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Abstract

A latin squareof ordern possessing a cyclic automorphism of ordeis said to bediagonally
cyclic because its entries occur in cyclic order down each broken diagonal. More generally, we
consider squares possessing any cyclic automorphism. Such squares will be named after Parker, in
recognition of his seminal contribution to the stuzfyorthogonal latin squase Our primary aim is to
survey the multitude of applications of Parker squares and to collect the basic results on them together
in a single locatin. We mention connections with orthomorphisms and near-orthomorphisms of the
cydic group as well as with starters, even startersirat squares, Knut Vik designs, bachelor squares
and pairing squares.

In addition to presenting the basic theory we prove a number of original results. The deepest
of these concern sets of mutually orthogonal Parker squares and their interpretation in terms of
orthogonal arrays. In particular we study the effect of the various transformations of these orthogonal
arrays which were introduced by Owens and Preece.

Finally, we exhibit a new application for diagonally cyclic squares; namely, the production of
subsquare free squares (so caldd squares). An explicit construction is given for a latin square of
any odd order. The square is conjectured td\Be and this has been confirmed up to order 10 000
by computer. This represents the first published construction df-arsquare for orders 729, 2187
and 6561.

© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

A latin sguareis a matrk of ordern in which each row and column is a permutation of
some (fixed) symbol set of size We will find it convenient to use theysnbol set to index
the rows and columns of thesare. It is sometimes helpful to think of a latin square of
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ordern as a set of? triples of the form (row, column ysnbol). The latin property means
that distinct triples never ageen more tha one co-ordinate.

We defire thedth diagonal, denote®[d], of a madrix M of orderm, to be the set
of enties in cells(, j) satisfyingj —i = d modm. In paticular, D[0] is the main
diagonal. We say thaP[d] of M is cyclic if the entries on it ocauin cydic order, that
iS, Mii+d +1 = Mit1,it1+d for eachi, where all calculations are moduta Similarly we
say thatD[d] of M is constanif every entry on it is the same, that M); j +q = Mit1.i+1+d
for eachi.

We then define aliagonally cycliclatin square to be a latin square in which every
diagonal is cyclic. A diagonally cyclic latin squateis generated from its first row by
applying the rule that the triplé, j, Lj j) implies the triple(i + 1, j + 1, Lj j +1), where
all additions are performed modulo the order of the square. In fact, the square can be
generated using this rule given any single row or column.

There is a useful generalisation of the&of a diagonally cyclic square. Suppose that
we adjoinb infinity symboldo Zn, to get he setZmp = Zm U {001, 002, ..., 0op}. Next
we definez", for z € Zm,p, by the rue that

7t — z+1modm ifzeZm, (1)
)z otherwise

Then abordered diagonally cyclitatin square, with rows, camns and symbols indexed
by Zmp is one for which the presence of any triple j, Li j) implies that the triple
(R Lffj) also occurs in the square. We say that a square Bpdfpeif it is based
on Zmp in the above maner, for soman > 1. More generally, we want to consider a
square to be oBp-type if its symbols can be mapped bijectivelyZa 1, in such a way
that the resulting square has the above prigerHence, all diagonally cyclic squares are
of Bo-type When writing down aByp-type latin square, we adopt the convention of always
orderingZmyp in the order 01,2, ..., m — 1, co1, 002, ..., cop. Rows and clumns will
bewritten in this order according to their indices. In the chse 1 we will often write co
instead ofo;.

Theb rows andb columns of aBp-type squard. that are indexed bynfinity symbols
will be called theborderof L. If we dekete the border of we get arm x m matiix, called
thebodyof L. The body ha® constant diagonals containing infinity symbols and- b
cyclic diagonals containing elementsf,.

By way of example, consider the follong two fjuares of order 8. Squai®is of
B;1-type, while squard is of Bx-type.

© 3 6 2 5 1 4 0\ foop 3 5 4 2 oo 1 0
5 o 4 0 3 6 2 1|[ooq 0 4 0 5 3 2 1
3 6 0 5 1 4 0 2 4 00 0 5 1 0 3 2
1 4 0 c0o 6 2 5 3 1 5 oo o0 0 2 4 3
6 2 5 1 co 0 3 4 3 2 0 o0 00 1 5 4 2)
4 0 3 6 2 0 1 5 2 4 3 1 oo 00 O 5
2 5 1 4 0 3 o 6 5 0 1 2 3 4 oop o001
0 1 2 3 4 5 6 0 1 2 3 4 5 oo oo

(9]
—
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This paper is dedicated to the studyRy-type latin squares. These squares were pivotal
to the treakthroughs made by Parke¥| 25 and for tha reason we shall refer tBp-type
latin squares collectively aBarker squaresIn Section 2we shall surveyte extensive
literature on this topic. IrBection 3we establish the basic @perties of Parker squares,
except regarding their orthogonality propertid$ie latter are so important that they have
a setion on their own, namelgection 5 Some background on orthogonal latin squares is
providedfirst in Section 4 Findly, in Section 6we indicate a new application for Parker
squares, namely the construction ofifesquares with n@roper subsquares.

Forb < 1, aBp-type latin square is determined by a single (non-border) row of the
sguare, so we adopt notation to describe such squares succinctBy[By, a1, . . ., an—1]
we daote the Bp-type latin square whose first row isag, a1, ...,an—1]. This is
unambiguous given our conventional ordering #y . Forb > 1 this notation is not
sutable since it would leave some ambiguity about the flmedws of the léin square.

For each latin square there are six conjugate segiabtained by uniformly permuting
the co-ordinates of each triple. These conjegacan be labelled by a permutation giving
the rew order of the co-ordinates, relative to the former order of (123). Hence, the
(123)-conjugate is the square itself and the (213)-conjugate is its transpose. The (132)-
conjugate is found by interchanging columns and symbols, which is another way of saying
that each row, when thought of as a permutation, is replaced by its inverse.

An isotopismof a latin squaré. is a permutation of its rows, permutation of its columns
and relabelling of its symbols. The resulting square is said tedigpicto L. An isotopism
which relabels the rowgolumns and symbols df in the same way is calledquasigroup
isonorphismof L. For exanple, the two squares ir2f arequasigroup isomorphic as can
be seen by applying the permutation

01 2 3 4 5 6 o
0 1 4 3 5001 2 002

to the rows, columns and symbols 8f An isotopism which map4. to itself is called

an autotopismof L, and aquasigroup isomorphism frorh to itself is aquasigroup
automorphismThe main classof L is the set ofsquares which are isotopic to some
conjugate ofL. We note from the above example that it is possible for a main class (or
indeed for equasigroup isomorphism class) to cont8intype andBj-type squares where

i £

2. Literaturereview

What we are calling Parker squares have been studied in many contexts and given many
different names. Important uses for them were found as far back as the end of the nineteenth
century, as we shall see at the endsefction 5 In fact, sirce the germination of the idea
for this paper the author has been surprised by the number of contexts in which he has
encountered bordered diagonally cyclic latin squares. This section is dedicated to recording
as many of those as possible. Inevitably, there will be many other examples, no less
deserving of recognition, but which did not come to the author’s attention over the period
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of construction of this paper. However, their existence would only serve to strengthen the
eviderce that these squares are a very important family with diverse applications.

