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Abstract: A Latin square is pan-Hamiltonian if the permutation which defines row i relative
to row j consists of a single cycle for every i # j. A Latin square is atomic if all of its conjugates
are pan-Hamiltonian. We give a complete enumeration of atomic squares for order 11, the
smallest order for which there are examples distinct from the cyclic group. We find that there
are seven main classes, including the three that were previously known. A perfect 1-
Jactorization of a graph is a decomposition of that graph into matchings such that the union of
any two matchings is a Hamiltonian cycle. Each pan-Hamiltonian Latin square of order n
describes a perfect 1-factorization of K, ,, and vice versa. Perfect 1-factorizations of K, , can be
constructed from a perfect 1-factorization of K,,.;. Six of the seven main classes of atomic
squares of order 11 can be obtained in this way. For each atomic square of order 11, we find the
largest set of Mutually Orthogonal Latin Squares (MOLS) involving that square. We discuss
algorithms for counting orthogonal mates, and discover the number of orthogonal mates
possessed by the cyclic squares of orders up to 11 and by Parker’s famous turn-square. We find
that the number of atomic orthogonal mates possessed by a Latin square is not a main class
invariant. We also define a new sort of Latin square, called a pairing square, which is mapped
to its transpose by an involution acting on the symbols. We show that pairing squares are often
orthogonal mates for symmetric Latin squares. Finally, we discover connections between our
atomic squares and Franklin’s diagonally cyclic self-orthogonal squares, and we correct a
theorem of Longyear which uses tactical representations to identify self-orthogonal Latin
squares in the same main class as a given Latin square. © 2003 Wiley Periodicals, Inc. ] Combin
Designs 12: 12-34, 2004
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1. INTRODUCTION

A Latin square is a matrix of order n in which each row and column is a permutation
of some (fixed) symbol set of size n. It is also sometimes convenient to think of a
Latin square of order n as a set of n? triples of the form (row, column, symbol). The
Latin property means that distinct triples never agree in more than one coordinate.
For each Latin square there are six conjugate squares obtained by uniformly
permuting the coordinates of each triple. These conjugates can be labelled by a
permutation giving the new order of the coordinates, relative to the former order of
(1,2,3). Hence, the (1,2, 3)-conjugate is the square itself and the (2, 1, 3)-conjugate
is its transpose. The (1, 3,2)-conjugate, also known as the row-inverse [20], is found
by interchanging columns and symbols, which is another way of saying that each row,
when thought of as a permutation, is replaced by its inverse. Throughout this paper,
we will use LT and L* to denote the transpose and row-inverse, respectively, of a
given Latin square L. A square is said to be symmetric if it is equal to its transpose
and ftotally symmetric if it is equal to all six of its conjugates. To check that L is
totally-symmetric it is sufficient to establish that L = LT = L*. In several places in
this paper, we use L;; to denote the symbol in row i, column j of the Latin square L.

A Latin rectangle is a matrix in which each row is a permutation of the same
symbols and no symbol occurs more than once in any column. An isofopy of a Latin
rectangle R is a permutation of its rows, permutation of its columns and relabelling of
its symbols. The resulting rectangle is said to be isotopic to R. An isotopy which
maps R to itself is called an autotopy of R.

The combination of an isotopy with the taking of a conjugate is called a paratopy.
The set of Latin squares paratopic to a given Latin square L is called the main class of
L. A paratopy which maps L to itself is an autoparatopy of L. These notions can be
extended to Latin rectangles as well, with the understanding that the identity and row-
inverse are the only two conjugates that it makes sense to use.

If R is a 2 x n Latin subrectangle of some Latin square L, and R is minimal in that
it contains no 2 x n’ Latin subrectangle for 2 < n’ < n, then we say that R is a row
cycle of length n. Row cycles correspond to cycles in the permutation which defines
one row relative to another. Column cycles and symbol cycles are defined similarly,
and the operations of conjugacy on L interchange these objects. Row cycles, column
cycles and symbol cycles will collectively be known as cycles.

A Latin square of order n is pan-Hamiltonian if every row cycle has length n. A
square is pan-Hamiltonian if and only if its row-inverse is pan-Hamiltonian. A Latin
square is atomic if all of its conjugates are pan-Hamiltonian. In other words, an
atomic square is a Latin square in which all of the cycles have length equal to the
order of the square. This terminology comes from [20], in which both pan-
Hamiltonian and atomic squares are investigated in some detail. In that paper it is
shown that for orders up to 10, the only main classes of atomic squares are based on
the cyclic group tables of prime orders. There is one additional main class containing
a pan-Hamiltonian Latin square of order 7 and 37 main classes containing pan-
Hamiltonian Latin squares of order 9. Note that pan-Hamiltonian Latin squares (and
hence also atomic squares) of order n can exist only if n is odd or n = 2.

Pan-Hamiltonicity is an isotopy invariant and the atomic property is a main class
invariant. The original interest in pan-Hamiltonian Latin squares arose from the fact
that they contain no non-trivial Latin subsquares. In fact, they contain no non-trivial
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Latin subrectangles. Latin squares with no non-trivial Latin subsquares are called N,
squares. For more information on N, squares, consult [3].

A 1-factorization of a graph is a decomposition of that graph into 1-factors (perfect
matchings). A 1-factorization is perfect if the union of any two of its 1-factors is a
Hamiltonian cycle. For background on these concepts, consult [17] and [19]. There is
a close relationship between Latin squares and 1-factorizations of complete bipartite
graphs, in which each row of a square L corresponds to a 1-factor. The two vertex sets
of the bipartite graph correspond to the columns and the symbols of L, respectively.
The Latin property of L means that the edges corresponding to the (column, symbol)
pairs within a row are a 1-factor, and the 1-factors corresponding to different rows are
disjoint. Hence a Latin square L of order n neatly encodes a 1-factorization F of K, .
Taking the union of two 1-factors from F, we get cycles in the graph which
correspond exactly to row cycles of L. In fact, it is easy to see that F is perfect if and
only if L is pan-Hamiltonian.

Theorem 1.1. A pan-Hamiltonian Latin square of order n encodes a perfect 1-
factorization of K, ,, and vice versa.

There is also an important connection with perfect 1-factorizations of complete
graphs, which has been observed by Laufer [8] and others.

Theorem 1.2. If there is a perfect 1-factorization of K, then K,, also has a
perfect 1-factorization.

We now describe the construction behind this result. From a perfect 1-factorization
F of K,;1, construct a pan-Hamiltonian Latin square £(F) of order n, with rows,
columns and symbols labelled from 1 to n, as follows. First choose one vertex of K,
to be oo, the ““point at infinity”’, and label the other vertices 1,2,...,n. For each 1-
factor

{(00,i), (a1, b1), (a2,b2), ..., (@(u-1)/2: biu-1y2) }

in F, create a row of £(F) by putting i in the ith column, g; in the b;th column and b;
in the a;jth column, for each j =1,2,...,(n—1)/2. Note that by Theorem 1.1, a
perfect 1-factorization of K, is described by L(F).

