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Abstract

Information Extraction (IE) has become an indispensable tool in our quest to handle the

data deluge of the information age. IE can broadly be decomposed into Named-entity

Recognition (NER) and Relation Extraction (RE). In this thesis, we view the task of

IE as finding patterns in unstructured data, which can either take the form of features

and/or be specified by constraints. In NER, we study the categorization of complex rela-

tional1 features and outline methods to learn feature combinations though induction. We

demonstrate the efficacy of induction techniques in learning : i) rules for the identifica-

tion of named entities in text — the novelty is the application of induction techniques to

learn in a very expressive declarative rule language ii) a richer sequence labeling model

— enabling optimal learning of discriminative features. In RE, our investigations are in

the paradigm of distant supervision, which facilitates the creation of large, albeit noisy

training data. We devise an inference framework in which constraints can be easily spec-

ified in learning relation extractors. In addition, we reformulate the learning objective in

a max-margin framework. To the best of our knowledge, our formulation is the first to

optimize multi-variate non-linear performance measures such as Fβ for a latent variable

structure prediction task.

1Terminology is borrowed from logic, where relational logic is more powerful than propositional logic

with the inclusion of quantifiers, but is a subset of first-order logic

v
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Chapter 1

Introduction

Most of the content that we come across in the digital media in the form of emails, blogs,

webpages, enterprise data and so on are authored in natural language and have very

little structure. With the dawn of the information age, we produce a colossal amount

of unstructured data every day. This presents an enormous challenge for machines to

process, curate, search and reason in such data.

The process of automatically identifying and disambiguating entities, their

attributes and relationships in unstructured data sources is termed as Information

Extraction (IE). IE facilitates a rich and structured representation of data, enabling

downstream applications to process unstructured documents in a manner similar to a

standard database. The richness present in natural language text, presupposition of

world knowledge, and the rapid rate of content creation makes IE a highly challenging

task. As a result, it has been a very active area of research in the computational

linguistics community since over two decades (Sarawagi, 2008).

1.1 Information Extraction : Challenges

Consider the snippets of news articles in Figure 1.1. The spans of text in boldface and

italics are named-entities and relations mentioned in these text snippets, respectively.

IE is a pre-processing step that annotates a given piece of text with the entities and

relationships or creates a table – similar to a standard database – and populates it with

the tuples of the facts extracted (shown on the right, in Figure 1.1). This facilitates the

processing of unstructured data by text processing applications in a manner similar to

that of standard database applications.

1



Figure 1.1: Text Snippets and Facts Extracted

A few of the challenges in IE are listed below (with illustrative examples wherever

appropriate)

• Manual development and customization of rules, although shown to be very effective,

are complex and labor-intensive tasks (Chiticariu et al., 2013).

• Entity Disambiguation: For example, Jeff Bezos and Bezos refer to the same

entity. However, Washington could be a city, a state, or a person, depending on the

context (Bunescu and Pasca, 2006; Kulkarni et al., 2009).

• Scope resolution: Certain entities such as Washington in “Washington Post” should

not be labeled as a location name because the entire textual span is an organization

name (Chiticariu et al., 2010b).

• Type Disambiguation: An entity, which is generally a location, in some contexts

is an organization. For example, in the sentence, “England beat Australia 2 – 0,”

England and Australia are sports organizations1 (Chiticariu et al., 2010b).

• Creation of a large labeled training dataset for relation extraction is a costly affair.

Existing hand-curated databases (for example, Freebase) can be leveraged (Mintz

1It can be argued that they are teams representing the countries. But the point is that there exists

an ambiguity as to the type of the entity.
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Figure 1.2: Patterns as Feature Combinations

et al., 2009; Riedel et al., 2010). However, this process presents a different set of

challenges (a few of them mentioned below).

• Temporal Validity: Some database facts may not be currently valid. For example,

Prime Minister(Manmohan Singh, India)2.

• Relation mention detection: All sentences that contain an entity pair need not

express the same relation that is present in the database. For instance, the co-

occurrence of Obama and US in a sentence is not a sure indication that the President

relation is expressed in it (Hoffmann et al., 2011; Surdeanu et al., 2012).

1.2 Overview of Thesis Contributions

The problem of IE can be viewed as that of finding patterns in data. These patterns can

either take the form of features and/or can be specified as constraints on the search space.

2Some database facts are context dependent — both on time and type of relation. Temporal informa-

tion extraction is an important area of research in the community (http://l2r.cs.uiuc.edu/Talks/

TIETutorial_Final.pdf).
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Figure 1.3: Patterns as Constraints

Data-driven Patterns : Feature Combinations

Let us suppose that we are given a set of basic features (for example, Caps - a capitalized

token; LastName - occurrence in a dictionary of last-names). Named-entities can be dis-

covered by learning combinations of such features. For instance, “if a span of text contains

two tokens, Caps followed by LastName, then it is most probably a person named-entity”.

We consider the previous statement as a pattern, leading to a named-entity.

Figure 1.2 depicts some of the basic features, a number of patterns (basic feature

combinations) and the entities in text that can potentially match with these patterns.

Named-entity recognition (NER) can immensely benefit from such patterns, some of

which are domain-specific and others, domain-independent. Several patterns are non-

trivial combinations of basic features. For instance, “if a location name overlaps with

an organization, then it is not a location named-entity”. (for example, Washington in

Washington Post). Such patterns are called as relational features.

In this thesis, we study the categorization of relational feature classes. We also

define various methods to learn feature combinations through induction. The features

induced are consumed by a rule-based NER system to learn compact and “interpretable”

rules that have reasonable accuracy. We also demonstrate the use of these features in

max-margin based sequence labeling models.
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User-Specified Patterns : Constraints

Consider the problem of identifying relationships between entities in text. Here we can

look at patterns as constraints that need to be enforced on the extracted relations. Some

of these are listed in Figure 1.3. They are few compared to the entity-recognition case

and can be specified by the user to restrict the search space.

For instance, we would like to enforce the following constraint: For a Prime Minister

relation, the first argument has to be a person and the second argument has to be a

country.

In this thesis, we look at a specific paradigm of relation extraction called distant

supervision (Mintz et al., 2009). The goal is to learn relation extraction models by aligning

facts in a database (Figure 1.3) to sentences in a large unlabeled corpus. Since the

individual sentences are not hand labeled, the facts in the database act as “weak” or

“distant” labels, and hence, the learning scenario is termed as “distantly supervised”. We

look at ways in which constraints can be specified while learning relation extractors in

this setting. We formulate an integer linear programming-based framework to facilitate

the addition of constraints.

Existing distant supervision-based systems are often trained by optimizing perfor-

mance measures (such as conditional log-likelihood or error rate) that are not directly

related to the task-specific non-linear performance measure, for example, the F1-score.

We present a novel max-margin learning approach to optimize non-linear performance

measures for distantly supervised relation extraction models. Our approach can be more

generally applied to a class of models that contain latent variables, quite prevalent in

natural language processing.

1.3 Learning for Named-Entity Extraction

Several problems in Machine Learning are immensely benefited from a rich structural

representation of the data (Flach and Lachiche, 1999; Roth and Yih, 2001). Specifically,

the tasks in IE are relation-intensive and the usage of relational features has been shown

to be quite effective in practice (Califf, 1998; Roth and Yih, 2001). In this section, we

define categories of predicates and discuss the complexity-based classification of relational

features followed by techniques to induce features in several of these categories.
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Feature Space Categorization

The relational features are in a language that is similar to first order definite clauses in

expressive power (Horn, 1951). Predicates are defined on textual spans. The combinations

of predicates (clauses) can be viewed as rules of the form of “if condition(s) then decision”.

decision :- condition1 ∧ condition2 . . . ∧ conditionn

The head predicate (decision) is the class label of a textual span. We define two

types of body predicates (conditioni), namely, relation and basic feature predicates. A

relation predicate is a binary predicate that represents the relationship between two spans

of text. For example, overlaps(X,Y). A basic feature predicate is an assertion of a situation

or a property of a span or a sub-span. For example, FirstName(X) states that the span

of text X occurs in a dictionary of first names. We illustrate each of these feature classes

with an example of a typical definite clause that belongs to the feature class.

1. Simple Conjuncts (SCs): are simple conjunctions of basic features.

Org(X) :- OrgGazeteer(X),CapsWord(X).

2. Candidate Definition Features (CDs): These consist of the following two feature

classes.

(a) Absolute Features (AFs): non-overlapping evidence predicates chained by

relation predicates.

person-AF(X) :- contains(X, X1), FirstNameDict(X1),

CapsWord(X1), before(X1,X2), contains(X, X2), CapsWord(X2).

(b) Composite Features (CFs): Defined as a conjunction of two AFs that

share the same head predicate.

person(X) :- person-AF (X), leftContext(X, 1, L2),

Salutation(L2).

3. Candidate Refinement Features (CRs): The body of the clause is defined by

head predicates that belong to different class labels, and can contain negations in

the body (hence, not a definite clause)

Loc(X) :- Loc1(X),org1(Y),¬overlaps(X,Y).

A span of text is a location, “if it matches a location feature and does not overlap
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Figure 1.4: Phases of Rule Induction

with an organization feature”. For example, due to this feature, Washington in

“Washington Post” will not be marked as a location.

These feature classes are described in detail in Chapter 2.

1.3.1 Feature Induction in a Rule-based Setting

Rule-based systems for NER achieve state-of-the-art accuracies (Chiticariu et al., 2010b).

However, manually building and customizing rules is a complex and labor-intensive pro-

cess. In this work, we outline an approach that facilitates the process of building cus-

tomizable rules for NER through rule induction. Given a set of basic feature predicates

and an annotated document collection, our goal is to generate with reasonable accuracy

an initial set of rules that are interpretable, and thus, can be easily refined by a human

developer. Our contributions include (i) an efficient rule induction process in a declar-

ative rule language, (ii) usage of induction biases to enhance rule interpretability, and

(iii) definition of extractor complexity as a first step to quantify the interpretability of

an extractor. We present initial promising results with our system and study the effect

of induction bias and customization of basic features on the accuracy and complexity of

induced rules. We demonstrate through experiments that the induced rules have good

accuracy and low complexity according to our complexity measure.

