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Abstract

This paper investigates the relative power of a squares-based test for short-memory
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squares-based test has negligible relative power in empirically relevant scenarios. Fi-
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in the derivation of the test.
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1 Introduction

This paper contributes to an emerging literature in which second-order dependence in

positive, highly skewed data is the focus of analysis. In the context of trade durations, a

prime example of such data, the second moment represents a particular measure of liquidity

risk. Only recently have the dynamics of this risk been modelled separately from the

dynamics in the mean (e.g. Ghysels, Gourieroux and Jasiak, 2004), with the autocorrelation

function (ACF) of the squared data being used as a preliminary diagnostic tool.1 While

such a practice may have some merit, this paper quanti�es the substantial power loss that

can occur as a result of failing to incorporate information on the skewed nature of the data

in the construction of a test statistic.

In order to quantify the potential power loss associated with the squares-based statistic,

we derive a test for second-order dependence in a leading case. We consider a parameter-

driven model (Cox, 1981) for dependent positive data, where the conditional distribution is

gamma and the (positive) parameter of that distribution is assumed to be a dependent log

normal sequence. These assumptions allow us to produce exact analytic expressions for the

asymptotic relative e¢ ciency (ARE) of the new test, in comparison with the squares-based

statistic. The new test is locally most powerful (LMP) with respect to a quasi-likelihood

function, which is used in order to avoid the well known computational di¢ culties associated

with a latent variable structure. The ARE results show that the test based on the squares of

the data has negligible asymptotic e¢ ciency relative to the new test, in empirically relevant

settings. Finite sample results further highlight the inferiority of the squares-based test,

with the latter shown to have empirical power that is several-fold less than that of the LMP

test in some instances. Robustness of the �nite sample power results to misspeci�cation of

the conditional distribution is also demonstrated.

The outline of the paper is as follows. In Section 2, the LMP test statistic is derived.

Section 3 gives details of the asymptotic theory of both the LMP and squares-based tests

under �-mixing conditions. The ARE of the two tests is then investigated in Section 4,

with the distinct power superiority of the LMP test highlighted. These local power results

are supplemented with �xed alternative power comparisons, via Monte Carlo simulations,

in Section 5. Some conclusions are provided in Section 6.

1See Bauwens et al. (2004) for related work.
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2 Derivation of the Score Test

We begin with the class of models for the T -dimensional random vector y = [y1; y2; : : : ; yT ]
0

with distribution given by

f(y) =

Z
:::

Z
f(yj�)f(�)d� = E� [f(yj�)] ; (1)

where � denotes a (T � 1) vector of latent variables � = [�1; �2; :::; �T ]
0. Each �t; t =

1; 2; : : : ; T , in the present context assumed positive, is linked to an underlying scalar latent

process xt where we assume that �t = ext : The latent process xt is, in turn, assumed to

follow a stationary Gaussian AR(1) process,

(xt � �x) = � (xt�1 � �x) + �t; �t siid N(0; �2�); t = 1; 2; : : : ; T ; j�j < 1; (2)

with the (T�1) vector x de�ned as x = [x1; x2; :::; xT ]0, and �x = V arx[x]. We also assume
that

f(yj�) = f(y1j�1)f(y2j�2) : : : f(yT j�T ); (3)

so that dependence in y is generated solely through � (from the latent process x). The null

hypothesis is that � = 0, so that the elements of y are independent (�t is an i:i:d: process

under the null) and the alternative is that � > 0, so that �t is a correlated sequence with

short memory.

Following Cox (1983) and McCabe and Leybourne (2000)2, we de�ne f �(y) as the

second-order Taylor series expansion of f(yj�) about �� = [��; ��; :::; ��]
0 = E�[�]. De�n-

ing L(�jy) = f(yj�) and ` = logL, we may write

f �(y) = L(�jy)j�=��

�
1 +

1

2
tr (M��)

�
;

where �� = V ar�[�] and M =
�
@`
@�

@`
@�0 +

@2`
@�@�0

����
�=��

:3 Note that the second term in the

expression forM, @2`
@�@�0

���
�=��

, is a diagonal matrix with elements,

r =
n
@2`=@�2t

��
�t=��

; t = 1; :::; T
o
; (4)

2See Chesher (1984), Bera and Kim (2002), Huber et al. (2004) and Davis and Rodriguez-Yam (2005)
for related work.

