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Abstract

This paper proposes new automated proposal distributions for sequential Monte Carlo algo-
rithms, including particle filtering and related sequential importance sampling methods. The
weights for these proposal distributions are easily established, as is the unbiasedness property of
the resultant likelihood estimators, so that the methods may be used within a particle Markov
chain Monte Carlo (PMCMC) inferential setting. Simulation exercises, based on a range of
state space models, are used to demonstrate the linkage between the signal-to-noise ratio of the
system and the performance of the new particle filters, in comparison with existing filters. In
particular, we demonstrate that one of our proposed filters performs well in a high signal-to-
noise ratio setting, that is, when the observation is informative in identifying the location of the
unobserved state. A second filter, deliberately designed to draw proposals that are informed by
both the current observation and past states, is shown to work well across a range of signal-to-
noise ratios and to be much more robust than the auxiliary particle filter, which is often used
as the default choice. We then extend the study to explore the performance of the PMCMC
algorithm using the new filters to estimate the likelihood function, once again in comparison
with existing alternatives. Taking into consideration robustness to the signal-to-noise ratio,
computation time and the effi ciency of the chain, the second of the new filters is again found
to be the best-performing method. Application of the preferred filter to a stochastic volatility
model for weekly Australian/US exchange rate returns completes the paper.

KEYWORDS: Bayesian Inference; Non-Gaussian Time Series; State Space Models; Unbi-
ased Likelihood Estimation; Sequential Monte Carlo.

1 INTRODUCTION

Bayesian inference using a likelihood function estimated via simulation has drawn increasing at-

tention from researchers of late. This interest has been prompted by the seminal work by Andrieu,
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Doucet and Holenstein (2010), in which exact Bayesian inference is shown to be achievable via

the insertion of an unbiased likelihood estimator within a Metropolis-Hastings (MH) Markov chain

Monte Carlo (MCMC) algorithm. The unbiased likelihood estimators given focus therein are based

on particle filters already established in the literature. Subsequent work by Flury and Shephard

(2011) and Pitt, dos Santos Silva, Giordani and Kohn (2012) explores the interface between dif-

ferent filtering-based estimates of the likelihood and the mixing properties of the resultant particle

Markov chain Monte Carlo (PMCMC) algorithm in a variety of settings, with the features of the

true data generating process - in particular the signal-to-noise ratio in the assumed state space

model (SSM) - playing a key role in the analysis. (See also Whiteley and Lee, 2014, Del Moral,

Jasra, Lee, Yau and Zhang, 2015, Del Moral and Murray, 2015, and Guarniero, Johansen and Lee,

2016.)

The focus of the current paper is on the development of a new family of independent particle

filters (IPFs) and on the exploration of their performance in a PMCMC scenario. A generic IPF

algorithm, whereby the proposal distribution is derived from the current observation only, and

does not include past (forecasted) information about the current latent state variable, was first

introduced by Fox, Thrun, Burgard and Dellaert (2001), Lin, Zhang, Cheng and Chen (2005)

and Lin, Chen and Liu (2013). In contrast with the bootstrap particle filter (BPF) of Gordon,

Salmond and Smith (1993) in particular, this form of algorithm has been shown to perform well in

experimental settings when the system has a large signal-to-noise ratio; that is, when the current

observation provides significant information about the location of the underlying state. However, no

systematic method for obtaining proposal draws to implement an IPF has thus far been proposed,

and no assessment of the (relative) performance of the filter in an inferential setting has been

undertaken. These are gaps we look to fill.

Drawing on a novel representation of the components in an SSM, as first highlighted in Ng,

Forbes, Martin and McCabe (2013), our first new filter provides a mechanism for generating in-

dependent proposal draws using information on the current data point only, and we use the term

‘data-driven particle filter’(DPF) to refer to it as a consequence. The second contribution of the

paper is a modification of the basic DPF - a so-called ‘unscented’DPF (UDPF) - which exploits

unscented transformations (Julier, Uhlmann and Durrant-Whyte, 1995; Julier and Uhlmann, 1997)

in conjunction with the DPF mechanism to produce draws that are informed by both the current

observation and the previous state. In contrast to the unscented particle filter (UPF) of van de

Merwe, Doucet, de Freitas and Wan (2000) - which also makes use of such transformations - the
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UDPF transforms moments of the measurement error using the unscented method. The computa-

tional benefit of using a multiple matching of particles (Lin et al., 2005) in the production of the

likelihood estimate is explored in the context of the DPF, and it is established that the likelihood

estimators resulting from both new methods are unbiased.

The numerical performance of the DPF-based filters is compared with that of the BPF, the

auxiliary particle filter (APF) of Pitt and Shephard (1999) and the UPF in a series of simulation

experiments. The experiments are based on three alternative state space models: i) the linear

Gaussian model; ii) the stochastic conditional duration model of Bauwens and Veredas (2004) (see

also Strickland, Forbes and Martin, 2006); and iii) the stochastic volatility model of Taylor (1982)

(see also Shephard, 2005). The object of interest is initially the likelihood function estimated at

a given fixed parameter vector that accords with that underlying the true data generating process

(DGP). This exercise allows the impact on the performance of the filters of the characteristics of

the DGP - in particular the signal-to-noise ratio - to be documented, abstracting from the issue of

parameter uncertainty. Accuracy of the likelihood estimate is assessed using the exact likelihood

function, evaluated by the Kalman filter (KF) in the case of i) and by the (deterministic) non-linear

grid-based filter of Ng et al. (2013) in the case of ii) and iii).

The focus then shifts to inference on the underlying parameter vector, with the alternative filters

used to estimate the likelihood function within an adaptive random walk-based MH algorithm. For

each method we record both the ‘likelihood computing time’associated with each filtering method

- namely the average time taken to produce a likelihood estimate with a given level of precision

at some representative (vector) parameter value - and the ineffi ciency factors associated with the

resultant PMCMC algorithm.1 In so doing we follow the spirit of the exercise undertaken in Pitt et

al. (2012), in which a balance is achieved between computational burden and the effi ciency of the

resultant Markov chain; measuring as we do the time taken to produce a likelihood estimate that

is suffi ciently accurate to yield an acceptable mixing rate in the chain. Through this exploration

of the performance of the various filters, in the PMCMC setting and under a range of different

signal-to-noise ratios, important new insights are gained into the relative advantages of competing

methods.

The outline of the paper is as follows. In Section 2 we give a brief outline of the role played

by particle filtering in likelihood estimation. In Section 3 we then introduce the data-driven filters

1To keep the scope of the paper manageable we focus only on filtering-based estimates of the likelihood function
as embedded within a so-called marginal MH-based PMCMC algorithm. Other PMCMC approaches, such as particle
Gibbs, require particle smoothing techniques, and hence bring a host of other issues to bear on the problem. For
recent developments on this problem, see Lindsten, Jordan and Schön (2014) and Chopin and Singh (2015).
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that are the focus of the paper, along with theorems which establish that the DPF-based filters

yield unbiased estimators of the likelihood function and, hence, serve as an appropriate basis for

a PMCMC scheme. The proof of one of the two theorems is given in an appendix to the paper,

whilst the proof of the other is shown to follow from Pitt et al. (2012) under given conditions. An

extensive simulation exercise is conducted in Section 4 based on the three SSMs listed above, and

with the performance of the new filters compared with that of filters which feature most prominently

in the literature. An empirical study, in which competing PMCMC algorithms are used to produce

posterior inference on the parameters of a stochastic volatility model for Australian/US exchange

rate returns, is then documented in Section 5. Section 6 concludes.

2 FILTERING-BASED LIKELIHOOD ESTIMATION

In our context, an SSM describes the evolution of a latent state variable, denoted by xt, over

discrete times t = 1, 2, ..., according to the state transition probability density function (pdf),

p (xt+1|xt, θ) and with initial state probability given by p (x0|θ), where θ denotes a vector of un-

known parameters. The observation in period t, denoted by yt, is modelled conditionally given

the contemporaneously indexed state variable via the conditional measurement density p (yt|xt, θ) .

Without loss of generality we assume that both xt and yt are scalar.

