
MTH 5220 - The theory of martingales in discrete time

Summary
This document is in three sections, with the first dealing with the basic theory of discrete-time martingales, the second
giving a number of examples and applications, and the third, an appendix, containing a number of useful results from
general probability theory and analysis.

1 Theory
A discrete time stochastic process is a sequence of r.v.’s S1, S2, S3, . . . and its corresponding increasing collection of σ-
fields σ(S1) ⊆ σ(S1, S2) ⊆ σ(S1, S2, S3) . . .. The increasing collection of σ-fields is called the filtration of the process,
and represents the information available to an observer at any time. Often times the filtration is the natural filtration,
which is formed by the σ-fields Fn = σ(S1, . . . , Sn); if the Sn’s are discrete random variables, then Fn is generated by
all sets of the form {S1 = r1, S2 = r2, . . . , Sn = rn} (if the Sn’s are continuous then the definition of Fn is somewhat
more technical, see the section on the Radon-Nikodym Theorem below).

Let X be a F-measurable random variable on a space Ω, and let G be a σ-field on Ω with G ⊆ F , so that X is not
necessarily G-measurable. There is a G-measurable random variable, denoted E[X|G] and referred to as the conditional
expectation of X with respect to G, such that E[X1A] = E[E[X|G]1A] for all A ∈ G. There are a few rules for this:

• E[aX + bY |G] = aE[X|G] + bE[Y |G].

• If G = {∅,Ω}, then E[X|G] = E[X].

• If X is G-measurable, then E[X|G] = X , and more generally E[XY |G] = XE[Y |G]

• If G1 ⊆ G2, then E[E[X|G2]|G1] = E[X|G1].

• If σ(X) and G are independent, then E[X|G] = E[X].

We can also condition on a set A: for example, E[X|A] =
∑∞

r=−∞ rP (X = r|A) when X is discrete. We will also
define E[X|Y ] = E[X|σ(Y )] when Y is discrete to be the random variable which is equal to E[X|Y = s] on the set
{Y = s}, with the analogous definition for E[X|Y1, Y2, . . .]. Alternatively, E[X|Y ] can be expressed as a function of Y ,
so E[X|Y ] = g(y), and it is the unique function such that

E[(X − E[X|Y ])2] ≤ E[(X − f(Y ))2]

for any function f . Note: that the conditional expectation exists for any X,G is immediate from the Radon-Nikodym
theorem (see the Applications section).

If Mn is a stochastic process with filtration Fn such that E[Mn|Fn−1] = Mn−1 (along with the technical condition
E[|Mn|] < ∞), then we say that Mn is a martingale. Usually, though not always, Fn is taken to be the natural filtration
σ(M1, . . . ,Mn). Related notions include supermartingales, which are stochastic processes such that that E[Sn|Fn−1] ≤
Sn−1, and submartingales, for which E[Sn|Fn−1] ≥ Sn−1. We can give two examples of martingales immediately.

• Suppose X1, X2, X3, . . . is a sequence of independent random variables with E[Xi] = 0. Then the process Sn =
X1 + . . .+Xn is a martingale with respect to the natural filtration Fn = σ(X1, . . . , Xn).

• Suppose X1, X2, X3, . . . is a sequence of independent positive random variables with E[Xi] = 1. Then the process
Sn = X1X2 . . . Xn is a martingale with respect to the natural filtration Fn = σ(X1, . . . , Xn).



Given a stochastic process S1, S2, . . ., a stopping time τ is a r.v. taking values in the nonnegative integers and∞ such that

(1) {τ = n} ∈ σ(S1, S2, . . . , Sn)

for all n. Intuitively, this condition roughly translates to ”the decision to stop must be made only with information from
the past and present, not the future”.

We can think of a martingale as a fair game. One of the fundamental results in the theory is that it’s not possible to make
or lose money while playing such a fair game, provided that one stops at a reasonable time, i.e. a stopping time which
satisfies certain conditions. In particular

Theorem 1 (Optional stopping theorem). Suppose Mn is a martingale and τ is a stopping time with at least one of the
following conditions

(i) τ < C <∞ for some constant C.

(ii) |Mn| < C <∞ for some constant C and all n, and τ <∞ a.s.

(iii) E[τ ] <∞ and |Mn −Mn−1| < C <∞ for some constant C.

Then E[Mτ ] = E[M0].

With this in mind, let us now interpret our martingale Mn with filtration Fn as a stock price. Is there a strategy Cn
of the number of shares of the stock to hold at time n which will allow us to make money? A reasonable assumption
is that Cn is based on the values of M1,M2, . . . ,Mn−1, or in other words is measurable with respect to Fn−1 (if the
Mn’s are discrete this means Cn is constant on all events in σ(M1,M2, . . . ,Mn−1), which are sets of the form {M1 =
r1, . . . ,Mn−1 = rn−1}). We will call any process Cn satisfying this previsible. The amount of money we make at time
n is Cn(Mn −Mn−1), and thus our total earnings at time n is

∑N
j=1Cj(Mj −Mj−1). It may seem that the freedom to

choose the Cj’s will allow us to make money, however we have the following:

Theorem 2. Under the given assumptions, Sn =
∑n

j=1Cj(Mj −Mj−1) is itself a martingale.