Our induction system is modeled on a four-stage manual rule development process,

since the overall structure of the induced rules must be similar in spirit to that which a

developer who follows best practices would write. The stages of rule development and

7



Figure 1.5: RLGG of an example pair

the corresponding phases of induction are summarized in Figure 1.4. In our system, we

combine several induction techniques such as relative least general generalization (RLGG),

iterative clustering, and propositional rule learning in order to induce NER rules in a

declarative rule language known as Annotation Query Language (AQL).

A brief overview of the salient aspects of our induction system is presented in the

following paragraphs.

Background Knowledge. We represent each example in the form of first order definite

clauses, in conjunction with relevant background knowledge. This background knowledge

will serve as the input to our induction system.

Clustering and RLGG. The first phase of induction uses a combination of clustering

and relative least general generalization (RLGG) techniques (Nienhuys-Cheng and Wolf,

1997; Muggleton and Feng, 1990). Using clustering, we group the examples based on the

similarity of their background knowledge. This process is interleaved by RLGG where we

take a set of examples and find their generalization that is analogous to the least upper

bound. We recursively find pairwise-RLGGs of all examples in a cluster. At the end of

this phase, we have a number of CD features.

The representation of an example and the RLGG procedure is shown in Figure 1.5.

Propositional Rule Learning. In the second phase, we begin by forming a structure

known as the span-view table. Broadly speaking, this is an attribute-value table formed

by all the features induced in the first phase along with the textual spans generated by

them. The attribute-value table is used as input to a propositional rule learner such as

JRIP to learn accurate compositions of a useful subset (as determined by the learning

8



algorithm) of the CD features. This forms the second phase of our system. The rules

learned from this phase are in the space of CR features.

Induction Biases. At various phases, several induction biases are introduced to enhance

the interpretability of rules. These biases capture the expertise gleaned from manual rule

development and constrain the search space in our induction system.

Extractor Complexity. Since our goal is to generate extractors with manageable com-

plexity, we must introduce a quantitative measure of extractor complexity, in order to (1)

judge the complexity of the extractors generated by our system, and (2) reduce the search

space considered by the induction system. To this end, we define a simple complexity

score that is a function of the number of rules, and the number of predicates in the body

of each rule of the extractor.

AQL and SystemT : Advantages. The hypothesis language of our induction system

is AQL, and we employ SystemT as the theorem-prover. SystemT provides a very fast

rule execution engine and is crucial to our induction system because we test multiple

hypotheses in the search for the more promising ones. AQL provides a very expressive rule

representation language that has proven to be capable of encoding all the paradigms that

any rule-based representation can encode (Chiticariu et al., 2011). The dual advantages

of rich rule-representation and execution efficiency are the main motivations behind our

choice.

We experimented with three different starting sets of basic feature predicates (with

increasing accuracy and complexity) and observed that the complexity of the final set of

induced rules is directly proportional to that of the initial set, both in terms of accuracy

and complexity. We compared our induced set of rules with the manual rules. We achieve

up to 75% accuracy of the state-of-the-art manual rules with a decrease in extractor

complexity of up to 61%.

1.3.2 Feature Induction in a Max-margin Setting

In this piece of work, we view the problem of NER from the perspective of sequence

labeling. The goal is to investigate the effectiveness of using relational features in the

input space of a max-margin based sequence-labeling model. Our work is based on

StructSVM Tsochantaridis et al. (2004) and StructHKL (Nair et al., 2012b) formula-

tions. We propose two techniques to learn a richer sequence-labeling model by using the
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relational features discussed above.

In one technique, we leverage the StructHKL system to learn optimal conjunc-

tions (that is SCs) of basic feature predicates. In another technique, we enumerate a

good set of CDs using existing induction techniques (such as RLGG and clustering) and

use them as features in a StructSVM learning algorithm.

Our experiments in sequence labeling tasks reinforce the importance of induction

bias and the need for interpretability to achieve high-quality NER rules, as observed in

the experiments of our previous work on rule induction.

1.4 Learning for Relation Extraction

In the second part of the thesis, we investigate another important problem in IE, namely,

relation extraction. The task of extracting relational facts that pertain to a set of en-

tities from natural language text is termed as relation extraction. For example, given a

natural language sentence, “On Friday, President Barack Obama defended his adminis-

tration’s mass collection of telephone and Internet records in the United States”, we can

infer the relation, President(Barack Obama, United States) between the entities Barack

Obama and United States.

Our framework is motivated by distant supervision for learning relation extraction

models (Mintz et al., 2009). Prior work casts this problem as a multi-instance multi-

label learning problem (Hoffmann et al., 2011; Surdeanu et al., 2012). It is multi-instance

because for a given entity pair, only the label of the bag of sentences that contains both

entities (or mentions) is given. It is multi-label because a bag of mentions can have

multiple labels. The inter-dependencies between relation labels and (hidden) mention

labels are modeled by a Markov Random Field (Figure 5.1) (Hoffmann et al., 2011).

Formally, the training data is D := {(xi,yi)}
N
i=1 where xi ∈ X is the entity-pair,

yi ∈ Y denotes the relation labels, and hi ∈ H denotes the hidden mention labels.

The possible relation labels for the entity pair is observed from a given knowledge base.

If there are L candidate relation labels in the knowledge base, then yi ∈ {0, 1}
L, (for

example, yi,ℓ is 1 if the relation ℓ is licensed by the knowledge-base for the entity pair)

and hi ∈ {1, .., L, nil}
|xi| (that is, each mention realizes one of the relation labels or nil).

10



Figure 1.6: Graphical model for Distantly Supervised Relation Extraction.

1.4.1 Relaxed Distant Supervision

Various models have been proposed in recent literature to align the facts in the database

to their mentions in the corpus. In this work, we discuss and critically analyze a popular

alignment strategy called the “at least one” heuristic. We provide a simple, yet effective

relaxation to this strategy.

Our work extends the work by Hoffmann et al. (2011). We formulate the inference

procedures in training as integer linear programming (ILP) problems and implement the

relaxation to the “at least one” heuristic through a soft constraint in this formulation.

This relaxation is termed as “noisy-or”. The idea is to model the situation in which a

fact is present in the database but is not instantiated in the text.

Empirically, we demonstrate that this simple strategy leads to a better performance

under certain settings when compared to the existing approaches. Additionally, our in-

ference formulation enables us to model additional types of constraints such as selectional

preferences of arguments.

1.4.2 Distant Supervision in a Max-margin Setting

Rich models with latent variables are popular in many problems in natural language

processing. For instance, in IE, one needs to predict the relation labels that an entity-pair

can take based on the hidden relation mentions, that is, the relation labels for occurrences

of the entity pair in a given corpus (as illustrated in Figure 5.1). These models are often

trained by optimizing performance measures (such as conditional log-likelihood or error

rate) that are not directly related to the task-specific non-linear performance measure,

for example, the F1-score. However, better models may be trained by optimizing the
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task-specific performance measure, while allowing latent variables to adapt their values

accordingly.

Large-margin methods have been shown to be a compelling approach to learn rich

models detailing the inter-dependencies among the output variables. Some methods

optimize loss functions decomposable over the training instances (Taskar et al., 2003;

Tsochantaridis et al., 2004) compared to others that optimize non-decomposable loss

functions (Ranjbar et al., 2013; Tarlow and Zemel, 2012; Rosenfeld et al., 2014; Keshet,

2014). They have also been shown to be powerful when applied to latent variable models

when optimizing for decomposable loss functions (Wang and Mori, 2011; Felzenszwalb

et al., 2010; Yu and Joachims, 2009).

In this work, we describe a novel max-margin learning approach to optimize non-

linear performance measures for distantly supervised relation extraction models. Our

approach can be generally used to learn latent variable models under multivariate non-

linear performance measures, such as the Fβ-score.

Our approach involves solving the hard-optimization problem in learning by inter-

leaving the Concave-Convex Procedure with dual decomposition. Dual decomposition

allowed us to solve the hard sub-problems independently. A key aspect of our approach

involves a local-search algorithm that has led to a speed-up of 7,000 times in our experi-

ments over an exhaustive search baseline proposed in previous work (Ranjbar et al., 2012;

Joachims, 2005).

Our work is the first to make use of max-margin training in distant supervision of

relation extraction models. We demonstrate the effectiveness of our proposed method

compared to two strong baseline systems that optimize for the error rate and conditional

likelihood, including a state-of-the-art system by Hoffmann et al. (2011). On several

data conditions, we show that our method outperforms the baseline and results in an

improvement of up to 8.5% in the F1-score.

1.5 Thesis Organization

Our thesis can be summarized as shown in Figure 1.7. The broad theme of each work

and the corresponding chapter/section in the thesis in which it is described, is indicated.

In the named-entity extraction setting, we work in the paradigm of relational feature

space exploration. We describe and categorize relational features in Chapter 2. In Chap-
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Figure 1.7: Thesis Organization

ter 3, we describe our approaches to learn NER rules in this feature space using induction

techniques. Towards the end of this chapter in Section 3.6, we describe our experiments

of employing relational features in max-margin based sequence-labeling models.

Subsequently, we switch gears a bit and describe another important IE task, namely,

relation extraction. Here, our research has been in the paradigm of learning under distant

supervision. In Chapter 4, we discuss a popular alignment strategy in distantly supervised

relation extraction called the “at least one” heuristic. We provide a simple, yet effective

relaxation to this strategy by the addition of constraints in the learning algorithm. Fol-

lowing this, in Chapter 5, we describe a novel max-margin learning approach to optimize

non-linear performance measures for distantly supervised relation extraction models. We

make our concluding remarks with pointers to directions of future research in Chapter 6.
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Part I

Learning for Named Entity

Recognition
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Chapter 2

Relational Feature Space

Several problems in machine learning are immensely benefited from a rich structural

representation of the data (Flach and Lachiche, 1999; Roth and Yih, 2001). Specifically,

the tasks in Information Extraction are relation-intensive and the usage of relational

features has been shown to be quite effective in practice (Califf, 1998; Roth and Yih,

2001).