Typically, the complexity of the model is such that the likelihood function,

L(θ) = p(y1:T |θ) = p(y1|θ)
T∏
t=2

p(yt|y1:t−1, θ), (1)

where y1:t−1 = (y1, y2, . . . , yt−1)
′ , is unavailable in closed form. Particle filtering algorithms play a

role here by producing (weighted) draws from the filtering density at time t, p(xt|y1:t), with those

draws in turn being used, via standard calculations, to estimate the prediction densities of which the

likelihood function in (1) is comprised. The filtering literature is characterized by different methods

of producing and weighting the filtered draws, or particles, with importance sampling principles

being invoked, and additional MCMC steps also playing a role in some cases. Not surprisingly,

performance of the alternative algorithms (often measured in terms of the accuracy with which

the filtered density itself is estimated) has been shown to be strongly influenced by the empirical

characteristics of the SSM, with motivation for the development of independent filters coming from

the poor performance of the BPF (in particular) in cases where the signal-to-noise ratio is large;

see Giordani, Pitt and Kohn (2011) and Creal (2012) for extensive surveys and discussion, and Del

Moral and Murray (2015) for a more recent contribution.
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A key insight of Andrieu et al. (2010) is that particle filtering can be used to produce an unbiased

estimator of the likelihood function which, when embedded within a suitable MCMC algorithm,

yields exact Bayesian inference, in the sense that the invariant distribution of the Markov chain

is the true posterior of interest, p(θ|y1:T ). In brief, by defining u as the vector containing the

canonical identically and independently distributed (i.i.d.) random variables that underlie a given

filtering algorithm, and defining the corresponding filtering-based estimate of L(θ) by p̂u(y1:T |θ) =

p(y1:T |θ, u), the role played by the auxiliary variable u in the production of the estimate is made

explicit. Andrieu et al. demonstrate that under the condition that

Eu[p̂u(y1:T |θ)] = p(y1:T |θ), (2)

i.e., that p̂u(y1:T |θ) is an unbiased estimator of the likelihood function, then the marginal posterior

associated with the joint distribution, p(θ, u|y1:T ) ∝ p(y1:T |θ, u)× p(θ)× p (u) , is p(θ|y1:T ). Hence,

this marginal posterior density can be accessed via an MH algorithm for example, in which the

estimated likelihood function replaces the exact (but unavailable) p(y1:T |θ).

Flury and Shephard (2011) subsequently use this idea to conduct Bayesian inference for a range

of economic and financial models, employing the BPF as the base particle filtering method. In

addition, Pitt et al. (2012), drawing on Del Moral (2004), explicitly demonstrate the unbiased

property of the filtering-based likelihood estimators that are the focus of their work and, as noted

earlier, investigate the role played by the number of particles in the resultant mixing of the chain.

In summary, and as might be anticipated, for any given particle filter an increase in the number

of particles improves the precision of the corresponding likelihood estimator (by decreasing its

variance) and, hence, yields effi ciency that is arbitrarily close to that associated with an MCMC

algorithm that accesses the exact likelihood function. However, this accuracy is typically obtained

at significant computational cost, with the recommendation of Pitt et al. being to choose the

number of particles that minimizes the cost of obtaining a precise likelihood estimator yet still

results in a suffi ciently fast-mixing MCMC chain. Our aim is to extend this analysis to cater for

the DPF filters derived here and to explore the performance of these new filters, both in a range

of SSM settings and in comparison with a number of competing filters.

3 NEW DATA-DRIVEN FILTERING ALGORITHMS

3.1 OVERVIEW

Particle filtering involves the sequential application of importance sampling as each new observation

becomes available, with the (incremental) target density at time t + 1, being proportional to the
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product of the measurement density, p (yt+1|xt+1), and the transition density of the state xt+1,

denoted by p (xt+1|xt), as follows,

p(xt+1|xt, y1:t+1) ∝ p (yt+1|xt+1) p (xt+1|xt) . (3)

Note that draws of the conditioning state value xt are, at time t + 1, available from the previous

iteration of the filter. To keep notation as simple as possible, explicit dependence of all expressions

on the unknown static parameter θ is suppressed until required in Section 3.4.

Particle filters thus require the specification, at time t + 1, of a proposal density, denoted

generically here by

g(xt+1|xt, y1:t+1), (4)

from which the set of particles, {x(j)t+1, j = 1, ..., N}, are generated and, ultimately, used to estimate

the filtered density as:

p̂(xt+1|y1:t+1) =

N∑
j=1

π
(j)
t+1δx(j)t+1

, (5)

where δ(·) denotes the (Dirac) delta function, see Au and Tam (1999).2 The normalized weights

π
(j)
t+1 vary according to the choice of the proposal g (·), the approach adopted for marginalization

(with respect to previous particles) and the way in which past particles are ‘matched’with new

particles in IPF-style algorithms. In the case of the BPF the proposal density in (4) is equated to

the transition density, p(xt+1|xt), whilst for the APF the proposal is explicitly dependent upon both

the transition density and the observation yt+1, with the manner of the dependence determined by

the exact form of the auxiliary filter (see Pitt and Shephard, 1999, for details). For the IPF of Lin et

al. (2005), the proposal reflects the form of p (yt+1|xt+1) in some (unspecified) way, where the term

‘independence’derives from the lack of dependence of the draws of xt+1 on any previously obtained

(and retained) draws of xt. With particle degeneracy (over time) being a well-known feature of

filters, a resampling step is typically employed. While most algorithms, including the BPF and

the IPF, resample particles using the normalized weights π(j)t+1, the APF incorporates resampling

directly within g (·) by sampling particles from a joint proposal, g(xt+1, k|xt, y1:t+1), where k is an

auxiliary variable that indexes previous particles. This allows the resampling step, or the sampling

of k, to take advantage of information from the newly arrived observation, yt+1.

Given the product form of p (yt+1|xt+1) p (xt+1|xt) in (3), the component - either p (yt+1|xt+1) or

p (xt+1|xt) - that is relatively more concentrated as a function of the argument xt+1, will dominate
2Strictly speaking, δ(·) is a generalized function, and is properly defined as a measure rather than as a function.

However, we take advantage of the commonly used heuristic definition here, as is also done in, for example, Ng. et al
(2013).
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in terms of determining the shape of the target density. In the case of a strong signal-to-noise ratio,

meaning that the observation yt+1 provides significant information about the location of the unob-

served state and with p (yt+1|xt+1) highly peaked around xt+1 as a consequence, an IPF proposal,

which attempts to mimic p (yt+1|xt+1) alone, can yield an accurate estimate of p(xt+1|xt, y1:t+1), in

particular out-performing the BPF, in which no account at all is taken of yt+1 in producing propos-

als of xt+1. Lin et al. (2005) in fact demonstrate that, in a high signal-to-noise ratio scenario, an

IPF-based estimator of the mean of a filtered distribution can have a substantially smaller variance

than an estimator based on either the BPF or the APF, particularly when computational time is

taken into account. Our basic DPF is an IPF and, as such, produces draws of xt+1 via the structure

of the measurement density alone. The UDPF then augments the information from p (yt+1|xt+1)

with information from the second component in (3).

The key insight, first highlighted by Ng et al. (2013) and motivating the DPF and UDPF filters,

is that the measurement yt+1 corresponding to the state xt+1 in period t+ 1 is often specified via

a measurement equation,

yt+1 = h (xt+1, ηt+1) , (6)

for a given function h (·, ·) and i.i.d. random variables ηt+1 having common pdf p (ηt+1). Then, via

a transformation of variables, the measurement density may be expressed as

p(yt+1|xt+1) =

∫ ∞
−∞

p(ηt+1)

∣∣∣∣ ∂h

∂xt+1

∣∣∣∣−1
xt+1=xt+1(yt+1,ηt+1)

δxt+1(yt+1,ηt+1)dηt+1, (7)

where xt+1(yt+1, ηt+1) is the unique3 solution to yt+1−h(xt+1, ηt+1) = 0. Further discussion of the

properties of the representation in (7) are provided in Ng et al. The advantage of the representation

in (7) is that properties of the delta function may be employed to manipulate the measurement

density in various ways. Whereas Ng et al. exploit this representation within a grid-based context,

where the grid is imposed over the range of possible values for the measurement error ηt+1, here

we exploit the representation to devise new particle filtering proposals, as detailed in the following

two subsections.