Thus, the optional stopping theorem applies to Sn, and we see thatE[Sτ ] = E[S0] for any reasonable stopping time. Let us
now consider the following strategy applied to a martingale Mn. Let a < b be given, and let s1 = inf{n ≥ 0 : Mn ≤ a},
t1 = inf{n > s1 : Mn ≥ b}, s2 = inf{n > t1 : Mn ≤ a}, t2 = inf{n > s2 : Mn ≥ b}, and so forth. Let Cn be 0 for
0 ≤ n ≤ s1, then 1 for s1 + 1 ≤ n ≤ t1, then 0 again for t1 + 1 ≤ n ≤ s2, then 1 again for s2 + 1 ≤ n ≤ t2, and so forth.
We can see that Cn is previsible, and thus the process

Yn =
n∑
j=1

Cj(Mj −Mj−1)

is a martingale. Let Un(a, b) be the number of upcrossings by time n; that is, Un(a, b) = max{j : tj ≤ n}. We can see
that

Yn ≥ (b− a)Un(a, b)− (a−Mn)+,

where (x)+ = max(x, 0). This implies

Lemma 1.
(b− a)E[Un(a, b)] ≤ E[(a−Mn)+].
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Let U∞(a, b) = limn↗∞ Un(a, b). Then

Corollary 1. If supnE[|Mn|] <∞, then P (U∞(a, b) <∞) = 1.

If a stochastic process doesn’t converge then essentially it must oscillate indefinitely. These upcrossing results imply that,
if we have a bound on the expectation of the modulus of a martingale, or a lower bound for the martingale, then it can’t
oscillate indefinitely. We therefore have the following major results.

Corollary 2. [Martingale Convergence Theorem] If supnE[|Mn|] < ∞, then M∞ = limn−→∞Mn exists almost surely,
and P (|Mn| <∞) = 1.

Corollary 3. If Mn is a martingale that is bounded above or below, then M∞ = limn−→∞Mn exists almost surely, and
P (|Mn| <∞) = 1. In particular, if Mn is a non-negative martingale then it converges.

We saw examples in class when a martingale Mn converged to M∞, but E[M∞] 6= E[Mn] (the martingale associated
with the biased random walk is a good example, see Section 2). A natural question is to give sufficient conditions for
E[Mn] −→ E[M∞]. A useful way to address this question is to look at the second moments, E[M2

n], if it is known that
they are finite. One reason for the simplicity of the L2 theory is that the increments of a martingale are orthogonal in L2,
and furthermore

Lemma 2. If Mn is a martingale, then

E[M2
n+1 −M2

n|Fn] = E[(Mn+1 −Mn)2|Fn]

This implies

Lemma 3. If Mn is a martingale, then

E[M2
n] = E[M2

0 ] +
n∑
j=1

E[(Mj −Mj−1)
2]

This lemma gives us a stronger convergence theorem.

Theorem 3. Suppose Mn is a martingale with supnE[M2
n] < ∞. Then Mn converges to M∞, E[(Mn −M∞)2] −→ 0,

and E[Mn] −→ E[M∞].

In general, if Sn is any stochastic process with respect to a filtration Fn, then

Theorem 4 (Doob decomposition). There is a decomposition

Sn = S0 +Mn + An,

where Mn is a martingale with respect to Fn, and An is previsible with respect to Fn. This decomposition is unique in
the sense that if we have another decomposition Sn = S0 +M ′

n + A′n, then M ′
n = Mn and A′n = An a.s.

Jensen’s conditional inequality (see Appendix) implies that if Mn is a martingale, then M2
n is automatically a submartin-

gale (provided E[M2
n] < ∞), so that the previsible process An in the Doob decomposition of M2

n is a.s. nondecreasing.
This process is often denoted An = 〈M〉n, and is the discrete time analog of the quadratic variation in stochastic calculus.
In other words, M2

n − 〈M〉n is a martingale.

If Mn is a martingale, Cn is previsible, and Yn =
∑n

j=1Cj(Mj −Mj−1), then

〈Y 〉n =
n∑
j=1

C2
jE[(Mj −Mj−1)

2|Fj−1].

Note that E[M2
n] = E[〈M〉n]. Thus, M is bounded in L2 (and converges, etc.) if E[〈M〉∞] < ∞. Furthermore, (not

shown in class)
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Theorem 5. If Mn is an L2 martingale, then Mn −→M∞ a.s. on the set 〈M〉∞ <∞.

The following general result is known as Doob’s inequality.

Theorem 6. If Mn is a nonnegative submartingale, then

P (M∗
n ≥ C) ≤

E[Mn1{|M∗n|≥C]}]

C
≤ E[Mn]

C

In practice, this is often applied to Mn = φ(Sn), where Sn is a martingale and φ is a nonnegative convex function, since
then Mn is a submartingale. For instance, we have

Corollary 4. If Mn is a martingale, then

P (M∗
n ≥ C) ≤

E[|Mn|p1{M∗n≥C]}]

Cp
≤ E[|Mn|p]

Cp

for p ≥ 1.

