
Math 4232 Stochastic Processes II: Markov chains

Summary

Simple random walk is a random process which takes values on the vertices of a graph. A graph G is a
set of vertices V and edges E, where each edge is an element of V ×V . We assume all graphs are simple,
which means that (a, a) /∈ E and E has no repeated elements, and undirected, which means that (a, b)
and (b, a) represent the same edge. The degree of a vertex of a graph is the number of edges containing
that vertex. A random walk is a process in which a walker moves on the vertices of a graph, at each
stage moving to the adjacent vertices with probability 1/d, where d is the degree of the current vertex.
Formally, simple random walk is a random process Xn with independent increments on the vertices of
the graph, with conditional probabilities

P (Xn+1 = b|Xn = a) =

{
1

deg(a)
if a ∼ b

0 if a � b .
(1)

Several of the most interesting questions which come up in connection with this process are

• Let V1, V0 be subsets of the vertex set V . Starting from point a, what is the probability that we hit
set V1 before set V0?

• Does the random walk approach some stable distribution as we let it go forever?

• On an infinite graph, is there a nonzero probability that the random walk will never return to its
starting point?

The final question carries a very interesting result. First some notation: For a ∈ G, the expressions Ea and
Pa refer respectively to the expectation and probability under the condition that X0 = a a.s. We will say
that Xn is recurrent if Pa(Xn = a for some n ≥ 1) = 1, and transient if Pa(Xn = a for some n ≥ 1) < 1.
We will consider the integer lattice in n dimensions. This is the infinite graph whose vertices are the
set of elements of Zn, with the edge set defined by {a1, . . . , an} ∼ {b1, . . . , bn} if there exists j such that
|aj − bj| = 1 and ai = bi for i 6= j. Then we have Pólya’s Theorem:

Theorem 1 Simple random walk is recurrent on Z1,Z2, and transient on Zn for n ≥ 3.

There are a number of different proofs of this result. Several proceed by letting m be the expected number
of times that Xn = a, and starting with

m =
∞∑
n=1

Pa(Xn = a).(2)



It can then also be shown that if u = Pa(Xn = a for some n ≥ 1), then m = 1
1−u . Combinatorial

arguments can then be used to show that the sum in (2) is ∞ if n ≤ 2 and finite if n ≥ 3. Another proof
uses the concept of electric resistance. Suppose that a graph is taken to represent an electric circuit,
where each edge has unit resistance. We imagine that we attach one pole of a battery to a vertex z0, and
the other pole to another vertex z1, so that z0 is at voltage 0 and z1 is at voltage 1. All other points z
receive a voltage V (z), which can be calculated using Ohm’s Law and Kirchhoff’s Current Law.

Ohm’s Law: Voltage is equal to current times resistance.

V = IR(3)

Kirchhoff’s Current Law: The sum of the currents entering and leaving any point other than v0 and
v1 is 0.

As a consequence of Ohm’s and Kirchhoff’s Laws, the voltage function on G is harmonic. That is, for
v 6= v0, v1, We have

V (z) =
1

deg(z)

∑
x∼z

V (x)(4)

This is connected to simple random walk by the following observation. Let g(z) = Pz(v1beforev0) denote
the probability that a random walk, started at z, strikes v1 before hitting v0. Random walk has no
memory, so

Pz(v1 before v0) =
1

d
Px1(z1 before z0) + . . .+

1

d
Pxd(z1 before z0)(5)

where x1, . . . , xd are the points adjacent to z. This is the same definition as before, so g(z) is a harmonic
function as well on G− {z0, z1}. Given boundary values and a finite graph, there is exactly one possible
harmonic function, so we see that g(z) is equal to V (z). Due to Ohm’s Law, V = IR, the amount of
current flowing between two adjacent vertices is given by the difference in voltage. We can therefore
measure the amount of current flowing from z0 to z1 by summing the voltages of vertices adjacent to z0.
The reciprocal of the amount of current flowing is called the effective resistance, and is a metric on the
graph. An important consequence of the definitions is