3.2 THE BASIC DATA-DRIVEN PARTICLE FILTER (DPF)

With reference to (6), the DPF proposes particles by simulating replicate and independent mea-

surement errors, η(j)t+1
i.i.d.∼ p(ηt+1), and, given yt+1, transforming these draws to their implied

state values x(j)t+1 = xt+1(yt+1, η
(j)
t+1) via solution of the measurement equation. Recognizing the

3Extension to a finite number of multiple roots is straightforward, and is discussed in Ng et al. (2013).
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role played by the Jacobian in (7), the particles x(j)t+1 serve as a set of independent draws from a

proposal distribution with density g(.) satisfying

g(xt+1|yt+1) =

∣∣∣∣∂h (xt+1, ηt+1)

∂xt+1

∣∣∣∣
ηt+1=η∗(xt+1,yt+1)

p (yt+1|xt+1) , (8)

where η∗ (xt+1, yt+1) satisfies y = h (xt+1, η
∗ (xt+1, yt+1)). For the proposal distribution to have

density g(·) in (8), it is suffi cient to assume both partial derivatives of h (·, ·) exist and are non-zero,

as occurs in the range of applications considered here. In such settings, and given the lack of

explicit dependence of g(.) on xt, the resultant sample from (8) is such that the new draw x
(j)
t+1 can

be coupled with any previously simulated particle x(i)t , i = 1, 2, ..., N . When the jth particle x(j)t+1

is only ever matched with the jth past particle x(j)t , for each j = 1, ..., N and each t = 1, 2, ..., T ,

then, the (unnormalized) weight of the state draw is calculated as

w(j)
t+1

= π
(j)
t

p
(
yt+1|x(j)t+1

)
p
(
x
(j)
t+1|x

(j)
t

)
g
(
x
(j)
t+1|yt+1

) , (9)

for j = 1, ..., N . For the DPF, therefore, we have

w(j)
t+1

= π
(j)
t

∣∣∣∣ ∂h

∂xt+1

∣∣∣∣−1
ηt+1=η

(j)
t+1, xt+1=x

(j)
t+1

p
(
x
(j)
t+1|x

(j)
t

)
, (10)

for j = 1, 2, ..., N , where x(j)0
iid∼ p (x0), π

(j)
0 = 1

N , and the filtering weights π
(j)
t+1, in (5), are produced

sequentially as

π
(j)
t+1 ∝ w(j)t+1 (11)

for all j = 1, 2, ..., N, with
∑N

j=1 π
(j)
t = 1 for each t. In addition, and as in any particle filtering

setting (see, for example, Doucet and Johansen, 2011), the iteration then provides component t+ 1

of the estimated likelihood function as

p̂u(yt+1|y1:t) =

N∑
j=1

w
(j)
t+1, (12)

with each w(j)t+1 as given in (9).

Alternatively, as highlighted by Lin et al. (2005), the jth particle at t+1, could be matched with

multiple previous particles from time t. In this case, define w(j)(i)t+1 as the (unnormalized) weight

corresponding to a match between x(i)t and x(j)t+1,

w
(j)(i)
t+1 = π

(i)
t

p
(
yt+1|x(j)t+1

)
p
(
x
(j)
t+1|x

(i)
t

)
g
(
x
(j)
t+1|y1:t

) ,

8



for any i = 1, 2, ..., N and j = 1, 2, ..., N . Next, denote L distinct cyclic permutations of the

elements in the sequence (1, 2, ..., N) by Kl = (kl,1, ..., kl,N ), for l = 1, ..., L. For each permutation l,

the jth particle x(j)t+1 is matched with the relevant past particle indicated by x
(kl,j)
t . Then, the final

(unnormalized) weight associated with x(j)t+1 is the simple average, w
(j)
t+1 = 1

L

∑L
l=1w

(j)(kl,j)
t+1 . Thus,

in the DPF with multiple matching case, for j = 1, 2, ..., N , we have

w(j)
t+1

=
1

L

∣∣∣∣ ∂h

∂xt+1

∣∣∣∣−1
ηt+1=η

(j)
t+1, xt+1=x

(j)
t+1

L∑
l=1

[
π
(kl,j)
t p

(
x
(j)
t+1|x

(kl,j)
t

)]
, (13)

with π(j)t available from the previous iteration of the filter. Accordingly, as for the L = 1 matching

case in (11), the π(j)t+1 are then set proportional to the w
(j)
t+1

in (13), with
∑N

j=1 π
(j)
t+1 = 1. We

consider this suggestion in Section 4, and document the impact of the value of L on the precision of

the resulting likelihood function estimates.4 To ensure ease of implementation, pseudo code for the

DPF algorithm is provided in Algorithm 1. Note that, as we implement the resampling of particles

at each iteration of all filters employed in Sections 4 and 5, these steps are included as steps 8 and

9 in Algorithm 1.

Algorithm 1 The DPF with a pre-specified number of matchings L, with 1 ≤ L ≤ N

1. Generate x(j)0 from the initial state distribution p(x0), for j = 1, 2, ..., N .

2. Set the normalized particle weight π(j)0 = 1
N .

3. for t = 0, 1, ..., T − 1 :

4. Generate η(j)t+1
i.i.d.∼ p(ηt+1), for j = 1, 2, ..., N .

5. Calculate w(j)t+1 according to (13). Note that when L = 1 this is equivalent to (10).

6. Calculate p̂u(yt+1|y1:t) using (12).

7. Calculate the normalized particle weight π(j)t+1 =
w
(j)
t+1∑N

i=1 w
(j)
t+1

.

8. Resample N x
(j)
t+1 particles with probabilities π

(j)
t+1.

9. Set π(j)t+1 = 1
N .

The DPF, when applicable, thus provides a straightforward and essentially automated way to

estimate the likelihood function, in which only the measurement equation is used in the generation

of new particles. This idea of generating particles using only information from the observation

and the measurement equation is, in fact, ostensibly similar to notions of fiducial probability (see

e.g. Hannig, Iyer, Lai and Lee, 2016). However, in this case, whilst the proposal density in (8)

4We note that the choice of L = N yields the incremental weight corresponding to the so-called marginal version
of the filter. See Klaas, de Freitas and Doucet (2012).
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for the latent state xt+1 is obtained without any knowledge of the predictive density (or ‘prior’)

given by p (xt+1|y1:t), the resampling of the proposed particles according to either (10) or (13),

means that the resampled draws themselves do take account of this predictive information, and

thus appropriately represent the filtered distribution as in (5). Nevertheless, in avoiding the use of

past particles when proposing new draws, the performance of the DPF will depend entirely on the

extent to which the current observation is informative in identifying the unobserved state location.

This motivates the development of the UDPF, in which proposed draws are informed by both the

current observation and a previous state particle.

3.3 THE UNSCENTED DATA-DRIVEN PARTICLE FILTER (UDPF)

Recognizing that the incremental target distribution in (3) may be expressed as

p (xt+1|xt, y1:t+1) ∝ p(yt+1|xt)p(xt+1|xt, yt+1), (14)

the APF algorithm of Pitt and Shephard (1999) proposes particles by exploiting the form of both

components on the right hand side of (14). The use of both the observation and the previous state

particle in the construction of a proposal distribution is referred to as ‘adaptation’by the authors,

with ‘full’adaptation being feasible (only) when p(yt+1|xt) can be computed and p(xt+1|xt, yt+1) is

able to be simulated from directly. The UPF algorithm of van de Merwe et al. (2000) represents an

alternative approach to adaptation, with particles proposed via an approximation to the incremental

target that uses unscented transformations.

Our newly proposed UDPF also employs unscented transformations, but for the explicit purpose

of producing a Gaussian approximation to p(yt+1|xt+1), via the inversion of the measurement

equation described above, expressed here as

p̂(yt+1|xt+1) ∝
1

σ̂M,t+1
φ

(
xt+1 − µ̂M,t+1

σ̂M,t+1

)
. (15)

The terms µ̂M,t+1 and σ̂2M,t+1 denote the (approximated) first and second (centred) moments (of

xt+1) implied by an unscented transformation of ηt+1 to xt+1, for a given value of yt+1, and

where the subscript M is used to reference the measurement equation via which these moments

are produced. Motivation for the unscented method, including all details of the computation of the

moments in this case, is provided in Appendix A. For the sake of simplicity, we assume the state

transition density to be Gaussian,

p(xt+1|xt) =
1

σ̂P,t+1
φ

(
xt+1 − µ̂P,t+1

σ̂P,t+1

)
, (16)
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where µ̂P,t+1 and σ̂2P,t+1 are assumed known, given xt, and the subscript P references the predictive

transition equation to which these moments apply. If needed, a Gaussian approximation (e.g. via a

further unscented transformation) of an initial non-Gaussian state equation may be accommodated.

Having obtained the Gaussian approximation in (15) and applying the usual conjugacy algebra, a

proposal density is constructed as

g(xt+1|x(j)t , yt+1) =
1

σ̂
(i)
t+1

φ

(
xt+1 − µ̂(j)t+1

σ̂
(i)
t+1

)
, (17)

where µ̂(j)t+1 =
{
σ̂
2(j)
P,t+1µ̂M,t+1 + σ̂2M,t+1µ̂

(j)
P,t+1

}
/
{
σ̂
2(j)
P,t+1 + σ̂2M,t+1

}
and σ̂2(i)t+1 = σ̂2M,t+1σ̂

2(j)
P,t+1/{

σ̂
2(i)
P,t+1 + σ̂2M,t+1

}
are the requisite moments of the Gaussian proposal, with the subscript (j) used

to reflect the dependence on the jth particle x(j)t . A resulting particle draw x
(j)
t+1 from the proposal

in (17) is then weighted, as usual, relative to the target, with the particle weight formula given by,

w(j)
t+1

= π
(j)
t

p
(
yt+1|x(j)t+1

)
p
(
x
(j)
t+1|x

(j)
t

)
1

σ̂
(i)
t+1

φ

(
x
(j)
t+1−µ̂

(j)
t+1

σ̂
(i)
t+1

) . (18)

The corresponding UDPF likelihood estimator is calculated as per (12). Pseudo code for the

UDPF is provided in Algorithm 2.