There are a number of important things to note about this construction. Firstly,
non-isomorphic factorizations of K, can result from different choices of the point
at infinity. Examples can be found in Section 3. Secondly, £(F) = £(F)". Thirdly,
not all perfect 1-factorizations of K, are isomorphic to a 1-factorization which is
derived in this way. Those that are have a Latin square representation which is
isotopic to a pan-Hamiltonian Latin square L satisfying L = L*. This seems to be a
strong restriction, as attested to by the observation in [20] that only one of the 37 non-
isomorphic perfect 1-factorizations of Ko g is related by the above construction to a
perfect 1-factorization of Kjj.

The only known infinite families of perfect 1-factorizations of complete graphs are
for K,y and K5,, where p is an odd prime. Hence, we immediately get perfect 1-
factorizations for K, , and K, 17,1 by Theorem 1.2. A third infinite family of
perfect 1-factorizations of complete bipartite graphs was recently described in [1].
Unlike the first two families, it does not correspond to a family of factorizations of
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complete graphs. It is generated in terms of pan-Hamiltonian Latin squares, and
covers all orders of the form p?, where p is an odd prime. The construction of the
require pan-Hamiltonian Latin square starts with the addition table of the direct
product Z, & Z,, and then slightly perturbs it to destroy the short cycles.

The present paper deals with the atomic squares of order 11. In the next section,
we describe an algorithm which was used to enumerate them. In Section 3, we give
the results of the enumeration and we show how these relate to perfect 1-
factorizations of Kj;. The remainder of the paper considers sets of mutually
orthogonal Latin squares which contain an atomic square. In Section 4, we cover the
theory of orthogonal squares, in Section 5, we discuss some algorithms for finding
orthogonal mates and in Section 6, we examine the results of those algorithms.

The results of a number of computations are reported in this paper. All
computations were performed at least twice to effectively eliminate the possibility of
random clerical or hardware errors. All times quoted are for a 700 MHz PC or
equivalent.

2. GENERATION OF ATOMIC SQUARES

In this section, we describe an algorithm that was used to generate all the atomic
squares of order 11. Since we are only interested in obtaining a representative of each
main class of atomic squares, we can use isotopy and conjugacy to drastically cut the
number of possibilities we need to consider. By reordering the rows, we may assume
that the first column is in natural order. Then, because we know that the second row
must be a full cycle permutation relative to the first row, we can reorder the columns
and then relabel the symbols in such a way that the first two rows are:

1 2 3 -« n—1 n
(2 3 4 ... n 1) (1)

where 7 is the order of the square.

While the first two rows can be fixed, there are many possibilities for the third row.
Our algorithm works by trying to make this third row lexicographically least amongst
all the possible third rows. By applying isotopies (described below), we can get the
first column in natural order and the first two rows matching (1), but with a variety of
different third rows.

For each choice of an ordered pair (i,/) of distinct rows and of a column & of an
atomic square A, we define a canonical relabelling of A as follows:

(a) Permute the rows so that row i is first, followed by row j.

(b) Permute the columns so that column k& becomes the first column.

(c) Permute the remaining columns so that, using the new row and column
indices, Ay, = Ap -1 for eachm =2,3,... n.

(d) Relabel the symbols so that the first two rows match (1).

(e) Reorder the remaining rows so that the first column is in natural order.

In other words, we choose two entries A; and Aj from distinct rows of the same
column, move them up to the top left of the square and the relabelling follows
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naturally from there. For each i,j, k, the canonical labelling will give us a new third
row r4, which we can compare to the original third row r3. We make the following
definition.

Definition 2.1. An atomic square is minimal if its first two rows match (1) and its
third row is lexicographically least among all the third rows which can be produced
by the above canonical labelling for some i,j,k, and also among the third rows
produced by taking the row-inverse of the square and then finding any canonical
labelling.

It should be clear that every main class of atomic squares contains at least one
minimal square, and hence our enumeration can safely concentrate on building
minimal squares. The enumeration uses backtracking to build the Latin square one
entry at a time, deciding all the entries in one row before beginning the next. Each
new entry is screened to reject any which complete a row, column or symbol cycle of
length less than n. In addition, there is a check for minimality whenever a new row is
completed. If the partial square A is provably not extendable to a minimal square then
it is rejected. This test involves four steps being carried out when we complete row j.
For each choice of a column & and a row i < j, we:

(a) Consider having row i as the first row, row j as the second row and column k as
the first column. If the row that would come third has yet to be built (that is,
the symbol that gets relabelled as 3 has not yet been used in column k), this
part of the test for these values of i, j, k is inconclusive and we continue. If we
have built the row, the canonical labelling gives a new third row r; and we
compare this to the existing third row r3. If 7§ < r3 in the lexicographic order,
then we know that A can never be extended to a minimal square, so we discard
it. Otherwise we continue.

(b) As for (a), but interchange row i and row j.

(c) Consider having row j as the third row, row i as the second row and column
k as the first column. This determines which row must go in first place as
follows. Let s; and s be respectively the symbols in row i and row j of column
k. We simply find the column ¢ in which s, occurs in row i and then, if it exists,
the row | in which s; occurs in column c. If we have not yet built r| then
the test is inconclusive. Otherwise we make r) the first row. With row i as the
second row and column k as the first column, this will force row j to be the
third row. The canonical relabelling of row j gives r; and we compare this to
the original r3 in A, rejecting A if r; < r3 as before.

(d) Repeat steps (a) to (c) operating on A*. The benchmark remains the original
row r3, being the third row of A not of A*.

In this way we ensure that we only build minimal atomic squares. Note that our
algorithm will still produce duplication in the sense that we can get more than one
representative of a main class from it. There are two reasons why this might happen:

(a) The definition of minimality only requires us to check the square and its row-
inverse, which means that some other conjugate of a minimal square M may
have a canonical labelling as a minimal square distinct from M. We could have
defined minimality differently to allow for the other four conjugates. However,
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in the early stages of building a square we would rarely have enough
information for testing of the other conjugates to be decisive, so screening is of
dubious value. The point is that we build A row by row, which breaks the
usually symmetry between rows, columns and symbols.

(b) During the test, we may find situations in which r3 = r} in which case, as it
stands, we accept A. It would be possible to use the fourth and subsequent
rows to break these ties. However the ties are rare and there would be a cost,
both in programming and execution time, in order to deal with them. So we
chose instead to accept the occasional duplication from, say, two minimal
atomic squares in the same main class which differ only after the third row.

In practice, duplication arose for both the above reasons. However the number of
duplicates was quite small, and easily eliminated by a subsequent paratopy test, for
which we used McKay’s nauty program [10]. The algorithm took nearly a week to
compile an initial list of 36 atomic squares of order 11. When nauty was applied to
this list, it established that there are seven main classes of atomic squares of order 11.

We attempted to compile a complete catalogue of atomic squares of order 13 by
the same method, but found that the search space was too large. The level of difficulty
of the problem can be gauged by counting the number of r x n Latin rectangles which
the algorithm generates. Table I shows the number of atomic rectangles that pass the
minimality test, and hence need to be developed if a complete list of minimal atomic
squares is to be compiled. The computation of the number of 4 x 13 Latin rectangles
required approximately 1000 hours. For n = 13 and r > 4, our code was incapable of
determining these numbers.