Rayleigh’s monotonicity law: If the resistances of one or more edges in a graph are increased, the
resistance in the new graph between any pair of points must be at least the resistance between the pair
in the old graph.
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Of course, this also implies the reverse, that if the resistances of one or more edges in a graph are
decreased, the resistance in the new graph between any pair of points must be at most the resistance
between the pair in the old graph. Using these concepts, we can determine whether a random walk on an
infinite graph is recurrent or transient by calculating the resistance from any point ”to infinity”. That
is, we calculate the resistance between the point and a distant set Fn, then let Fn go to infinity. If this
resistance remains finite, the walk is transient. If the resistance becomes infinite, the walk is recurrent.
This method can be used to give a neat proof of Pólya’s Theorem.

Markov chains are generalizations of simple random walk. Let I be a countable set, with |I| = n ∈ (0,∞].
For matrices we will write {pij} for the more standard {pij}ni,j=1. We let P = {pi,j} be a stochastic matrix,
that is, an n× n matrix such that

∑n
j=1 pij = 1 for all i. We also let λ be a distribution on the elements

of I, that is, a non-negative function in i such that
∑

i∈I λi = 1. Then a sequence of random variables
taking values on I is a Markov chain with initial distribution λ and transition matrix P if

(i) X0 ∼ λ, and

(ii) Conditioned on Xn = i, Xn+1 has distribution (pij : j ∈ I) and is independent of X0, X1, . . . , Xn.
Put another way,

P (Xn+1 = j|X0 = i0, . . . , Xn = in) = P (Xn+1 = j|Xn = in) = pinj.(6)

We will write Xn ∼ Markov(λ, P ) in this case. Note that n-step transition probabilities are given by

P n = {p(n)ij }.

Proposition 1 Xn ∼Markov(λ, P ) if, and only if,

P (X0 = i0, . . . , Xn = in) = λi0pi0i1 . . . pin−1in(7)

We will say i leads to j and write i −→ j if Pi(Xn = j for some n ≥ 0) > 0. If i −→ j and j −→ i
we will say i and j communicate and write i ←→ j. The relation ←→ is clearly an equivalence relation
(that is, i ←→ i, if i ←→ j then j ←→ i, and if i ←→ j and j ←→ k then i ←→ k), so it partitions
I into equivalence classes, which we call communicating classes. If i ←→ j for all i, j ∈ I, we say Xn is
irreducible. If C is a communicating class such that, if i ∈ C, then i −→ j implies j ∈ C, then we say
that C is a closed class. If a singleton class {i} is closed, we say that i is absorbing.

If i ∈ I and A ⊆ I, we can ask for hAi = Pi(Xn ∈ A for some n ≥ 0).

Theorem 2 As a function of i, hAi is the minimal non-negative solution to
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hAi =

{
1 if i ∈ A∑

j∈I pijh
A
j if i /∈ A .

(8)

Let us define things formally. A probability space is a triple (Ω,F , P ): Ω is any set whatsoever; F is a σ-
field, that is, a collection of subsets of Ω, containing Ω itself, and which is closed under complements, finite
intersections, and countable unions; P is a probability measure, that is, a measure such that P (Ω) = 1.
To say that X is a random variable on a probability space (Ω,F , P ) means that X = X(ω) is a function on
Ω, with X−1(A) ∈ F for all Borel sets A. We will also say X is F measurable. A discrete time stochastic
process is a sequence of r.v.’s X1, X2, X3, . . . and an increasing collection of σ-fields F1 ⊆ F2 ⊆ F3 . . .
so that each Xn is Fn-measurable. The collection {F1,F2,F3, . . .} is called the filtration of the process,
and in some sense represents the information available to an observer at any time. Generally, we take
Fn to be the σ-field generated by X1, . . . , Xn, which we denote σ({Xi, 1 ≤ i ≤ n}). A stopping time
τ is a r.v. taking values in the nonnegative integers and ∞ such that {τ ≤ n} ∈ Fn; or, equivalently,
{τ = n} ∈ Fn. Stopping times are very important in the subject of Markov chains. With τ a stopping
time, let Fτ = {A ∈ F∞ : A ∩ {τ = n} ∈ Fn for all n}. Fτ is essentially all knowledge of the process
up to time τ . One reason for the great importance of stopping times is the strong Markov property for
Markov chains.