3Clearly, f�(y) is an approximation to f(y) for which the error is O
n
E�

h
k�� ��k

3
io
. Indeed,

f�(y) > 0 is a valid density in its own right as it integrates to unity.
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because of conditional independence. Also, `(�jy) =
P

t ` (�tjyt) and, without loss of gen-
erality, for some functions a(:); b(:) and c(:), ` (�tjyt) may be written as

` (�tjyt) = a(yt) + b(�t) + c(yt; �t); (5)

where we allow for the possibility that a(yt) and b(�t) may be zero. The (conditional) score

is then

`0 (�tjyt) = b0(�t) + c0(yt; �t);

(where the prime denotes di¤erentiation w.r.t. �t) and this has (conditional) expectation

zero for all �t and, hence, unconditional expectation zero. Thus de�ning

u(yt) = c0 (yt; �t)j�t=�� ; (6)

we can write that

`0 (�tjyt)j�t=�� = fu (yt)� �ug = uc (yt) ; (7)

where �u = Ey [u (yt)] and the notation uc (yt) is used to denote the mean-corrected version

of u (yt) :

The locally most powerful test (see, for example, Cox and Hinkley, 1979, Sect. 4.8) of

H0 : � = 0 against H1 : � > 0; (8)

based on the quasi-score, is given by

S =
@ log f �(y)

@�

����
�=0

:

From the properties of the log-normal distribution it follows that @��=@�j�=0 = 0 and so

S = tr

 
M
@��

@�

����
�=0

!,�
2 + �2�trM

�
; (9)

where �2� is the variance of �t under the null. It is well-known that
@�x
@�

���
�=0

/ A, where

A is a tridiagonal matrix with zeros on the main diagonal and unity on the o¤-diagonals.

Using the log-normal assumption for �t, it also follows that
@��
@�

���
�=0

/ A. Hence, apart

from constants, (9) can be re-expressed as

S = u0cAuc/
�
2 + �2� [u

0
cuc+r

0i]
�
;
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where uc is de�ned as a (T � 1) vector with tth element uc (yt) (as given in (7)), i is a
(T � 1) vector of 1�s and r is de�ned in (4). Standardizing in the usual way we obtain

ST = T
�1=2u0cAuc=

�
2=T + �2� [u

0
cuc+r

0i] =T
�

(10)

and, using a suitable weak law of large numbers (WLLN), the denominator in (10) converges

in probability to a constant under the i:i:d: null. Convergence to the same constant also

occurs under local alternatives by LeCam�s 3rd Lemma (see van der Vart, 1998, Sect 6.2).

Thus, de�ning

Su = u
0
cAuc; (11)

the statistic,

Su;T = T
�1=2Su = T

�1=2
TX
t=2

uc(yt)uc(yt�1); (12)

may be used to test H0 : � = 0 and this is asymptotically equivalent to the statistic ST in

(10).

It is a simple matter to identify the function u (�) in (6) for any particular conditional
distribution. For the positive, highly positively skewed data that is the focus of this paper,

the gamma distribution is a suitable choice of conditional, with density,

f(ytj�; �t) =
1

yt
� 1

�( 1
�t
)

�
1

�t

� 1
�t

� (��yt)
1
�t exp

�
�yt
�t

�
: (13)

The conditional mean and variance are given respectively by Eyj�[yt] = �1
�
and Vyj�[yt] =

1
�2
�t, with � < 0 a scalar constant. In the textbook notation for the gamma distribution,

G(�; �), we have � = ��1t and � = ��t=�. We adopt the parameterization in (13) to ensure
that the conditional mean of ytj�t is a not function of �t and that correlation in �t induces
second order dependence in yt. Noting that �y = Ey[yt] = Eyj�[yt] = �1

�
; we see (with

reference to (5)) that

c(yt; �t) = �
1

�t
g(yt);

with

g(yt) =
yt
�y
� log

�
yt
�y

�
: (14)