Our choice of terminology has been influenced by the work of Franklig fL4].
Franklin coined the term “diagonally cyclic” foBp-type squares, which is a most apt
description. He then showed a preference for calling these squares “cyclic”, presumably
for reasons of brevity. However, it seems to the present author that this is an undesirable
economy, since the label “cyclic” is more usefully reserved for those latin squares which
are isotopic to the Cayley table of the cyclic group. Indeed, one of the joys encountered
early in the study of diagonally cyclic squares is that not all of them are cyclic!

Franklin goes on to define bordered diagonalglic latin squares, although again he
often omits “diagonally” from their title. He obsess that his construction is closely related
to the dagonal method§, Section 7.5] and the sum composition method of Hedayat and
Seiden L8]. Over the years a number of papers have been written on the sum composition
method, but in fact the credit for this method belongs to Yamam®® {vho cdled it
extenson. For the construction d8,-type latin squares by using Yamamoto’s extensions,
seeTheorem 9n the next section and the surrounding discussion.

The use of the name “cyclic” to descrili®y-type squares is repeated i, [p. 448],
where B;-type squares are called “pseudo-cyclicer&s and KeedwelB[ p. 364] call
Bi-type squares “semi-cyclic”. Note that our diagonally cyclic squares are different from
the “diagonal latin squares” discussed ify p. 107] and B, Chapter 6]. However there is
a mnnection to Knut Vik designs/[ p. 108]. A left semi-Knut Vik design is defined by
Afsarinejad [L] to be alatin square in which each diagorili] is a transvesal. A right
sami-Knut Vik design has the equivalent property for its right-to-left diagonals and a Knut
Vik design is a guare which has both the left and right semi-Knut Vik properties. The
exigence pectrum for Knut Vik designs was established by Hedaga}. [We note that
everyBo-type latin square is a left semi-Knut Vik design, and hence has certain advantages
as a statistical desigi]f

One of theoldest and most important uses &y-type latin squares is in the construction
of sets of orthogonal latin squares. This use will be the subje&eation 5 where we
will see that every Dsarguesiarprojective plane can be encoded in terms of Parker
squares. However, it is not just the Degagsian planes which have connections with
Parker guares. For example, Oweral] denonstrates that the durandation plane of
order nine can be encoded as a set of eight mutually orthogonal latin squares (MOLS),
four of which are ofB;-type. Moreover, Parker squares crop up in many constructions for
incomplete sets of MOLS. To see this, we néeok no further than the pioneering work
of Parker himself. In24], he disproved MacNeish’s conjecture (a generalisation of the
famous Euler conjecture) usirBp-type latin squares. Shortly afterwards, of course, he was
involved in the downfall of the Euler conjecture itself. 129 (see also, Thorem 11.2.1
in [8]) he constructed, for each prime powge 3 mod 4, a pair of orthogonal squares of
order%(3q —1). Inthecase whermj is prime thesequares are 0Bq—1),2-type. Thus, for
example, the first published pair of orthogonal squares of order ten weBg-tyfpe (see
[25] or Fig. 11.2.1 of 8]).

Many other authors have since plundered this rich vein. See, for example, Theorem 4.4
in [9], the sets ofB;-type MOLS constructed in20, 30], the exanple of a pair of
orthogonalBs-type squares of order 11 ir3]], and the sets of four orthogonBh-type
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squares of order eleven i2()]. Self-orthogonaBs-type latin squares have been studied by
Beresina ad Berezina B, Franklin [ 13, 14] and Maahaut and Wanles&(] among others.

Also, as we shall see Bection 3 constructions of MOLS based on orthomorphisms of the
cydic group lead tosguares ofBp-type. In this context, the work of Evan$(d-12] and
Bedford [2, 3] can be viewed as developing the theory which Parker founded. We note that
Bedford [2, 3] calls Bp-type squares “left-diagonally-cyclic”. He also mentions3hthat
Beresina ad Berezina call thenR-squares.

It is not just for building sets of MOLS that Parker squares prove immensely useful.
They are particularly simple to construct, yet versatile, and their comparatively large
symmetry groups mean that they often possess nice properties which are very much
atypical for squares of the same order. As evidence for this statement, consider the
atomic squares described below and the subsquare free squares discuSsetioim 6
Also, Bp-type latin squares werused by Steedle@§] to construct perpendicular Steiner
quasigroups and by Keedwell] to construct room squares. Bruck][used aBsi-type
construction to prove the existence of idempotent quasigroups for all ondets 2.
Furthemore, the main class containing the squaBesd T given in (2) aroseduring the
investigation by WanlessSB] into cycle switching. It was found to be the main class least
similar (in the sense of the number of switehs required to turn one square into another)
to the elementary Abian group of order 8.

A square can be said to havecanjugate symmetrif at least two ofits conugates
are equal. Bryant et al6] invegigated By-type latin squares which possess a conjugate
symmetry. They established the existence spectra for squares of each type with each of
the different possile symmetries and explored connections with triple systems and with
starters in cyclic groups.

An atomic latin square is one for which no conjugate contains a non-trivial latin sub-
rectangle. The most obvious examples are the cyclic group tables of prime order but other
exampés are known, including some of composite order. Maenhaut and Wa@lgss [
found examples of botBp-type andBs-type latin squares among the atomic squares of
order eleven and have recently discoveremhs (as yet unpublished) infinite families of
atomic B;-type squares.

Another ongoing project involving Parkequares is the work of Arhin, Ollis and
Sdcher at Queen Mary, University of London. This trio is investigating a type of design
known as a SOMA, which is a generalisation of the idea of a set of MOLS. Some of these
designs can be found by overlaying orthogonal Parker squares, while others cannot be
generated in this fashion despite having a cyclic automorphism. Arhin, Ollis and Soicher
are currently investigating why some SOMAs decompose into a set of MOLS and others
do not.

Yet another researcher who is currently studying Parker squaresittn@iléer. In two
preprints L5, 16] he hasconsidered the question of wherBg-type latin square can be
completed, given a partial latin square consisting of some cyclic diagonals. He conjectures
that a sjuare of odd ordan of this type can always be completed when given not more than
2(n+1) cyclic diagonals. If true, the fractiohis best possible. Very recently, WanleS][
found an application for partial latin squareith cyclic diagonals of the type considered
by Gnittmdiller.
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Evidently then, Parker squares are of activerent interest, as well as great historical
importance. Theubject could be seen to have even wider relevance if generalisations of
the notion were included. For example, we a@nsidering squares whose diagonals are
generated by addition withirZ,, but it is quite practical to use addition within other groups.