Theorem 3 (Strong Markov property of Markov chains) Suppose Xn ∼ Markov(λ, P ), and let
τ be a stopping time for Xn. Then, conditioned on τ < ∞ and Xτ = i, Yn = Xτ+n is Markov(δi, P ),
where δi is the distribution putting mass 1 on the point i. Furthermore, Yn is independent of Fτ .

Adapting the definitions from simple random walk, we will say that Xn is recurrent if Pa(Xn = a for
infinitely many n) = 1, and transient if Pa(Xn = a for infinitely many n) = 0.

Theorem 4 For each i ∈ I, i is either recurrent or transient. In particular, if we let Ti = inf{n ≥ 1 :
Xn = i}, then

• if Pi(Ti <∞) = 1, then i is recurrent and
∑∞

n=0 p
(n)
ii =∞.

• if Pi(Ti <∞) < 1, then i is transient,
∑∞

n=0 p
(n)
ii <∞, and the expected number of visits the chain

makes to i when started at i is (1− Pi(Ti <∞))−1.

Proposition 2 If i←→ j, then i and j are either both recurrent or both transient.

Thus, for irreducible chains, we can talk about whether the chain is recurrent or transient, since all states
will have the same behavior in this regard.

Proposition 3 If Xn is irreducible and recurrent, then Pi(Tj <∞) = 1 for all i, j ∈ I.
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An n-component vector λ is called invariant if λP = λ. If λ itself is a distribution on I and is invariant,
we will say λ is an invariant distribution or stationary distribution. A Markov chain may have no invariant
distribution, or it may have many. However, if we set γki = Ek[

∑Tk−1

n=0 1Xn=i], we have

Theorem 5 Let Xn be irreducible and recurrent. Then

(i) γkk = 1.

(ii) 0 < γki <∞ for all i, k.

(iii) γkP = γk.

It turns out that when
∑

i∈I γ
k
i < ∞, we can normalize it to form a unique invariant distribution. This

happens precisely when Ei[Ti] <∞, and we have

Theorem 6 Let Xn be irreducible and recurrent. Then the following are equivalent

(i) Ei[Ti] <∞ for all i ∈ I.

(ii) Ei[Ti] <∞ for some i ∈ I.

(iii) Xn has an invariant distribution π.

If these hold, then in fact π is the unique invariant distribution, and πi = 1
Ei[Ti]

.

In light of this result, we introduce as a definition that an irreducible Markov chain Xn is positive recurrent
if Xn is recurrent and Ei[Ti] <∞ for some, and hence every, i ∈ I. We see that Xn is positive recurrent
if, and only if, Xn has a unique invariant distribution. We say that Xn is aperiodic if, for every i ∈ I,
there is an N such that p

(n)
ii > 0 for all n > N . We have the following important result, which is one of

the most important in the theory.

Theorem 7 Let Xn ∼ Markov(λ, P ) be irreducible, aperiodic, and positive recurrent, with stationary
distribution π. Then P (Xn = i) −→ πi as n −→∞ for all i ∈ I.

Let X be a F -measurable random variable on a space Ω, and let G be a σ-field on Ω with G ⊆ F , so
that X is not necessarily G-measurable. There is a G-measurable random variable, denoted E[X|G] and
referred to as the conditional expectation of X with respect to G, such that E[X1A] = E[E[X|G]1A] for
all A ∈ G. There are a few rules for this:

• E[aX + bY |G] = aE[X|G] + bE[Y |G].
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• If G = {∅,Ω}, then E[X|G] = E[X].

