes. By taking T and T ′ to be transversals of Bn that agree
in blocks R and S, it is therefore easy to arrange for |T ∩ T ′| to take any value in {r + s, r + s+ 1, . . . , n− 3, n}.
To achieve intersections smaller than r + s we need to allow T and T ′ to differ in R and/or S, and this requires treating

the possible values of s as different cases. For s ∈ {0, 1, 2}we are forced to have |T ∩ T ′ ∩ S| = s as there is only one choice
for the transversal of S. However, |T ∩ T ′ ∩ R| can achieve any value in {0, 1, . . . , r − 3, r}. When s = 0 this follows from
the fact that R is, in effect, a standard block. For s ∈ {1, 2} we now give transversals Rs,i that between them achieve all the
required intersections. Again we specify transversals by listing the symbols that are chosen, row by row.

R1,1 = [−5,−1,−4,−6, 1,−3, 2, 0],
R1,2 = [−6,−4,−1, 1,−5,−3, 2, 0],
R1,3 = [−6,−4,−1,−5, 2, 1,−3, 0],
R1,4 = [−6,−4,−5, 0, 2, 1,−3,−1]

R2,1 = [−8,−3,−1,−6,−7,−5, 0, 2, 1],
R2,2 = [−7,−8,−6,−1, 1,−5, 0, 2,−3],
R2,3 = [−8,−6,−7,−1, 1,−5, 0, 2,−3],
R2,4 = [−8,−6,−7,−1, 1, 0,−5,−3, 2],
R2,5 = [−8,−6,−7, 0,−1, 1,−5,−3, 2].
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For s ∈ {3, 4, 5, 6} we now present transversals Rs,i of R that between them achieve intersections of all sizes in
{0, 1, 2, . . . , r − 3, r}. We also give a transversal Ss of S that is disjoint from its transpose and uses the symbols inΩ that do
not occur in Rs,i. This offers the possibility of choosing |T ∩ T ′ ∩ S| to be either 0 or s. From the options we have presented it
is now easy to construct transversals T and T ′ that prove Theorem 5.

R3,1 = [−9,−10,−8,−2, 0,−7,−1,−6, 2, 1],
R3,2 = [−10,−8,−9,−1,−2,−7, 1,−6, 0, 2],
R3,3 = [−10,−7,−9,−1,−2,−8,−6, 2, 1, 0],
R3,4 = [−10,−8,−2,−9,−7, 0,−1,−6, 2, 1],
R3,5 = [−10,−8,−9,−2, 0,−7,−1,−6, 2, 1].
S3 = [−5,−3,−4]

R4,1 = [−12,−9,−5,−10,−11,−1,−8, 2, 0,−2, 1],
R4,2 = [−11,−12,−10,−5,−2,−9, 1,−8,−1, 2, 0],
R4,3 = [−12,−10,−11,−5,−2,−9, 1,−8,−1, 2, 0],
R4,4 = [−12,−10,−11,−5,−1,−9, 0,−8,−2, 2, 1],
R4,5 = [−12,−10,−11,−2,−5,−9,−1,−8, 2, 1, 0].
S4 = [−6,−7,−3,−4]

R5,1 = [−14,−10,−13,−9,−12,−3,−11, 0, 2,−1, 1,−2],
R5,2 = [−14,−12,−13,−9,−3,−11, 0,−10,−2, 1,−1, 2],
R5,3 = [−13,−9,−14,−12,−10,−3,−11, 0, 2,−2, 1,−1],
R5,4 = [−14,−12,−13,−9,−3,−11,−2,−10, 2,−1, 1, 0],
R5,5 = [−14,−12,−13,−9,−3,−11,−2,−10, 2, 0,−1, 1].
S5 = [−8,−6,−4,−7,−5]

R6,1 = [−16,−14,−12,−15,−13,−7,−3, 0,−11, 1,−1,−2, 2],
R6,2 = [−16,−14,−15,−11,−7,−13,−1,−12, 0,−3, 1,−2, 2],
R6,3 = [−16,−14,−12,−15,−13,−7,−2, 0,−11,−1,−3, 2, 1],
R6,4 = [−16,−14,−15,−11,−7,−13,−2,−12,−1, 2,−3, 1, 0],
R6,5 = [−16,−14,−15,−11,−7,−13,−3,−12, 0, 2,−2, 1,−1],
R6,6 = [−15,−16,−14,−11,−7,−13,−3,−12, 0, 2,−2, 1,−1].
S6 = [−10,−6,−9,−5,−8,−4].