It is worth mentioning that we originally enumerated the atomic squares of order
11 by a different method. Instead of using the idea of minimality, we used nauty to
screen for paratopic Latin rectangles each time we completed a row (at least for the
early rows). This method was substantially slower and also required the storage of
representatives of each main class of Latin rectangles, whereas the algorithm outlined
above requires basically no storage. The advantages of canonical labelling over
isomorphism testing (in our case, paratopy testing) are documented in [11]. However,
since only a small amount of code was reused in our second approach, the original
computation at least provides an almost independent validation of our results.

TABLE I. Number of Minimal r x n Atomic Latin Rectangles

r n=717 n=9 n=11 n=13
2 1 1 1 1
3 5 76 3612 346212
4 4 1300 3734893 35570076348
5 1 1183 281291604

6 1 15 395189650

7 1 0 2064530
8 0 46

9 0 36

10 36

11 36
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3. ATOMIC SQUARES OF ORDER ELEVEN

From [20] we know that eleven is the smallest order for which there are atomic
squares outside the main classes of cyclic squares of prime order. In the previous
section, we described how we established that there are exactly seven different
main classes of atomic squares of this order. Table II lists the seven main classes,
together with some information on their symmetries and relationship to perfect 1-
factorizations. The second column of the table gives the number of conjugates which
are isotopic to any given member of the main class. The third column says how many
autotopies each square possesses. Hence the size of the autoparatopy group is the
product of the numbers in columns two and three.

The first three main classes were previously known. A}, is the main class of the
cyclic group of order 11. Aj, and A;, contain the atomic squares from the infinite
families given respectively by Owens and Preece [12] and Wanless [20]. Repre-
sentatives of each of the non-cyclic main classes are given in Figure 1.

In order to describe the representative squares in Figure 1, a few extra definitions
are required. A diagonally cyclic Latin square L of order n based on the symbols 1 to
n is generated from its first row by applying the rule that the triple (i,/, L;) implies
the triple (i + 1,/ + 1, L; + 1), where all additions are performed modulo n. This can
be thought of as developing each diagonal cyclically from the entry in the first row. A
bordered diagonally-cyclic Latin square L of order n based on the symbols 1 to 7 is
generated cyclically from its first row by applying the following rules in which all
additions are reduced modulo n — 1 to lie in the range 1,...,n — 1:

(a) the triple (i,/,L;) with n¢ {i,j,L;} implies the triple (i + 1,j+ 1,L; + 1);

(b) the triple (i,/,n) with n¢ {i,j} implies the triple (i + 1,j + 1,n);

(c) the values of x and y in the triples (i, n,x) and (n,j,y) are whichever symbols
are needed to satisfy the Latin property.

Thus the submatrix formed by deleting the last row and column of L has a very
similar structure to a diagonally cyclic Latin square except that there is one constant
diagonal.

These two types of squares were studied by Franklin [6,7]. Note that we have given
a slightly narrower definition of a bordered diagonally cyclic square than Franklin. A
survey of results on (bordered) diagonally cyclic squares can be found in [21].

TABLE II. The Main Classes of Atomic Squares of Order 11

Isotopic Factorization of K,:

conjugates  Autotopies Choice of oo
Al 6 1210 E:9
AL 6 10 C: 11
A 2 10 E: 1-8,10-12
Al 2 10 C:1
A 2 1 C:2-10,12
AS, 2 55 D:9
Al 2 5 None




19

ATOMIC LATIN SQUARES OF ORDER ELEVEN

9

4

3 10 2 11 8 7 1

5

6

3 5 1102 11 8 7 9 4 6

S~ N © -
— <
= Rl SR T
0w S Jowo oo
SO o~ ma S
— o
i S IR~ Y
Mmoo~ S 0w
< —
D 00 T Y b~ <O T
T - 0O M T
Corma T 39 o
e O < e 00 T O 0N
rd3w2n8714
0SS — N
fom] —
S o~ TN
e - > R )
I I
— = .
T g o~
Mmoo S0~
— o0 = & <Ko T
N I-© oM T~
-~ O
omma TS o
TOoONmm Do oG
o) —
0 = S oo o

9101 2 3 4 5 6 7 8 11
3

11

2 3 4 6
2

6 7 8 9 10 1

11

11

6

4 8 21011 9 3 7 5

1

6 5 1 10 2 11 8 7 9 4 3

o~ NS onm
— o
Rl S R N R
0 O M 0N O
© N -D oS w
d ol
T R S |
W NDI~O NG
b
S N0
S oD wo ~ o
[} Bl
—mno S or~a
. =
N 0o o
m S T oo
D O -0 DD ™
So "~ 0o min
WS oW N ™
-
O T O -
— o
T @ N~ o
MmN T~ 0w
o -
—mwZ oo™
N~ ;o man T
Cwrmma TS o
~oN—~om Do o
0= S oo~ o

2 11 21 4 3 6 5 8 7 10 9 11
5

4

3 45 6 7 8 9101

11

11

111 8 5 3 7

6 4 10 2 9

1 4 810 2 5 11 9 7 6 3

NS Mmoo —
—~ S o N
I~ B SR -
S e e R B R
WM O D~
Mo wn o & X w0
N No TS 0w
T oS o~ wm
0O -
O T D00 N I~
S woomt~malo
M~ o= S 000
e B S
SN DD
— a0 s S o oo
DTN~
™M T 00 O DN b~
TS~ Mmoo
DO TN 0™
N moS ~ e~
N mo 2o
A R VS N S

1108 5 4 9 211 3 7 6
7

2 11

5

6

37 9 1 4108 6

11

11

Representatives of the non-cyclic main classes of atomic squares.

FIGURE 1.

We define a pairing Latin square L to be a Latin square of odd order for which the
symbol set can be partitioned into a single symbol, called the unpaired symbol, and a
collection of unordered pairs such that the following conditions are satisfied. The
unpaired symbol must occur in every position on the main diagonal. Off the main

diagonal, if a symbol x occurs in row i, column j then the symbol paired with x must
occur in row j, column i. Thus L must be isotopic to LT, with the isotopy being to

simply interchange the symbols within each pair. There is a connection between
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pairing squares and bordered diagonally cyclic squares. The following theorem is
proved in [21].

Theorem 3.1. Each symmetric bordered diagonally cyclic Latin square of odd
order is isotopic to a bordered diagonally cyclic pairing Latin square.