It would also be possible to consider squares which have an autotopy acting cyclically on
say, the rows and columns, taot on the symbols. An example of such a square is given
below. However, such generalisatis are beyond the scope of this paper.

1 2 3 46 7 9 8 5\
6 1 2 35 4879
7 41 2 3 6 5 9 8
9 8512 3 46 7
8 7 9 6 1 2 3 5 4.
5987 412 36
4 6 79 8 51 2 3
35487 96 12
2 3 659 8 7 4 1)

3. Basicresults

In this section we collect a number of basic results about Parker squares. Most of these
results are of a simple nature, so they will have been rediscovered many times. This makes
accrediting their first discovery almost impossible.

We begin with a very simple observation.

Theorem 1. Every B-type latin square has a latin subsquare of order b.

Proof. Supposel is a Bp-type latin squarevith index setZ, . ThenL cannot contain
a triple (a, b, ¢) wherea € Zy andb,c ¢ Z, since hat would imply thatL contains
the triple(a™, b™, ¢ct) = (a™, b, ¢) which differs from the original triple in only one co-
ordinate, thereby breaching the latin progett follows that in the columns indexed by
infinity symbols, the infinity symbols allezur in rows indexed by infinity symbols. We
therefore must have atla subgjuare of ordeb situated in the bottom right hand corner of
L (according to our conventional order fép p). O

Our next observation is almost a restatement of the definition of Parker squares.

Theorem 2. The mapys which £nds z— z* is a cyclic quasigroup automorphism of
order n— b of every B,-type latin square of order n.

Corollary 3. Suppose that in a main class M of latin squares of order n each square has
an autotopy group of order g. Then M cannot contaitipe latin squares unless-a b
divides g.

Corollay 3was usd in [2(] to establish thicertain main classes do not contain Parker
squares. A main class will contain a certaypé of Parker square if and only if each square
in the class is isotopic to a Parker square of that type. This is because:
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Theorem 4. Each conjugate of a Btype latin square is a square of the same type.

Proof. The definition we have given for a Parker square treats the three co-ordinates in the
triples of that square symmetrically[]

Franklin [L3] givesoperations which convert the first row oBa-type lain square into
the first row ofone of its conjugates. The equivalent operations, phrased in the terminology
of orthomorphisms, are studied by Evadg,[p. 4] andby Shieh ¢al. [27].

Next we wish to investigate which first rows are permissible in Parker squares, but to do
this we need some furtheetinitions. A permutatiod of Zy, is called anorthomorphism
if the map¢ : Z, — Zn defined byp(x) = 6(x) — x is also a permutation df,,. An
orthomorphisn® is canonicalif 6(0) = 0.

Similarly, a bijectiond from Zn\{n} to Z,\{¢} is called a near-omomorphism if the
map¢(X) = 6(x) — x is also a bijection fron¥,\{n} to Z,\{¢}. Thegroup element
is traditionally known as thex-domain elementA near-orthomorphism isanonicalif
¢ =0.

A fewcomments about these definitions are inesréFirstly, orthomorphisms and near-
orthomorphisms can be defined for any group, or even for more general algebraic structures
known as quasigroups3]l However, inthis paper we Isall only require them in the
sdting of cyclic groups. Secondly, orthomorphistand near-orthomorphisms are closely
related to the concepts of complete mappings and near-complete mappings respectively.
Thirdly, the definitions of these concepts seamvaryfrom reference to reference. In our
definitions, we have chosen to follow Bedfo&].|

Based o the alove defiritions wedefine gpartial orthomorphism with deficit ¢b be an
injective map : S+ Zn whereS C Z,, and|S| = n — d, for which the mapp : S+ Zp
defined byp (x) = 6(x) — X is also injective. In particalr, a partial orthomorphism with
deficit O is simply an orthomorphism. Note, however, that a partial orthomorphism with
deficit 1 is more general than a near-orthomorphism, since it is not require€l dmateo
have the same image set. We are interested in partial orthomorphisms because of the next
restut.

Theorem 5. Letd be a permtation of Zm p and define S= Zm N 0~1(Zm). Then here
exids a By-type latin square L such thatgly = 6(x) if and only if|]S| = m — b andf|s
(the restriction of 6 to S) is a partial orthorarphism of deficit b.

Proof. We note that|S| = m — b is equivalent to the statement thtooi) € Zn, for
i =1,2,...,b. This is anecessary condition by the argument in the proofleéorem 1

Suppose that is a Bp-type latin square. Defing in such a way thakg x = 6(x), and
thereby defines. Leta andb be any two distinct elements & Then, by the definition of
Bp-type,Lp—a b = Loa+b—a=06()+ b — a, where allcalculations are itZm. But L
is a latin square, sbp—_ap # Lob = 6(b) and this means thata) — a # 0(b) — b. Since
this is true for alla andb we see tha#|s must be a partial orthomorphism.

To prove the other direction, suppose thas a permutation oZm p such that, using the
definitions aboveS| = m — b and6|s is a partial orthorarphism of deficitb. Construct
anm x m matix M in which Mg; = (i) fori = 0,1,...,m — 1. We makeDI[d]
of M cydic if Mo.d € Zm and constant otherwise. Since the entries in row 0/oare
by definition distinct, it follows that the entries within any given row bf are distinct.
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Furthermore, the only way that thereutd be duplication wthin a column ofM would be
if, say, Ma.c = Mp ¢ where both entries lie on cyclic diagonals. However, working.if
this would mean that

f(c—a)—(c—a) =Mpcat+ta—Cc=Mac—C=Mpc—C=Mocb+b-c
—0(c—b) — (c—b).

This is inconsistent witl# | s being a partial orthomorphism unless= b, so we onclude
that no entry is repeated within a columnidt
It is now a simple mater to extendM to a By-type latin squard. in which M forms
the body and® specifies the first row. Sind&| = m — b, we know thatd takes a value in
Zm on each infinity symbado;, and ths can bedeveloped cyclically down columso; . As
there are known to be no duplications within the first row, there can be no conflicts within
later rows dther. To produce the lagt rows it suffices to write down the entries not used
in the first column ofM, in an arlitrary order, to complete the first column bf These
can then be cyclically developed within rows in the same way as we just did for tHe last
columns. Finally, in the bottom right hand corner we can install an arbitrary latin square of
orderb based on the infinity symbols.]

A special case oTheorem Ssays that there is Bp-type lain square witho (i) in theith
postion in the first row if and only if9 is an othomorphism ofZ,. Since othomorphisms
of Z, are known to exist if and only ifi is odd, we can immediately deduce the existence
spectrum forBp-type squares. This line of reasoning has been followed by Bed8&yd [
among others. The conclusion can bached by other routes (see e.qui@niller [15, 16])
and seems to have been known to Franklig, [L4] although he does not explicitly prove
it. More generally, we can establish the existence spectrum for all Parker squares.