As outlined in Chapter 1, relational features are in a language that is similar to first

order definite clauses in expressive power (Horn, 1951). Predicates are defined on textual

spans. The combinations of predicates (clauses) can be viewed as rules of the form of “if

condition(s) then decision”.

decision :- condition1 ∧ condition2 . . . ∧ conditionn

In this chapter, we define categories of predicates and discuss the complexity-based

classification of relational features. In Appendix A, we make some claims and provide

simple proofs of the hierarchy of relational features based on their complexity.

Some Definitions

We define a few important concepts that will be used in the rest of the thesis such as

span, predicate, types of predicates, definite clause, and so on.

Definition 2.1. Span: A span is an sequence of characters in natural language text. It

has certain properties and is described by a set of attributes.

For example, in Figure 2.1, John Doe is a span of text represented by X, and is a PERSON

named-entity. It consists of sub-spansX1 andX2 each of which has a number of properties

which are explained below.
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Figure 2.1: Types of Predicates

Definition 2.2. Predicate: A predicate is a property of a span of text.

For example, OrgGazeteer(X) is a predicate, which states that the span of text X is

present in an OrgGazeteer1. A predicate gives rise to features used in our models. The

predicates are composed to form clauses in first-order logic.

Definition 2.3. Clause: A clause is an expression formed from a finite collection of

predicates.

An example is shown at the bottom of Figure 2.1. These clauses can be viewed as

decision rules of the form if condition then decision. The decision part specifies the class

label. The clause consists of a head predicate also called the label predicate (PERSON(X))

and a set of body predicates (composed as conjunctions) that describe the various proper-

ties of the span of text. Predicates that occur in the head are termed positive predicates

and the one in the body are termed as negative predicates.

We define two types of body predicates, namely, relation predicate and basic feature

predicate.

Definition 2.4. Relation Predicate: A relation predicate is a binary predicate that

represents the relationship between spans or between a span and its sub-span.

1A collection of Organization names
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Definition 2.5. Basic Feature Predicate: A basic feature predicate is a unary pred-

icate which denotes an assertion of a situation or a property of a span of text.

The relation and basic feature predicates are similar to the structural and property

predicates respectively in 1BC clauses (Flach and Lachiche, 1999).

The predicates take as arguments textual spans denoted by variables (e.g. X, X1).

A local variable is one that occurs in the body of a clause (does not appear in the head

predicate). In Figure 2.1, X represents the entire textual span. X1 is a local variable

introduced by a relation predicate. A local variable is said to be consumed if it is used

as an argument in any of the basic feature predicates. For instance, in Figure 2.1, X1 is

consumed by CapsWord and FirstNameDict basic feature predicates.

Definition 2.6. Minimal Clause : A minimal clause is one that cannot be constructed

from smaller clauses that do not share common local variables.

A clause with a single boolean predicate as the decision variable, is generally referred

to as a definite clause (Horn, 1951).

Definition 2.7. Definite Clause: A definite clause is one which consists of exactly one

head predicate.

Please refer to Figure 2.1 for an illustrated example of these definitions. We use the terms

features and predicates interchangeably in the thesis.

2.1 Feature Classes

Most of the relational features that we describe in the thesis are in the space of definite

clauses2. Based on the degree of expressive power, we categorize relational features as

simple conjuncts (SC), candidate definition features (CD), and candidate refinement fea-

tures (CR). Candidate definition features (CD) are in turn sub-categorized into absolute

features (AF), primary features (PF), and composite features (CF).

Simple Conjuncts (SC):

SCs are simple conjunctions of basic features (including unary conjunctions) of a single

textual span. In other words, SCs are conjunctions of only basic feature predicates.

Figure 2.2 provides an illustrative example.

2Although Candidate Refinement Feature is not a definite clause
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Figure 2.2: Simple Conjunct (SC)

Candidate definition features (CD)

Combinations of basic feature predicates along with relation predicates are termed as

CDs. They encodes sequence information that is quite prevalent in IE tasks. CDs are

turn sub-categorized into:

1. Absolute CD Features (AF)

2. Primary CD Features (PF)

3. Composite CD Features (CF)

Each of these is elaborated below.

Absolute CD Features (AF):

In an absolute feature, new local variables can be introduced only in a relation predicate.

Any number of relation and basic feature predicates can be conjoined to form an AF ,

such that, the resultant AF is minimal and the local variables introduced in the relation

predicates are (transitively) consumed by some basic feature predicates.

Unlike the 1BC clauses, any number of new local variables can be introduced in

a relation predicate. Figure 2.3 depicts an AF . Note that this feature class does not

contain contextual clues, in contrast to CF (defined below).

Primary CD Features (PF):

Primary features are AFs in which a new local variable introduced is consumed only

once34. In other words, in a PF , every relation predicate has only one basic feature

predicate. An illustration is provided in Figure 2.4.

3
This is similar to elementary features in (Flach and Lachiche, 1999) except that elementary features allow only one new local variable

in a structural predicate.

4
PFs are different from simple clauses (McCreath and Sharma, 1998), as a simple clause allows a local variable to be unconsumed.
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Figure 2.3: Absolute Feature (AF)

Figure 2.4: Primary Feature (PF)

Composite CD Features (CF):

Composite Features are features formed by the conjunction of one or more AFs without

anti-unification 5 of body literals. Only the head predicates are unified. As in AFs, every

local variable introduced in a relational predicate should be consumed by other relation

or basic feature predicates.

Figure 2.5 illustrates a CF . Note that a CF includes additional contextual clues like

leftContext and Salutation which are predicates over a span of text that is not a part

of the head predicate variable.

Candidate Refinement Features (CRs):

Candidate refinement features are defined using CDs that contain different label predi-

cates. They are used to discard spans output by the CD features that may be incorrect.

Hence it is termed as refinement. An illustration of a CR with an example clause is

5
Anti-unification is the process of constructing a generalization common to two given symbolic expressions. For more details please refer

to https://en.wikipedia.org/wiki/Anti-unification_(computer_science)
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Figure 2.5: Composite Feature (CF)

Figure 2.6: Candidate Refinement Feature (CR)

provided in Figure 2.6. It is read as follows: A span of text is a location, “if it matches a

location feature and does not overlap with an organization feature”. For example, due to

this feature, Washington in “Washington Post” will not be marked as a location.

A CR is not a definite clause since it contains more than one predicate which is

positive as seen from the example.

To summarize, we use the following set of definite clause examples to illustrate the various

feature classes, for easy reference.

1. ORG(X) :- OrgGazeteer(X).

2. ORG(X) :- OrgGazeteer(X), CapsWord(X).

3. ORG(X) :- contains(X, X1), CapsWord(X1).

4. ORG(X) :- contains(X, X1).

5. ORG(X) :- contains(X, X1), CapsWord(X1). FirstNameDict(X1).
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Figure 2.7: Hierarchy of Features

PF ⊂ AF ⊂ CF

SC ⊂ CF

SC + PF +AF + CF = CD

6. PER(X) :- contains(X, X1), CapsWord(X1), contains(X,X2), before(X1,

X2), LastNameDict(X2).

7. PER(X) :- contains(X, X1), FirstNameDict(X1), CapsWord(X1),

before(X1,X2), contains(X, X2), CapsWord(X2), leftContext(X, 1, L2),

Salutation(L2).

Clauses 1 and 2 above are SCs. Clauses 1, 3, 5 and 6 above are AFs, whereas, clauses 2

(not minimal), 7 (not minimal) and 4 (since variable X1 is not consumed) are not. Clauses

1, 2, 3, 5, 6 and 7 are CFs, whereas, clause 4 is not. Only clauses 1 and 3 are PFs.

The feature classes defined here form a hierarchy as shown in Figure 2.7. The

relationship among various feature classes are provided in Appendix A.

Figure 2.8 highlights the part presented in this chapter and the accompanying pub-

lications that overlap with the material presented. In the next chapter, we discuss our

techniques to induce relational features for the named-entity recognition task.
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Figure 2.8: Thesis Organization: Chapter 2

22



Chapter 3

Relational Feature Induction in a Rule-based Setting

In the previous chapter, we defined relational features and categorized them into various

classes. In this chapter, we discuss the use of such features for the identification of named-

entities in text. Our focus for the most part of this chapter will be a rule-based setting

for entity extraction. We begin describing the rule-based approach for entity recognition

and highlight its importance and challenges involved.After a brief discussion on rule-based

entity recognition system, SystemT (and its rule language (AQL), we define our notion

of rule complexity in 3.3. We then present our approach for inducing CD and CR rules,

and discuss induction biases that would favor interpretability (Section 3.4) and discuss

the results of an empirical evaluation (Section 3.5). Subsequently, we discuss some of

the shortcomings of our complexity score in fully capturing extractor interpretability.

This is followed by our experiments of using the relational features in max-margin based

sequence-labeling models. In Appendix B we provide more details on SystemT and AQL.

We also define the target language for our induction algorithm in the AQL language in

Appendix C.

3.1 Entity Recognition : A Rule-based Perspective

Named-entity recognition (NER) is the task of identifying and classifying mentions of enti-

ties occurring in text with one or more rigid designators. Rigid designators include proper

names as well as certain natural kind terms like biological species and substances (Nadeau

and Sekine, 2007; Kripke, 1980). For example, identifying proper nouns such as names

of persons, organizations, locations, products, brands, chemicals, proteins, and so on fall

under the purview of the NER task.
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System Dataset Fβ=1

Generic Customized

GATE ACE2002 57.8 82.2

ACE 2005 57.32 88.95

SystemT CoNLL 2003 64.15 91.77

Enron 76.53 85.29

Table 3.1: Accuracies of rule-based NER systems

NER is a very challenging task because it presupposes world knowledge (in some

cases, deep domain knowledge) to determine whether a given span of text is indeed a

named-entity and to identify its type. Since the body of human knowledge is increasing

at a rapid pace, new terminologies are constantly added to our lexicon. This necessitates

the design of systems that can automatically identify such entities in text. NER systems

discussed in literature roughly fall under three categories :

1. Rule-based systems. (Krupka and Hausman, 1998; Sekine and Nobata, 2004; Patel

et al., 2010; Riloff, 1993; Soderland, 1999; Califf and Mooney, 1999, 1997; Reiss

et al., 2008; Chiticariu et al., 2010b)

2. Statistical or Machine Learning-based systems. (Bender et al., 2003; Florian et al.,

2003; McCallum and Li, 2003; Finkel and Manning, 2009; Singh et al., 2010)

3. Hybrid solutions (Srihari et al., 2000; Jansche and Abney, 2002)

Generic NER rules have been shown to work reasonably well out-of-the-box, and

with further domain customization (Chiticariu et al., 2010b), achieve quality that sur-

passes state-of-the-art results obtained with statistical approaches.