Algorithm 2 The UDPF

1. Generate x(j)0 from the initial state distribution p(x0), for j = 1, 2, ..., N .

2. Set the normalized particle weight π(j)0 = 1
N .

3. for t = 0, 1, ..., T − 1 :

4. Calculate µ̂M,t+1 and σ̂2M,t+1 according to (A.1) and (A.2).

5. Construct the UDPF proposal distribution using (17), for j = 1, 2, ..., N .

6. Generate x(j)t+1 from Step 5.

7. Calculate the particle weight according to (18).

8. Calculate p̂u(yt+1|y1:t) using (12).

9. Calculate the normalized particle weight π(j)t+1 =
w
(j)
t+1∑N

i=1 w
(j)
t+1

.

10. Resample N particles with probabilities π(j)t+1.

11. Set π(j)t+1 = 1
N .

3.4 THE UNBIASEDNESS OF THE DATA-DRIVEN FILTERS

As discussed in Section 2, the unbiasedness condition in (2) is required to ensure that a PMCMC

scheme yields the correct invariant posterior distribution for θ. To consider the theoretical prop-

erties of the new filters proposed in Sections 3.2 and 3.3, we reinstate in this section the explicit
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dependence of the joint density of y1:T on θ. In particular, the following two theorems establish

that the unbiasedness condition holds for all versions of the data-driven filter, namely the DPF

with single (L = 1), partial (L < N) or full (L = N) matching, and the UPDF. The collective

conditions detailed below, which ensure that the outlined algorithms produce well-defined proposal

distributions, are assumed when deriving the unbiasedness of the resulting likelihood estimators.

C1. For each fixed value x, the function h(x, η) is a strictly monotone function of η, with continuous

non-zero (partial) derivative.

C2. For each fixed value y, the function x(y, η), defined implicitly by y = h (x, η), is a strictly

monotone function of η, with continuous non-zero (partial) derivative.

C3. The conditions
∫
xkt+1p(yt+1|xt+1)dxt+1 <∞ hold, for k = 0, 1, and 2.

Theorem 1 Under C1 through C2, any likelihood estimator produced by a DPF is unbiased. That

is, the likelihood estimator p̂u(y1:T |θ) resulting from any such filter, with 1 ≤ L ≤ N matches,

satisfies

Eu[p̂u(y1:T |θ)] = p(y1:T |θ).

Theorem 2 Under C1 through C3, the likelihood estimator produced by the UDPF filter is unbi-

ased.

By recognizing the similarity between the UDPF and the APF, the proof of Theorem 2 can be

deduced directly from the unbiasedness proof of Pitt et al. (2012). In reference to Algorithm 1

of Pitt et al., the UDPF algorithm can be reconstructed by setting g(yt+1|x(j)t ) = 1 and with the

proposal distribution, g(xt+1|x(j)t , yt+1), formed as per (17). All that is required is that we ensure,

through suffi cient conditions C1 - C3, that the approximate moments µ̂M,t+1 and σ̂2M,t+1 used to

obtain this Gaussian proposal distribution are finite. In contrast, since the multiple matching

technique is only available for use with the DPF (and not with the APF), the proof in Pitt et al. is

not adequate to prove Theorem 1. Hence, we provide all details of the proof of Theorem 1, along

with those of two lemmas upon which our proof depends, in Appendix B. Suffi cient conditions C1

and C2 are required for this proof, as they ensure that the DPF proposal distribution is a proper

probability distribution.
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4 SIMULATION EXPERIMENTS

In this section the performance of the data-driven filters is investigated in a controlled setting, and

compared against that of three of the most commonly applied filters, namely the BPF, APF and

UPF. We document both the precision with which the likelihood function is estimated using each

filter, at the known true parameters (Section 4.4) and the mixing performance of the associated

PMCMC algorithm (Section 4.5). For both exercises, three state space models are entertained: the

linear Gaussian (LG) model that is foundational to all state space analysis, and two non-linear, non-

Gaussian models that feature in the empirical finance literature, namely the stochastic conditional

duration (SCD) and stochastic volatility (SV) specifications referenced in the Introduction. The

SCD and SV models in particular contain non-linear and non-Gaussian elements that render the

posterior distributions for these models intractible. We have argued that it would be expected that

different particle filtering methods will perform well under different signal-to-noise settings, and

hence seek to demonstrate this in the simulation output below. The first simulation exercise holds

all parameter values fixed at their true values, and thus the impact of the signal-to-noise ratio on

the performance of the various filters is able to be assessed directly. However, in the subsequent

PMCMC simulation exercise, the signal-to-noise ratio from the true DGP need not be reflected

in the proposal distribution for any iteration as the conditioning parameter draw may be very

different from that of the true DGP. In this case, particle filtering methods that are robust to the

signal-to-noise settings, in that the associated PMCMC algorithm is demonstrated to be relatively

effi cient, will be preferred.

4.1 SIMULATION DESIGN AND EVALUATION METHODS

Before detailing the specific design scenarios adopted for the simulation exercises, we first define

the signal-to-noise ratio (SNR) as

SNR = σ2x/σ
2
m, (19)

where σ2x is the unconditional variance of the state variable, which is available analytically in all

cases considered. In the LG setting σ2m corresponds directly to variance of the additive measurement

noise. In the two non-linear models, a transformation of the measurement equation is employed to

enable the calculation of σ2m, now given by the variance of the (transformed) measurement error

that results, to be obtained either analytically (for the SV model) or using deterministic integration

(for the SCD model). The details of the relevant transformations are provided in Sections 4.2.2 and

4.2.3, respectively. The quantity in (19) measures the strength of signal relative to the background

13



noise in the (appropriately transformed) SSM, for given fixed parameter values.5

A design scenario is defined by the combination of the model and corresponding model parameter

settings that achieve a given value for (19): low, medium or high. What constitutes a particular level

for SNR is model-specific, with values chosen (and reported below) that span the range of possible

SNR values that still accord with empirically plausible data. If a particular design has a high SNR,

this implies that observations are informative about the location of the unobserved state. The

DPF is expected to perform well in this case, in terms of precisely estimating the (true) likelihood

value, with the impact of the use of multiple matching being of particular interest. (See also Lin

et al., 2005.) Conversely, as the BPF proposes particles from the state predictive distribution, it

is expected to have superior performance to the DPF when the SNR is low. Exploiting both types

of information at the same time, the UDPF, APF and UPF methods are anticipated to be more

robust to the SNR value. When assessing PMCMC performance, undertaken in Section 4.5, there

is a more complex relationship between the filter performance and the SNR of the DGP, given that

estimation of the likelihood function takes place across the full support of the unknown parameters.

For each design scenario considered in the current section, a single time series of length T is

produced and, for each of the competing filtering methods, R likelihood estimates - at the true

parameter values - are produced using R independent runs of the relevant filter, each based on

N = 1000 particles at each t = 1, 2, ..., T . The (proportionate) likelihood error (LE) from the rth

replication, r = 1, 2, ..., R, is computed as

LE(r) =
p̂
(r)
u (y1:T |θ0)− p(y1:T |θ0)

p(y1:T |θ0)
, (20)

where p̂(r)u (y1:T |θ0) denotes the rth likelihood estimate from the given filtering algorithm, evaluated

at the specified ‘true’parameter vector θ0, and p(y1:T |θ0) denotes the corresponding ‘exact’likeli-

hood value, computed using the KF in the case of the linear Gaussian model, and the grid-based

‘exact’deterministic filter of Ng et al. (2013) in the case of the (transformed) non-linear models.6

Boxplots are used to summarize the distribution of the LE(r) for each filter.

The PMCMC assessment draws on the insights of Pitt et al. (2012). If the likelihood is

estimated precisely, the mixing of the Markov chain will be as rapid as if the true likelihood were

5A comparable quantity that is applicable to the non-linear case is defined by SNR∗ = σ2x/V, where V is the
curvature of log(p(yt|xt)), see Giordani et al. (2011).

6The grid-based filtering algorithm developed by Ng et al. permits a non-parametric estimate of the ordinates of
the density function of the distribution of the measurement error over a specified grid. However in the current setting
the form of this density parametrically assumed, and hence the grid-based calculation of the likelihood function under
this parametric assumption is implemented. Note that although the transformed non-linear models have an additive
structure, they remain non-Gaussian.
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being used, and the estimate of any posterior quantity will also be accurate as a consequence.