Theorem 6. A Bp-type latin square of order n exists if and only if n is odd. Forbl
there exists a Btype latin square of order n if and only if » 2b.

Proof. The casé = 0 was settled in the discussion above, so we concentrate on the case
b>1.

The necessity afl > 2bfollows fromTheorem 1since latin squares cannot have proper
subsquares exceeding half their ordélternatively, it can be deduced froifheorem 5
since 0< |S| = m— bimpliesn = m+ b > 2b.

For sufficiemcy, we make use of the fact that near-orthomorphisms are kn8wn [

p. 19] to exist in all Abelian groups and henég (for arbitraryn) certainly has a partial
orthomorphism of deficit 1. Note that we can simply restrict the domain to produce partial
orthomorphisms with larger deficits. We then appheorem 5 [

With regard to our claim about the existence of near-orthomorphisms we caution
the reader that some authors (e.g. Keedwglld. 247]) state that an Abelian group
possesses a near-orthomorphism if and only if the group has a unique element of order 2.
However, such authors are using a more restricted definition which does not consider an
orthomorphism to be a special case of near-orthomorphism.

Results similar td’ heorem Gwith extra symmetry imposeah the squares, were proved
by Bryant et al. §]. The same paper contains a proof of the corollary to the following result.
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Theorem 7. Suppose that L is a {Btype latin square of order n and thd?[d] is the
constant diagonal of the body of L. Let b= %(n —Difnisoddandletlh = 0ifnis
even. Then b o + hn = Loo,0 +d mod(n — 1).

Proof. We may cyclically permute the non-infinity rows &f to ensure that.g..c = 0.
Then we may cyclically permute the non-infinity columnd.aio ensure thakt o o = 0. It
is easy to check that neither of these operations affects the truth of the conclusion (although
the valie ofd will, in general, be changed). So we may without loss of generality assume
thatLo,co = Loc.o = 0.

Now defined (x) = Lo x and¢ (x) = 0(x) — x for eachx € Zn_1 for which Lg x # oo.
We know by Theorem Shaté is a partial othomorphism ofZ,_1 with deficit 1. In fact,
as we now argue] is a canonical near-orthomorphism. Firstly, 0 cannot be among the
images o), snce it occurs already in the first row (within the border). Secondly, 0 cannot
be among the images ¢f, sinceif, say,¢(i) = 0 thend(i) = i, which would mean
Loi =i = L, in contravention offte latin property oL. Thusé is indeed a canonical
near-orthomorphism and hence (see, for examfile,{4. 14]) he ex-domain element &f
must behy. This means thatl = hp, from which the result then follows. O

Corollary 8. A synmetric B-type latin square must haw@[hy] as its constant diagonal.

We net describe the very important construction method known as extension or
prolongation. These names were used for the concept by Yamamoto and Belousov
respectively (seef]) well before Hedayat and Seidefd] reintroduced the concept as
the “sum composition method”. The idea is to construct a latin square of orden from
latin squared., and L, of respective ordera andm. Let us suppose that > m. We
look for m disjoint transversalg, to, ..., tn in L, (if no such transversals exist then the
method, at least in its simplest form, fails). We exténdto a latin squard.” in which we
will index the rows and columns i m. Foreach =1, 2, ..., m we projectt; vertically
onto rowoo; and horizontally onto columno;. We then replace each entry involvedtin
by the symbobo;. Findly, we place a copy ofL, (relabdled if necessary, so that it uses
the infinity symbols) into th bottom right hand corner df’. It is easy to check that this
process, which Yamamoto called-extension, creates a new latin square. In the special
case whem = 1 we hall call the process prolongation.

The particularly nice placement afansversals along each diagonal dBgtypelatin
square has the following easy consequence.

Theorem 9. The b-extension of aggtype latin square is a Btype latin square. Such an
exension is always possible provided b does not exceed the order of the initial square.

In fact a more general operation is possible. Starting from Bgyype latin square
we can extract the subsquare identified reorem 1 project some cyclic diagonals onto
new rows and columns (replacing them wéhew infirity symbol) and then replace the
subsquare with a larger one. With this method it is always possible to go frBgitape
sguare to one 0By -type providedy does not exceed the order of the body of the starting
square. This offers an alternative method for provirigeorem 6

Of course it is also interesting to consider the reverse operations. Yamamoto called
the reverse of am-extension arm-contraction. It is not always possible to contract a
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Bp-type square to 8p-type square. The next result was stated without proof by Franklin
[13, p. 131].

Theorem 10. A given B-type latin square of order n+ 1 can be fomed by the
prolongation of a B-type latin square of order n if and only if n is odd.

Proof. The condition thah is odd is recessary byrheorem 6 Sufficiency follows easily
from Theorem 7 which shows hat the border is always what it needs to be to allow a
contraction. [

For a givenBy-type square to be contractible tdg-type square it is clearly necessary
that the body of the square have odd order. However,bfore- 1 this condtion is
not sufficient as our next two examples show. The first example iBggype square
of order 7 shown below. Despite the fact that its body has odd order (in this case 5)
it is not contractible to aBp-type square. To see this, note that no symbol within
the border in the first row also occurs within the border in the first column. Hence
there is no available cardhte for the symbol to occur in the first row and column
after the contraction. The same argument works for any ofBidype squares with
(c01 o002 o003 2 4 3 0 5 6 I astheirfirst row.

o001 002 2 4 3 0 1
4 o001 o002 3 0 1 2
1 0 o001 o02 4 2 3
0 2 1 o001 o002 3 4

oo 1 3 2 o071 4 0
2 3 4 0 1 o001 o002

3 4 0 1 2 002 001

We define gairing latin square Lto be a latin squa of odd order for which the symbol
sd can be partitioned as follows into unordérpairs with a single symbol, called the
unpaired symboleft over. The unpaired symbol must occur in every position on the main
diagonal. Off the main diagonal, if a symbobccurs in rowi, column j then tre synbol
pairedwith x must occur in rowj, columni. ThusL must be isotopic to its transpose,
with the isotopism being to simply interahge the symbols within each pair. There is a
connection between pairing squares &ietype squares, which was exploited ROJ.

Theorem 11. Each symmetric Btype latin square of odd order is isotopic to a pairing
B;-type latin square.

Proof. Suppose thaB is a symmetricB;-type latin square of odd order+ 1. Let P be
the result of permuting the columns Bfaccording to the permutation

0 1 2 ... h h+1 h+2 h+3 ... n 00
h h+1 h+2 ... n 1 2 3 ... h=1 o0)’

whereh = %n. Since we have cyclically permuted the body®fwe can be sure tha® is
a B;-type square. Furthermore, Borollary 8 we know that the constant diagonal Bfis
D[h] and hence the main diagonal Bfis its constant diagonal. We next argue that off the
main diagonal ofP the symbols occur in symmetrically placed paixsy) which satisfy
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y — X =X — ¥y = h modn. In this argument all calculations will be performed modnjo
which means in particular thath = +h. Leti # | be arbitrary &ements ofZ,,. Then

P.,i =Bij-n by construction ofP,
= Bj_n,i by symmetry ofB,
= Bjith—h sinceB is of Bi-type,
=Pji—h by construction ofP.