• If X is G-measurable, then E[X|G] = X, and more generally E[XY |G] = XE[Y |G]

• If G1 ⊆ G2, then E[E[X|G2]|G1] = E[X|G1].

• If σ(X) and G are independent, then E[X|G] = E[X].

Discrete time continuous processes have already been defined; a continuous time stochastic process is a
family of random variables Xt, indexed by t ∈ [0,∞), together with an increasing family of σ-fields Ft(the
filtration), also indexed by t ∈ [0,∞), such that Xt is Ft measurable for all t. Real-valued stochastic
processes for which E[Xt|Fs] = Xs whenever t > s are called martingales, in either discrete or continuous
time, and are very important. Note that Fs is usually σ(Xr, 0 ≤ r ≤ s), the σ-field generated by all Xr’s
up to time s. A stopping time τ is a r.v. taking values in the nonnegative integers and ∞ such that

{τ ≤ t} ∈ Ft(9)

Stopping times are very important in the theory of martingales, in large part due to the following theorem,
which has many variants.

Theorem 8 If Mt is a martingale and τ is a stopping time such that either

• τ is bounded, or

• supt≤τ |Mt| ≤ C <∞ a.s., for a constant C,

then E[Mτ ] = E[M0].

Martingales are closely related to discrete time Markov chains by the following two theorems.

Theorem 9 Suppose Xn ∼Markov(λ, P ). Then, for any bounded function f : I −→ R,

M f
n = f(Xn)− f(X0)−

n−1∑
m=0

(P − I)f(Xm)(10)

is a martingale.

Theorem 10 Suppose Xn ∼Markov(λ, P ). Suppose further that f : N× I −→ R satisfies both

(i) E|f(n,Xn)| <∞, and

(ii) Pf(n+ 1, i) =
∑

j∈I pijf(n+ 1, j) = f(n, i).
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Then Mn = f(n,Xn) is a martingale.

We now turn to the topic of continuous time Markov chains. The exponential distribution Exp(λ) is a
continuous probability distribution with support on the positive reals, c.d.f. 1 − e−λt, and p.d.f. λe−λt,
both for x ≥ 0. The exponential distribution is generally used for arrival times, since

Proposition 4 Let T be a positive random variable with a continuous distribution. Then T ∼ Exp(λ)
if, and only if, P (T > t+ s|T > s) = P (T > t) for all t > s.

That is, if you have waited time s without an arrival, you are equally likely to get an arrival in the next t
time units as you were to get one in the first t time units. The Poisson process is the process which results
from counting independent, exponentially distributed arrivals. To be precise, let τ1, τ2, . . . ∼ Exp(λ) be
independent, and let Tn =

∑n
i=1 τi. Then Nt = sup{n : Tn ≤ t} is the Poisson process of rate λ. The

following proposition contains some of the most important properties of the Poisson process. Note that
the Poisson distribution is the discrete distribution with support on the non-negative integers such that,

if X ∼ Pois(µ), then P (X = k) = e−µµk

k!
.

Theorem 11 Let Nt be the Poisson process of rate λ, with associated filtration Ft. Then

(i) If t > s, then Nt −Ns is independent of Fs.

(ii) If t > s, then Nt − Ns has a Poisson distribution with parameter λ(t − s). In particular, Nt ∼
Pois(λt).

(iii) The paths of Nt, t ≥ 0 are increasing functions of t and change only by jumps of size 1, a.s.

(iv) The following processes are martingales:

– Nt − λt.
– (Nt − λt)2 − λt.
– e(ln(1−u))Nt+uλt for any u ∈ (0, 1).

(vi) The Strong Markov Property holds(see Theorem 13 below for general continuous time Markov
chains).

A Q-matrix is an n× n matrix {qij} such that

(i) 0 ≤ qii <∞

(ii) qij ≥ 0 for i 6= j.
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(iii)
∑

j∈I qij = 0.

For any matrix M , we define eM =
∑∞

n=0
Mn

n!
. It was shown in class that this sum always converges. In

fact, we have the following theorem.