However, increasing the precision of the likelihood estimator by increasing the number of particles

used in the filter comes at a computational cost. Equivalently, if a poor, but computationally cheap,

likelihood estimator is used within the PMCMC algorithm, this will typically slow the mixing in

the chain, meaning that for a given number of Markov chain iterates, the estimate of any posterior

quantity will be less accurate. Pitt et al. suggest choosing the particle number that minimizes

the so-called computing time: a measure that takes into account both the cost of obtaining the

likelihood estimator and the speed of mixing of the MCMC chain. They show that the ‘optimal’

number of particles is that which yields a variance for the likelihood estimator of 0.85, at the true

parameter vector. Note while the optimal number of particles may be computed within a simulation

context, as in the current section, implementation in an empirical setting requires a preliminary

estimate of the parameter (vector) at which this computation occurs.

In order to reduce the computational burden, we restrict attention only to the low and high

SNR settings for the PMCMC exercise. Then, for each particular filter, the particle marginal MH

algorithm of Andrieu et al. (2010) is used to produce a Markov chain with MHit = 110, 000

iterations, with the first 10, 000 iterations being discarded as burn-in. The MCMC draws are

generated from a random walk proposal, with the covariance structure of the proposal adapted using

Algorithm 1 of Müller (2010). Determining the optimal number of particles for any particular design

scenario, and for any specific filter, involves running the filter, conditional on the true parameter

set, for R0 initial replications, each time conditional on an arbitrarily chosen number of particles

Ns, with the likelihood estimate p̂
(r)
u (y1:T |θ0) recorded for each replication r = 1, 2, ..., R0. The

sample variance of the likelihood estimator at the true parameter (vector), denoted by σ2Ns , is then

calculated from the R0 likelihood estimates, and the optimum number of particles, denoted by Nopt,

chosen as

Nopt = Ns ×
σ2Ns
0.85

. (21)

In other words, any initial particle number, Ns, is scaled according to the extent to which the

precision that it is expected to yield (as estimated by σ2Ns) varies from the value of 0.85 that is

sought. We then record the average computational time (over the MHit iterations of the Markov

chain) needed to obtain each likelihood estimate at the drawn parameter values using Nopt - which

we refer to as to as the average likelihood computing time (ALCT) - in addition to the ineffi ciency

factor (IF) for each parameter. In the usual way, the IF for a given parameter can be interpreted

as the sampling variance of the mean of the correlated MCMC draws of that parameter relative to
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Table 1: Parameters values used in the simulation exercises for the LG, SCD and SV models. The
corresponding signal-to-noise ratio (SNR) for each scenario is shown in the bottom row.

PANEL A: LG PANEL B: SCD PANEL C: SV

Low Medium High Low Medium High Low Medium High

ση 2.24 1.00 0.45 α 0.67 1.43 6.67 φ -6.61 -7.94 -4.24
ρ 0.40 0.40 0.40 β 1.50 0.70 0.15 ρ 0.2 0.2 0.6
σv 0.92 0.92 0.92 φ -1.1 -1.1 -1.1 σv 0.70 1.50 1.40

ρ 0.74 0.74 0.74
σv 0.65 0.65 0.65

SNR 0.2 1 5 0.5 1.6 10 0.1 0.47 0.6

the sampling variance of the mean of a hypothetical set of independent draws. Values greater than

unity thus measure the loss of precision (or effi ciency) incurred due to the dependence in the chain.

4.2 MODELS, SNR SETTINGS AND PRIORS

In this section, we outline the three models used in the simulation experiments. The parameter

values and associated values for SNR are contained in Table 1.

4.2.1 The linear Gaussian (LG) model

The LG model is given by

yt = xt + σηηt (22)

xt = ρxt−1 + σvvt, (23)

with ηt and vt mutually independent i.i.d. standard normal random variables. Data is generated

using ρ = 0.4 and σv = 0.92. The value of ση is set to achieve a range of values for SNR (low,

medium and high), as recorded in Panel A of Table 1. These parameter settings are then taken as

fixed and known for the purpose of evaluating the performance of the likelihood estimators, with the

results provided in Section 4.4. In each of the subsequent PMCMC exercises detailed in Section 4.5,

where the parameters are treated as unknown, the parameter θ = (log(σ2η), ρ, log(σ2v))
′
is sampled

(thereby restricting the simulated draws of σ2v and σ
2
η in the resulting Markov chains to be positive),

with a normal prior distribution assumed as θ ∼ N(µ0,Σ0) with µ0 = (log(0.7), 0.5, log(0.475))′

and Σ0 = In. The same prior is used in both high and low SNR settings, and is in the spirit of the

prior used in Flury and Shephard (2011).
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4.2.2 The stochastic conditional duration (SCD) model

The SCD model is given by

yt = exp(xt)ηt (24)

xt = φ+ ρxt−1 + σvvt, (25)

with vt ∼ i.i.d.N(0, 1) independent of ηt, and with ηt being i.i.d. gamma with shape parameter α

and rate parameter β. Taking the logarithms of both sides of (24) yields a transformed measurement

equation that is linear in the state variable xt, i.e. log(yt) = xt + εt, where εt = log(ηt). The

value of σ2m = var(εt) required to report the SNR in Table 1 is obtained numerically. The initial

state is taken as the long run distribution of the state implied by choosing |ρ| < 1, that is x0 ∼

N
(

φ
1−ρ ,

σ2v
(1−ρ)2

)
. Again, the original parameter settings are then taken as fixed and known for the

purpose of evaluating the likelihood estimators, discussed in Section 4.4, while for the corresponding

PMCMC exercise, detailed in Section 4.5, the parameter vector θ = (log(α), log(β), φ, ρ, log(σ2v)) is

used to ensure the positivity of draws for each α, β and σ2v . As with the LG setting, a normal prior

is adopted with θ ∼ N(µ0,Σ0), but now with µ0 = (−0.8, 0.5, log(0.5), log(2), log(1))′ and Σ0 = In.

This prior is again held constant over the two SNR settings (low and high) used to assess PMCMC

performance.

4.2.3 The stochastic volatility (SV) model

The SV model is given by

yt = exp(xt/2)ηt (26)

xt = φ+ ρxt−1 + σvvt, (27)

with ηt and vt once again mutually independent i.i.d. standard normal random variables. Once

again, to fix the SNR, the measurement equation is transformed to obtain log(y2t ) = xt + εt, where

εt = log(η2t ). In this case, var(εt) = 4.93, corresponding to the quantity σ2m in (19). As recorded in

Panel C of Table 1, three distinct parameter settings are considered for the likelihood estimation

exercise, with the SNR for each setting calculated according to (19), and chosen in such a way that

the simulated data under each scenario is empirically plausible. The initial state distribution is

once again specified as x0 ∼ N( φ
1−ρ ,

σ2v
(1−ρ)2 ). For the PMCMC exercise, a normal prior is adopted

for θ = (φ, ρ, log(σ2v))
′
, with θ ∼ N(µ0,Σ0), where µ0 = (−4.6, 0.8, log(0.5))′ and Σ0 = In. This

prior is used under both SNR settings.
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4.3 FILTER IMPLEMENTATION DETAILS

The DPF and the UPDF are explained in detail in Sections 3.2 and 3.3, respectively. Implementation

of the BPF is standard, with details available from many sources (e.g. Gordon et al., 1993, and

Creal, 2012). The APF, on the other hand, may be implemented in a variety of different ways,

depending upon the model structure and the preference of the analyst. For the models considered

in this paper, so-called full adaptation is feasible (only) for the LG model, and hence we report

results for this version of the filter (referred to as FAPF hereafter) in that case. For all three models,

we also report results for an alternative version of APF (in which full adaptation is not exploited)

in which the proposal distribution is given by g (xt+1, k|xt, y1:t+1) = p(yt+1|µ(x
(k)
t ))p(xt+1|x(k)t ),

where µ(x
(k)
t ) is the conditional mean E(xt+1|x(k)t ), and k is a discrete auxiliary variable (see Pitt

and Shephard, 1999, for details). For the SV model, we also report the results for a third version of

APF based on a second order Taylor’s series expansion of log(p(yt+1|xt+1)) around the maximum

of the measurement density (referred to as TAPF hereafter). This yields an approximation of the

likelihood component, denoted by g(yt+1|xt+1), which is then used to form a proposal distribution,

g (xt+1, k|xt, y1:t+1) = g(yt+1|xt+1, µ(x
(k)
t ))p(xt+1|x(k)t ). (For more details, see Pitt and Shephard,

1999, and Smith and Santos, 2006.) Although conceptually these non-fully-adapted APF methods

apply for any model, as noted in Section 4.4 below they do not always result in empirically stable

likelihood estimates.