Similarly, Pso,i = Boo,ith = Bith,co = Bi.co + h = P& + h. We @nclude thatP is a
pairing square satisfying the requirements of the theordm.

If the column and symbol index sets are the same for a latin square then each row of the
square represents a permutation which can be written in disjoint cycle notation in the usual
way. By thecycle typeof a row we mean the integer partition formed by the cycle lengths.
Hence the cycle type is a partition of the order of the square. For Parker squares the cycle
types behave very nicely.

Theorem 12. For b > 0, every row in the body of a Btype latin square has the same
cycle type.

Proof. Let oi denote the permutation corresponding to iigwvherei is one of the row
indices in the body. Also, let be the automorphism defined Thheorem 21f o; mapss
to t thenoy, i) mapsy (s) to ¥ (t). Herce the cycles ofy () are derived from those o
by applying the magr to each entry in each cycle]

An important special case of this last result deals with what we shalireadlutory
squares, namely latimquares which are equal to their own (132)-conjugate. Involutory
squares have a conjugate which is symmetric in the ordinary matrix sense, and results on
them can, if prefeed, be interpreted in terms of symmetric squares. We have:

Theorem 13. A Bp-type or B-type square is involutory if and only if its first row is an
involution.

Proof. A latin square is involutory if and only if every row is an involution. FoBgtype

latin square the result follows immediately froheorem 12So suppose that is a B1-

type latin squee of ordem in which the first row $ an invoution. By Theorem 12ll rows
except possibly the last are involutions. Tlast row is formed by placing in each column

¢ the unique element which has yet to appear in colenfBuppose for a particulas that

this element is. Then n then — 1 involutions determined by the first— 1 rows,c was
never paied with s. Herce c will not have occurred in colums, and so it mgt apgear in

the last row in that column. It follows that the last row must be an involution, which proves
the result. O

The involutory squares in our last result are closely related to starters and even starters.
A starterin Zpn41 is a set ofpairsS = {{x1, y1}, {X2, Y2}, - .., {Xn, ¥n}} Suchthat

(i) X1, VY1, X2, Y2, ..., Xn, Yn are all the non-zero elements B, 1;
(i) £(x1—vy1), £(X2 — V¥2), ..., £(Xn — Yn) are all the non-zero elementsHin ;1.

An even starterin Zpy, is a setE = {{X1, Y1}, {X2, ¥2}, - .., {Xn—1, Yn—1}} suchthat
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(i) X1, Y1, X2, Y2, ..., Xn—1, Yn—1 are all the non-zero elements, except one, dernoted
of Zon;

(i) £(X1 — Y1), £(X2 — ¥2), ..., £(Xpn—1 — Yn—1) are all the non-zero elements B,
exceptn.

Starters and even starters are well knoweams of creating a variety of combinatorial
designs with large automorphism groups. Their connection with involutory squares is given
in the next theorem. To state this result we need to defimeipotentlatin squae as one
in which every symbol on the main diagonal is the same, antd@mpotentatin square as
one in which the symbols on the main diagonal are all distinct and occur in natural order.
Any Bo-type latin square can be made idempotent and Bg3yype latin square can be
made unipotent by using in each case an isotopy which cyclically permutes the rows other
than the bader row (if there is one).

Theorem 14. Let n be any positive integer. There is a natural bijection between each pair
of the following families:

(i) Bo-type involutory idempotent latin squares of order+ 1,
(i) Bi-type involutory unipotent latin squares of ordar + 2,
(i) Starters inZony1.

Similarly, there is a natural bijection between

(iv) Bi-type involutory unipotent latin squares of ordar + 1,
(v) Even starters irZoy.

Proof. The bijection from (i) to (i) is by prolongation. B is a gjuare belonging to family
(ii) it can be contracted to a square in family (i) becaBsmust have a symmetric border,
with the bordering elements order. To see this note thBtis of evenorder and involutory
soit has an even number of fixed points in each row. Given that the firgt 2 rows have
the sane number of fixed points bfheorem 12and that there are a total oh2- 2 fixed
points in B, the only possibility is that they all occur in the last row. Hence the bordering
row is in order. But the bordering column is in order too; since the square is unipotent it
has thetriple (0, 0, co) which implies the triplg0, oo, 0) becauseB is involutory.

The bijection from (i) to (iii) is simply to write down the first row of the square from (i)
in cycle form and take the trapssitions as the pairs for a star. These pairs include all
non-zero elements since the square is idempotent, and their differences are all distinct by
Theorem 5

The bijection from (iv) to (v) is similar. Suppodis a gjuare from (iv). When we write
down its first row in cycle form we must get exactly one fixed point siBdeas odd order
(there cannot be more, Blyheorem 12 This fixed point plays the role afig. There must
also be a paif0, co). Theother pairs form an even starter]

4. Orthogonality theory

One of the mosimportant applications of Parker squares is the construction of sets of
mutually orthogonal latin squares (MOLS). In this section we review the theory of MOLS
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and their connections with orthogonal arraysthe subsequent section we will establish
many irteresting properties of sets of®LS which irclude Parker squares.

Two latin squaresA = [A; j] andB = [B;, j] of the same order are said todhogonal
if the ordered pairgA; j, Bj j) are all distinct as and j vary. A set of MOLS is a set of
latin squares in which each pairasthogonal. A square is said to bdf-orthogonalif it is
orthogonal to its transpose. Orthogonality is €llystied to the concept of transversals.
A transversalof a latin square is a subset of the entries which includes exactly one
representative from each row, column and symbotofnmon transversalf a setM of
MOLS is a set of positions such that in each squand ithe entries intiose positions form
a transvesal. For more information on tBe comrepts see, for examples,[9].

Let Sbea =t of cardinalitys, and letO be ak x s? array of symbols chosen fro®
If, for any pair of rows ofO, theordered pairs irf§ x Seach occur exactly once among the
columns in the chosen rows, théhis an example of what is called amthogonal array
of strength 2 and index 1. Throughout this paper the term “orthogonal array” will mean an
orthogonal array of this type. From a g&tD, L@ ... L®} of k MOLS of ordemn it is
possible to build @k + 2) x n? orthogonal array where for each rovand columrc there
is one column of th aray equal to

r
C
Lid
L2 |- 3)

L
Moreover this process is reversible, so that @&y 2) x n? orthogonal array can be
interpreted as a set & MOLS of ordern. See J], for example, formore detds and
background on orthogonal arrays. The interpretation of MOLS in terms of orthogonal
arrays is often useful. For example, ia(] it was usd to show that every square in a
given main class is involved in the same number of sets of MOLS of a given cardinality.