Thus, u (yt) = ��2� g(yt) and the constant �
�2
� may be ignored in the construction of the

test, so we set u (yt) = g(yt) in this case. Setting u (yt) equal to

d(yt) =
�
yt � �y

�2
(15)

yields the squares-based test.
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3 Asymptotic Distribution Theory

Because of the u-transformation of the yt embodied in the statistic in (12), �-mixing is a

natural environment in which to analyze the asymptotic behaviour of Su;T . We therefore

adopt the, now standard (see McCabe and Tremayne, 1993, Sec 10.8), �-mixing assumption

for a central limit theorem (CLT) to hold for stationary yt. Inspection of the u 2 fg; dg
transformations (with g(�) and d(�) as given respectively in (14) and (15)) shows that
there are no greater moment requirements than when u = d, as the transformation in

this case depends on y2t . Thus, the existence of moments of yt slightly larger than 8 is

a su¢ cient condition, that applies to both transformations, for the CLT to hold for the

mixing product sequence fuc (yt)uc (yt�1)g. From now on, references to mixing processes

assume that su¢ cient moment conditions hold. Note under the model (1) to (3) and (13),

the moment conditions are satis�ed, since the conditional gamma and marginal log normal

distributions have �nite moments of all orders and, therefore, so too have the yt. When yt

is mixing,

T�1=2
TX
t=2

[uc(yt)uc(yt�1)� E [uc(yt)uc(yt�1)]]!d N(0; !2); (16)

where !2 > 0 is the usual long run variance of the sum in (16).

Suppose that fytg is an i:i:d: sequence, it follows that fu (yt)g is also i:i:d: Hence, the
CLT implies that Su;T is asymptotically N(0; �4u) where �

2
u is the (short run) variance of

u (yt). Thus, for example, Su;T , for u 2 fg; dg, is asymptotically normal for all fytg that
are independent. A fortiori this includes the case where fytg is generated by the model
(1) to (3) under the null hypothesis that � = 0 in (2). So, for example, it follows that Sg;T

is asymptotically normal regardless of whether f (ytj�t) is speci�cally gamma or not. The
corresponding comment applies to Sd;T :

Now suppose that fytg is mixing with E [uc(yt)uc(yt�1)] 6= 0. Consider

Su;T = T
�1=2

TX
t=2

�
uc(yt)uc(yt�1)� E [uc(yt)uc(yt�1)] + T 1=2E [uc(yt)uc(yt�1)]

�
:

As the �rst term in Su;T converges in distribution by (16) and the second term diverges,

Su;T also diverges, and a two-sided test based on Su;T is therefore consistent whenever

E [uc(yt)uc(yt�1)] 6= 0. A fortiori there is consistency against the model (1) to (3) under
the alternative when � 6= 0. This follows because fxtg in (2) is a mixing process and this
implies that f�tg is also mixing and hence, so too is fytg by conditional independence.
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It is also straightforward to show that E [uc(yt)uc(yt�1)] 6= 0 for u 2 fg; dg. Thus, two-
sided tests based on Su;T , u 2 fg; dg are consistent against the model (1) to (3) under the
alternative hypothesis � 6= 0 in (2).
Thus far then, both tests are equally good. However, the point of the transformations

is, of course, to obtain greater power when some knowledge of an appropriate DGP is

available. To illustrate this, the power gains associated with use of Sg rather than Sd (with

Su, u 2 fg; dg as de�ned in (11)), in the case of a positive and positively skewed DGP, are
quanti�ed in the following section via ARE calculations.

4 Asymptotic Relative E¢ ciency of Su, u 2 fd; gg

The ARE of a test based on the squares-based statistic Sd, relative to a test based on

statistic Sg, under a sequence of local alternatives, is a measure of the (asymptotic) relative

local power of the two tests. We are interested in linking the loss of e¢ ciency of the squares-

based test with the degree of skewness in the underlying DGP. To this end, the location

and scale parameters of the underlying conditional gamma DGP are used to control the

degree of skewness. Under regularity conditions (see for example, Stuart et al., 1998, Chp.