As is standard knowledge, the KF is a set of recursive equations suitable for the LG model that

enable calculation of the first two moments of the distribution of the unobserved state variables given

progressively observed measurements. In a non-linear setting, the unscented Kalman filter uses

approximate Gaussian distributions obtained from the unscented transformations applied within

the recursive KF structure, to approximate each of the (non-Gaussian) filtered state distributions.

In contrast, the UPF that is implemented in our setting, uses approximate Gaussian distributions

for the proposal distributions in (4) with moments produced by the unscented transformations, and

with the conditioning on each new observation yt+1 obtained as if the model were an LG model with

moments that match those of the conditional distributions defined by p (yt+1|xt+1) and p (xt+1|xt).

Further discussion of the UPF is provided in van de Merwe et al. (2000).

4.4 ACCURACY OF LIKELIHOOD ESTIMATION: RESULTS

The results of the first simulation exercise are summarized in Figures 1, 2 and 3 using boxplots

of the replicated likelihood estimation errors in (20) for all filters, under each SNR setting and

18



for each of the three models considered. A sample size of T = 50 is used for the purpose of this

exercise, with the number of replications set as R = 1000. The bold line in a boxplot represents

the median of the relevant likelihood errors while the lower and upper edges of the box represent

the first and third quantiles of these errors, respectively. In short, a boxplot that is concentrated

around zero and has relatively few outliers, indicates that the relevant filtering method produces

a precise estimate of the likelihood value. The ALCT (measured in seconds) required to produce

a single likelihood estimate is also reported (in parentheses) under the label of the corresponding

filter in the boxplot.

As is evident from Figure 1, and as anticipated, as the SNR increases the likelihood error

associated with the DPF becomes more concentrated around zero, indicating that the DPF performs

better when the system signal is strong. In contrast, the BPF tends to performs better when the

system signal is weak. The ALCT of the BPF (0.02 seconds) is equivalent to that of the DPF

with a single (L = 1) match, so there is nothing to choose between the filters on that score, for

this simple model at least. The variance of the DPF likelihood errors is very similar for L = 1 and

30 matches. This indicates that increasing the number of matches (and, hence, the computation

time) does not noticeably improve the performance of the DPF for this example. Broadly similar

comments apply to the relative performance of the BPF and the DPF in the SCD and SV models,

as documented in Figures 2 and 3 respectively, except that the ALCT for the DPF with a single

match is uniformly smaller (0.02 seconds) than that of the BPF (0.03 seconds) for both non-linear

models. 7

The UDPF, on the other hand, again as anticipated, demonstrates a performance that is very

robust to the SNR value, and which (for all three models) is superior to that of all alternative

filters other than the ‘gold-standard’fully-adapted APF (FAPF) in the LG setting. Indeed, with

the exception of the latter, all filters other than the UDPF are seen to produce either a large

variance in the likelihood error, or an excessive proportion of outliers, or both, in at least one of

the SNR (and model) settings considered. In particular, it can be seen that in all three models

accuracy of the APF likelihood estimate (plus the TAPF likelihood estimate documented for the

SV model) declines as the strength of the signal increases. The decline in accuracy is manifested

in terms of one or more of: an increase in variance, a median value that is further from zero, or an

increase in the frequency of extreme errors (outliers). All forms of inaccuracy reflect the fact that

the APF/TAPF proposal matches the target distribution more poorly as the signal gets stronger.

The extent of the inaccuracy for the TAPF in the SCD model is such that the associated results
7For other evidence on this point, in different model settings, see Lin et al. (2005) and Klaas et al. (2012).
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are not recorded at all in Figure 2.

4.5 PMCMC PERFORMANCE: RESULTS

At each MCMC iteration, the particle filter as based on Nopt, is used to estimate the likelihood

function conditional on the set of parameter values drawn at that iteration. The value of Nopt,

however, is determined (via the preliminary exercise described in Section 4.1, with R0 = 100

replications and Ns = 1000 particles) at the true parameter values only and, hence, is influenced by

the SNR associated with the true data generating process. Thus, when considering the performance

of the filters within an MCMC algorithm two things are required: 1) effi cient performance at the

SNR for the true data, leading to a small value of Nopt; plus 2) some robustness in performance to

the SNR, since the movement across the parameter space (within the chain) effectively changes the

SNR under which the likelihood function is computed at each point. A small value of Nopt will, all

other things equal, tend to produce a small value for the ALCT and, hence, ease the computational

burden. However, a lack of robustness of the filter will lead to inaccurate likelihood estimates and,

hence poor mixing in the chain. Both the ALCT and the IF thus need to be reported for each filter,

and for each model, with the preferable filter being that which yields acceptable mixing performance

in reasonable time across for all three models. The results documented in this section are based

on a sample size of T = 250, reflecting the need for a reasonable sample size when comparing the

performance of competing inferential algorithms in a state space setting.8

The PMCMC results for the LG model are presented in Table 2. As is consistent with the

likelihood estimation results documented in the previous section, under the high SNR setting,

the optimum number of particles for the BPF is much larger than that for the DPF. This then

translates into higher values for ALCT for the BPF than for the DPF, when a single match only

(L = 1) is used. Further reduction in Nopt is yielded via the multiple matching (L = 30), via the

extra precision that is produced from the averaging process. However, this comes at a distinct

cost in computational time, with the gain of the DPF over the BPF, in terms of ALCT, lost as a

consequence. In the low SNR setting, also as anticipated, the basic DPF (for either value of L)

does not produce gains over the BPF, either in terms of Nopt or ALCT.

In contrast to the variation in the performance of the DPF - relative to the BPF - over the

SNR settings, the UDPF is uniformly superior to the BPF in terms of Nopt, with the increase in

computational cost associated with the likelihood estimation (as a consequence of having to perform

8Given the overall inaccuracy documented for the APF and TAPF it was anticipated that Nopt and, hence, the
ALCT, for these filters would be too large to justify their inclusion in the comparative PMCMC exercise; they have
therefore been omitted in both this section and the following empirical section.
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Likelihood error boxplot (LG SNR=5)

Figure 1: Likelihood error boxplot of DPF (with L = 1 and 30 matches), BPF, UDPF, FAPF, APF
and UPF based on R = 1000 replications. The particle size is N = 1000 for all filters. Data is
simulated from the linear Gaussian (LG) model with low SNR (top panel), medium SNR (middle
panel) and high SNR (bottom panel). The average likelihood computational time (ALCT) of each
filter is reported in parentheses under the label of the filter.
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Likelihood error boxplot (SCD SNR=1.6)
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Likelihood error boxplot (SCD SNR=10)

Figure 2: Likelihood error boxplot of DPF (with L = 1 and 30 matches), BPF, UDPF, APF and
UPF based on R = 1000 replications. The particle size is N = 1000 for all filters. Data is simulated
from the stochastic conditional duration (SCD) model with low SNR (top panel), medium SNR
(middle panel) and high SNR (bottom panel). The average likelihood computational time (ALCT)
of each filter is reported in parentheses under the label of the filter.
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Likelihood error boxplot (SV SNR=0.1)
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Likelihood error boxplot (SV SNR=0.47)
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Likelihood error boxplot (SV SNR=0.6)

Figure 3: Likelihood error boxplot of DPF (with L = 1 and 30 matches), BPF, UDPF, APF,
TAPF and UPF based on R = 1000 replications. The particle size is N = 1000 for all filters. Data
is simulated from the stochastic volatility (SV) model with low SNR (top panel), medium SNR
(middle panel) and high SNR (bottom panel). The average likelihood computational time (ALCT)
of each filter is reported in parentheses under the label of the filter.
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the unscented transformations) resulting in only a slightly larger value for ALCT (relative to that

for the BPF) in the low SNR case. Moreover, the UDPF yields very similar values of Nopt to the

fully analytical FAPF and values for ALCT that are not much higher. The values of Nopt for the

UDPF are also much lower than those for the UPF, with ALCT being only slightly larger for the

former in the low SNR case.

As one would anticipate, given that Nopt for each filter is deliberately selected to ensure a

given level of accuracy in the likelihood estimation (albeit at the true parameter values only), the

variation in the IFs (for any given parameter) across the different filters is not particularly marked.

That said, there are still some differences, with the UDPF, along with the UPF, being the best

performing filters overall, when both SNR scenarios in this LG setting are considered, and the DPF

(for both values of L) being the most ineffi cient filter in the low SNR case.

The PMCMC results for the SCD and SV models are presented in Table 3 and 4 respectively.