Let M be a set of MOLS. The definition of drdgonalityis such that if an isotopism
is applied uniformly to the squares M then orthogonality is preserved. The same is
true when taking the transpose, but othemjagations can destroy orthogonality if applied
uniformly to the squares itM. However, there i® natual way to extend the notion of
conjugacy toM if wethink in terms of orthogonal arrays. We define two sets of MOLS to
beconjugatef theydefine the same orthogonal array, modulo permutation of the rows and
columns of the array. Note that the order of the columns in an orthogonal array is irrelevant
for any of the issues which concern us in this paper (which is why in the orthogonal array
constructed in3) we did not specify an order for the columns). So conjugatiorivbis
really about reordering the rowd the corresponding orthogonal array.Nf happens to
consist of a single square, this notion of conjugacy corresponds to the usual notion of
conjugacy for a latin square.

An important caveat is that whel has more than one square, conjugacy need not
preserve the main classef all the elements oM. An exampleof order 7 (the smallest
possible order) is presented i&(. This phenomenon of main classes varying among



406 .M. Wanless / European Journal of Combinatorics 25 (2004) 393—-413

related sets of MOLS had earlier been observed by Owens and P22e28|[ who studied

the sts of MOLS which define the affine planes of order 9. They found that even for these
sets of MOLS which argeometrically equivalent, the main classes involved vary from
set to set.

5. MOL Sbased on Parker squares

Let N(n) denote the maximum possible numbé&nwtually orthogonal latin squares of
ordern. Thequest for information oM (n) is the most celebrated problem in the study of
latin squares. As we saw Bection 2 Parker guares have proved particularly useful for
constructions of MOLS, and hence for improving lower bound&ién). Indeed, for many
known orders these bounds are the best known,3ee [

One advatageof Bp-type latin squares is that it istavial matter to write down an
orthogonal mate.

Theorem 15. Every By-type latin square of order n is orthogonal to C, a square with
constant diagonals defined by C= j —i modn.

Later in this section, we shall show two cases where Parker squares achieve the known
upper bound orN(n), namely n — 1. We begin though, by showing a limit on their
usefulness. Itis importantto note that our probthe following result depends crucially on
our convention that the rows and columns of eBghype latin square occur in a prescribed
order according to their indices.

Theorem 16. For arbitrary integers n and b, there cannot be more than

n-2 if b =0,
n—1 ifb=1,
min{N(b), (n —b)/b} ifb> 1,

muually orthogonal B-type latin squares of order n.

Proof. The bounds fob = 0 andb = 1 follow from the well known resulN(n) <n—1
(see, for example, Theorem 5.1.5 B])[and the fact that any set of mutually orthogonal
Bo-type latin squares can be extended, ugihgorem 15We shall se that inCorollary 22
andTheorem 23hat both of these bounds are achieved.

SupposeM is a set ofm mutually orthogonaBy-type latin squares of order, where
b > 1. Then each square M will have a poper subsquare in the finarows and columns
(seeTheorem J}. Since these subsquares occupy the same position in each square they must
themselves be orthogonal, and hentes N(b).

Also the bodies of each of the squaresMnhoccupy the same position. Each body is
an ordem — b submatrix withb constant diagonals. th > (n — b)/b then the constant
diagonals of some pair of squaresih must coincide, in which case those two squares
cannot be orthogonal (we may assume b > 2 dnce otherwise the theorem is vacuously
trueby Theorem . O

Observe thatheorem 16&ays that Parker's example of two orthogonal squares of order
ten cannot be bettered by using any otiBgrtype latin squares (for any choice lof.
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We say thaa set of MOLS is a Bet(in honour of Parker) if it contain€ and all other
squares in the set are &p-type To avoid trivialities we insist that every P-set contains at
least two squares. Such sets have been studid@jif, 20]. To find aBp-type orthogonal
mate for aBp-type square, or more generally to extend a P-set you can use:

Theorem 17. Let M be a P-set. fien there is a B-type square orthogonal to every square
in M if and only if there exists a common transversal of the squares in M.

Proof. First suppose thab is a gjuare orthogonal to every squareMh Then he cdls
occupied by the symbol 0, say, I must lie on a common transversal if. In theother
direction, suppose thats a transversal of each of the squareMirand that those squares
have orden. Sincet is a trangersal ofC we know it contains one cell from each diagonal.
Hence, if we developusing the automorphisi of Bp-type squares fromiheorem 2this
produces disjoint common transversals. LBtbe a square defined by placing the symbol
0 along thecells oft, 1 abng (t), 2 abngy (¥ (t)) and so @ up ton — 1 alongy "~ 1(t).
Itis routine to check thaD is a Bp-type latin square orthogonal to every squar&lin [J

Theorem 17bears a pleasingimilarity to the classical theorem stating that the
multiplication table ofa finite group, when considered as a latin square, has an orthogonal
mate if and only if the square has a transversal. The corresponding resii-fgpe
squares is this:

Theorem 18. Let M be a set of MOLS comprised of-B/pe latin squares of order & 1.
Then there is a Btype square orthogonal to every square in M if and only if there exists a
common transversal of the squares in M which includes cells freradifferent diagonals

of the body, including the constant diagonal of each square in M.

Proof. First suppose thaB is a B;-type square orthogonal to every squareMn The
positions occupied by, say, the symbol 0 Bhmust be a common transvergabf M.
Moreover, 0 will occupy every diagonal of the body Bfexcept the constant diagonal.
There aren — 2 uch diagonals. SincB is orthogonal to every square M, its constant
diagonal cannot coincide with the constant diagonal of any squave it follows thatt
has the desired property.

To prove the other direction, suppose thas a canmon transversal oM with the
staed property. Since hits the constant diagonal within the body of each squaid jinit
must include two distinct cells from the border. We know that the remainirg? cells
come from distinct diagonals of the body. Hence, the orbttwfder the action ofs, the
automorphism ofB;-type squares given ifheorem 2 containsn — 1 diginct common
transversals. The cells not covered by these 1 digoint transversa rnecessarily form a
common transversal. We @nstruct a squar8 which has synbol 0 ont, symbol 1 on
¥ (t) and so on, in the fashion dheorem 18The trarsversal’ is replaced by the symbol
oo in B, and thereby vyields the fixed diagonal. It is routine to check Bas$ a B1-type
latin square orthogonal to every squareNh [

A bachelorlatin square was defined by van Re@§|[to be a latin guare with no
orthogonal mate. It is worth remarking that, althouBfitype squares rather trivially have
an orthogonal mate byheorem 15there existB;-type bachelor squares. This follows
from Theorem 16since nopair of MOLS of order 2 or 6 exists. Indeed the following are
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exampes of Bi-type bachelor square®; [0, 4, 2,5, 3, 1], B1[c0, 5, 2,6, 3,7, 4, 1] and
Bi[0, 6,4,2,8,3,9,7,5, 1]. It is worth noting, when examining the first two of these
exampes, thatBi[c0, 6, 2,7, 3, 8, 4, 9, 5, 1] is not a bachelr square.