As indicated in the final column of Table II, six of the seven main classes can be
constructed from perfect 1-factorizations of K. The five perfect 1-factorizations of
K1, were first catalogued by Petrenyuk and Petrenyuk [16], who labelled them A, B,
C, D and E. The last three of these give rise to atomic squares. Note that the
relationship between factorizations and atomic squares is not one-to-one because
of the choice of the point at infinity (see the comments following Theorem 1.2).
Factorisation C generates three different main classes of atomic square, depending on
the choice of co. Usmg the vertex labelling from [16], A“ is obtained when vertex 11
is chosen as 00, A}, is obtained from a choice of vertex 1 as oo and any other choice
of oo yields A” Factorisation D gives rise to both atomic squares (when vertex 9 is
chosen as 0o) and squares which are pan-Hamiltonian but not atomic (when any other
vertex is chosen as oo). Factorisation E generates two different main classes of
atomic square; A“ is obtained when vertex 9 is chosen as oo and any other choice of
0o yields A3,

It turns out that every atomic square of order 11 is isotopic to at least one of its
conjugates other than itself. In the six cases which are derived from perfect 1-
factorizations of K, it is known a priori that this will be true, since the construction
produces a square which equals its row-inverse. AZI is the only main class which does
not contain any square for which two conjugates are equal. However, it still has an
isotopy between conjugates, as the example given in Figure 1 shows. This square is a
pairing square in which 6 is the unpaired symbol and the other symbols are in pairs
(x,y) obeying the rule |x — y| = 6.

Squares in .A?l have the least symmetry of all. The example from A11 given in
Figure 1 has been constructed directly from factorization C with the choice of vertex
12 as the point at infinity. Hence it is equal to its row-inverse, but this is its only non-
trivial autoparatopy. In contrast, A?l has some very nice symmetry. The example
given in Figure 1 exhibits the symmetry of the main class nicely, as it is totally
symmetric and bordered diagonally cyclic. Note that Owens and Preece [12]
construct their square in .Afl by slightly perturbing a square in A} 1> and that A} , also
contains a totally symmetric bordered diagonally cyclic square. Indeed, let L;, L, L3
and L4 be the bordered diagonally cyclic squares with the respective first rows:

9 5 3 10 2 11 8 7 1 4 6
351 10 2 11 8 7 9 4 6], @
6 5 3 10 2 11 8 7 1 4 9,
6 5 1 10 2 11 8 7 9 4 3.

Then each L; is a representative of A’il and in fact L, L3 and L4 appear in Figure 1 in
that role. Moreover, all four squares are symmetric and both L; and L, are totally
symmetric. So the first four main classes of atomic squares of order 11 have strikingly
similar bordered diagonally cyclic forms. This pattern will be studied and generalised
in a subsequent paper, and will also be revisited in Section 6.
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A bordered diagonally cyclic square of order n necessarily possesses an autotopy
of order n — 1, while a diagonally cyclic square of order n has an autotopy of order n
[21]. By looking at the orders of the autotopy groups as given in Table II, we see
immediately that only the first four main classes may contain bordered diagonally
cyclic squares and only A}, and A?l may contain diagonally cyclic squares. All of
these possibilities are realised, as is shown by (2) and the next two observations. Aj,
has a diagonally cyclic representative generated from a first row in which the ith entry
equals 2i modulo 11. The representative of Afl’l given in Figure 1 is symmetric and
diagonally cyclic. It also has some nice orthogonality properties, which will be
examined in Section 6.

4. ORTHOGONALITY—THE THEORY

Atomic squares (and to a lesser degree pan-Hamiltonian Latin squares) share some
structural similarity with the cyclic squares of prime order. As such, it might be hoped
that they could be useful in some of the same ways. One well-known use for cyclic
Latin squares is in the construction of projective planes of prime order, using sets of
mutually orthogonal Latin squares (MOLS) as defined below. It would be interesting
to know if there are large sets of MOLS based on other atomic squares. To this end,
the remainder of this paper is devoted to the study of the orthogonality properties of
the atomic squares of order 11. In this section, we cover the theory; in the next we
outline the algorithms and then in Section 6 we give the results of those algorithms.

Two Latin squares A and B of the same order are said to be orthogonal if the
ordered pairs (A;;, B;;) are all distinct as i and j vary. A set of MOLS is a set of Latin
squares in which each pair is orthogonal. A Latin square is said to be self-orthogonal
if it is orthogonal to its transpose. Orthogonality is closely tied to the concept of
transversals. A transversal of a Latin square is a subset of the entries which includes
exactly one representative from each row, column and symbol. For more information
on these concepts see, for example, [3].

Let S be a set of cardinality s, and let O be a k x s> array of symbols chosen from
S. If, for any pair of rows of O, the ordered pairs in S X S each occur exactly once
among the columns in the chosen rows then O is an example of what is called an
orthogonal array of strength 2 and index 1. Throughout this paper, the term
“orthogonal array” will mean an orthogonal array of this type. From a set
{Ly, Ly, ..., L} of MOLS of order n, it is possible to build a (k + 2) x n* orthogonal
array where for each row r and column c there is one column of the array equal to

r

Li[r,c]
Lz[r, C]

Ly [I", C]
where L;[r, ¢] is the symbol in row r, column ¢ of the square L;. Moreover this process

is reversible, so that any (k + 2) x n? orthogonal array can be interpreted as a set of
k MOLS of order n. See [2], for example, for more details and background on
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orthogonal arrays. The interpretation of MOLS in terms of orthogonal arrays is useful
for proving the following well-known result.

Theorem 4.1. Let k be any fixed positive integer and L be a Latin square chosen
from a main class M. The number of sets of k MOLS including L is a main class
invariant, that is, it is independent of the choice of L € M.

Let P be a set of MOLS containing k squares, the first of which is L. The definition
of orthogonality is such that if an isotopy is applied uniformly to the squares in P then
orthogonality is preserved. The same is true when taking the transpose, but other
conjugations can destroy orthogonality. Since transposition and taking row-inverses
generate the six conjugates of a square, to prove Theorem 4.1 it suffices to find a
bijective map between sets of MOLS including L and sets of MOLS including L*.
This is easy if we think in terms of orthogonal arrays, where taking conjugates
corresponds to reordering the rows of the orthogonal array. The bijection we want is
obtained simply by writing P as an orthogonal array, interchanging the second and
third rows, and then reinterpreting the result as a set of MOLS, P’. The first square
in P’ will be L*, as required, and the process is reversible by applying the same
operation a second time, so it must be a bijection.

An important caveat is that this bijection does not preserve the main classes of all
the elements of P, only of the pivotal element L. An example of order 7 is presented
below. This is the smallest possible order for this illustration, since no smaller order
has two main classes each containing squares with orthogonal mates.

1 23 45 6 7 1 2 3 45 6 17

731 6 4 2 5 542 7 3 16

4 7 5 3 2 1 6 2 6 71 4 35
A=13 6 2 5 7 4 1 B=|6 3 5 2 1 7 4 (3)

6 541 3 7 2 41 6 57 2 3

2 4 6 71 53 751 3 6 4 2

51 7 2 6 3 4 37 4 6 2 51

Consider the pair (A, B) of orthogonal squares of order 7 shown in (3). The cor-
responding orthogonal array is

1111111222222233333334444444555555566666667777777
1234567123456712345671234567123456712345671234567
1234567731642547532163625741654137224671535172634
1234567542731626714356352174416572375136423746251

If we swap the second and third rows and reinterpret this as a set of MOLS we get,

1 23 456 7 1 23 456 7

3625 7 41 21 43675

6 541372 3412756
A=[7316 425 B=|4567231 (4)

475321 6 53761 4 2

51726 3 4 6 725413

2 46 7153 76 513 2 4
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Of course, A’ = A* and B’ is orthogonal to A’. However it is a simple matter to
check that B and B’ are from different main classes. In fact A, B and A’ are all from
the main class containing the cyclic group table, as can be quickly confirmed using
standard techniques [18]. To see that B’ does not belong to this class, it suffices to
note the intercalate (subsquare of order 2) in the top left corner. In particular,
this means that B’ is not atomic, whereas A, B and A’ are. It should not be sur-
prising then, to learn that despite Theorem 4.1 the number of atomic orthogonal
mates is not a main class invariant. An example that proves this will be discussed in
Section 6.