Both sets of results are broadly similar to those for the LG model in terms of the relative perfor-

mance of the methods, remembering that the FAPF is not applicable in the non-linear case and all

other versions of the APF are eschewed due to the poor likelihood estimation results documented

earlier. For the SCD model, the conclusions drawn above regarding the relative performance of the

BPF and DPF filters apply here also. In this case. however, when all three factors: robustness to

SNR, ALCT value and IF value are taken into account, the UDPF is uniformly superior to all other

filters. For the SV model, as the ‘high’SNR value appears relatively small, set as such to ensure

that the model produces empirically plausible data, the DPF has less of a comparative advantage

over the BPF. However, the UDPF is competitive with the (best performing) BPF in both settings,

according to ALCT, and is uniformly superior to all other filters according to the IF values.

Overall then, when robustness to SNR, computation time and chain performance are all taken

into account the UDPF is the preferred choice for the experimental designs considered here.

4.6 Discussion

Thus far we have only considered the application of the various filters alone, and when the models

applied were correctly specified. However, we note that in empirical settings it may be useful

to combine our DPF and/or UDPF with other techniques. For example, as noted by Fox et

al. (2001), draws from a mixture of different proposal distributions will typically diversify the

particle set and, hence, result in a lower approximation error than if a single particle filtering

methodology is employed. Indeed, other existing strategies could also be useful for diversifying the

collection of active particles, such as incorporating MCMC moves (e.g. Gilks and Berzuini, 1999)
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or ‘look-ahead’strategies (e.g. Del Moral and Murray, 2015). We would anticipate that there will

be situations, particularly when the measurement noise is relatively small, when the data-driven

methods proposed here will provide some gains.

We also emphasize the value in exploring the performance of various filtering or other advanced

MCMC strategies proposed for state space models under a range of different SNR simulation set-

tings. While not always suffi cient to explain all variation in performance, we do feel that is offers

some insights into the relative advantages of competing methods.

5 EMPIRICAL ILLUSTRATION

Motivated by the performance of the UDPF in relevant non-linear settings, we complete the paper

with an empirical application in which we use this particular filter within a PMCMC algorithm to

estimate the SV model in (26) and (27), using weekly AUD/USD exchange rate return data from

January 14, 2003 to August 4, 2015. A time series plot of the T = 644 observations (Figure 4) over

this period indicates the usual volatility clustering that justifies the specification of a time-varying

volatility model, with an apparent lack of extreme tail behavior motivating our simple choice of

conditional Gaussianity for the measurement noise. The BPF is included as a comparator as it

represents the simplest filter that may be adopted in this setting, and the UPF included as the filter

that is (overall) the most competitive with the UDPF in the simulation experiments. Due to the

computational problems flagged earlier, no version of the APF is applied in this exercise. As per the

description in Section 4.1 we choose Nopt via preliminary runs of R = 100 replications of each filter.

In this empirical setting, however, in which the true parameter values are unknown, we perform

this computation at the posterior mean estimated based on a preliminary PMCMC exercise, in

which N = 1000 particles are used to estimate the likelihood function. This number of particles is

held fixed throughout the subsequent PMCMC algorithm. As in the simulation experiments, we

report the resulting ALCT and the ineffi ciency factors for each method.

The results recorded in Table 5 demonstrate that, in comparison with the UPF, the UDPF

requires fewer particles, and less computational time, to produce a chain with notably greater

effi ciency. Consistent with the simulation results, the SV setting - in which the SNR is likely to be

on the low side - favours the BPF in terms of ALCT. However, the UDPF still requires a smaller

number of particles to create a chain with effi ciency that is comparable to that produced by the

BPF.
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Figure 4: Time series plot of the 644 weekly AUD/USD exchange rate return data from 14-Jan-2003
to 4-Aug-2015.

6 CONCLUDING REMARKS

Inference regarding the parameters of a non-linear or non-Gaussian state space model is challenging.

This paper proposes two new particle filtering algorithms that exploit a particular representation

of the measurement equation, and compare their performance in a variety of settings with several

filters that currently feature in the literature. Given the spirit of their derivation we refer to both

new filters as ‘data-driven’. Using simulation, we show that the basic form of the data-driven filter

(DPF) performs well relative to comparators under a strong SNR scenario, but that its relative

performance is adversely affected (as anticipated) by a low SNR. Whilst the technique of multiple

matching can, in principle, improve the accuracy of likelihood estimation based on the DPF, no

evidence of such an improvement was discerned for the particular models explored herein, with

the extra computational burden thus not appearing to reap benefits. The unscented DPF (UDPF)

employs the idea of adaptation and is shown to be accurate, as a basis for likelihood estimation,

under a wide range of SNR and model settings, and in comparison with a range of existing filters that
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includes various versions of the APF. We proceed to demonstrate - both via simulation and through

an empirical illustration - that the UDPF, when used within a PMCMC algorithm, continues to

perform well relative to other filters, when robustness of performance to SNR, computational time

and PMCMC mixing are all taken into account. This augers well for the use of this particular filter

in state space settings beyond those explored herein.

A APPENDICES

A.1 THE USE OF UNSCENTED TRANSFORMATIONS IN THE UDPF

An unscented transformation is a quick and accurate procedure for calculating the moments of

a non-linear transformation of an underlying random variable. The procedure involves choosing

a set of points, called sigma points, from the support of the underlying random variable. Once

selected, these sigma points are weighted to ensure that the first M − 1 moments of the discrete

sigma point distribution equal the first M − 1 moments of the corresponding distribution of the

underlying random variable. The set of sigma points is then propagated through the relevant

non-linear function, from which the mean and variance of the resulting normal approximation are

obtained. The implied moments associated with the weighted transformed points can be shown

to match the true moments of the transformed underlying random variable up to a predetermined

order of accuracy. (See Julier et al., 1995, 2000.)

In the UDPF, the unscented transformation is applied to the function defined by solving the

measurement equation in (6) for the state variable xt+1. We denote µη and σ2η respectively as the

expected value and the variance of the measurement error ηt+1. To calculate the mean and variance

of the normal approximation in (15), sigma points η[k], with k = 1, ...,M , are chosen to span the

support of ηt+1. The corresponding weights for each each sigma point, Q[k], are determined to

ensure that the first M − 1 moments of the (discrete) distribution associated with the weighted

sigma points match the corresponding theoretical moments of the underlying distribution, p(ηt+1).

Accordingly, the sigma point weights satisfy the following system of equations
∑M

k=1Q
[k]∑M

k=1Q
[k](η[k] − µη)
...∑M

k=1Q
[k](η[k] − µη)M−1

=

1
E [ηt+1 − µη]

...
E
[
(ηt+1 − µη)M−1

] .

Note that, if the measurement errors have the same distribution for all t, then the weighted sigma

point distribution will also be the same for all t, and hence will require calculation only once. This

is the situation for all models considered in the paper.
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For implementation of the unscented transformations within the UPDF, let the mean of the

distribution whose density is proportional to the measurement density be given by

µM,t+1 =

∫ ∞
−∞

xt+1Ct+1p(yt+1|xt+1)dxt+1,

where Ct+1 = (
∫
p(yt+1|xt+1)dxt+1)−1 represents the normalizing constant that ensures a proper

density. Further, using the Dirac representation of the measurement density in (7), we have

µM,t+1 =

∫ ∞
−∞

xt+1Ct+1

∫ ∞
−∞

p(ηt+1)

∣∣∣∣ ∂h

∂xt+1

∣∣∣∣−1
xt+1=xt+1(yt+1,ηt+1)

δxt+1(yt+1,ηt+1)dηt+1dxt+1.

Using then the discrete approximation of p (ηt+1) implied by the weighted sigma points, η[k] for k =

1, 2, ...,M , the mean of the measurement component as calculated by the unscented transformation

satisfies

µ̂M,t+1 =

∫ ∞
−∞

xt+1Ct+1

∫ ∞
−∞

p̂(ηt+1)

∣∣∣∣ ∂h

∂xt+1

∣∣∣∣−1
xt+1=xt+1(yt+1,ηt+1)

δxt+1(yt+1,ηt+1)dηt+1dxt+1

=

∫ ∞
−∞

xt+1Ct+1

∫ ∞
−∞

[
M∑
k=1

Q[k]δη[k]

] ∣∣∣∣ ∂h

∂xt+1

∣∣∣∣−1
xt+1=xt+1(yt+1,ηt+1)

δxt+1(yt+1,ηt+1)dηt+1dxt+1

=

M∑
k=1

Q[k]
∣∣∣ ∂h
∂xt+1

∣∣∣−1
ηt+1=η[k], xt+1=xt+1(yt+1,η[k])

xt+1(yt+1, η
[k])

M∑
j=1

Q[j]
∣∣∣ ∂h
∂xt+1

∣∣∣−1
ηt+1=η[j], xt+1=xt+1(yt+1,η[j])

. (A.1)

Similarly, the variance of the measurement component as calculated by the unscented transforma-

tion is given by

σ̂2M,t+1 =

M∑
k=1

Q[k]
∣∣∣ ∂h
∂xt+1

∣∣∣−1
ηt+1=η[k], xt+1=xt+1(yt+1,η[k])

(xt+1(yt+1, η
[k])− µ̂M,t+1)

2

M∑
j=1

Q[k]
∣∣∣ ∂h
∂xt+1

∣∣∣−1
ηt+1=η[j], xt+1=xt+1(yt+1,η[j])

. (A.2)

A.2 THE PROOF OF THE UNBIASEDNESS OF THE DPF LIKELIHOOD
ESTIMATOR (THEOREM 1)

We adapt the proof from Pitt et al. (2012) in order to demonstrate the unbiasedness of the new

likelihood estimators specified under Theorem 1, and represented generically by

p̂u(y1:T |θ) = p̂u(y1|θ)
T∏
t=2

p̂u(yt|y1:t−1, θ), (A.3)

where unbiasedness means that E[p̂u(y1:T )|θ] = p(y1:T |θ). The factors in (A.3) are given in (12)

for each t = 1, 2, ..., T , with the weights w(j)t+1 defined by the relevant particle filtering algorithm.
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As conditioning on the parameter θ remains in all subsequent expressions, we again suppress its

explicit inclusion to help simplify the expressions throughout the remainder of this appendix.