5. Homogeneous latin bitrades

The results from the previous section allow us to solve an open problem on homogeneous latin bitrades. A latin bitrade
is a pair (Q ,Q ′) of non-empty, disjoint partial latin squares such that Q and Q ′ have the same set of occupied cells, and
each row (respectively column) of Q contains the same set of symbols as the corresponding row (resp. column) of Q ′. We
sometimes refer to Q as a latin trade and Q ′ as its disjoint mate. The size or volume of a latin bitrade is the number of filled-in
cells in Q or Q ′. Given two latin squares L and L′ of the same order, it is not hard to show that (L \ L′, L′ \ L) is a latin bitrade.
A recent survey on latin bitrades may be found in [6].
A latin bitrade is said to be k-homogeneous if each row and each column contains 0 or k symbols and each symbol

appears either 0 or k times. A number of papers [2,4,7,8] have explored the spectrum of possible sizes for k-homogeneous
latin bitrades. Trivially, 2-homogeneous latin bitrades have volume divisible by 4 and are precisely the unions of disjoint
2× 2 latin subsquares. For k > 3, the following is conjectured in [4]:

Conjecture 2. For all k > 3, a k-homogeneous latin bitrade of size s exists if and only if k divides s and s > k2.

The ‘‘only if’’ part of the above conjecture is clear.

Lemma 5 ([2,4,7,8]). Conjecture 2 is true in each of the following cases:

• all odd k,
• s > k(k+ u), where k is even but not a power of 2 and u is the smallest proper odd divisor of k,
• s > 3k2/2 in the case when k is a power of 2
• all k such that 3 6 k 6 37.

A nice spinoff from the previous section is that we can verify Conjecture 2 for the unsolved cases. We make use of the
following lemma, which exploits the equivalence of transversals in Bn and diagonally cyclic latin squares.

Lemma 6. Let T1 and T2 be two transversals in Bn such that |T1 ∩ T2| = n− k. Then there exists a k-homogeneous latin bitrade
of size nk.
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Proof. It is routine to check that

Q = {(i, c + i, r + c + i) : 0 6 i 6 n− 1, (r, c, r + c) ∈ T1 \ T2},
Q ′ = {(i, c + i, r + c + i) : 0 6 i 6 n− 1, (r, c, r + c) ∈ T2 \ T1}

defines a k-homogeneous latin bitrade (Q ,Q ′) of size nk. �

From Theorem 5, and the fact that a 3-homogeneous latin bitrade of size 15 exists [7], we have the following corollary:

Corollary 2. Let n > k > 3 and n odd. Then there exists a k-homogeneous latin trade of size nk.

Wemake use of the following theorem from [4]:

Theorem 6 ([4]). Let m > k and m′ > k′. If there exists a k-homogeneous latin bitrade of size km and a k′-homogeneous bitrade
of size k′m′, then there exists a kk′-homogeneous latin bitrade of size kk′mm′.

We are now ready to prove Conjecture 2.

Proof of Theorem 3. From Lemma 5 and Corollary 2, we may assume that k and n = s/k are both even. Let k = 2ab and
n = 2cd, where a, c, b, d > 1 and b and d are odd. By repeated applications of Theorem 6 with k′ = m′ = 2 we can build
a 2w-homogeneous latin bitrade of size 4w for any integer w > 1. Using Theorem 6 again to combine this bitrade with
appropriate base cases, we will prove the required result.
Suppose first that a 6 c+2 and b = 1. From Lemma 5, there exists a 4-homogeneous latin bitrade of size 2c−a+4d, which

we use as our base, choosingw = a− 2. Note that a > 2 since k > 3 (if a = 2, the base case proves the result without need
to apply Theorem 6).
Secondly, suppose that a 6 c and b > 1. Since b is odd, Lemma 5 shows the existence of a b-homogeneous latin bitrade

of size 2c−abd. We use this as our base, withw = a.
Finally, suppose we are not in one of the above cases. Thus a > c and 2a−cb > 3 so by Corollary 2 there exists a 2a−cb-

homogeneous bitrade of size 2a−cbdwhich we use as our base withw = c . �

We note that most of the homogeneous latin trades from our constructions are neither primary nor minimal. A latin
bitrade (Q ,Q ′) is said to be primary if there is no latin bitrade (R, R′) such that R ( Q and R′ ( Q ′. A latin trade Q is said
to be minimal if there is no latin trade R ( Q . A latin bitrade (Q ,Q ′) is primary if Q is minimal but the converse is not
necessarily true.
We conjecture the following:

Conjecture 3. For all k > 3, a primary k-homogeneous latin bitrade of size s exists if and only if k divides s and s > k2.