This phenomenon of main classes varying among related sets of MOLS has been
observed by Owens and Preece [13], who studied the sets of MOLS which define
the affine planes of order 9. They found that even for these sets of MOLS which
are geometrically equivalent, the main classes involved vary from set to set. For the
purposes of this paper, we define two sets of MOLS to be equivalent if they define the
same orthogonal array up to permutation of the rows and columns of the array and of
the symbols within each row of the array. We next rephrase this definition in the
terminology of Longyear [9].

Suppose that M is a set of +t MOLS of order n, and that O is the associated
(t +2) x n* orthogonal array. The tactical representation TR(M) of M is an
undirected graph defined by Longyear [9]. We shall define it in terms of O. There are
three sets X, Y and Z of vertices, of respective cardinalities  + 2,n(¢ +2) and n?.
They correspond respectively to the rows, symbols and columns of O, where symbols
are distinguished according to their row. Each row in X is joined to the n symbols in Y
which are used in that row. Similarly, each column in Z is joined to the # + 2 symbols
in Y which are used in that column. There are no other edges in the graph. The
degrees of the vertices in X, Y and Z are respectively n,n + 1 and ¢ + 2, with vertices
in Y having a unique neighbour in X and n neighbours in Z. This information is
sufficient to establish that any graph automorphism of TR(M) preserves membership
of the sets X, Y and Z. It then follows that equivalent MOLS are precisely those which
have isomorphic tactical representations. Such a characterisation allows a simple test
for equivalence using nauty [10].

Longyear’s tactical representations are very useful in this setting, but unfortunately
her paper [9] contains some incorrect results. Her Theorem 1 is tantamount to the
following.

Claim 4.1. Let P be a pair of orthogonal Latin squares. Then there exists a self-
orthogonal Latin square S such that P is equivalent to {S, ST} if and only if TR(P)
has an automorphism which when restricted to the set X (as defined above) acts as a
pair of disjoint transpositions.

A counterexample to Claim 4.1 will be cited in Section 6. The claimed proof in [9]
seems to assume that the automorphism acts as an involution on Y as well as X. In
fact, the “‘only if” direction of the proof shows that the automorphism will be an
involution on the whole graph. We therefore offer this corrected statement, the proof
of which is Longyear’s original proof.

Theorem 4.2. Let P be a pair of orthogonal Latin squares. Then there exists a self-
orthogonal Latin square S such that P is equivalent to {S,S"} if and only if the
automorphism group of TR(P) contains an involution which fixes no point in X.
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Longyear’s second theorem, which relies on the first theorem, is also in need of
correction. The test in Theorem 4.2 can easily be performed using nauty [10] to
compute the automorphism group of TR(P). Alternatively, the following result can be
used.

Theorem 4.3. Let L be a Latin square. To check whether L is isotopic to a self-
orthogonal square it suffices to identify the transversals of L, and for each transversal
t, permute the rows of L so that the cells of t occupy the main diagonal. If any of the
squares so produced turn out to be self-orthogonal then clearly the answer is resolved
in the affirmative. Otherwise the answer is negative.

Proof. Suppose that there is an isotopy / that maps L to a self-orthogonal square S.
Since symbol permutations do not affect orthogonality properties, we can assume
that / only permutes rows and columns. Also, if the same permutation is applied
simultaneously to the rows and columns, this does not affect which pairs of entries
lie in symmetrically placed positions, and hence whether or not a square is self-
orthogonal. It follows that we can assume without loss of generality that / only
permutes rows. Finally, we note that it is well known (and obvious) that the main
diagonal of a self-orthogonal square must be a transversal, and that for any given
transversal ¢ there is a unique permutation of the rows which places ¢ on the main
diagonal. O

We close this section with a result which shows that pairing squares, as defined in
Section 3, are of interest in the study of pairs of orthogonal Latin squares.

Theorem 4.4. Let C be any class of Latin squares which is closed under
transposition, and suppose that L is a symmetric Latin square of odd order. If C
contains a unique (up to permutation of the symbols) orthogonal mate of L then that
orthogonal mate is a pairing square.

Proof.  Suppose that M is the unique mate of L in C. Since {L, M} is an orthogonal
set, it follows that {LT, M} is also. But L = L' so the uniqueness of M implies that
M must be related to M? by some symbol permutation 0. Now o must be an
involution because tranposition is its own inverse. Moreover, o cannot fix any symbol
which occurs off the main diagonal of M because M is orthogonal to the symmetric
square L and hence has no two symmetrically placed copies of the same symbol. It
follows that ¢ has at most one fixed point and therefore the 2-cycles of ¢ yield the
required pairing. O

In Section 6, we shall apply Theorem 4.4 using C to be the class of atomic squares.
Other examples of classes to which it could be applied are all Latin squares,
diagonally cyclic squares, bordered diagonally cyclic squares or self-orthogonal
squares.

5. ORTHOGONALITY ALGORITHMS

The three basic steps below can be used to count the number of Latin squares
orthogonal to a particular Latin square L of order n. Since permuting the symbols in a
Latin square has no effect on its orthogonality properties, we adopt the convention
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that whenever we refer to the number of orthogonal mates (or more generally to the
number of sets of MOLS including L), we consider only those orthogonal mates in
which the first row is in natural order.

(a) Use backtracking to generate and store all transversals of L.

(b) Build a graph G in which the vertices are the transversals found in step (a)
and two vertices are adjacent if and only if the corresponding transversals
contain no entries in common.

(c) Find all cliques of size n in G1. Such cliques are in one-to-one correspondence
with the orthogonal mates of L (given our counting convention).

For step (c) it helps to think of G, as an n-partite graph, by grouping the
transversals into sets 77, 73,..., T, according to which column they use in the first
row. Each clique must involve exactly one vertex from each of the 7;, an observation
which significantly speeds up the search.

Thus in practice we performed the following task for each t € T}, in turn. Working
exclusively with the transversals adjacent to ¢, we built a graph as defined above. For
each vertex of this graph in 7;, we compiled a list of its neighbours in 7;, . Then we
built cliques by choosing a vertex from 7; at the ith stage for i =2,3,...,n and
backtracking where necessary. To choose the ith vertex, we need only consider
vertices on the list of neighbours of the (i — 1)th vertex.