A consequence of this is Doob’s Lp inequality, which gives a bound on the moments of M∗
n:

Corollary 5. If Mn is a martingale, then for any p > 1 we have

E[|Mn|p] ≤ E[(M∗
n)p] ≤

( p

p− 1

)p
E[|Mn|p].

Doob’s Lp inequality shows that if a martingale is bounded in Lp, then there is a random variable in Lp (M∗
∞) which

bounds it. In order to bring Lp and other considerations into martingale convergence theorems, we need a new concept,
which is uniform integrability. A collection C of random variables is uniformly integrable if, for each (small) ε > 0 there
is a (big) K > 0 such that

E[|X|1{|X|>K}] < ε

for everyX ∈ C. A martingaleM is uniformly integrable if the collection of random variablesMn is uniformly integrable.

The next result is the final word on martingale convergence.

Theorem 7. Suppose Mn is a uniformly integrable martingale with filtration Fn. Then Mn converges a.s. and in L1 as
n −→∞ to a random variable M∞, and Mn = E[M∞|Fn].

Note we also showed that Mn = E[M∞|Fn] is a uniformly integrable martingale provided that E[|M∞|] < ∞, so this
result is essentially the best possible. Uniform integrability allows us to bring the p-th moment into our results, as we
have the following (we already had this for the especially simple case p = 2):

Corollary 6. Suppose Mn is a martingale with supnE[|Mn|p] < ∞, for p > 1. Then Mn converges to M∞ a.s.,
E[|Mn −M∞|] −→ 0, and E[Mn] −→ E[M∞].

2 Examples and applications

2.1 Simple and biased random walk
Arguably the simplest nontrivial example of a martingale is simple random walk. Let Mn = X1 +X2 + . . .+Xn, where
X1, X2, . . . is a sequence of independent random variables with P (Xi = −1) = P (Xi = 1) = 1

2
. Mn is a martingale,

so E[Mτ ] = 0 for any stopping time τ which satisfies the conditions of the optional stopping theorem. Also, M2
n − n is

a martingale as well (that is, 〈M〉n = n), and applying the optional stopping theorem to that process allows us to show
for instance E[Tab] = ab, P (XTab = b) = a

a+b
, P (XTab = a) = b

a+b
, where Tab = infn≥0{Mn = −a or Mn = b} for

a, b ≥ 0.

An interesting formula is the Doob decomposition of f(Mn), where f is any function:
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f(Mn) = f(M0) +
n∑
j=1

1

2
(f(Mj−1 + 1)− f(Mj−1 − 1))(Mj −Mj−1)

+
1

2

n∑
j=1

(f(Mj−1 + 1)− 2f(Mj−1) + f(Mj−1 − 1)).

Note the similarity with Itó’s formula.

We have also the biased random walk, Sn = X1 + X2 + . . . + Xn with S0 = 0, where X1, X2, . . . is a sequence of
independent random variables with P (Xi = −1) = q, P (Xi = 1) = p, where p + q = 1 and p, q 6= 1

2
. We saw that

Sn is not a martingale, but Yn = rSn is one, where r = q
p
, and furthermore, Yn ≥ 0, so Y∞ = limn−→∞ Yn exists.

However, Y∞ = 0 a.s., so that E[Y∞] 6= E[Yn]. This is a good example for the need for uniform integrability or some
other condition.

It is easy to see that Sn − (p− q)n is a martingale, and thus Sn has the Doob decomposition

Sn = (Sn − (p− q)n) + (p− q)n.

To any stochastic process Sn we can associate its supremum process S∗n = sup0≤j≤n Sj . There is a financial reason
to consider this process, as it is important in the analysis of barrier options, which generally take one of two forms:
knock-out and knock-in. Knock-out options become worthless if the stock price reaches a certain level before the payoff
time, while knock-in options only take on value if the stock prices reaches the level before payoff. Both types require
knowledge of the supremum process.

Let us return to the simple random walk, Sn = X1 + X2 + . . . + Xn with S0 = 0, where X1, X2, . . . is a sequence of
independent random variables with P (Xi = −1) = P (Xi = 1) = 1

2
, and S∗n = sup0≤j≤n Sj . A natural question is, what

is the distribution of S∗n? It is clear that S∗n is a nonnegative process, and if C ≥ 0 we can apply a reflection principle to
show that P (S∗n ≥ C) = P (Sn = C) + 2P (Sn > C). Note: the analogous principle applies to Brownian motion, and
shows that P (sup0≤s≤tBs > C) = 2P (Bt > C) for C ≥ 0.

Return now to the biased random walk, Sn = X1 + X2 + . . . + Xn with S0 = 0, where X1, X2, . . . is a sequence
of independent random variables with P (Xi = −1) = q, P (Xi = 1) = p, where p + q = 1 and p, q 6= 1

2
, and

S∗n = sup0≤j≤n Sj . How can we now determine the distribution of S∗n? For C ≥ 0 we can adapt the reflection principle
to show that

P (S∗n ≥ C) = P (Sn = C) +
∞∑
r=1

(1 + (
q

p
)r)P (Sn = C + r)

= P (Sn ≥ C) +
∞∑
r=1

(
q

p
)rP (Sn = C + r)

(2)

That last expression includes something that looks suspiciously like the expectation of our martingale Mn = ( q
p
)Sn , and

if we let M∗
n = sup0≤j≤nMj and manipulate a bit we get

P
(
M∗

n ≥ (
q

p
)C
)
≤

2E[( q
p
)Sn ]

( q
p
)C

.