26), the ARE can be represented as

AREd;g = lim
T

264
@�Sd

(�)

@�

���
�=0
= �Sd(�)j�=0

@�Sg (�)

@�

���
�=0
= �Sg(�)

��
�=0

375
2

; (17)

where �Su(�) and �Su(�); u 2 fd; gg, are means and standard deviations such that
Su � �Su(�)
�Su(�)

!d N(0; 1) (18)

in some local region f0 � � < �g, which includes the alternative hypothesis. The condition
in (18) is valid in our case, as the correlation coe¢ cients that underlie our tests have an

asymptotic normal distribution under �-mixing conditions for yt, as demonstrated in (16).

To evaluate the expression in (17), we use the speci�cations of the model (1) to (3)

with conditional density as given in (13). That is, the relative performance of the Sg test,

which is derived via the quasi-likelihood, is assessed with respect to the true model. In the

following proposition, expectations with respect to the N(�x; �
2
�) distribution are denoted

with a subscript N , e.g. EN and VN , while 	 is the derivative of the log-gamma function,

	(z) = @
@z
log �(z), with 	

0
being the derivative of 	, the digamma function. The proof is

given in the Appendix.
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Figure 1: AREd;g as a function of �x (for �� = 1). The degree of skewness in the represen-
tative conditional gamma distribution underlying the calculations is an increasing function
of �x:

Proposition 1 Under the model de�ned by (1) to (3) and (13), the ARE of Sd to Sg is

given by

AREd;g =
ha
b

i2
;

where

a =

h
e2�x+�

2
�

i
h
6e3�x+

9
2
�2� + 3e2�x+2�

2
� � e2�x+�2�

i
and

b =
f1� EN [	0 (e�xt) (e�xt)]g2

VN [	(e�xt) + xt]� e�x+
1
2
�2� + EN [	0(e�xt)]

:
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Conditional densities of yt (and associated AREd;g values) for selected values of �x:

From Proposition 1 it can be seen that AREd;g does not depend on the conditional mean

�yj� = �1=� ( = �y) but, rather, depends only on �x and �2�. The values of these parameters
can be used to characterize the nature of the conditional gamma DGP underlying the

relative power calculations. Speci�cally, setting � = [E� [�t]]
�1 and � = �E� [�t] =� in

G(�; �), where E� [�t] = e�x+
1
2
�2� , the representative conditional gamma DGP approaches

a symmetric normal DGP with a mean of one as � ! 1:4 Figure 1 plots AREd;g over
4The invariance of AREd;g to � means that we can assign � any arbitrary value. This value will, of course,

a¤ect the mean of G(�; �): This DGP is only representative of the conditional distribution underlying the
ratio in that it is based on the substitution of E(�t) into � and �, rather than the substitution of a
particular value of �t: The standardized skewness coe¢ cient for the G(�; �) distribution is 2��1=2:
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�x for �
2
� = 1, whilst Figure 2 plots the corresponding (representative) DGP�s for �x = 0

and �x = �5 respectively. Clearly, the dominance of the optimal test over the squares-
based test is very pronounced for distributions at the skewed end of the spectrum (�x = 0

for example), with the relative e¢ ciency of the squares-based test being virtually zero for

distributions that describe the positive, highly skewed data that is typical of that observed

in relevant empirical applications5. As the underlying DGP becomes less skewed, the ratio

increases, with the relative e¢ ciency of the squares-based test reaching approximately 70%

for data that is close to symmetric (�x = �5 for example). As �x ! �1 (for �xed �2�)

and �!1 as a consequence, both tests are equally e¢ cient according to this measure.

5 FINITE SAMPLE PERFORMANCE OF EMPIR-
ICAL TESTS

In practice we may estimate u (yt) for u 2 fd; gg by substituting the sample mean �y for
�y to obtain û (yt). We may also estimate �u = Ey [u (yt)] by the sample mean of û (yt) ;

denoted by �̂u. Finally, we may estimate the mean-corrected uc (yt) by ûc (yt) = û (yt)� �̂u.
When studentised by the variance, s2u of û (yt), the statistic, for u 2 fd; gg,

�̂u = T
�1=2s�2u

TX
t=2

ûc(yt)ûc(yt�1) (19)

may be used to implement the tests in practice. It is easy to see that

T�1=2
TX
t=2

ûc(yt)ûc(yt�1) = T
�1=2

TX
t=2

uc(yt)uc(yt�1) + op(1);

so that estimating uc(yt) has no asymptotic e¤ect. In addition, under the null of indepen-

dence, s2u !p �2u by the WLLN. Hence, by the continuous mapping theorem and the CLT

we have that �̂u !d N(0; 1) and so normal critical values may be used to perform the test.