Firstly, as noted in Section 3.4, the conditions outlined for this theorem ensure that g(xt|yt)

is well defined. Next, let u denote the vector of canonical i.i.d. random variables used to imple-

ment the given filtering algorithm, and let Ft be the subset of such variables generated up to and

including time t, for each t = 0, 1, ..., T . This means that by conditioning on Ft, the particle set{
x
(1)
0:t , x

(2)
0:t , ..., x

(N)
0:t

}
and the associated normalized weights

{
π
(1)
t , π

(2)
t , ..., π

(N)
t

}
that together pro-

vide the approximation of the filtered density, as in (5), are assumed to be known. Following Pitt

et al. (2012), in order to prove the unbiasedness property of the likelihood estimator we require

the following two lemmas:

Lemma 1

Eu[p̂u(yT |y1:T−1)|FT−1] =

N∑
j=1

π
(j)
T−1p(yT |x

(j)
T−1).

Lemma 2

Eu[p̂u(yT−h:T |y1:T−h−1)|FT−h−1] =
N∑
j=1

π
(j)
T−h−1p(yT−h:T |x

(j)
T−h−1). (A.4)

According to Section 3.2, the estimator of the likelihood component for the DPF (with potential

multiple matching), for given 1 ≤ L ≤ N, is

p̂u(yt|y1:t−1) =

N∑
j=1

w
(j)
t

=
N∑
j=1

(
1

L

L∑
l=1

w
(j)(l)
t

)

=
N∑
j=1

(
1

L

L∑
l=1

p(yt|x(j)t )π
(kl,j)
t−1 p(x

(j)
t |x

(kl,j)
t−1 )

g(x
(j)
t |yt)

)
, (A.5)

where the proposal distribution is given in (8) and kl,j represents the jth component of the lth cyclic

permutation, Kl, as defined in Section 3.2.

Proof of Lemma 1. We start with,

Eu[p̂u(yT |y1:T−1)|FT−1] = Eu

 N∑
j=1

(
1

L

L∑
l=1

p(yT |x(j)T )π
(kl,j)
T−1 p(x

(j)
T |x

(kl,j)
T−1 )

g(x
(j)
T |yT )

)∣∣∣∣∣∣FT−1


=
1

L

N∑
j=1

L∑
l=1

Eu

[
π
(kl,j)
T−1

p(x
(j)
T |x

(kl,j)
T−1 )p(yT |x(j)T )

g(x
(j)
T |yT )

∣∣∣∣∣FT−1
]
.
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The randomness of each component within the double summation, for which the expectation is

to be taken, comes from the proposal distribution that simulates the particle x(j)T . Hence, the

expectation can be replaced with its integral form explicitly as:

Eu[p̂u(yT |y1:T−1)|FT−1] =
1

L

N∑
j=1

L∑
l=1

∫
π
(kl,j)
T−1

p(xT |x
(kl,j)
T−1 )p(yT |xT )

g(xT |yT )
g(xT |yT )dxT (A.6)

=
1

L

N∑
j=1

L∑
l=1

{
π
(kl,j)
T−1

∫
p(yT , xT |x

(kl,j)
T−1 )dxT

}

=
1

L

N∑
j=1

L∑
l=1

π
(kl,j)
T−1 p(yT |x

(kl,j)
T−1 ).

Since the N permutations of the previous particles are mutually exclusive, each of the terms within

the double summation appears exactly L times. Therefore,

Eu[p̂u(yT |y1:T−1)|FT−1] =
1

L

N∑
j=1

L
[
π
(j)
T−1p(yT |x

(j)
T−1)

]

=
N∑
j=1

π
(j)
T−1p(yT |x

(j)
T−1).

Hence, Lemma 1 holds.

Proof of Lemma 2. To prove Lemma 2, we use method of induction as per Pitt et al. First

note that, according to Lemma 1, (A.4) holds when h = 0. Next, assuming that Lemma 2 holds

for any integer h ≥ 0, we show that it also holds for h+ 1.

By the law of iterated expectations, we have

Eu[p̂u(yT−h−1:T |y1:T−h−2)|FT−h−2]

= Eu [Eu [p̂u(yT−h:T |y1:T−h−1)|FT−h−1] p̂u(yT−h−1|y1:T−h−2)|FT−h−2] .

By substituting the formula of p̂u(yT−h−1|y1:T−h−2) and using the assumption that Lemma 2 holds

for h, we have

Eu[p̂u(yT−h−1:T |y1:T−h−2)|FT−h−2]

= Eu


N∑
j=1

π
(j)
T−h−1p(yT−h:T |x

(j)
T−h−1)




N∑
j=1

w
(j)
T−h−1


∣∣∣∣∣∣FT−h−2


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and noting that π(j)T−h−1 is the normalized version of w
(j)
T−h−1, then

Eu[p̂u(yT−h−1:T |y1:T−h−2)|FT−h−2]

= Eu

{∑N
j=1 p(yT−h:T |x

(j)
T−h−1)w

(j)
T−h−1∑N

k=1w
(k)
T−h−1

}
N∑
j=1

w
(j)
T−h−1


∣∣∣∣∣∣FT−h−2


=

N∑
j=1

Eu

[
p(yT−h:T |x(j)T−h−1)w

(j)
T−h−1

∣∣∣FT−h−2] .
Adopting a similar procedure to that above, owing to the fact that the expectation is taken with

respect to the relevant proposal distribution and that the multiple matches employ only cyclic

rotations, we have

Eu [ p̂u(yT−h−1:T |y1:T−h−2)|FT−h−2]

=

N∑
j=1

Eu

p(yT−h:T |x(j)T−h−1)p(yT−h−1|x(j)T−h−1) 1L∑L
l=1 π

(kl,j)
T−h−2p(x

(j)
T−h−1|x

(kl,j)
T−h−2)

g(x
(j)
T−h−1|yT−h−1)

∣∣∣∣∣∣FT−h−2


=
1

L

N∑
j=1

L∑
l=1

π
(kl,j)
T−h−2

∫
p(yT−h:T |xT−h−1)p(yT−h−1|xT−h−1)p(xT−h−1|x

(kl,j)
T−h−2)dxT−h−1

=
N∑
j=1

{
π
(j)
T−h−2

∫
p(yT−h:T |xT−h−1)p(yT−h−1|xT−h−1)p(xT−h−1|x(j)T−h−2)dxT−h−1

}

=

N∑
j=1

π
(j)
T−h−2p(yT−h−1:T |x

(j)
T−h−2)

as required.

Proof of Theorem 1. From Lemma 2, when h = T − 1, then

Eu [ p̂u(y1:T )|F0] =
N∑
j=1

p(y1:T |x(j)0 )π
(j)
0 .

Next, marginalizing over the randomness of u associated with generating a set of equally weighted

particles,
{
x
(1)
0 , x

(2)
0 , ..., x

(N)
0

}
at time t = 0 from the initial distribution p(x0), we have

Eu [p̂u(y1:T )] = Eu [Eu [ p̂u(y1:T )|F0]]

= Eu

 N∑
j=1

p(y1:T |x(j)0 )π
(j)
0


=

1

N

N∑
j=1

Eu

[
p(y1:T |x(j)0 )

]
.
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Finally, since the expectation of p(y1:T |x(j)0 ) is the same for all j, then

Eu [p̂u(y1:T )] = Eu [p(y1:T |x0)]

=

∫
p(y1:T |x0)p(x0)dx0

= p(y1:T ),

and the unbiasedness property of the likelihood estimator associated with each of the DPF algo-

rithms specified under Theorem 1 is established.
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