Table 3.1 summarizes the quality of NER rules out-of-the-box and after domain cus-

tomization in the GATE (Cunningham et al., 2011) and SystemT (Chiticariu et al., 2010a)

systems, as reported in Maynard et al. (2003) and Chiticariu et al. (2010b), respectively,

on several domains.
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While statistical approaches have their own advantages, rule-based systems are still

widely used in enterprise settings for two main reasons: explainability and customizabil-

ity. Rules are transparent, which leads to better explainability of errors. One can easily

identify the cause of a false positive or negative, and refine the rules without affecting

other correct results identified by the system. Furthermore, an IE developer can under-

stand rules more easily; they can also be customized for a new domain without requiring

additional labeled data.

3.1.1 Building Blocks of NER rules

Typically, a rule-based NER system consists of a combination of four categories of

rules (Chiticariu et al., 2010b). Along with the description of these categories, we also

map these rule categories to the feature class hierarchy discussed in Chapter 2, (when

appropriate).

1. Basic Features (BF) rules to identify components of an entity, such as, first name

and last name. These correspond to the basic feature predicates in the feature class

hierarchy.

2. Candidate definition (CD) rules to identify complete occurrences of an entity by

combining the output of multiple BF rules, for example, first name followed by last

name is a person candidate. These correspond to the Candidate Definition features.

They encompass all types of Candidate Definition features, namely, Primary CD

features, Absolute CD features (without context), and Composite CD features (with

context).

3. Candidate refinement (CR) rules to refine candidates generated by CD rules. For ex-

ample, discard candidate persons contained within organizations. These correspond

to refinement features in the feature hierarchy.

4. Consolidation rules (CO) to resolve overlapping candidates generated by multiple

CD and CR rules.

3.1.2 Annotator Development Lifecycle

Developing named-entity recognition rules with high accuracy and coverage is an iterative

and labor-intensive process. This process is broadly divided into three phases: develop-
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ment, testing and analysis (Chiticariu et al., 2011). We call this annotator development

lifecycle, and depict this process in Figure 3.1. These phases involve the following six

stages:

1. Definition of basic features such as dictionaries and regular expressions.

2. Development of an initial set of rules that combine these basic features to generate

candidates rules.

3. Development of filtering rules and other candidate refinement rules.

4. Consolidation of rules, within a single type, and across types.

5. Examination of the output of the rules: error identification (false positives and false

negatives), and analysis.

6. Iterative refinement of the features and rules developed in previous steps until the

desired quality of the extractor is reached.

Figure 3.1: Annotator Development Lifecycle

The process is highly iterative as the requirements of the annotator keeps changing

frequently.The involvement of the developers is crucial in the entire process. A detailed

explanation of the stages mentioned above including the challenges involved in them is

presented in Chiticariu et al. (2010b) and Liu et al. (2010).
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Automating all or at-least some of these stages is extremely desirable. However, it is

imperative that this be accomplished with a human in the loop, for the following reasons:

(i) to avoid overfitting, (ii) to keep the rules simple and easy to maintain, and (iii) to

produce rules that generalize well outside the corpus when appropriate (for example, go

from a few examples of sports-team names, to a complete dictionary of sports teams).

A well-known drawback that influences the adoptability of rule-based NER systems

is the manual effort required to build the rules. A common approach to address this

problem is to build a generic NER extractor, and, then customize it for specific domains.

While this approach partially alleviates the problem, substantial manual effort (in the

order of several person weeks) is still required for the two stages, as reported in Maynard

et al. (2003) and Chiticariu et al. (2010b). In this Chapter, we present our research

work towards facilitating the process of building a generic NER extractor using induction

techniques.

3.1.3 Problem Statement and Research Contributions

The input to our system is an annotated document corpus (annotated with named entities

– PER, ORG and LOC), a set of basic feature predicates and a default CO rule for each

entity type. Our goal is to induce a set of CD and CR features, such that the resulting

extractor constitutes a good starting point for further refinement by a developer. Since

the generic NER extractor has to be manually customized, a major challenge is to ensure

that the induced rules have good accuracy, and at the same time, that they are not too

complex, and consequently interpretable. Intuitively, an extractor that consists of too

many rules, or has rules that are very complex or have complex interdependencies is

difficult to understand, refine or customize. The main contributions in this work are

1. An efficient system for NER rule induction, using a highly expressive rule language

(AQL) as the target language. The first phase of rule induction uses a combination

of clustering and relative least general generalization (RLGG) techniques to learn

CD features. The second phase identifies CR features using a propositional rule

learner such as JRIP to learn accurate compositions of CD features.

2. The use of induction biases to enhance the interpretability of the induced rules.

These biases capture the expertise gleaned from manual rule-development and con-
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strain the search space in our induction system.

3. Definition of an initial notion of extractor complexity to quantify the interpretability

of an extractor, and to guide the process of adding induction biases in order to

favor learning less complex extractors. This is to ensure that the rules are easily

customizable by the developer.

3.1.4 Comparison to Related Work in Induction

Existing approaches to rule induction for Information Extraction focus on rule-based

systems based on the cascading grammar formalism exemplified by the Common Pat-

tern Specification Language (CPSL) (Appelt and Onyshkevych, 1998), in which rules are

specified as a sequence of basic features that describe an entity, with limited predicates in

the context of an entity mention. Patel et al. (2010) and Soderland (1999) elaborate on

top-down techniques for induction of IE rules, whereas, Califf and Mooney (1997, 1999)

discuss a bottom-up IE rule induction system that uses the relative least general gener-

alization (RLGG) of examples1. However, in all these systems, the expressivity of the

rule-representation language is restricted to capturing sequence information. Contextual

clues and higher-level rule interactions such as filtering and join are very difficult, if not

impossible, to express in such representations without resorting to custom code 2. Learn-

ing higher-level interactions between rules has received little attention. Our technique for

learning higher-level interactions is similar to the induction of ripple down rules (Gaines

and Compton, 1995), which, to the best of our knowledge, has not been previously applied

to IE. A framework for refining AQL extractors based on an annotated document corpus

has been described in Liu et al. (2010). We present complementary techniques to induce

an initial extractor that can be automatically refined in this framework.

3.2 SystemT and AQL

SystemT is a declarative Information Extraction system based on an algebraic framework.

In SystemT, developers write rules in an SQL-like language called Annotation Query

1Our work also makes use of RLGGs but computes these generalizations for clusters of examples,

instead of pairs.
2Please refer to Section B of the Appendix for more details.
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Language (AQL). To represent annotations in a document, AQL uses a simple relational

data model with three types, namely:

1. Span: A region of text within a document identified by its “begin” and “end”

positions.

2. Tuple: A fixed-size list of spans.

3. Relation, or View: A multi-set of tuples, where every tuple in the view must be of

the same size.

A simple example of an AQL statement is given below. It is an extract statement3 defined

on the Document view. It uses the regex AQL construct to extract simple candidate

person name tokens from Document.

create view CapsPerson as

extract

regex /[A-Z](a-zA-Z|-)*/

on D.text as caps

from Document D;

Internally, SystemT compiles an AQL extractor into an executable plan in the form

of a graph of operators. The formal definition of these operators takes the form of an

algebra (Reiss et al., 2008), that is similar to relational algebra, but with extensions for

text processing. The decoupling between AQL and the operator algebra allows for greater

rule expressivity because the rule language is not constrained by the need to compile to a

finite state transducer, such as in grammar systems based on the CPSL standard. In fact,

join predicates such as Overlaps, as well as filter operations (minus) are extremely difficult

to express in CPSL systems such as GATE without an escape to custom code (Chiticariu

et al., 2010b). In addition, the decoupling between the AQL specification of “what”

to extract from “how” to extract it, allows greater flexibility in choosing an efficient

execution strategy among the many possible operator graphs that may exist for the same

AQL extractor. Therefore, extractors written in AQL achieve a throughput that is orders

of magnitude higher than traditional rule-based systems (Chiticariu et al., 2010a).

3The main types of statements in AQL are briefly described in Appendix B
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3.3 Extractor Complexity

Since our goal is to generate extractors with manageable complexity, we must introduce

a quantitative measure of extractor complexity, in order to:

• Judge the complexity of the extractors generated by our system; and

• Reduce the search space considered by the induction system

To this end, we define a simple complexity score that is a function of the number of

rules, and the number of predicates in the body of a rule. In particular for AQL constructs

the complexity is the number of input views to each rule of the extractor4. We define the

length of rule R, denoted as L(R), as the number of input views in the from clause(s) of

the view. For example, in Figure B.1, we have L(R4) = 2 and L(R5) = 3, since R4 and

R5 have two, and respectively, three views in the from clause. Furthermore, L(R8) = 2

since each of the two inner statements of R8 has one from clause with a single input view.

The complexity of BF rules (for example, R1 to R3) and CO rules (for example, R9) is

always 1, since these types of rules have a single input view. We define the complexity

of extractor E, denoted as C(E) as the sum of lengths of all rules of E. For example,

the complexity of the Person extractor from Figure B.1 is 15 plus the length of all rules

involved in defining Organization, which are omitted from the figure.