In Table 1, we report the empirical size and power of the tests based on �̂d and �̂g in

(19) under both conditional gamma and conditional Weibull distributions. The generating

process for xt is the AR(1) process in (2), with �t = ext. With reference to the conditional

gamma density in (13) and the AR(1) process for xt in (2), we impose parameter values that

ensure that the generated data is qualitatively similar to typical positive and very positively

skewed data. Speci�cally, we produce data with a mean approximately equal to 1 and

5See, for example, the shape of the empirical distributions of trade durations in Engle and Russell (1998)
and Bauwens et al. (2004).
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Table 1:

Finite Sample Sizes and Powers of Tests of H0 : � = 0 against H1 : � > 0 under Strictly
Positive Conditional Distributions

Empirical Size and Power

Gamma f(ytj�t) Weibull f(ytj�t)

N = 200 N = 500 N = 2000 N = 200 N = 500 N = 2000

�̂g �̂d �̂g �̂d �̂g �̂d �̂g �̂d �̂g �̂d �̂g �̂d
� =
0:0 0.047 0.034 0.053 0.034 0.056 0.032� 0.046 0.047 0.048 0.058 0.048 0.065�

0:1 0.088 0.058 0.102 0.060 0.171 0.067 0.089 0.054 0.119 0.055 0.255 0.057
0:3 0.213 0.070 0.327 0.081 0.693 0.099 0.233 0.060 0.424 0.064 0.907 0.075
0:5 0.410 0.086 0.642 0.104 0.966 0.139 0.448 0.067 0.780 0.072 1.000 0.093
0:7 0.644 0.119 0.869 0.141 0.993 0.191 0.632 0.070 0.927 0.077 1.000 0.099

(a) � denotes signi�cantly di¤erent from the nominal value of 5%, using an asymptotic critical value of

1.96 for the sample proportion.

variance between about 1.2 and 2, as matches high frequency trade durations data (adjusted

for the intraday pattern); see, for example, Strickland et al. (2006). This is achieved

using the expressions for the unconditional moments: �y = �1=�, Vy[yt] = E� [�t] =�2 and
E� [�t] = e

�x+
1
2
�2� : The mean parameter �x in (2) is set at a value that ensures that for each

value of � in (2), the mean of the generated �t values approximates E� [�t] in each case.

E� [�t] is, in turn, linked to the unconditional variance of the data as per the expression for

Vy[yt]. The conditional Weibull distribution, reparameterized to ensure that the mean is

�xed and only the conditional variance is a function of �t, is calibrated in such a way that

the arti�cial data is qualitatively similar to that generated under the conditional gamma

distribution, for each value of �: All calculations are based on 20; 000 replications of the

relevant process, using samples of size 200, 500 and 2000 and a nominal size of 5%. All

powers are based on the empirical 5% critical values.

The results reported in Table 1 show that the empirical sizes of both tests are reasonably

close to the nominal value of 5%, with the correct test (for the data type) tending to

have better �nite sample size behaviour than the alternative squares-based test, in all

experiments. Only in two cases are the empirical sizes signi�cantly di¤erent from the
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nominal size, with both of those cases relating to the �̂d test. The results in Table 1 also

demonstrate that, under a conditional gamma DGP, the �̂g test is more powerful than the

�̂d test throughout the �-parameter space, with that dominance still obtaining for very

large sample sizes. For example, when � = 0:7 and N = 2000, the �̂g test has power that is

more than �ve times that of the squares-based �̂d test. The power dominance of the �̂g test

over the �̂d test continues to prevail even when the data is generated from a conditional

Weibull distribution rather than the conditional gamma distribution under which �̂g has

been derived. Indeed, the dominance is even more marked for this particular distributional

speci�cation, with the �̂g test having excellent power, whilst the power of the �̂d test is

abysmal, even for N = 2000: The numerical experiments also con�rm the �xed-alternative

consistency properties demonstrated theoretically in Section 3, with the power of all tests

increasing as T increases. That said, the power of the squares-based test under strictly

positive continuous data is still very low in large (but �nite) samples.