This is a (weakened) form of Doob’s inequality.
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2.2 Polya’s Urn
Let us now consider Polya’s Urn: we have an urn with 1 white ball and 1 black one in it. At each step, we choose
a ball at random from the urn and then return it along with another ball of the same color. We therefore form two
increasing stochastic processes w0, w1, . . . and b0, b1, . . ., and it can be shown that the proportion process Mn = wn

bn+wn
is a martingale. Since it is nonnegative it must converge a.s. to a limit M∞, but what does this limit look like? M∞ is
uniformly distributed on (0, 1).

We may generalize Polya’s Urn by supposing we have a white balls and b black balls to begin with. At each step, we
choose a ball at random from the urn and then return it along with another ball of the same color. As before we form two
increasing stochastic processes w0, w1, . . . and b0, b1, . . ., and it can be shown that the proportion process Mn = wn

bn+wn
is

a martingale. Since it is nonnegative it must converge a.s. to a limit M∞, but what does this limit look like? We have

P (wn = a+ r) =

(
n

r

)
a(a+ 1) . . . (a+ r − 1)b(b+ 1) . . . (b+ (n− r)− 1)

(a+ b)(a+ b+ 1) . . . (a+ b+ n− 1)

=

(
n

r

)
β(a+ r, b+ (n− r))

β(a, b)
.

(3)

Using this, it was shown in the homework that

P (M∞ ∈ A) =
1

β(a, b)

∫
A

pa−1(1− p)b−1dp,

for any set A ⊆ [0, 1]. This is a good example of a martingale which converges a.s. to a non-trivial limit.

2.3 The Radon-Nikodym Theorem
We used martingale techniques to prove the Radon-Nikodym theorem:

Theorem 8. Suppose P and Q are probability measures on a σ-field F , and Q is absolutely continuous with respect to
P ; this means that Q(A) = 0 whenever P (A) = 0. Then there is a random variable X = dQ

dP
measurable with respect to

F such that Q(A) = EP [X1A] for every set A ∈ F . X is unique almost surely.

This result immediately implies the existence of conditional expectation in the general case, since if we define a measure
Q on the σ-field F by Q(A) = EP [X1A], then E[X|F ] = dQ

dP
(there are proofs of the Radon-Nikodym Theorem which

do not use martingales). It is also of fundamental importance in real analysis and financial mathematics.

2.4 Kakutani’s Theorem and the likelihood ratio test
The following is a powerful result when dealing with product martingales.

Theorem 9 (Kakutani’s Theorem). SupposeX1, X2, . . . are independent non-negative random variables withE[Xj] = 1.
Let M0 = 1 and Mn = X1X2 . . . Xn. Then Mn is a non-negative martingale, and so converges to M∞ a.s. Then M is
uniformly integrable if, and only if,

∏∞
n=1 an > 0, where an = E[

√
Xn] ≤ 1. This is equivalent to

∑∞
n=1(1 − an) < ∞.

If these do not occur, then M∞ = 0 a.s.

Note that this shows immediately that rSn −→ 0 a.s., where Sn is biased random walk and rSn is its associated product
martingale. Another good application of Kakutani’s Theorem comes from statistics, the likelihood ratio test. Suppose we
have a population, and we want to test the hypothesis that some measurement from the population admits the density f vs.
the hypothesis that it admits the density g, where f and g are two positive functions on R with

∫
R f(x)dx =

∫
R g(x)dx =

1. Independent samples will be represented by an i.i.d. sequence of random variables X1, X2, . . ., with common density
either f(x) or g(x). If g is the true density, then the stochastic process
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Mn =
n∏
j=1

f(Xj)

g(Xj)

is a martingale. Kakutani’s Theorem allows us to conclude that Mn −→ 0 a.s., and in fact it can be shown that in most
cases this occurs quite rapidly. On the other hand, if f is the true density, then Mn is not a martingale, but 1

Mn
is, and the

same argument allows us to conclude that 1
Mn
−→ 0 a.s., which means that Mn −→∞ a.s.

2.5 Pricing claims in financial mathematics
We consider a model in which there are two ways in which a person can invest their money. One is in a stock, Sn, which
is a stochastic process which possesses risk, or randomness, and the second is in a bond or savings account, βn, which is
risk free, i.e. deterministic. We will generally take βn = (1 + r)n, where r is the interest rate corresponding to unit time.
We will create a portfolio, which is a trading strategy of buying an units of stocks and bn units of bonds, and an and bn
must both be predictable (a.k.a. previsible). The value of the portfolio at any time t is

(4) Vn = anSn + bnβn

We require this process to be nonnegative, so Vn ≥ 0 a.s. for every n, although an and bn are each allowed to be negative
(corresponding to borrowing money and short-selling stocks). We also require that the process be self-financing, that is,
any change in the amount of money invested can only be funded by money earned or lost by the portfolio. We express
this mathematically as

anSn + bnβn = an+1Sn + bn+1βn

Any sort of predictable strategy an for holding shares of Sn can be fit into a self-financing one:

Lemma 4. If an is predictable and V0 is any F0-measurable r.v., then there is a unique predictable process bn such that
Vn = anSn + bnβn is a self-financing process which agrees with V0 at n = 0.