Conputer checks show that there are Bg-type bachelor squares of odd order up
to and incuding 11. Whether there are any for higher orders remains an open question.
However, there ard;-type squares of odd order which, Byheorem 18 do not have
a Bj-type orthogonal mate. The smallest such examples are of order 11, and include
B[, 1,3,9,7,4,8,5, 2, 6,0]. SinceB;-type latin squares of order2 have atéast one
transversal, it follows that there are Ba-type bachelor squares which are isotopic to the
Cayley tdble of some group of order2. In particular, then, there are i -type bachelor
squares of order 4.

Our next result can be viewed as a generalisatiohhaforem 4

Theorem 19. Let M be a set of MOLS in which every square hast@oe for some fixed
b > 0. Then every square in every set of MOLS conjugate to M hatyse.

Proof. Let O be the orthogonal array correspondingMo and suppose the squaresih
are of ordem. It suffices to consider the effect of applying a permutatioto the rows
of O.

Let ¢ be the mag — z* identified inTheorem 2as an automorphism of each of the
sguares inM. Theny has an ation on the columns 00O induced by applyings to each
entry. LetF be the set of fixed columns under this action. Cleafyconsists of the?
columns ofO in which each entry is an infinity sybol, corresponding to the entries in
each square involved in the subsquare identifiethiaorem 1

We partition the remainingi2 — b2 columns ofO into n + b “blocks” of n — b columns
each, where each block contains the cahsrfrom a single orbit under the action%f In
any given block there may be constant rows (containing a single infinity symbol repeated
n — b times) and cyclic rows (coatning the elements ¢£,_, in cyclic order). However,
sincen — b > 2 except in the trivial case whem = 2 andb = 1, we know that no block
may contain more than one constant rowthwy definition of an orthogonal array. Also, for
each infinity symbol and each row &f there must b exatly oneof then + b blocks in
which tha symbol occurs.

Itis not hard to see that these observations characterise those orthogonal arrays which
correspond to sets of MOLS in which every squareBg$ype. Moreover, these conditions
are symmetric between the rows of the array, which means that they are invariant under
The result follows. O

DespiteTheorem 19it is not necessarilyrue that for a set of MOL3/1 thenumber of
main classes which contaBy,-type squares is constant across sets of MOLS conjugate to
M. This can be seen from the examples studied by Owens and P&sc€Hey discuss
eleven main classes of which twd{ise designated “a” and “e”) contaBy-type latin
squares. An example is given i2]] of eight MOLS defining the dual translation plane
of order 9, of which four squares are Bf-type and contain imrcalates. From22] we
deduce that these squares belong to mais<l'e”, as do two of the other squares in the
set. The reraining two squares belong to main class “b”, which ha8pdype form. There
is a mnjugate set of MOLS in which every square belongs to main class “b”.
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Another pertinent point regardinbheorem 19is that, although it applies to sets of
MOLS containing onlyBo-type squares, we know that no such set can be maximal. So
it makes sense to look at P-sets.

Theorem 20. Let M be a P-set of MOLS. Then every set of MOLS conjugate to M is either
a P-set or is a set of MOLS in which every square is isotopic to the cyclic group table. There
is always at least one conjugate set of MOLS of the latter type.

Proof. The proofis similar to that ofheorem 19Suppose for the moment that we ignore

the presence dt, the square with constant diagonalsMn Then the orthogonal arra®
corresponding taV splits inton blocks ofn columns, corresponding to the orbits f

that is, each block corresponds to a particular diagonal. ThE geempy and every row

of every block is cyclic. Using the same blocks, but now recognising the preseiie of

we see that the only difference this makes is that in each block there is one constant row
in which a particular symbol ifZ, is repeatech times. Moreover, this constant row is the
same rowgall it r¢, in everyblock.

Now consider wht happens when we apply a permutaticio the rows ofO.

Firstly, we consider a which permutes the rows @ in such a way that. becomes
the first row. Suppose that in a particular bloBkof O, the mnstant in row ¢ wasc, and
that this block becam®’ after the application of. Intepreting B’ in terms of cells in a
new set of MOLSM’, we see tht rowc of each square iiM’ must be in cyclic order. But
because the same row is constant in everglld follows that every row of every square
in M’ is cyclic. Hence each square BF can be obtained from the cyclic group table by
rearranging its rows.

If T putsrc into second position instead of first then the same thing happens except that
all columns turn out to be cyclic, so that each squarklbtan be obtained from the cyclic
group table by rearranging its columns.

If © mapsrc somewhere otr than the first two rows then we may as well assume that
rc is unmoved since the order of rows after geeond only affects the order of squares in
the set of MOLS, which is not important to the issues at hand. Hence the structure of each
block is not essentiallylgered. Which is to say that produces another P-set[]

Theorem 2Gshows that any set of MOLS based Bp-type latin squares is in a sense
equivalent to a set of MOLS built by permuting the rows (say) of the cyclic group square.
This discovery is disappointing in so far as it shows that the diagonally cyclic method is
no more powerful than the oldest known method. However, it was shown by Maenhaut and
Wanless 0] that qquares in sets oBp-type MOLS can have very taresting properties
(such as being atomic without being from the cyclic main class). So these sets of MOLS
are certainly still of interest. Our next result shows them at their most triumphant (but bear
in mind, from what we have just seen, that it can be rephrased in terms of permuting rows
of the cyclic group table).

Theorem 21. Let p be the smallest prime divisor of an integer n. Let M be the setd? p
latin squares constructed as follows. For eachs {2, 3, ..., p — 1} we build a B-type
latin square in which the ith entry in the first row i, modulo n. Then M is a set of
MOLS.
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The orthomorphisms formed by the first rows of the squared iare known as linear
orthomorphisms and’heorem 21is equivalent to Example 1.1 irl]. Whenp = 3,
Theorem 2Jroduces only one square, but Evahg has recently shown that it is possible
to find two orthogonal orthomorphisms @, for all oddn > 3 except possibly when is
divisible by 9. Note also that every set of MOLS coveredlitiieorem 21can be extended
by adding in the squar€ with constant diagonals. In particular:

Corollary 22. For every prime p there exists a P-set which is a complete set of MOLS of
order p.

Each of the latin squares @orollary 22 is isobpic to the cyclic group table of order
and the projective plane encoded by the set of MOLS is, of course, Desarguesian. Indeed,
for all prime power orders the Desarguesian projective plane can be encoded using Parker
squares, as we show next.

Theorem 23. Letn= p' fora prime p and positive integer r. Then there exists a complete
sd of MOLS d order n in which every square is ofiBype.