Our simple notion of rule length is motivated by existing literature in the area

of database systems (Abiteboul et al., 1995), where the size of a conjunctive query is

determined only by the number of atoms in the body of the query (for example, items

in the FROM clause); it is independent on the number of join variables (that is, items

in the WHERE clause), or the size of the head of the query (for example, items in the

SELECT clause). As such, our notion of complexity is rather coarse, and we shall discuss

its shortcomings in detail in Section 3.5.3. However, we shall show that the complexity

score significantly reduces the search space of our induction techniques, leading to simpler

and smaller extractors, and therefore constitutes a good basis for more comprehensive

measures of interpretability in the future.

4Since the target language of rule induction is AQL, we have defined complexity using AQL constructs.

Please refer to Figure B.1 in Appendix B for the details.
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Figure 3.2: Correspondence between Manual Rule development and Rule Induction.

3.4 Methodology : Process of Rule Induction

Since the goal is to generate rules that can be customized by humans, the overall structure

of the induced rules must be similar in spirit to that which a developer who follows best

practices would write. Hence, the induction process is divided into multiple phases. Fig-

ure 3.2 shows the correspondence between the phases of induction and the types of rules.

In Table C.1 (Appendix C), we summarize the phases of our induction algorithm, along

with the subset of AQL constructs that comprise the language of the rules learned in that

phase, the possible methods prescribed for inducing the rules and their correspondence

with the stages in the manual rule development.

Our induction system generates rules for two of the four categories, namely CD and

CR rules, as highlighted in Figure 3.2. We assume that we are given the BFs in the form

of dictionaries and regular expressions. Prior work on learning dictionaries (Riloff, 1993)

and regular expressions (Li et al., 2008) could be leveraged to semi-automate the process

of defining the basic features.

The overall architecture of the system is shown in Figure 3.3. Next, we discuss our

induction procedure in detail.
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Figure 3.3: System Diagram with details and illustrative examples.

3.4.1 Basic Features and Background Knowledge

We assume that we are provided with a set of dictionaries and regular expressions to

define all our basic features (basic feature predicates defined in Chapter 2)5 These basic

5They are defined using create view statements in AQL. R1, R2 and R3 in Figure B.1 of appendix are

such basic view definitions.
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Figure 3.4: Background Knowledge Creation

views are compiled and executed in SystemT over the training document collection, and

the resulting spans are represented by equivalent predicates in first order logic.

Essentially, each training example is represented as a definite clause that includes

in its body the basic view-types encoded as background knowledge predicates. To es-

tablish relationships between different background knowledge predicates for each training

example, we define relation predicates, discussed in Chapter 2. Some examples of such

predicates are contains, equals and before.

This process is illustrated with an example in Figure 3.4. The training instance is

<PER> M. Waugh </PER>, and the basic views return the spansM. (initialView),Waugh

(capsPerson) and Waugh (lastName). The resultant background knowledge predicates

is shown in the textbox at the bottom of Figure 3.4.

We observed there is some semantic overlap between the basic features of different

types (PER, ORG, LOC). This is especially true for regular expression-based features. As

a result of this, there might be some generalizations that contain non-intuitive composi-

tions of basic features (For example, a person generalization will contain an organization

regular expression.) To enhance rule interpretability, we partition the set of dictionaries

and regular expressions across the entity types. This way, all CD rules for the person

annotator will invoke only dictionaries and regular expressions that have been specifically

set aside for induction for the person type, and likewise for each of the other types.
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Figure 3.5: Clustering of Examples

3.4.2 Induction of Candidate Definition Features

Clustering Module

Named entities of a particular type can be categorized into a set of paradigms by virtue

of their surface patterns in natural language text. For instance, in the case of person

entities, a few of such patterns are listed below:

• <FirstName> <LastName>. e.g. Mark Waugh ; John Doe

• <Initials> <LastName>. e.g. M. Waugh ; J. Doe

• <LastName> ,<FirstName>. e.g. Waugh, Mark ; Doe, John

• <FirstName> <MiddleName> <LastName>. e.g. Mark Anderson Waugh

It is worthwhile to look at generalizations of instances that are similar. For instance,

two-token person names such as Mark Waugh and Mark Twain have a distinct set of

predicates compared to names that have initials in them as shown in Figure 3.5. However,

we would not be able to generalize a two-token name (for example, Mark Waugh) with

another name consisting of initials followed by a token (for example, M. Waugh). Such

pairing of examples would not generate any meaningful generalization, resulting in a

computational overhead. Given N examples, there would be O(N2) pairs that would

have to be considered for generalization (Muggleton and Feng, 1990). We avoid this

overhead by clustering examples as shown, in Figure 3.5.
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We obtain non-overlapping clusters of examples within each type, by computing

similarities between their representations as definite clauses. The clustering module is

implemented as a wrapper around the hierarchical agglomerative clustering in LingPipe6.

We use a custom similarity function that uses the following information:

• the number of common predicates; and

• the association between different predicates using global co-occurrence.

Specifically, we define the similarity function between two examples ek and ek′ con-

sisting of a set of features
{
eBF1
k , eBF1

k , eBF2
k , . . . , eBFl

k

}
and

{
eBF1

k′ , eBF2

k′ , . . . , eBFm

k′

}
respec-

tively, as follows:

S =
∑

i,j

score
(
eBFi

k , e
BFj

k′

)

where score
(
eBFi

k , e
BFj

k′

)
is defined as the normalized frequency of co-co-occurrence

of features BFi and BFj in the training dataset. In other words, the similarity function

is sum of scores of all feature pairs in the examples considered. Intuitively, this function

brings together examples that have similar set of features occurring in them and therefore

examples which are similar to each other in each cluster.

As a consequence, we look at generalizations only within each cluster. So, clustering

improves the efficiency by reducing the computational overhead apart from providing

meaningful generalizations.

RLGG computation

We compute our CD features as the relative least general generalization

(RLGG) (Nienhuys-Cheng and Wolf, 1997; Muggleton and Feng, 1990) of examples in

each cluster. Given a set of clauses in first order logic, their RLGG is defined as follows:

Definition 3.1. RLGG: The least generalized clause in the subsumption lattice of the

clauses relative to the background knowledge (Nienhuys-Cheng and Wolf, 1997).

It can be proved that in a subsumption lattice over definite clauses, the relative LGG

of two examples with respect to a background knowledge, comprises only ground literals

(as in our case), is the same as the LGG of the corresponding two bottom clauses (Plotkin,

6http://alias-i.com/lingpipe/demos/tutorial/cluster/read-me.html
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Figure 3.6: Relative Least General Generalization

1970). The bottom clause is effectively a join of the background predicates. (See Figure 3.4

for an example.) RLGG is associative, and we use this fact to compute RLGGs of sets

of examples in a cluster. The RLGG of two bottom clauses as computed in our system,

and its translation to an AQL view is illustrated in Figure 3.6. We filter out RLGGs

generated due to sub-optimal clusters and convert the selected RLGGs into the equivalent

AQL views. Each such AQL view is treated as a CD rule. We next discuss the process of

filtering-out such sup-optimal clusters. We interchangeably refer to the RLGGs and the

clusters they represent.

Iterative Clustering and RLGG filtering

Since clustering is sub-optimal, we can expect some clusters in a single run of clustering to

have poor RLGGs — either in terms of complexity or precision. This is often because some

clusters get fragmented. In rule learning literature there is a class of algorithms called

separate-and-conquer (Fürnkranz, 1999), which is an iterative approach to alleviate this

problem. Therefore, we use an iterative clustering approach to generate good clusters. In

each iteration, we pick the clusters with the best RLGGs and remove all examples covered

by those RLGGs. The best RLGGs must have precision and number of examples covered

above a pre-specified threshold. The entire process of iterative clustering and selecting

the best RLGGs is depicted in Figure 3.7.
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Figure 3.7: Iterative Clustering

3.4.3 Induction of Candidate-Refinement Features

Span-View Table

The CD features induced in phase 1 along with the textual spans they generate, yield

the span-view table. The rows of the table correspond to the set of spans returned by all

the CD-feature views. The columns correspond to the set of CD-feature names. Each

span either belongs to one of the named entity types (PER, ORG or LOC), or is none

of them (NONE); the type information constitutes its class label (see Figure 3.8 for an

illustrated example). The cells in the table correspond to a match (M), or a no-match

(N), or partial/overlapping match (O) of a span generated by a CD-feature view.

Propositional Rule Learning

We learn CR features as conjunctive compositions of the CD features (and their nega-

tions.) The attribute-value table discussed above is used as input to a propositional rule

learner such as JRIP to learn such compositions of the CD features. We considered a

number of different propositional learners and studied their features. These included

both decision trees and decision list learners. Based on this study, we decided to use RIP-
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Figure 3.8: Span-View Table

PER (Fürnkranz and Widmer, 1994) implemented as the JRIP classifier in weka (Witten

et al., 2011). Some considerations that favor JRIP are as follows:

1. Absence of rule ordering.

2. Ease of conversion to AQL.

3. Amenability to add induction biases in the implementation

The RIPPER algorithm starts constructing rules for one class at a time, starting with

the class containing the least number of instances. The induction of a rule-set for each class

consists of two phases : the build phase and the optimize phase. The build phase uses a

modified version of the incremental reduced error pruning (IREP) algorithm (Fürnkranz

and Widmer, 1994) to construct rules. It uses minimum description length criteria as

an extra stopping condition, apart from the regular stopping criteria used in IREP. We

modified JRIP to consider negation of propositions in the build phase. The optimize phase

performs post-processing of the rules obtained by IREP using the conventional reduced

error pruning (REP). This phase tries to emulate the global-optimization strategy of REP.

The RIPPER algorithm is explained in detail in Witten et al. (2011) and Cohen (1995).

Induction Bias

A number of syntactic biases were introduced in JRIP to aid in the interpretability of

the induced rules. We observed in our manually developed rules that CR rules for a

type involve interaction between CDs for the same type and negations (not-overlaps, not

matches) of CDs of the other types. This bias was incorporated by constraining a JRIP
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rule to contain only positive features (CDs) of the same type (for instance PER), and

negative features (CDs) of only other types (ORG and LOC, in this case).