6 Conclusions

In this paper we have compared the sampling properties of a squares-based correlation

statistic with those of a quasi-score statistic for testing for correlation in the second moment

of data de�ned on the positive domain. For an analytically tractable leading-case model, the

local power comparison conducted in Section 4 highlights the distinct bene�t of applying

a statistic that is adapted to positive, highly skewed data, with the relative power of

the squares-based test being negligible for such data. The �nite sample simulation results

reported in Section 5 con�rm the superior performance of the new test for �xed alternatives,

even when the data is generated under a conditional Weibull distribution, rather than the

conditional gamma distribution under which the test is derived. In summary, all results

reported in the paper raise doubts about the wisdom of using the autocorrelation function

of squared data to test for short-memory correlation in the variance of positive, highly

skewed data, with a marked loss of power resulting from a failure to incorporate appropriate

distributional information in the construction of the test statistic.
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Appendix: Proof of Proposition 1
Here we collect, for convenience, some background results used in the proof. With

reference to the gamma distribution, with density in (13), the conditional moments of yt

are de�ned as

Eyj� [yt] = �yj� = �
1

�
= �y

Eyj�
�
yt � �yj�

�2
= �2y�t

Eyj�
�
yt � �yj�

�3
= 2�3y�

2
t (A.1)

Eyj�
�
yt � �yj�

�4
= 3�4y

�
2�3t + �

2
t

�
:

Also under the gamma distribution, the conditional moment generating function of log(yt)

is given by

M log(yt)j�(s) = E[y
s
t j�; �t] =

�
�
1
�t
+ s
�

�
�
1
�t

� �
��
�t

��s
: (A.2)

Note that this expression also gives the raw (conditional) moments of yt. The relevant

conditional moments of log(yt) are given by the following derivatives,

M 0
log(yt)j� (0) = Eyj� [log (yt)] = � log

�
��
�t

�
+	

�
��1t
�
, (A.3)

M 0
log(yt)j� (1) = Eyj� [yt log (yt)]

= Eyj�

�
@

@s
ys+1t

����
s=0

�
=

�
��
�t

��1
1

�
�
��1t
�� ���1t + 1

� �
� log

�
��
�t

�
+	

�
��1t + 1

��
(A.4)

and

M 00
log(yt)j� (0) = Eyj�

�
log2 (yt)

�
= Eyj�

�
@2

@s2
yst

����
s=0

�
= log2

�
��
�t

�
� 2 log

�
��
�t

�
	
�
��1t
�
+	0

�
��1t
�
+	2

�
��1t
�
: (A.5)

Finally, the uncentered joint kjth moments of the log-normal �t, t = 1; 2; :::T; are given by

E�(�
T
j=1�

kj
j ) = e

fk0�x+ 1
2
k0�xkg; (A.6)
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where k is the (T � 1) vector with jth element kj. Note, this implies that

Cov (�i; �j) =
n
e�

ji�jj�2x � 1
o
e2�x+�

2
x ;

where �2x = �
2
�=(1� �2).

Proposition 1 is proved via a sequence of lemmata where it is assumed that the model

(1) to (3) and (13) holds. Lemma 1 derives the form of the ARE quotient pertinent to the

statistics at hand.

Lemma 1 The ARE of Sd to Sg is

AREd;g =

264 @Covy [d(yt);d(yt�1)]
@�

���
�=0
=�2d;0

@Covy [g(yt);g(yt�1)]
@�

���
�=0
=�2g;0

375
2

; (A.7)

where �2u;0, u 2 fd; gg; is the variance of u(yt) under the null � = 0.