Proof. LetF denote the Galois field of ordar and suppose that is a generating element
of the multiplicative group ofF. Then he elements ofF can be denoted by; = 1,
ar =X, a3 = X2, ..., an—1 = X"2, anda, = 0. Fork = 1,2,...,n — 1 defire a latin
squareLy in which, fori, j = 1,2, ..., n, the entryin row and columnj is & +akaj. The
proof that thel i have the required proptégs is essentially that o8] Theorem 5.2.4]. O

The construction inTheorem 23is usually credited to Bose or Bose—Stevens, but
Bedford [3] says it belongs to Moore and dates from 1896.

6. Subsguarefreesquares

An order two subsquare of a latin square is calledirgercalateand a latin square
without intercalates is said to bé. A latin square without proper subsquares is said to
be N . The exisence pectrum forNy squares is known but the spectrum g, squares
is not completely solved. All orders for wdti constructions are yet to be published are of
the form 23# for non-negative integers andg. See, for example,d]. In this sction we
outline a possible means for solving the case: 0 by using Par&r squares. Before doing
that though, we show that Parker squares are no help when.

Theorem 24. There are no N, Parker squares of even order.

Proof. Suppose we had &p-type latin squareL of even ordern with no proper
subsquares. Byfheorem 6nve must havdy > 1 andby Theorem lwe must havéy < 1.

Thusb = 1 and wecan applyTheorem 7 Calculating modulon — 1, we find that if
D[d] is the monstant diagonal of the body &f thenLg o = Looo +d = Leo.d. Buthy

the definition ofB-type latin squared, g g = 00 = Lo,00, SO that we hae located an
intercalate and. is not Ny, after all. O

A byproduct of the proof oTheorem 24s that there are ndl; squares of even order
and of Bp-type forb < 2. For someb > 3 it is possible to onstructN, squares, and
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[32, Theorem 2] gives conditions under which the subsquare predict&@thegrem 1lis
theonly proper subsquare.

We turn next to the situation for odd orders. Of course, there are stiNgasquares of
Byp-type forb > 2. However, forb = 1 andprime orders it is possible (cfTheorem 23
to write the cyclic group table of orderas aB;-type square, which will of course bé,.
Even for composite odd orders there are sdve squares ofB;-type. The smallest is of
order 15 as evidenced B[00, 1, 3,2,6,8,11,13,12,5,4,9,7, 10, 0] and a computer
enumeration to rule out examples of order 9.

However, the mostmportant difference between the odd and even orders is the
availability of Bp-type latin squares. A computer enumeration for small orders leads the
author to make the following conjecture.

Conjecturel. For every odd order there exists an.Nsquare of B-type.

Of course, if proved, this would resolve tbhe= 0 case in the spectrum df,, squares.
We now outline one candidate pattern for the resolutiorCohjecture 1

Suppose thah > 3 is an odd iteger with p as its smallest prime factor. We shall
construct the first row of 8p-type latin square of ordar. The row will be composed
of p blocks of sizes = n/p and each block will be of one of two types. In a type 1
block the entries are in decreasing ordecept that the largest entry comes last. In a
type 2 block the entries are in decreasingley except that the smallest entry comes
first. We number the blocks from 0 t@ — 1. The entries used in thigh block are
{—is,1—1is,2—1is,...,s — 1 —is}, where allcalculations in what follows will be in
Zn. It only remains to designate the type of each bloclp K 4k — 1 for someintegerk
then bbcksk, k + 1, ..., 3k — 1 are of ype 1 and all other blocks are of type 2. On the
other hand, ifp = 4k + 1 for somentegerk then bbcksk, k+ 1, ..., 2k — 1 are oftype 1,
as are blockskR+ 2,2k + 3, ..., 3k + 1, and all other blocks are of type 2.

Theorem 25. The construction just outlined produces g-8pe latin square of order n,
which is equal to its (132)-conjugate.

Proof. Let & be the map orZ, which £ndsx to the symbol in thexth placeof the
row constructed above. It should be clear thas a permutation. Terove the theorem
it suffices to show that is an othomorphism ofZ, and an involution. We can then apply
Theorems Band13.

Define¢ : Zn — Zn by ¢ (X) = 6(x) — X. In the first case, consider a particulafor
which thei th block is of type 1. Thefi(is+ j) = —is— j+s—2forj =0,1,...,5s—2,
andé(is +s— 1) = s— 1 —is. In the £cond case, if théth block is of type 2 then
6(is+ j)=—-is—j+sforj=1,2...,s—1,andd(is) = —is. In ether case then,
the image set undef of the entries within block is the same, namely2(is + j) + sfor
j =12,...,s— 1, togetker with —2is. Now, theonly solution inZ, to —2i1s = —2i5s
for0 < iy <ip < piswheni; = i. Also theonly way tosolve—2j; = —2j, mods
is to havej; = j» mods. From these Ist two facts it is not hard to see that the images of
different blocks undep must be distinct, and hence ttais indeed an oitomorphism. As
an aside, we observe that this conclusion is independent of the designation of which blocks
are of which type, so that any such designation would prodi&getspe latin square.
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It remains to show tha# is an involution. Here the crucial observation is that our
allocation of types has the property that bldckas the same type as blogk— i (we
interpret blockp as being block 0). Alsgps = 0 in Zp, so @plying the rules from the
preceding paragraph we see that if bigek i has type 1thefi(—is+j) =is—j+s—2
forj =0,1,...,s—2andf(—is+s—1) =is+s— 1. Meanwhileif block p — i has
type 2therf(—is+ j) =is— j+sforj=1,2,...,s—1andd(—is) = is. Either way,
reversing the order of indexing leads to the conclusiondhiatan involution. [J

By way of illustration, we now display the cases= 15 andnh = 25 of our construction,
with the blocks slightly separated to highlight the structure.

Bol0,4,3,2,1, 13,12, 11,10, 14, 8,7,6,5, 9]
Bol0. 4,3, 2,1, 23,22 21, 20, 24, 15,19, 18, 17, 16,
10,14,13,12 11, 8,7,6,5, 9].

It is a simple matter to use a computer to check that both these squards,atadeed,

a conputer has been used to show that for all @de 10 000 our construction produces
an Ny, square, thereby bolstering hope for a future proofCohjecture 1 We donote,
though, that the construction does work fairly trivially whenemds prime. In that case
thed it produces is a linear thomorphism, so the square itself is isotopic to the cyclic
group table.

Finally, we give an example showing that the condition thdie the sdlest prime
factor ofn cannot be abandoned. Let= 30k + 15 for somek > 1. Our construction
would usep = 3 butifwe usedp = 5 insiead, then the square would contain the following
subsquare of order 3:

|2k+2  1X+7 2%+12
0 4k+1 2&k+11 1446
10k+5 |24k +11 1&k+6 4k+1
20k +10|14k+6 4k+1 24&k+11
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