Full rainbow matchings in graphs and hypergraphs
Let G be a simple graph that is properly edge coloured with m colours and let M={M1,...,Mm} be the set of m matchings induced by the colours in G. Suppose that m≤n-n^{c}, where c>9/10, and every matching in M has size n. Then G contains a full rainbow matching, i.e. a matching that contains exactly one edge from Mi for each 1≤i≤m. This answers an open problem of Pokrovskiy and gives an affirmative answer to a generalisation of a special case of a conjecture of Aharoni and Berger.
Related results are also found for multigraphs with edges of bounded
multiplicity, and for hypergraphs.
Finally, we provide counterexamples to several conjectures on full
rainbow matchings made by Aharoni and Berger.