In practice, stock prices and portfolios of this type are not likely to be martingales, however an assumption which arises
in modelling is that the quotient Sn

βn
is one. We will write S̃n = Sn

βn
, and Ṽn = Vn

βn
= anS̃n + bn. We then have

Lemma 5. If Vn = anSn + bnβn is a self-financing strategy and S̃n = Sn
βn

is a martingale, then Ṽn = Vn
βn

is a martingale
as well.

Another way of looking at the previous result is the following.

Lemma 6. If Vn = anSn + bnβn is a self-financing strategy, then

(i)

Vn = V0 +
n∑
j=1

aj(Sj − Sj−1) +
n∑
j=1

bj(βj − βj−1)

.

(ii)

Ṽn = Ṽ0 +
n∑
j=1

aj(S̃j − S̃j−1)

.
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Self-financing strategies Vn which satisfy Vn ≥ 0 a.s. for every n are called admissible, and these are the strategies
that we be will concerned with. A claim at time T is simply a non-negative random variable which is measurable with
respect to FT , and which represent some sort of payoff at time T . We will mainly be interested in attainable claims. An
attainable claim is a claim X for which there is an admissible portfolio such that VT = X . One of the biggest problems
in financial mathematics is pricing claims; that is, how much should we be willing to pay at time 0 for a claim X at time
T ?

Claims are priced under the principle of no-arbitrage. Arbitrage is essentially risk-free profit. That is, an arbitrage is
an admissible trading strategy such that V0 = 0 a.s. but E[VT ] > 0 (remember Vn ≥ 0 for all n). We call the set of all
strategies for a given Sn a market, and a market is viable if it contains no arbitrage strategies.

Theorem 10 (First Fundamental Theorem of Asset Pricing). A market is viable if, and only if, there exists a probability
measure Q equivalent to P under which S̃n = Sn

βn
is a martingale.

We call Q the equivalent martingale measure (EMM). Let us suppose that Vn = anSn + bnβn is an admissible strategy
and X , which is a claim at time T , is given by VT . If we assume no arbitrage, then there is a measure Q equivalent to
P such that S̃n = Sn

βn
is a martingale with respect to Q. Since we can generate claim X by following the strategy, a fair

price for the claim at time 0 would be EQ[ X
βN
|F0], and for time n would be EQ[ X

βN−n
|Fn]. Thus, claims which can be

realized by admissible strategies, which we have called attainable claims, are of special importance. Markets in which
every claim is attainable are called complete.

Theorem 11 (Second Fundamental Theorem of Asset Pricing). A viable market is complete if, and only if, the EMM Q
is unique.

The following is the binomial options pricing model, and is also referred to as the Cox, Ross, and Rubinstein model.
Suppose βn = (1 + r)n and S0 = 1, Sn = Sn−1Xn, where X1, X2, . . . is an i.i.d. sequence of r.v.’s, each taking values
in {d, u} with positive probability. We can find an EMM Q for Sn

βn
if, and only if, d < 1 + r < u. The required EMM

is given by qd = Q(Xn = d) = u−(1+r)
u−d and qu = Q(Xn = u) = (1+r)−d

u−d . Thus, any claim X realized at time N can be
priced by the formula

EQ[
X

βn
|F0] = (1 + r)−NEQ[X].

For example, if X is a European call option, then X = (SN −K)+, and the value of X at time 0 is

(1 + r)−NEQ[(SN −K)+] =
N∑
j=0

N !

j!(N − j)!
qjdq

N−j
u (djuN−j −K)+.

An American option is like a European one, except that the buyer has the right to exercise the option at any point up to
and including time N . In order to fit this idea into our model we require the buyer to choose a stopping time τ , and the
value of the option is calculated based on Sτ . For example, if it a call option with strike price K then the buyer would
receive (Sτ −K)+. What is a fair price for the option?

In order to handle the American options, we need to be able to analyze claims which depend on n. So let Yn be such a
time-dependent claim; that is, Yn is a non-negative stochastic process for 0 ≤ n ≤ N adapted to the filtration Fn which
represents the amount of money received if the option is exercised at time n. Let Vn be the value process at the same
time of the corresponding European claim; that is, Vn is the value at time n (obtained under the no-arbitrage assumption)
of the claim YN . Let V A

n be the value process of Yn. It is clear that V A
n ≥ vn, but it is surprising that in some cases (for

example, the call option) we have V A
n = vn!

Given a time-dependent claim Yn, define a stochastic process Zn by ZN = YN , Zn = max{Yn, 1
(1+r)

E[Zn+1|Fn]}. This
is the Snell envelope, and helps us to price American options.

Theorem 12. (i) Zn = maxτ{(1 + r)nEQ[ Yτ
(1+r)τ

|Fn], where the maximum is taken over all stopping times τ with
0 ≤ τ ≤ N .
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(ii) The maximum in (i) is realized by the stopping time τ = min{n′ ≥ n : Zn′ = Yn′}.