Theorem 12 Pt = etQ is a stochastic matrix if, and only if, Q is a Q-matrix. In this case, we have

(i) Ps+t = PsPt.

(ii) Pt is the unique solution to d
dt
Pt = PtQ, and d

dt
Pt = QPt, with initial condition P0 = I.

(iii) ( d
dt

)kPt

∣∣∣
t=0

= Qk.

A right-continous stochastic process on I is one for which, for a.s. ω, if we choose any t ≥ 0 then
Xt(ω) = Xs(ω) for t ≤ s ≤ t+ε for some ε > 0. A continuous time Markov chain with initial distribution
λ and generator matrix Q, written Xt ∼Markov(λ,Q), is a right-continous stochastic process on I with
Xt ∼ λ and transitions governed by Q. To see how the transitions work, let qi =

∑
j∈I,j 6=i qij, and define

the jump matrix M by

mij =

{ qij
qi

if qi 6= 0

0 if qi = 0
for i 6= j(11)

mii =

{
0 if qi 6= 0
1 if qi = 0

(12)

If we let J0, J1, J2, . . . be the jump times of Xt, that is, J0 = 0, Jn = inf{t ≥ Jn−1 : Xt 6= XJn−1}, then the
jump chain Yn = XJn is a discrete time Markov chain with transition matrix M , and if Sn = Jn − Jn−1
are the holding times then conditional on Y0, . . . , Yn−1, S1, . . . Sn are independent exponential random
variables with parameters q(Y0), . . . , q(Yn−1). In fact, if we set Pt = etQ as before then the distribution
of Xt is λPt, giving the reason for the importance of the semigroup property contained in Theorem 12.
We say that Xt doesn’t explode if Jn ↗∞ a.s. as n −→∞. The following tells us when this happens.

Proposition 5 Let Xt ∼Markov(λ,Q). Then Xt doesn’t explode if any of the following hold.

(i) I is finite.

(ii) supi∈I qi <∞.

(iii) X0 = i, and i is recurrent for the jump chain Yn.
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Continuous time Markov chains possess many of the properties of discrete time Markov chains, or close
analogues. In particular, we have the following core results.

Theorem 13 (Strong Markov property) Suppose Xt ∼Markov(λ,Q), and let τ be a stopping time
for Xt. Then, conditioned on τ <∞ and Xτ = i, Yt = Xτ+t is Markov(δi, Q), where δi is the distribution
putting mass 1 on the point i. Furthermore, Yt is independent of Fτ .

We define a point i ∈ I to be recurrent if Pi({t : Xt = i} is unbounded) = 1, and transient if Pi({t : Xt =
i} is unbounded) = 0. Then

Theorem 14 For each i ∈ I, i is either recurrent or transient. In particular, if we let Ti = inf{t ≥ J1 :
Xt = i}, then

• if qi = 0 or Pi(Ti <∞) = 1, then i is recurrent and
∫∞
0
pii(t)dt =∞.

• if qi > 0 and Pi(Ti <∞) < 1, then i is transient and
∫∞
0
pii(t)dt <∞.

A distribution λ is invariant for Xt if λQ = 0.

Proposition 6 The following are equivalent.

(i) λ is invariant.

(ii) µM = µ, where M is the jump matrix of Xt, and µi = λiqi.

(iii) λPt = λ for all t ≥ 0, where Pt = etQ.

In light of Theorem 14, we say that i ∈ I is positive recurrent if Ei[Ti] < ∞, and null recurrent if i is
recurrent and Ei[Ti] =∞. We then have

Theorem 15 Let Xt be an irreducible continuous time Markov chain. Then the following are equivalent.

(i) Every i ∈ I is positive recurrent.

(ii) Some i ∈ I is positive recurrent.

(iii) Xt is non-explosive and has a unique stationary distribution given by πi = 1
qiEi[Ti]

.

In this case, P (Xt = i) −→ πi as t −→∞, regardless of the distribution of X0.
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