The output of the JRIP algorithm is a set of rules, one set for each of PER, ORG

and LOC. Here is an example rule: PER-CR-Rule ⇐ (PerCD = m) AND (LocCD != o), which

is read as : “If a span matches PerCD and does not overlap with LocCD, then that span denotes

a PER named entity.”Here PerCD is {[FirstName ∧ CapsPerson][LastName ∧ CapsPerson]} 7

and LocCD is {[CapsPlace ∧ CitiesDict]}. This rule filters out wrong person annotations

such as “Prince William” in Prince William Sound. (This is the name of a location but

has overlapped with a person named entity.) In AQL, this effect can be achieved most

elegantly by the minus (filter) construct. Such an AQL rule will filter all those occurrences

of Prince William from the list of persons that overlap with a city name.

Steps such as clustering, computation of RLGGs, JRIP, and theorem-proving using

SystemT were parallelized. Once the CR views for each type of named entity are learned,

many forms of consolidations (COs) are possible, both within and across types. A simple

consolidation policy that we have incorporated in the system is as follows: union all the

rules of a particular type, then perform a contained within consolidation, which results in

the final set of consolidated views for each named entity type.

3.5 Experiments

3.5.1 Experimental Setup

We evaluate our system on CoNLL03 (Tjong Kim Sang and De Meulder, 2003), a collection

of Reuters news stories. We used the CoNLL03 training set for induction, and report

results on the CoNLL03 test collection. In Table 3.2, we present a summary of the

CoNLL03 dataset.

The basic features (BFs) form the primary input to our induction system. We

experimented with three sets of BFs:

1. Initial set(E1): The goal in this setup was to induce an initial set of rules based

on a small set of reasonable BFs. We used a conservative initial set consisting of

fifteen BFs (five regular expressions and ten dictionaries).

7Two consecutive spans where the 1st is FirstName and CapsPerson and the 2nd is LastName and

CapsPerson.
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Type Number of Examples

of NE Train Dev Test

PER 6560 1830 1593

ORG 6312 1333 1648

LOC 7119 1828 1657

Table 3.2: Dataset details

2. Enhanced set (E2): Based on the results of E1, we identified a set of additional

domain-independent BFs8. Five views were added to the existing set in E1 (one

regular expression and four dictionaries). The goal was to observe whether our ap-

proach yielded reasonable accuracies compared to generic rules developed manually.

3. Domain customized set (E3): Based on the knowledge of the domain of the training

dataset (CoNLL03), we introduced a set of features that was specific to this dataset.

This included sports-related person, organization and location dictionaries9. These

views were added to the existing set in E2. The intended goal was to observe

what the best possible accuracies that could be achieved with BFs customized to a

particular domain were.

The set of parameters for iterative clustering on which the accuracies reported were:

the precision threshold for the RLGGs of the clusters was 70%, and the number of exam-

ples covered by each RLGG was five. We selected the top five clusters from each iteration,

the RLGGs of which, crossed this threshold. If there were no such clusters then we would

lower the precision threshold to 35% (half of the threshold). When no new clusters were

formed, we ended the iterations.
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Train Test

Type P R F P R F C(E)

E1 (Initial set)

PER 88.5 41.4 56.4 92.5 39.4 55.3 144

ORG 89.1 7.3 13.4 85.9 5.2 9.7 22

LOC 91.6 54.5 68.3 87.3 55.3 67.8 105

Overall 90.2 35.3 50.7 89.2 33.3 48.5 234

E2 (Enhanced set)

PER 84.7 52.9 65.1 87.5 49.9 63.5 233

ORG 88.2 7.8 14.3 85.8 5.9 11.0 99

LOC 92.1 58.6 71.7 88.6 59.1 70.9 257

Overall 88.6 40.7 55.8 88.0 38.2 53.3 457

E3 (Domain customized set)

PER 89.9 57.3 70.0 91.7 56.0 69.5 430

ORG 86.9 50.9 64.2 86.9 47.5 61.4 348

LOC 90.8 67.0 77.1 84.3 67.3 74.8 356

Overall 89.4 58.7 70.9 87.3 57.0 68.9 844

Table 3.3: Results on CoNLL03 dataset with different basic feature sets.

3.5.2 Experiments and Results

Effect of Augmenting Basic Features

Table 3.3 shows the accuracy and complexity of rules induced with the three basic feature

sets E1, E2 and E3, respectively 10. The overall F-measure on the test dataset is 48.5%

with E1; it increases to around 53.3% with E2, and is highest at 68.9% with E3. As we

increase the number of BFs, the accuracies of the induced extractors increase, at the cost

of an increase in complexity. In particular, the recall increases significantly across the

board, and is more prominent between E2 and E3, where the additional domain-specific

8For example, the feature preposition dictionary was added in E2 to help identify organization names

such as Bank of England.
9Half of the documents in CoNLL03 are sports-related.

10These are the results for the configuration with bias.
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features result in recall increase from 5.9% to 47.5% for ORG. The precision increases

slightly for PER, but decreases slightly for LOC and ORG with the addition of domain

specific-features.

Comparison with manually developed rules

We compared the induced extractors with the manually developed extractors of Chiticariu

et al. (2010b), heretofore referred to as manual extractors. (For a detailed analysis, we

obtained the extractors from the authors). Table 3.4 shows the accuracy and complexity

of the induced rules with E2 and E3 and the manual extractors for the generic domain

and, respectively, customized for the CoNLL03 domain. (In the table, ignore the column

Induced (without bias), which is discussed later). Our technique compares reasonably

with the manually constructed generic extractor for two of the three entity types, and on

precision, for all entity types. This is especially so because our system generated the rules

in one hour, whereas, the development of manual rules took much longer 11. Additional

work is required to match the manual customized extractor’s performance, primarily due

to shortcomings in our current target language. Recall that our framework is limited

to a small subset of AQL constructs for expressing CD and CR rules, and there is a

single consolidation rule. In particular, advanced constructs such as dynamic dictionaries

are not supported, and the set of predicates to the Filter construct supported in our

system is restricted to predicates over other concepts, which is only a subset of those

used in Chiticariu et al. (2010b). The manual extractors also contain a larger number of

rules that cover many different cases, which improves the accuracy, but also leads to a

higher complexity score. To better analyze the complexity, we also computed the average

rule length for each extractor by dividing the complexity score by the number of AQL

views of the extractor. The average rule length is 1.78 and 1.87 for the induced extractors

with E2 and E3, respectively, and 1.9 and 2.1 for the generic and customized extractors

of Chiticariu et al. (2010b), respectively. The average rule length increases from the

generic extractor to the customized extractor in both cases. On average, however, an

individual induced rule is slightly smaller than a manually developed rule.

11 Chiticariu et al. (2010b) mention that customization for three domains required eight person weeks.

It is reasonable to infer that developing the generic rules took comparable effort.
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Effect of Bias

The goal of this experiment is to demonstrate the importance of biases in the induction

process. The biases added to the system are broadly of two types: (i) Partition of basic

features based on types (ii) Restriction on the type of CD views that can appear in a CR

view. 12 Without the partition of features in (i) many semantically similar basic features

(especially, regular expressions) would match a given token, leading to an increase in

the length of a CD rule. For example, in the CD rule [FirstNameDict][CapsPerson ∧

CapsOrg]} (“A FirstNameDict span followed by a CapsPerson span that is also a CapsOrg

span”), CapsPerson and CapsOrg are two very similar regular expressions that identify

capitalized phrases that look like person, and respectively, organization names, with small

variations (for example, the former may allow special characters such as ‘-’.) Including

both BFs in a CD rule leads to a larger rule that is unintuitive for a developer. The

former bias excludes such CD rules from consideration.

The latter type of bias prevents CD rules of one type to appear as positive clues

for a CR rule of a different type. For instance, without this bias, one of the CR rules

obtained was Per ⇐ (OrgCD = m) AND (LocCD != o) (“If a span matches OrgCD and does

not overlap with LocCD, then that span denotes a PER named entity”.) Here, OrgCD was

{[CapsOrg][CapsOrg]} and LocCD was {[CapsLoc ∧ CitiesDict]}. The inclusion of an Orga-

nization CD rule as a positive clue for a Person CR rule is unintuitive for a developer.

Table 3.4, shows the effect (for E2 and E3) of disabling and enabling bias on the test

dataset during the induction of CR rules using JRIP. Adding bias improves the precision

of the induced rules. Without bias, however, the system is less constrained in its search

for high recall rules, leading to a slightly higher overall F measure. This comes at the

cost of an increase in extractor complexity and average rule length. For example, for E2,

the average rule length decreases from 2.17 to 1.78 after adding the bias. Overall, our

results show that biases lead to less complex extractors, with only a very minor effect on

accuracy. Thus, biases are important factors that contribute to inducing rules that are

understandable and may be refined by humans.

12For example, person CR view can contain only person CD views as positive clues, and CD views of

other types as negative clues.
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Chiticariu et al. 2010b Induced (With Bias) Induced (Without Bias)

P R F C(E) P R F C(E) P R F C(E)

Generic (E2) PER 82.2 60.3 69.5 945 87.5 49.9 63.5 233 85.8 53.7 66.0 476

ORG 75.7 17.5 28.5 1015 85.8 5.9 11.0 99 74.1 15.7 25.9 327

LOC 72.2 86.1 78.6 921 88.6 59.1 70.9 257 85.9 61.5 71.7 303

Overall 75.9 54.6 63.5 1015 88.0 38.2 53.3 457 84.2 43.5 57.4 907

Customized (E3) PER 96.3 92.2 94.2 2154 91.7 56.0 69.5 430 90.7 60.3 72.4 359

ORG 91.1 85.1 88.0 2154 86.9 47.5 61.4 348 90.4 46.8 61.7 397

LOC 93.3 91.7 92.5 2154 84.3 67.3 74.8 356 83.9 69.1 75.8 486

Overall 93.5 89.6 91.5 2160 87.3 57.0 68.9 844 87.8 58.7 70.4 901

Table 3.4: Comparison of induced rules (with and without bias) and manually developed

rules. (CoNLL03 test dataset)

Comparison with other induction systems

We also experimented with two other induction systems, Aleph13 and ALP14, a package

that implements one of the reportedly good information extraction algorithms (Ciravegna,

2001). While induction in Aleph was performed with the same target language as in our

approach, the target language of ALP is JAPE, which has been shown by Chiticariu et al.