The above algorithm was used to write a program to find the orthogonal mates of
each atomic square of order 11, which will be referred to as program A. It turns out
that our approach is quite similar to that of Parker [14], who noted that a small saving
could be made by ignoring T, since n — 1 disjoint transversals necessarily leave a
transversal uncovered. However, we wanted to test the orthogonal squares for certain
properties, not just count them, so we did not adopt Parker’s shortcut.

There were two properties for which we screened the orthogonal mates as they
were discovered. The results of these tests will be reported in Section 6.

Firstly, for each Latin square L' orthogonal to L we tested whether the set {L, L'}
could be extended to a larger set of MOLS. In order to do this quickly, in practice we
actually tested the necessary condition that through each entry in the first row, L and
L' have a shared transversal. Any squares passing this test were output for later
analysis. As it happened, for the squares which we tested, our necessary condition
turned out to be sufficient, although presumably there are examples for which this is
not the case.

Secondly, we tested each orthogonal mate to decide whether it was itself an atomic
square, in which case we called it an atomic mate. Some care is needed in interpreting
this test, on account of the difficulties mentioned in Section 4. Suppose that L is a
representative of a main class M, and that L has m atomic mates. Then any square
isotopic to L or to LT will also have m atomic mates, since isotopies and transposition
preserve both orthogonality and the atomic property. However, other representatives
of M may have different numbers of atomic mates. To cover all possibilities it would
be necessary in general to test three representatives of M, one from each of the three
pairs of conjugates which are related by transposition. In the present case though,
there are isotopies between conjugates which cut down our workload. For main
classes .Ah and Afl which contain totally symmetric squares, it is clear that all
representatives of the main class will have the same number of atomic mates. The



26 MAENHAUT AND WANLESS

other five main classes detailed in Section 3 contain a square L which is isotopic to
LT Tt follows that the (1,3,2) and (2, 3, 1)-conjugates of L are isotopic. Hence the six
conjugates of L partition into two classes as follows:

Cy = {(1,2,3), (2,1,3)} and

C2:{<17372)7 (27371)7 (37172)7 (37271)}' (5)
The conjugates within a class necessarily have the same number of atomic mates
because they are related by transposition and/or isotopy. However, as we shall see in
Section 6, it is possible for squares from different classes to have different numbers of
atomic mates. The very possibility meant that we needed to test one square from each
of C; and C,, and hence had to run the whole process twice for each of the five main
classes concerned.

Program A was sufficient for our needs in all cases except for the cyclic square of
order 11. This square has vastly more orthogonal mates than other atomic squares of
the same order, but it also has a much larger autoparatopy group. A specialist
program, called program B, was written to take account of these facts.

Program B dealt exclusively with cyclic squares of odd order # (in reality, we only
care about the case n = 11). All calculations in the subsequent discussion will be
performed modulo n. The square L was written with rows, columns and symbols
indexed from O to n — 1 according to the rule L;; = —i — j. Thus L is the cyclic square
in totally symmetric form. It has autoparatopies that perform the following actions,
modulo a permutation of the symbols:

Al: Cyclically permute the columns.

A2: Cyclically permute the rows.

A3: For any k relatively prime to n move every entry from its original position in,
say, row r of column ¢ to row kr of column kc.

A4: Take any conjugate of the square.

It is clear that these autoparatopies generate a group G, of order |G| = 6n>¢(n)
where ¢ is the Euler ¢ function (in the case of prime n, of course, ¢(n) =n — 1).
Note that G maps transversals to transversals. In fact, G has an induced action on the
orthogonal mates of L, found by considering the images of the transversals which
define each orthogonal mate.

Now L has the same number of transversals through each of its entries (c.f.
Corollary 2 on page 22 of [3]). In the case n = 11, this number is 3441. Consider the
set T of transversals of L which include the entry with row, column and symbol
all zero. Every transversal of L can be converted into an element of 7 by using a
paratopy of type Al, and we always think of the transversals outside 7 in this way.
For each r € T we assign a distinct index i(t), chosen from the natural numbers. Then
for each transversal 7 we calculate y(f), which is the lowest index of a transversal in 7
which gets mapped to ¢ by some autoparatopy of L. We also determine A(¢), which is
defined to be the number of autoparatopies in G which map ¢ to the transversal in T
with index f(¢). The definitions of 1 and A extend naturally to transversals outside 7',
so it suffices to calculate them for ¢t € T.

Squares orthogonal to L are in one-to-one correspondence with D, the set of
decompositions of L into n mutually disjoint transversals. Ideally, we would like to
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choose one canonical representative of each orbit under the action of G on D. We
could then count D by enumerating the canonical representatives and calculating
their orbit sizes. However, we found the enumeration and recognition of canonical
representatives simpler if we allowed the possibility of more than one representative
from each orbit. Hence, in practice we chose the following definition.

Let S = [fo,11,...,t,—1] € D be a list in which each transversal #; hits column i in
row 0. We say that S is a canonical list if i(ty) < u(t;) for each i =0,1,...,n— 1.
The benefit of this definition is that it allows a single rapid test of the suitability of all
transversals to be in a canonical list starting with a given #y. The cost is that there may
be more than one canonical list in some orbits. Crucially though, there is at least one
canonical list in each orbit, as we now argue. For any S = [fg,#1,...,t,—1] € D we
can choose f; to minimize p(;). For this #;, there is some g € G whichmaps#;tor € T
satisfying i(r) = u(#;). Applying the autoparatopy g to S produces a canonical list
which begins with 1.

Suppose that we have identified a canonical S = [to, 11, ...,t,-1] € D. The set of
autoparatopies of L which fix S will be some subgroup of G of order, say, 4. The orbit
size of S under the action of G will be |G|/h. Suppose that this orbit includes exactly
¢ canonical lists. Then to avoid overcounting we need to count a contribution of
|G|/(ch) from S. The denominator ch is the number of autoparatopies in G which
map S to (not necessarily distinct) canonical lists. This number can be found by
considering which transversal gets mapped to the first transversal in the image. If
u(t;) = i(fy) then there are A(f;) autoparatopies in G which map 7 to the first
transversal in a canonical list, whereas if u(#;) > i(f9) then no autoparatopy can
achieve this. We conclude that the contribution that we want to count from a
canonical set S of transversals is

G| _ 6n*¢(n)
ch S A(0) (6)

where the sum is over those 7 € S for which p(f) = i(#). Note that for canonical sets
wu(to) = i(to), so this sum is positive.

The generation of canonical lists by program B was similar in spirit to the finding
of cliques by program A, with some important differences. As already mentioned,
only the transversals in 7 were built, and all other transversals were thought of as
translates of these (using a paratopy of type Al). The “graph” was then built by
computing, for each ordered pair (z,7') of transversals in 7, a single integer whose
bits denoted which translates of ¢ intersected with #. Once #, was chosen, any
transversal 7 such that () < i(#p) was immediately ruled out of contention because it
could not be part of a canonical list starting with 7. Once fy,#; and #, had been
chosen, a record was compiled for each i > 3 of the choices for #; which were
compatible with the first three transversals chosen. These records were what were
examined at each later stage for extending the canonical list. When a canonical list
was identified, its contribution according to (6) was added to the total.