(iii) Z̃n = Zn
(1+r)n

is a Q-supermartingale, and is the smallest Q-supermartingale which dominates Ỹn = Yn
(1+r)n

.

(iv) The correct no-arbitrage value for an American option is V A
n = Zn, and the optimal exercise strategy is given by

the stopping time τ defined above (with n = 0).

The reason the American call has the same value as a European one is the following theorem.

Theorem 13. If Yn is a Q-submartingale, then the optimal strategy is τ = N , and V A
n = Vn.

Corollary 7. The optimal strategy for an American call option is τ = N .

2.6 The Kalman filter
Suppose we are given two processes (Xn, Yn), n = 0,±1,±2, . . ., where Yn is the observations of a signal Xn con-
taminated by noise, e.g. Yn = Xn + Zn, where Xn is a signal and Zn is noise. A good example of this would be in
telecommunications, where transmissions will generally arrive with static. We want to find a filter which will give us a
good estimate of the signal, X̂n. We will look at a famous model for filtering in this manner, the Kalman filter.

Before tackling the problem, we need to understand Bayes’s Theorem. Recall that P (A|B) = P (A∩B)
P (B)

.

Theorem 14 (Bayes’ Theorem). For two events A,B, with P (B) 6= 0, we have

P (A|B) =
P (B|A)P (A)

P (B)
.

We will interpret Bayes’ Theorem for random variables in regards to their pdf’s. Let us suppose thatX, Y are two random
variables which have a joint density fX,Y (x, y) which is strictly positive on R2. Then

P ((X, Y ) ∈ B ⊆ R2) =

∫ ∫
B

fX,Y (x, y)dxdy.

Also

P (X ∈ B ⊆ R1) =

∫
B

∫
R
fX,Y (x, y)dydx.

We see that the density for f is given by

fX(x) =

∫
R
fX,Y (x, y)dy.

We define

fY |X(y|x) =
fX,Y (x, y)

fX(x)
.

Note that

P (Y ∈ B ⊆ R1|X) =

∫
B

fY |X(y|X)dy.

In relation to pdf’s, Bayes’ Theorem takes the following form:

fX|Y (x|y) =
fX(x)fY |X(y|x)

fY (y)

9



Let us suppose that X is fixed and has distribution N(0, σ2), and Yn = X + cnZn, are our ”noisy” observations of X ,
where Zn are i.i.d. N(0, 1) random variables, and {cn} is a sequence of constants. We wish to estimate X , which is
unknown, by the values of Yn, which are known. Let Fn = σ(Y1, Y2, . . . , Yn). We know that Mn = E[X|Fn], which is
our best estimate for X based on information available at time n, is a u.i. martingale, and thus converges in L1, but what
does it converge to? The answer is given by the following.

Theorem 15. Suppose X is a r.v. with E[|X|] <∞, and F0 ⊆ F1 ⊆ F2 ⊆ . . . is an increasing sequence of σ-fields. Let
Mn = E[X|Fn]. Then Mn is a u.i. martingale, and Mn −→M∞ = E[X|F∞] a.s. and in L1.

The question then is, does X = E[X|F∞]? And, as a practical matter, how do we calculate Mn in terms of the measure-
ments Y1, Y2, . . .?

In filtering theory, as in this case, very often one is dealing with normal random variables. When we say X ∼ N(µ, σ2),

we mean thatX admits a pdf of the form fX(x) = 1√
2πσ2

e−
(x−µ)2

2σ2 . We let CX(Y ) denote the distribution ofX conditioned
on Y . The following is Bayes’ formula for bivariate normal distributions:

Theorem 16. Suppose X ∼ N(µ, U) and CX(Y ) = N(X,W ). Then CY (X) = N(X̂, V ), where

1

V
=

1

U
+

1

W
,

X̂

V
=
µ

U
+
Y

W

The last theorem says that sampling Y gives the best estimate of X̂ = V ( µ
U

+ Y
W

) for X , where 1
V

= 1
U

+ 1
W

. We also
have

Corollary 8.
E[(X − X̂)2] = V

Let us recursively define V0 = σ2, 1
Vn

= 1
Vn−1

+ 1
c2n

, so in fact Vn = (σ−2 +
∑n

j=1 c
−2
j )−1. Let also X̂0 = 0, and then

X̂n
Vn

= X̂n−1

Vn−1
+ Yn

c2n
. Then it was shown in class thatMn = E[X|Fn] = X̂n, andE[(X−X̂n)2] = Vn. Our estimate therefore

converges to X in L2 if, and only if,
∑∞

n=1 c
−2
n = ∞. This would include the case when the cn’s are constant, and even

allows cn to grow as long as they don’t grow too fast.