(2010b) to lack in some of the constructs (such as minus) that AQL provides and which

form a part of our target language (especially the rule refinement phase). However, despite

experimenting with all possible parameter configurations for each of these (in each of E1,

E2 and E3 settings), the accuracies obtained were substantially (30-50%) inferior and the

extractor complexity was much (around 60%) higher, when compared to our system (with

or without bias). Additionally, Aleph takes close to three days for induction, whereas,

both ALP and our system require less than an hour.

13A system for inductive logic programming. See http://www.cs.ox.ac.uk/activities/machlearn/Aleph/aleph.html
14http://code.google.com/p/alpie/
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3.5.3 Discussion

Weak and Strong CDs reflected in CRs

In our experiments, we found that varying the precision and complexity thresholds while

inducing the CDs(c.f Section 3.4) affected the F1 of the final extractor only minimally.

However, reducing the precision threshold generally improved the precision of the final

extractor, which seemed counter-intuitive at first. We found that CR rules learned by

JRIP consist of a strong CD rule (high precision, typically involving a dictionary) and a

weak CD rule (low precision, typically involving only regular expressions). The strong CD

rule always corresponded to a positive clue (match) and the weak CD rule corresponded

to the negative clue (overlaps or not-matches). This is illustrated in the following CR

rule: PER ⇐ (PerCD = m) AND (OrgCD != o) where (PerCD is {[CapsPersonR] [CapsPersonR ∧

LastNameDict]} and (OrgCD is {[CapsOrgR][CapsOrgR][CapsOrgR]}. This is posited to be the

way the CR rule learner operates — it tries to learn conjunctions of weak and strong clues

so as to filter one from the other. Therefore, setting a precision threshold too high limited

the number of such weak clues and the ability of the CR rule learner to find such rules.

Interpretability

Measuring interpretability of rules is a difficult problem. In this work, we have taken the

first step toward measuring interpretability using a coarse grain measure in the form of a

simple notion of complexity score. The complexity is very helpful in comparing alternative

rule sets based on the number of rules and the size of each rule, but exhibits a number of

shortcomings, described next. First, it disregards other components of a rule besides its

from clause, for example, the number of items in the select clause, or the where clause.

Second, rule developers use semantically meaningful view names, such as those shown in

Figure B.1 to help them recall the semantics of a rule at a high-level — an aspect that is

not captured by the complexity measure. Automatic generation of meaningful names for

induced views is an interesting direction for future work. Finally, the overall structure of

an extractor is not considered. In simple terms, an extractor that consists of five rules of

size one is indistinguishable from an extractor that consists of a single rule of size five;

which of these extractors is more interpretable is arguable. More generally, the extent

of this shortcoming is best explained using an example. While informally examining the
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rules induced by our system, we found that CD rules are similar in spirit to those written

by rule developers. On the other hand, the induced CR rules are too fine-grained. In

general, rule developers group CD rules with similar semantics, then write refinement rules

at the higher level of the group, as opposed to the lower level of individual CD views.

For example, one may write multiple CD rules for candidate person names of the form

〈First〉〈Last〉, and multiple CD rules of the form 〈Last〉, 〈First〉. One would then union

together the candidates from each of the two groups into two different views, for example,

PerFirstLast and PerLastCommaFirst, and write filter rules at the higher level of these

two views, for example, “Remove PerLastCommaFirst spans that overlap with a PerFirstLast

span”. In contrast, our induction algorithm considers CR rules consisting of combinations

of CD rules directly, leading to many semantically similar CR rules, each operating over

small parts of a larger semantic group (see rule in Section 3.5.2). This results in repetition,

and qualitatively less interpretable rules, since humans prefer higher levels of abstraction

and generalization. This nuance is not captured by the complexity score which may deem

an extractor consisting of many rules, where many of the rules operate at higher levels of

groups of candidates, to be more complex than a smaller extractor with many fine-grained

rules. Indeed, as shown before, the complexity of the induced extractors is much smaller

compared to that of manual extractors, although, the latter follow the semantic grouping

principle and are considered more interpretable.

3.6 Relational Features in a Max-margin Setting

In this section, we describe our attempts to use relational features in max-margin based

learning algorithms. We model the named-entity recognition problem as a sequence-

labeling task and jointly learn the class labels in this structured output space.

3.6.1 Sequence Labeling

The objective in sequence labeling is to assign a state (class label) to every instance of

a sequence of observations (inputs). For example, figure 3.9 depicts the named-entity

recognition problem as a sequence labeling task.

Typical sequence-labeling algorithms learn probabilistic information about

(transition) relationships between neighboring states along with probabilistic information

about the (emission/observation) relationships between the states and observations.
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Figure 3.9: NER as Sequence Labeling.

Hidden Markov Models (HMM) (Rabiner, 1990), Conditional Random Fields

(CRF) (Lafferty et al., 2001), and Support Vector Machines on Structured Output

Spaces StructSVM (Tsochantaridis et al., 2004) are three popularly used models for

sequence-labeling problems. The probabilistic information is later used to identify the

(hidden) label sequence that best explains the given sequence of observations.

3.6.2 Models for Sequence Labeling

In sequence-labeling models, the objective is to learn functions of the form F : X → Y

from the training data, where X and Y are input and output sequence spaces, respectively.

Typically, a discriminant function F : X × Y → R is learned from training data that

consists of pairs of input and output sequences. The prediction is performed using the

decision function F(X; f) = argmax
Y ∈Y

F (X, Y ; f). F (X, Y ; f) = 〈f ,ψ(X, Y )〉 represents a

score which is a scalar value based on the features ψ involving the values of input sequence

X and output sequence Y and parameterized by a parameter vector f . In sequence

prediction, features are constructed to represent emission (observation) and transition

distributions. Given this objective, we can classify sequence labeling techniques into
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probability-based and max-margin based, which we discuss in the following paragraphs.

Probability-based methods

Here the parameters are characterized by probabilities. Hidden Markov Models

(HMM) (Rabiner, 1990) and Conditional Random Fields (CRF) (Lafferty et al., 2001)

are traditionally used in sequence-prediction problems and have an objective that

is similar to the one discussed above — with probabilities and potential weights as

parameters, respectively. Their ability to capture the state transition dependencies along

with the observation dependencies makes these approaches robust in noisy and sparse

data.

In an HMM setup, probability parameters that maximize the joint probability

p(X, Y ) of input training sequence X and output training sequence Y are learned

during the training phase. From the independence assumptions in an HMM, one can fac-

torize the joint probability distribution of the sequence of inputs (X) and labels (Y ) into

three factors: the initial state distribution p(y1), the transition distribution p(yt|yt−1),

and the emission distribution p(xt|yt) (Rabiner, 1990). Here xt and yt represent the in-

put variable and the class variable at position t in the sequence, respectively. Therefore,

p(X, Y ) =
∏T

t=1 p(y
t|yt−1)p(xt|yt), where T is the length of the sequence and p(y1|y0) is

used instead of p(y1) to simplify notation. Parameters for the distributions are learned by

maximizing p(X, Y ). In contrast, CRF (Lafferty et al., 2001) learns parameters that max-

imize p(Y |X) — the conditional probability of a sequence of states Y given a sequence

of inputs X — where, p(Y |X) = 1
Z(X)

exp
T∑
t=1

φt(y
t, X) + φt−1(y

t−1, yt, X), in which,

φt(y
t, X) and φt−1(y

t−1, yt, X) stands for potential functions and Z(X) is the partition

function. These parameters are later used to identify the (hidden) label sequence that

best explains a given sequence of inputs (or observations) — that is usually performed by

a dynamic programming algorithm known as the Viterbi Algorithm (Forney, 1973).

Max-margin based methods

StructSVM. Tsochantaridis et al. (2004) generalize the SVM framework to perform

classification on structured outputs. This builds on the conventional SVM formulation

that assumes the output to be a single variable which can be a binary label or multi-

class. StructSVM generalizes multi-class Support Vector Machine learning to incorporate
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features constructed from input and output variables, and solves classification problems

with structured output data. The loss function in sequence labeling has to be chosen such

that the predicted sequence of labels that differ from the actual labels in a few time steps

should be penalized lesser than those that differ from the actual labels in a majority of

sequence positions. A loss function is represented as ∆ : Y × Y → R. ∆(Y, Ŷ ) is the

loss value when the true output is Y and the prediction is Ŷ . The SVM formulation for

structured output spaces can be written as,

min
f ,ξ

1

2
‖ f ‖2 +

C

m

m∑

i=1

ξi, s.t. ∀i : ξi ≥ 0

∀i, ∀ Y ∈ Y \ Yi : 〈f ,ψ
δ
i (Y )〉 ≥ 1−

ξi

∆(Yi, Y )
. (3.1)

where m is the number of examples, C is the regularization parameter, ξ’s are the slack

variables introduced to allow errors in the training set in a soft margin SVM formulation,

Xi ∈ X and Yi ∈ Y represent the ith input and output sequences, respectively and

〈f ,ψδ
i (Y )〉 represents the value 〈f ,ψ(Xi, Yi)〉−〈f ,ψ(Xi, Y )〉. In cases where the sequence

length is large, the number of constraints in (3.1) can be extremely large. To solve this

problem, an algorithm based on the cutting plane method is proposed (c.f. algorithm 1

in Tsochantaridis et al. (2004)) in order to find a polynomially sized subset of constraints

that ensures a solution very close to the optimum.