At the end of approximately 2 years of computation, program B as just outlined
arrived at the (rather large!) number in the top line of Table III. The significant
amount of book-keeping, together with the size of the computation, mean that there is
no good way to confirm this number short of an independent researcher confirming it.
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However, the soundness of the method can be tested by running programs A and B on
cyclic squares of smaller orders. Both programs agreed that the cyclic squares of
orders 3, 5, 7 and 9 have respectively 1, 3, 635 and 2049219 orthogonal mates.
Another check is that program B determined that only eleven different choices for 7
need to be considered and these transversals correspond neatly with the eleven
different types of orthomorphisms of 7, listed by Evans [4, p 83].

As an additional test for program A, we computed the number of squares which
are orthogonal to Parker’s famed turn-square of order ten. This square has 5504
transversals, an unusually high number for squares of order ten, and arose during
Parker’s attempts to find a triple of MOLS of that order. Extrapolating from a partial
enumeration, he reported in [14] that it “has one million orthogonal mates (probably
a conservative estimate; likely correct within a factor of ten).” This estimate has since
become ingrained in the literature; for example, [2, p 105], [3, p 15] and [15]. Our
code found that the exact number of orthogonal mates is 12 265 168 and this has been
independently confirmed by B. D. McKay. So Parker’s estimate was conservative by
an order of magnitude. We also confirmed Parker’s finding that his turn-square is not
part of a mutually orthogonal triple.

6. ORTHOGONALITY RESULTS

Using the algorithms in the previous section, we discovered the results summarised in
Table III. For a representative, R, of each of the seven main classes of atomic square
of order 11, the table shows

(a) the number of transversals in R;
(b) the number of orthogonal mates for R;
(c) the cardinality of the largest set of MOLS including R.

It is clear from Theorem 4.1 and the definition of transversals that these three
quantities are main class invariants, so the choice of the representative R is irrelevant.
We reiterate that in part (b), only squares with their first row in natural order were
counted.

TABLE III. Orthogonality Properties of Atomic Squares of

Order 11
Transversals Mates MOLS

Al 37851 7372235460687 10
AL 6291 957771 4
A3 5511 135076 2
Al 4051 10262 2
A 3509 962 2
A8, 3597 1868 4
A, 3981 9684 2
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From Table IIT we see that three of the main classes contain squares which can be
involved in at least a triple of MOLS. The first of these, unsurprisingly, is the main
class of the cyclic squares, the second is the Owens-Preece class .A7, and the third is
the main class AS,.

There is a set of four mutually orthogonal, bordered diagonally cyclic Latin
squares, in which the first rows are respectively:

B 5 1 102 11 8 7 9 4 6,
11 1 9 4 7 108 6 2 5 3], o
M 9 11 7 3 5 8 10 4 6 2,
M 7 6 3 210 9 4 11 8 53

The first of these squares is L,, the representative of A%l given in Figure 1. Note that
L, is totally symmetric. The second, third and fourth squares are not atomic. The
second square is a pairing square in which 11 is the unpaired symbol and the other
symbols are in pairs (x,y) obeying the rule |x — y| = 5. The third and fourth squares
are transposes of each other, so in particular they are self-orthogonal.

Up to a relabelling of the symbols within the squares, (7) is the unique set of four
MOLS containing L,. Indeed, the only triples of MOLS containing L, are subsets of
this set. Every set of MOLS which is equivalent, as defined in Section 4, to (7), is
composed of squares from the three main classes represented in (7), but the exact
composition varies. An exhaustive list of the possibilities is easy to compile because
we only need to consider permutations of the six rows of the relevant orthogonal
array. Permutation of the symbols within a row of the array corresponds to taking an
isotopy of the squares and hence cannot alter the main classes involved. If M and N
denote respectively the main classes of the second and third squares in (7), then the
possible combinations of main classes which occur in equivalent sets of MOLS are:

o A}, M,N,N,
e M,M,N,N;
e N,N,N,N.

We will next turn our attention to the sets of MOLS involving the representative
L of A% given in Figure 1. In order to describe the sets, we need some further
definitions. For any Latin square L of order 11, we use /(L) to denote the square
obtained from L by applying the isotopy which permutes the rows, columns and
symbols by the permutation (2, 11)(3, 10)(4, 92(57 8)(6,7). Let F denote the (3, 1,2)-
conjugate of I(Lg). Note that F belongs to Aj,.

We need to define three more squares. Firstly, let C be the square with constant
diagonals defined by C;; = j — i mod 11. Thus C is in .A}l and is orthogonal to every
diagonally cyclic Latin square. Secondly, let D be the diagonally cyclic square
generated from the first row [1,6,11,5,10,4,9,3,8,2,7]. The square D also belongs
to A}, since each entry exceeds its predecessor in the same row by 5, modulo 11.
Thirdly, let E be the diagonally cyclic square generated from the first row
[1,3,2,7,9,11,4,10,5, 8, 6]. Although E is not atomic, four of its six conjugates are
pan-Hamiltonian. Note that £ is equal to its row-inverse and orthogonal to the four
of its conjugates to which it is not equal. The self-orthogonality of E was iden-
tified by Franklin [7] during an investigation into quadruples of MOLS which consist
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of a self-orthogonal diagonally cyclic square and its transpose, a symmetric
diagonally cyclic square and C. Many of the quadruples we describe below fit this
pattern.

Every triple of MOLS including Lg is extendable to a set of four MOLS, and no
such set of four can be extended further. There are twelve different quadruples of
MOLS which include Lg. However, all twelve sets contain three diagonally-cyclic
squares and C. The twelve sets can be found by extending {Le, C} by the following
pairs of orthogonal squares:

{E.E"}, {F,F"}, {D,I(E")}, {D",I(E)}, (8)
[FIED}, {FT 1)}, {DTE}, {D.E"}. ©)
{D,D"}, {E",F}, {E,F"}, (10)
{I(E), I(E")}. (11)

By forming the orthogonal array corresponding, say, to the set of MOLS
{L¢, C,E,E"} and permuting its rows, and also by applying the isotopy /, it can be
shown that the four quadruples of MOLS derived from (8) are equivalent. Similarly,
we can show that the four quadruples from (9) are equivalent to each other, as are the
three quadruples from (10). However, two sets of MOLS chosen from different lines
are not equivalent. We can establish this by noting the main classes involved in
equivalent sets, as we did for the MOLS based on A%l. Sets of MOLS equivalent to
those in (8) can have the following combinations of main classes

® -Allv -Auv Allv All’
° Anv An, Aua An’
® -Allv A}lv A117 &
o A, AH, £, &

where £ is the main class of E. Those equivalent to (9) have the combinations:

° Allv -’411> A11a -’411’
° "4117 "411’ All’ &
o Ay, A AS &
o A, & & &

whereas sets of MOLS equivalent to (10) combine:

° Ailv A}n Ain Ah;
° -Allv -Auv Allv -Au;
° Anv A11> Aua &
¢ -Allv -Allv Am &;
o Al AS, & &
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Finally, the set of MOLS given by (11) is equivalent to sets of MOLS which combine:

b -Allv -Allv 'Allv Allv
b All? A11> Arra &
° All’ 'All’ 8, 8.