Proof of Lemma 1. The statistics Su, u 2 fd; gg, have the general form

Su = (u�Ey[u])0A (u�Ey[u]) ;

where the elements of u are given by u(yt). It is well known that

�Su(�) = tr
�
AEy

�
(u�Ey[u]) (u�Ey[u])0

��
and hence it follows that

@�Su(�)

@�
= tr

"
A
@Ey

�
(u� Ey[u]) (u� Ey[u])0

�
@�

#

=

TX
t=2

@Ey[(u(yt)� �u) (u(yt�1)� �u)]
@�

= (T � 1)@Covy[u(y2); u(y1)]
@�

:

The variance of Su under the null of independence is (see Anderson, 1971)

�2Su(�)
��
�=0

=
�
mu;4;0 � 3�4u;0

� TX
t=1

a2tt + 2�
4
u;0tr

�
A2
�
= 2�4u;0tr

�
A2
�
;

where �2u;0 is the variance of u(yt) under H0, mu;4;0 is the fourth centred moment of u(yt)

under the null and we use the property that att = 0 for all t, where att is the tth diagonal

element of A. Inserting u 2 fd; gg in the de�nition of the ARE completes the proof.

Lemma 2 derives the variances in (A.7) under the null hypothesis, while Lemma 3

derives the mean shifts.
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Lemma 2 Under the null hypothesis of independence (H0 : � = 0), the variances of d(yt) =�
yt � �y

�2
and g(yt) =

yt
�y
� log

�
yt
�y

�
are given by

�2d;0 = �4y
�
6E�

�
�3t
�
+ 3E�

�
�2t
�
� E� [�t]2

�
= �4y

h
6e3�x+

9
2
�2� + 3e2�x+2�

2
� � e2�x+�2�

i
(A.8)

and

�2g;0 = V�
�
	(��1t ) + log(�t)

�
� E� [�t] + E�

�
	0(��1t )

�
= VN

�
	(e�xt) + xt

�
� e�x+ 1

2
�2� + EN

�
	0(e�xt)

�
(A.9)

respectively.

Proof of Lemma 2. Using (A.1), it follows that

�2d;0 = Ey
�
d2(yt)

�
� fEy[d(yt)]g2

= E�

n
Eyj�

h�
yt � �y

�4io� hE� nEyj�[�yt � �y�2]oi2
= E�

�
3�4y

�
2�3t + �

2
t

��
� �4y fE� [�t]g

2

= �4y
�
6E�

�
�3t
�
+ 3E�

�
�2t
�
� fE� [�t]g2

�
: (A.10)

Now consider the corresponding function for g(yt);

�2g;0 = V ary

�
yt
�y
� log

�
yt
�y

��
= Ey

(�
yt
�y
� log (yt)

�2)
�
�
Ey

�
yt
�y
� log (yt)

��2
= E�

�
Eyj�

�
y2t
�2y
� 2 yt

�y
log (yt) + log

2 (yt)

��
�
�
E�

�
Eyj�

�
yt
�y
� log (yt)

���2
:

Using (A.2) to (A.5), we obtain

�2g;0 = E�[�t] + 1� 2��1y ��1E�
�
log
�
����1t

�
�	

�
��1t + 1

��
+E�

�
	0
�
��1t
�
+	2

�
��1t
�
+ log2

�
����1t

�
� 2	

�
��1t
�
log
�
����1t

��
�
�
E�
�
1�	

�
��1t
�
+ log

�
����1t

��	2
:

Simplifying, and using the fact that 	(a+ 1)�	(a) = a�1, we obtain

�2g;0 = V ar
�
	(��1t )� log(��1t )

�
� E [�t] + E

�
	0(��1t )

�
: (A.11)

Finally, substitute �t = ext in (A.10) and (A.11), and use (A.6), to produce (A.8) and (A.9)

respectively.
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Lemma 3 The derivatives of the covariances of d and g are given by

@

@�
Covy [d(yt)d(yt�1)]

����
�=0

= �4y
@

@�
Cov� [�t�t�1]

����
�=0

= �4y�
2
�e
2�x+�

2
� (A.12)

and

@

@�
Covy [g(yt)g(yt�1)]

����
�=0

=
@

@�
Cov�

�
log(�t) + 	(�

�1
t ); log(�t�1) + 	(�

�1
t�1)
�����
�=0

= �2�
�
1� EN

�
	0
�
e�xt

�
(e�xt)

�	2
; (A.13)

where d(yt) =
�
yt � �y

�2
and g(yt) =

yt
�y
� log

�
yt
�y

�
.