In practice it is more common that we are trying to estimate a sequence Xn that is changing over time, but which is
evolving according to some rule. For instance suppose that

Xn −Xn−1 = AXn−1 +HZn + g,

where the Zn’s are i.i.d. N(0, 1) random variables (Xn is known as an autoregressive process. Suppose again that we
can’t observe Xn directly, but can only observe Yn, where

Yn − Yn−1 = CXn +KZ ′n,

where again the Z ′n’s are i.i.d. N(0, 1) random variables. In this case, extending our previous techniques a bit, we arrive
at the following Kalman filter equations:

1

Vn
=

1

α2Vn−1 +H2
+
C2

K2
,

X̂n

Vn
=

αX̂n−1 + g

α2Vn−1 +H2
+
C(Yn − Yn−1)

K2

where α = 1 + A. It can be shown that Vn approaches the unique positive solution of 1
x

= 1
α2x+H2 + C2

K2 .
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2.7 The Galton-Watson process
Suppose Zi,j are a collection of i.i.d., nonnegative integer valued random variables which have the same distribution as a
random variable Z. Form a stochastic process by X0 = 1, and then Xn+1 =

∑Xn
j=1 Zn,j . This the Galton-Watson process,

and is used to model family names, biological processes, and nuclear fission, among other things. Having a random
variable as a limit in the sum causes some difficulties in calculations, but we were able to show

Theorem 17. Suppose that E[Z] = µ and V ar(Z) = σ2. Then E[Xn] = µn, and V ar(Xn) = σ2µn−1(µn−1)
µ−1 unless µ = 1,

in which case V ar(Xn) = nσ2.

These can be proved using the probability function, as discussed later in this subsection and in Section 3, but the moment
formula is immediate from the fact that

E[Xn+1|Fn] = µXn,

where again µ = E[Z] and Fn is the natural filtration generated by Xn. Thus, Mn = Xn
µn

is a martingale. It is also
nonnegative, so Mn −→M∞ a.s. as n −→∞. But does E[M∞] = E[M0] = 1? Or is E[M∞] = 0 a.s.?

In order to address the previous question, let us first answer the following: what is the probability that the process
eventually goes extinct? That is, what is limn−→∞ P (Xn = 0)? In order to calculate this, we can note that the generating
function of Xn is simply the generating function of Z composed with itself n times (see Section 3). We will also make
use of the following facts about the generating functions f(s) of Z and fn(s) of Xn (in fact, all four properties apply to
all generating functions):

• fn(0) = P (Xn = 0) and f(0) = P (Z = 0).

• f(s) is convex on [0, 1] (so f ′(s) is increasing).

• E[Z] = f ′(1).

• f(1) = 1.

To avoid trivial cases we will assume P (Z = 0) > 0 and P (Z ≥ 2) > 0. With these assumptions, the extinction
probability is determined by the following theorem.

Theorem 18. The extinction probability is the smallest fixed point of f(s) (i.e. the smallest solution to the equation
f(s) = s) in [0, 1]. f(s) possesses exactly one fixed point in [0, 1) if E[Z] > 1, and none if E[Z] ≤ 1. Thus, the
population has positive probability of survival if E[Z] > 1, but goes extinct a.s. if E[Z] ≤ 1.

2.8 Insurance modelling
Let us suppose that an insurance policy is sold which costs the buyer c dollars per each unit of time. Let us suppose
further that the customer makes a claim in each unit of time which is represented by a nonnegative random variable Xn,
and the random variables Xn are i.i.d. We define the surplus process Un to be

Un = x+ cn−
n∑
j=1

Xj.

x represents the initial surplus that the insurer has, and Un at any time represents the surplus at that time. The biggest
question is to determine the probability that T <∞, where T = inf{n > 0 : Un < 0} is the ruin time.
So we would like to say something about Px(T < ∞) = P (T < ∞|U0 = x). We begin by noting E[Un] = x + cn −
nE[X], where X has the same distribution as the Xj’s. Note that if E[X] > c then E[Un] −→ −∞, and it can be shown
to follow from this under most conditions on X that Px(T <∞) = 1 for any x. We therefore assume E[X] < c. We also
will assume P (X > c) > 0, since otherwise P (T <∞) = 0.

11



Calculating Px(T < ∞) can be difficult, however there is a nice way to get a good upper bound on this quantity, under
the assumption that the moment generating function MX(r) = E[erX ] of X exists. It can be shown that in this case there
is a unique R > 0 such that E[e−R(c−X)] = 1. This R is called the adjustment coefficient of the model.

Lemma 7. e−RUn is a martingale with respect to the natural filtration.

Theorem 19 (Lundberg’s Inequality).
Px(T <∞) < e−Rx

We see that the adjustment coefficient is some sort of measure of the risk of an insurance policy: larger R means a lower
probability of eventual ruin, while smaller R means that the policy is more risky (for the insurer).

3 Appendix

3.1 Modes of convergence and integral/expectation convergence theorems
In this course, we discussed four major types of convergence of random variables:

(i) Almost sure convergence, abbreviated as a.s. This is when P (Xn −→ X) = 1, that is, Xn(ω) −→ X(ω) for all ω
in a set of measure 1.

(ii) Convergence in probability. This is when P (|Xn −X| > ε) −→ 0 for any ε > 0.

(iii) Lp convergence. This is when E[|Xn −X|p] −→ 0 for some fixed p > 0.

(iv) Convergence in distribution. This is when Fn(x) −→ F (x) for all x at which F is continuous, where F (x) =
P (X ≤ x) is the distribution function for X (and similarly for Fn).

a.s. and Lp convergence imply convergence in probability, though not conversely, although if Xn −→ X in probability
then there exists a subsequence Xnk which converges to X a.s. Convergence in distribution is often proved by the
following:

Theorem 20 (Lévy’s Continuity Theorem). Xn −→ X in distribution if, and only if, φXn(t) −→ φX(t) for all t, where
φ denotes the characteristic functions (see below).