This conjecture has been verified for odd k in [4]. The analogous conjecture for minimal latin bitrades is certainly not true;
minimality is, in general, a much more restrictive condition. For k > 3, minimal k-homogeneous latin trades of size k2 do
not exist as these are necessarily latin squares of order k, which for k > 3 always strictly contain a latin trade on any pair
of rows. In [7], it is shown that minimal 3-homogeneous latin bitrades of size km exist for each m > 4. We have shown by
computer search that the smallest minimal 4-homogeneous latin trade has size 24; a bitrade formed from two such trades
is shown below. This answers Open Problem 4 from [36].

1 2 3 4 · ·

5 6 1 · 2 ·

6 1 2 · · 3
2 · · 5 3 4
· 3 · 6 4 5
· · 4 1 5 6

2 3 4 1 · ·

6 1 2 · 5 ·

1 2 3 · · 6
5 · · 4 2 3
· 6 · 5 3 4
· · 1 6 4 5

For bounds on the size of the smallest minimal k-homogeneous latin trade for k > 5, refer to Table 1 in [10].

6. RandomMOLS

In this final section we briefly discuss the significance of our results to the problem of constructing random MOLS
(mutually orthogonal latin squares). First we explain what wemean by randomMOLS andmention some contexts in which
they may be useful.
In order to select ‘‘random MOLS’’ ideally we would like an efficient algorithm which, given integers n and k, returns a

set of kMOLS of order n chosen uniformly at random from all such sets. This seems a very difficult problem given that even
the degenerate case k = 1 has been only partially solved. Jacobson and Matthews [16] designed a Markov chain whose
stationary distribution is uniform over Latin squares of order n. However, they were not able to say how quickly their chain
converges to its stationary distribution.We are unaware of any prior work applying to the case k > 2.We give a result below
which, for k = 2 and odd n, allows for the easy selection of a random pair of MOLS of order n. They are not chosen from
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the whole space, but rather from a restricted set. Nevertheless that set is exponentially large in n, and the distribution is
uniform. We view this as a modest first step on an interesting but difficult problem.
Probably the oldest application of MOLS is to the design of statistical experiments. See [1,28] for discussion of the

randomisation that is desirable in this application.
A new technique has recently been proposed for wireless communication, and which should be readily applicable to

audio and video watermarking. This technique, OFDMA, uses orthogonal tones to carry high capacity digital data. In order
to spread the signal spectrum, a channel is hopped through a pattern of available tones in a prescribed manner, called a
hopping pattern. All tones may be occupied during a hopping period, making this a very efficient means of data transfer.
Hopping patterns are also used to defeat hackers and overcome interference. Stamatiou and Proakis [30] suggest the use
of Latin squares as suitable patterns for controlling the hopping to ensure that adjacent cellular systems have at most one
coincidence of tones, which is achieved by using Latin squares that are mutually orthogonal. The security of this application
is enhanced by choosing the MOLS in as random a way as possible.
The constructions given in this paper allow an approachwhenwe are considering just a pair of mutually orthogonal latin

squares. Herewe fix a latin square, and choose amutually orthogonalmate uniformly at random from a subset of all possible
orthogonal mates.
Any diagonally cyclic latin square is orthogonal to the forward circulant latin square Ln, with symbol i − j (mod n) in

each cell (i, j) ∈ N × N . The constructions given in this paper allow us to choose diagonally cyclic latin squares, uniformly
at random, from a set of size exponential in n. This follows from the bijection between diagonally cyclic latin squares and
transversals of Bn. In order to select a transversal at random from Bnwe can use standard blocks of order, say, three and select
transversals within these blocks randomly and independently. Doing so allows selection of a random transversal from an
exponentially large, uniform probability space.
Having chosen a random pair of MOLS, it is possible to randomise further by applying a random permutation to the rows

of both squares, a second random permutation to the columns of both squares, and then to randomly permute the symbols
within each square. It is also possible to interchange the two squares with probability, say, 12 . Whether these further steps
are useful will depend on the application.
For some applications our random pairs of MOLS will be too highly structured and it would be very interesting to see

an analogous result to the generation method known for random latin squares [16]. Also worthy of further research is the
question of what properties random MOLS might be expected to have. Even random latin squares are not well understood,
although a few properties are known (see e.g. [9,15,23,24]).
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