Proof of Lemma 3. Given conditional independence, and using the expressions in

(A.1), it follows that

Covy [d(yt)d(yt�1)] = Ey [fd(yt)� Ey [d(yt)]g fd(yt�1)� Ey [d(yt�1)]g]

= E�
�
Eyj� fd(yt)� Ey [d(yt)]gEyj� fd(yt�1)� Ey [d(yt�1)]g

�
= E�

��
�2y�t � �2yE� [�t]

	�
�2y�t�1 � �2yE� [�t]

	�
= �4yCov� [�t�t�1] : (A.14)

In the case of g(yt) =
yt
�y
� log

�
yt
�y

�
, using Ey

h
yt
�y

i
= Eyj�

h
yt
�y

i
= 1, we obtain

Eyj� fg(yt)� Ey [g(yt)]g = �Eyj� [log(yt)� Ey log (yt)] :

Hence, using (A.3) we obtain

Covy [g(yt)g(yt�1)] = E�
�
Eyj� flog yt � Ey(log yt)gEyj� flog yt�1 � Ey(log yt�1)g

�
= Cov�

�
log (�t) + 	

�
��1t
�
; log (�t�1) + 	

�
��1t�1

��
: (A.15)

Under the log-normal assumption for �t, the expressions (A.14) and (A.15) respectively

become

Covy [d(yt)d(yt�1)] = �
4
y

�
E
�
ext�1+xt

�
� �2�

�
(A.16)

and

Covy [g(yt)g(yt�1)] = E [(xt � �x) (xt�1 � �x)] + 2E
�
(xt � �x)

�
	
�
e�xt�1

�
� �	

��
+E

��
	
�
e�xt

�
� �	

� �
	
�
e�xt�1

�
� �	

��
; (A.17)

where all expectations in (A.16) and (A.17) are with respect to the joint distribution of

(xt�1; xt) and �	 = EN [	 (e
�xt)] is the marginal expectation of 	(e�xt). The quantity we
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are interested in is the derivative of each of these expressions with respect to �; evaluated

at � = 0: Denoting the marginal and joint densities of xt and (xt�1; xt) by f (xt) and

f (xt�1; xt) respectively, we note that

@

@�
f (xt)

����
�=0

= 0

and
@

@�
f (xt�1; xt)

����
�=0

=
(xt�1 � �x) (xt � �x)

�2�
fN (xt�1) fN (xt) ;

where fN denotes the Gaussian density with mean �x and variance �
2
�. Interchanging the

order of di¤erentiation and integration, and using Stein�s Lemma for N(�x; �
2
�) variables,

EN [h(xt)(xt � �x)] = �2�EN [h0(xt)] ;

we obtain

@

@�
Covy [d(yt)d(yt�1)]

����
�=0

= �4y�
�2
� fEN [(xt � �x) ext ]g

2

= �4y�
�2
�

�
�2�EN [e

xt ]
	2
;

where we have used the result that @
@�
�2�

���
�=0

= 0. Invoking (A.6), we obtain the expression

in (A.12). Using similar analysis, we produce the expression in (A.13),

@

@�
Covy [g(yt)g(yt�1)]

����
�=0

= �2� + 2EN
�
(xt � �x)	

�
e�xt

��
+ ��2�

�
EN
�
(xt � �x)	

�
e�xt

��	2
= �2� + 2�

2
�EN

�
	0
�
e�xt

�
(�e�xt)

�
+ ��2�

�
�2�EN

�
	0
�
e�xt

��
(�e�xt)

	2
= �2� � 2�2�EN

�
	0
�
e�xt

�
(e�xt)

�
+ �2�

�
EN
�
	0
�
e�xt

��
(e�xt)

	2
= �2�

�
1� EN

�
	0
�
e�xt

�
(e�xt)

�	2
:

Proof of Proposition 1. The proof is a straightfoward combination of Lemmata 1,

2 and 3.
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