The condition E[Xn] −→ E[X] is often required, and is a consequence of Lp convergence for p > 1, but not of the other
types of convergence. This makes the following results important.

Theorem 21 (Monotone Convergence Theorem). If 0 ≤ Xn, X and Xn ↗ X a.s., then E[Xn]↗ E[X].

Theorem 22 (Fatou’s Lemma). If 0 ≤ Xn, X and Xn −→ X a.s., then E[X] ≤ lim infn−→∞E[Xn].

Theorem 23 (Dominated Convergence Theorem). IfXn −→ X a.s. and there is Y ≥ 0 with E[Y ] ≤ ∞ and |Xn|, |X| ≤
Y , then E[Xn]↗ E[X].

The notion of uniform integrability discussed in Section 1 can be used to extend the dominated convergence theorem, as
follows.

Theorem 24. Suppose X is a r.v., and Xn is a sequence of r.v.’s. Then Xn −→ X in L1 (that is, E[|Xn −X|] −→ 0) if,
and only if,

(i) Xn −→ X in probability.

(ii) the set of r.v.’s Xn is uniformly integrable.
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3.2 Generating/characteristic functions
A few important tools in probability theory are the following.

• If X is a r.v. taking values in only in 0, 1, 2, . . ., then we define the probability generating function as

G(z) = GX(z) = E[zX ] =
∞∑
j=0

zjP (X = j).

• For more general r.v., we define the moment generating function as

M(t) = MX(t) = E[etX ],

whenever it exists (it does not always exist).

• For any r.v., we define the characteristic function as

φ(t) = φX(t) = E[eitX ].

This always exists.

These objects satisfy the following useful properties.

• All three functions uniquely characterize distributions.

• All three turn sums of independent random variables into products. For example, if X1, X2, . . . , Xn are indepen-
dent, then

GX1+...+Xn(z) = E[zX1+...+Xn ] = E[zX1 . . . zXn ]

= E[zX1 ] . . . E[zXn ] = GX1(z) . . . GXn(z).
(5)

• M (n)
X (0) = E[Xn], G(n)

X (0) = n!P (X = n), G′X(1) = E[X], and so forth.

These tools are important in many contexts, but for us one of the most valuable instances of their use was the analysis of
the Galton-Watson process, because of the following facts. Suppose Y =

∑T
j=0 Zj , where the Zj’s are i.i.d. and T is a

r.v. taking values in the nonnegative integers which is independent of the Z’s. Then, if GT (s) = E[sT ] is the generating
function of T , we have

• if Z takes values in the nonnegative integers and has generating function GZ(s) = E[sZ ], then Y has generating
function GY (s) = GT (GZ(s)).

• otherwise, suppose Z has a moment generating function MZ(s) = E[esZ ]. Then MY (s) = GT (MZ(s)).

• otherwise, if MZ(s) doesn’t exist, suppose Z has characteristic function φZ(s) = E[eisZ ]. Then φY (s) =
GT (φZ(s)).

This allowed us to show easily for instance

Theorem 25 (Wald’s identity). Suppose Y =
∑T

j=0 Zj , where the Zj’s are i.i.d. with E[|Z|] < ∞ and T is a r.v. taking
values in the nonnegative integers which is independent of the Z’s. Then E[Y ] = E[T ]E[Z].

Returning to the Galton-Watson process in Section 2, we see that if we let fn(s) = GXn(s), then fn(s) is just f(s) =
GZ(s) composed with itself n times. This was the key to the calculation of the extinction probability.
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3.3 Inequalities
The Lp norm is

||X||p = E[Xp]1/p.

Of special importance are the L2 norm, ||X||2 = E[X2]1/2, and the L1 norm, which is simply ||X||1 = E[|X|]. They are
related by the Cauchy-Schwarz inequality:

Theorem 26 (Cauchy-Schwarz inequality).

||XY ||1 ≤ ||X||2||Y ||2.

In particular, taking Y = 1 gives

||X||1 ≤ ||X||2.

The Cauchy-Schwarz inequality can be proved directly by a famous argument, but it is also a special case the following
result, known as Hölder’s Inequality, which is fundamental to the study of Lp spaces.

Theorem 27 (Hölder’s inequality). Suppose p, q > 1 with 1
p

+ 1
q

= 1, and let X and Y be any two random variables.
Then

E[|XY |] ≤ E[|X|p]
1
pE[|Y |q]

1
q .

In other words, ||XY ||1 ≤ ||X||p||Y ||q

The Hölder and Cauchy-Schwarz inequalities, suitable formulated, apply to more arbitrary integrals and sums. Jensen’s
inequality, on the other hand, is more probabilistic in nature, since it requires a probability measure (rather than an
arbitrary one):

Theorem 28 (Jensen’s inequality). For any convex function c(x) and any random variable X , we have E[c(X)] ≥
c(E[X])

There is a conditional form of Jensen’s inequality, under the assumption that c is convex:

E[c(X)|F ] ≥ c(E[X|F ]).
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