Since the set of combinations is different in each case, we conclude that (8), (9),
(10) and (11) describe four distinct equivalence classes of MOLS involving L. This
conclusion was independently confirmed by using nauty [10] on Longyear’s tactical
representations [9] of the MOLS. By the same means, we confirmed that the maximal
set of four MOLS of order 11 constructed by Evans [5] is equivalent to those in (10).

Interestingly, each of the equivalence classes contains quadruples of MOLS fitting
Franklin’s pattern described above. This is obvious for (8), (10) and (11) because E, D
and I(E) are clearly self-orthogonal and we know that Lg is symmetric. For (9) it is
less obvious, but there is a set of MOLS equivalent to (9) involving C, E, ET and the
(2,3, 1)-conjugate of E, which is symmetric.

Another property shared by the four equivalence classes is that they contain
quadruples of MOLS, each of which comes from A} .- This property can be explained
by a theorem proved in [21] which states that any set of MOLS consisting solely of a
square with constant diagonals and some diagonally cyclic squares is equivalent to a
set of MOLS in which every square is isotopic to the cyclic group table. Note,
however, that in the cases above the sets of MOLS from .Ail are not extendable to
complete sets of MOLS, because maximality of a set of MOLS is preserved under
equivalence. Among the vast number of orthogonal mates of squares in -An» there is
the possibility of many interesting structures of MOLS. Unfortunately, we were not
able to investigate this structure in depth because program B lacked the analysis of
orthogonal mates performed by program A and to rectify this deficit would have
rendered program B too slow.

We now report the results of the second test performed on the orthogonal mates
found by program A, which was to screen for atomic squares As described in Section
5, this test was carried out on one representative of A7, and two representatives of
each of A3,, A}, A7, A%, and A],. Among other things, it helped us to detect self-
orthogonal Latin squares in our atomic main classes. For example, no square in main
classes A7, or .A], has an atomic mate, so we know 1mmed1ately that these classes
contain no self-orthogonal squares. The main classes A7, A}, and A, do not contain
self-orthogonal squares either, as we show below.

Let Ly, L,, L3 and L4 be as defined by (2). Program A reported that L,, L3 and Ly
have a unique atomic mate. It follows from Theorem 4.4 that these mates must be
pairing squares. In fact, they are the pairing squares of Theorem 3.1, which happen to
be the bordered diagonally cyclic pairing squares Pp,P,,P; and P, with the
respective first rows:

11 8 7 1 4 95 3 10 2 6,
11 8 7 9 4 3 5 1 10 2 6], (12)
11 8 7 1 4 6 5 3 10 2 9,
11 8 7 9 4 6 5 1 10 2 3.
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The isotopy that produces P; from L; is to permute the columns according to the
permutation (1,6)(2,7)(3,8)(4,9)(5, 10).

Now, suppose that L, is isotopic to a self-orthogonal square S. The only option is
that the same isotopy maps P, to a square equivalent to S” up to relabelling of its
symbols, since we know that P, is the unique atomic mate of L,. However, we can
use Theorem 4.2 to check that {L,, P,} is not equivalent to {S,S”} for any S. We
conclude that no square in .A%l is orthogonal to its transpose. Despite this, the
bordered diagonally cyclic square with first row [2,4,9,8,10,11,6,5,7,3,1] is in
-’4%1- This square is symmetric and is orthogonal to the four conjugates to which it is
not equal.

We can use Theorem 4.2 in the same way to show that neither L3 nor L4 is isotopic
to a self-orthogonal square, although in each case it is crucial to use our corrected
version of the theorem, not the one published in [9]. To see this, observe that the
tactical representation of {Ls, P3} has an automorphism ¢ which, when restricted to
the four row vertices X = {R;, R2, R3, R4}, acts as two disjoint transpositions

(R1R2) (R3Ry). (13)

Meanwhile, on the 44 symbol vertices Y which we label as the symbols
1,2,...,11 with a subscript indicating the row from which each symbol is drawn, 6
acts as follows:

(1]126162) (21227172) (3]328182) (41429192) (5]5210]102) (111112)

(13646314) (23747324) (33848334) (43949344) (5310410354) (113114). (14)
The action of 6 on the column vertices Z can be reconstructed from (14). The
important point is that according to Longyear’s claim, {Ls, P} should be equivalent
to {S,S7} for a self-orthogonal square S because of (13). However, it is simple
enough to check that this is not the case, by using Theorem 4.3 to establish that no
conjugate of L3 or Pj is isotopic to a self-orthogonal square. Note that for L3, program
A reported a unique atomic mate, M, which is also from -A?r The pair {L{, M} is
equivalent to {Ls, P3}. Since P; is isotopic to Lj, it follows that we need only
establish that L; itself is not isotopic to a self-orthogonal square. Despite the lack
of a self-orthogonal form, the bordered diagonally cyclic square with first row
[11,1,6,4,3,8,2,9,5,7,10] belongs to Afl and is orthogonal to its own (3, 1,2)-
conjugate.

It is easy enough to establish that the tactical representations of {L,,P,} and
{L4, P4} have an automorphism 6 as given by (13) and (14) and that they provide
further counterexamples to Longyear’s theorem as it was published. There is one very
important distinction between L4 and the other squares given in (2) though, which is
that L) has no atomic mate. Referring to (5), we see that the same is true for the four
conjugates of L, which differ from L. However L4 itself is orthogonal to P4 as we
have seen, which demonstrates that the number of atomic mates is not a main class
invariant.

We know from results earlier in this section that there are five atomic squares
orthogonal to Lg, namely C,D,D”,F and F', and this turns out to be the full
complement. Similarly, ! has five atomic mates, which are (L{)",I(Lg), D*, (DT)"
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and C. In particular, this reveals that L; is a self-orthogonal square in A?l. Also D is

a self-orthogonal square in A}l; in fact all six conjugates of D are mutually
orthogonal. So we have established that A}, and A, both contain diagonally cyclic
self-orthogonal squares. No other atomic main class contains diagonally-cyclic or
self-orthogonal Latin squares. Interestingly, we have also seen that A}, and A, are
the only atomic main classes involved in a pair of orthogonal atomic squares which
originate from different main classes. Indeed, we seem to have reinforced Franklin’s
original assessment that diagonally cyclic squares are worth studying for the rich-
ness of their orthogonality structure.

7. CONCLUDING REMARKS

In this paper we have reported the results of a complete enumeration of the atomic
Latin squares of order 11, the smallest order for which there are ‘‘interesting”
examples. There are seven main classes, three of which were previously known. Our
method is not powerful enough for an exhaustive enumeration of main classes for
higher orders. We have investigated some orthogonality properties of the atomic
squares of order 11 and also their relationship to the perfect 1-factorizations of K. In
a subsequent paper, we plan to study the structure of these atomic squares further,
and thereby find atomic squares of larger orders.
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