RELHKL and StructHKL. Jawanpuria et al. (2011) propose Rule Ensemble Learning

using Hierarchical Kernels (RELHKL), in which they make use of the Hierarchical Kernel

Learning (HKL) framework introduced in Bach (2009) to simultaneously learn sparse

rule ensembles and their optimal weights for binary classification problems. They use a

hierarchical ρ-norm regularizer to select a sparse set of features from an exponential space

of features. The prime objective of Rule Ensemble Learning (REL) is to learn small set

of simple rules and their optimal weights. The set of rules that can be constructed from

basic features follow a partial order and can be visualized as a lattice (conjunction lattice,

when the features are conjunctions of basic features.) The set of indices of the nodes in the

lattice are represented by V . To learn sparse sets of rules, the regularizer Ω(f) is defined

as, Ω(f) =
∑

v∈V dv ‖ fD(v) ‖ρ, where f is the feature weight vector that corresponds to

the feature nodes in the lattice, dv ≥ 0 is a prior parameter showing the usefulness of the

feature conjunctions, fD(v) is the vector with elements as ‖ fw ‖2 ∀w ∈ D(v), D(v) the

set of descendant nodes of v, and ‖ . ‖ρ represents the ρ-norm. In rule ensemble learning,
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dv is defined as β|v|, where β is a constant. Here, the 1-norm over the sub lattices formed

by the descendants of nodes helps to select only a few sub lattices and the ρ-norm ensures

sparsity among the selected sub lattices. Since only a few features are expected to be

non-zero at optimality, for computational efficiency, an active set algorithm is employed

(c.f. algorithm 1 of Jawanpuria et al. (2011)).

The RELHKL approach is specific to the single variable binary classification prob-

lem and cannot be trivially applied to problems that involve multi-class structured output

data. Nair et al. (2012b), present a generalization of the RELHKL formulation for struc-

tured output spaces (StructHKL) and discuss how interesting relational features can be

learned using that new framework. StructHKL optimally and efficiently learns discrimi-

native features for multi-class structured output classification problems such as sequence

labeling. They build on the StructSVM framework for sequence-prediction problems, in

which all possible SCs form the input features while the transition features are constructed

from all possible transitions between state labels. They use a ρ-norm hierarchical regular-

izer to select a sparse set of SCs as emission features.The exponentially large observation

feature space is searched using an active-set algorithm, and the exponentially large set of

constraints is handled using a cutting-plane algorithm.

3.6.3 Experiments

We conducted our experiments on the same CoNLL03 dataset as discussed in section 3.5.2.

There are three major aspects in the design of an NER system.

1. Features: These include gazetteers, regular expressions, lexical features and so on.

State-of-the-art NER systems use a very large collection of features. Our goal in

this section is to perform a comparative study of the use of relational features in an

out-of-the-box ML system. So we use the same set of a modest number of features

described in our earlier experimental setup (E1).

2. Language of the features: This is related to the feature space categorization that

we discussed in chapter 2. These can be termed as feature templates. Our features

belong to BFs, SCs and CDs in our experiments here.

3. Learning algorithm: There are a number of choices for learning algorithms including
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Overall PER ORG LOC

P R F1 P R F1 P R F1 P R F1

BFs on StructSVM 24.44 5.32 8.74 25.94 4.68 7.92 18.74 4.16 6.81 26.84 6.82 10.87

BFs on StructHKL 13.25 6.42 8.65 10.31 9.54 9.91 9.09 0.33 0.64 21.96 7.46 11.14

CDs on StructSVM 31.41 8.84 13.79 37.64 14.70 21.15 23.34 9.30 13.30 28.17 2.38 4.39

Induced Rules 89.20 33.30 48.50 92.50 39.40 55.30 85.90 5.20 9.70 87.30 55.30 67.80

Table 3.5: Induced Features in Max-margin algorithm

CRF, HMM, StructSVM and so on. We used the StructSVM implementation 15

of Tsochantaridis et al. (2005) and the StructHKL implementation of Nair et al.

(2012b) for our experiments.

The various configurations of the experiments are explained below:

1. BFs on StructSVM: This forms the baseline of our investigations.

2. BFs on StructHKL: The goal was to leverage StructHKL to learn combinations of

features in the space of SCs.

3. CDs on StructSVM: Here the relational CD features were presented to the

StructSVM. The goal was to observe whether the use of CD features improves the

baseline accuracies.

4. Induced Rules: The results of the rules induced using our rule-induction techniques

for the same set of basic features.

The results are presented in Table 3.5. We observe an increase of ∼58% in the F1 score

when CDs are used as features compared to BFs. So the use of more expressive features

such as CDs definitely provides better signal to the learning algorithm than the use of

simple BFs.

The StructHKL experiments were carried out in order to automatically generate ba-

sic feature conjunctions. The space of induced feature is SCs. The results are comparable

to the baseline (marginally worse overall F1 score). We posit that SCs are conjunctions

of BFs at a single sequence position. So, learning conjuncts in this space will not result

in useful generalizations because many named-entities are multi-word expressions.

15Available at http://www.cs.cornell.edu/People/tj/svm_light/svm_hmm.html
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We observe that the results of the max-margin based algorithms are poor compared

to the induced rules. The best F1 score of the max-margin setting, CDs on StructSVM,

is 34.71% lesser than the induced rules. In the following paragraphs, we discuss some of

the possible reasons for such a poor performance.

Discussion

As seen in Table 3.5, the max-margin experiments exhibit a significant drop in perfor-

mance compared to rule induction. A few of the reasons for this poor performance are

the subject of discussion in this section.

As discussed in Section 3.4, we use JRIP to combine CD features to learn more

expressive feature combinations. JRIP is amenable to addition of biases, which in turn

aides good feature selection. In the max-margin based sequence labeling methods, we

could not find an easy way to incorporate such biases (such as the partition of CD features

that belong to different types.) This probably hurts the performance.

There is a significant skew in the label space of the CoNLL03 dataset. The named-

entity labels are very few when compared to the nil label. Generally, in a joint labeling

task, the class imbalance problem leads to poor performance. State-of-the-art sequence

labeling models for NER circumvent this problem by using a large number of features.

Since our focus is on the modeling exercise rather than feature engineering, we used a

small set of features.

In another sequence labeling task known as activity recognition, the performance

of some of these max-margin models are better than the baseline. The datasets used as

benchmarks in the activity recognition task have a lesser skew in the class label distribu-

tion. This might be one of the reasons for the better performance of such models. Some

of these experiments and results are discussed in our previous work (Nair et al., 2012a;

Nagesh et al., 2013) and other related papers (Nair et al., 2012b, 2011).

3.7 Chapter Summary

In this chapter, we presented a system for efficiently inducing named-entity annotation

rules in AQL. The design of our approach is aimed at producing accurate rules that can

be understood and refined by humans. A special emphasis is laid on low complexity and

efficient computation of the induced rules, while mimicking a four stage approach used for
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Figure 3.10: Thesis Organization: Chapter 3

manually constructing rules. The main induction approach consist of two stages, namely,

candidate definition and candidate refinement, while the other two stages, namely, ba-

sic feature definition and rule consolidation are assumed to be manually specified. We

presented results with both domain-independent as well customized basic features. The

induced rules have good accuracy and low complexity according to our complexity mea-

sure.

In a follow-up work, we investigated the utility of relational features in max-margin

based sequence-labeling models. The results in these settings have not been very promising

due to a number of reasons, some of them highlighted in Section 3.6.3. Figure 3.10

highlights the part presented in this chapter (except Section 3.6) and the accompanying

publication that overlaps with the material presented.
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Part II

Learning for Relation Extraction
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Chapter 4

Relaxed Distant Supervision

In this chapter, we will shift the gear slightly to discuss another important task in IE,

namely, relation extraction. The task of extracting relational facts that pertain to a set

of entities from natural language text is termed as relation extraction. For example,

from a sentence in natural language sentence, such as, “President Barack Obama on

Friday defended his administration’s mass collection of telephone and Internet records

in the United States,” we can infer the relation, presidentOf(Barack Obama, United

States) between the entities ‘‘Barack Obama’’ and ‘‘United States’’.

4.1 Relation Extraction through Distant Supervision

Supervised approaches to relation extraction (GuoDong et al., 2005; Surdeanu and Cia-

ramita, 2007) achieve very high accuracies. However, these approaches do not scale as

they are data-intensive and the cost of creating annotated data is quite high. To alleviate

this problem, Mintz et al. (2009) proposed relation extraction in the paradigm of distant

supervision. In this approach – given a database of facts (for example, Freebase1) and

an unannotated document collection – the goal is to heuristically align the facts in the

database to the sentences in the corpus that contains the entities mentioned in a fact. This

is done to create weakly labeled training data to train a classifier for relation extraction.

Figure 4.1 illustrates the distant supervision paradigm with an example.

Some comparison of training data sizes: The benchmark dataset for relation ex-

traction ACE contains 17, 000 relation instances that belong to 23 relations. In contrast,

if we consider a snapshot of Freebase, it contains around 1.8 million relation instances

that belong to 102 relations that connect around 940, 000 entities. Consequently, the

1www.freebase.com

55



Figure 4.1: Distant Supervision for Relation Extraction

size of the data for the training of relation extractors increases manifold. However, the

training dataset created by this alignment process is very noisy in nature. This has been

elaborated subsequently in this chapter.

In the model proposed by Mintz et al. (2009), the underlying assumption is that all

mentions of an entity pair2 (that is, sentences the contain the entity pair) in the corpus

express the same relation as that which is stated in the database. This assumption is a

weak one and is often violated in natural language text. For instance, the entity pair

(Barack Obama, United States) participates in more than one relation: citizenOf,

presidentOf, bornIn; every mention expresses either one of these fixed set of relations

or none of them. The important aspect to note is that every mention of the entity pair

mentioned above does not express the presidentOf relationship. For example, “Barack

Obama was born in Honolulu, Hawaii, United States” expresses the bornIn relation and

“President Barack Obama left United States this Saturday for a UN summit in Geneva”

does not express any of the relations mentioned above.

2In this work we restrict ourselves to binary relations
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4.1.1 Related Work

Consequently, a number of models have been proposed in literature to provide better

heuristics for the mapping between the entity pair in the database and its mentions in the

sentences of the corpus. Riedel et al. (2010) tighten the assumption of distant supervision

in the following manner: “Given a pair of entities and their mentions in sentences from a

corpus, at least one of the mentions expresses the relation given in the database.” In other

words, it models the problem as multi-instance (mentions) single-label (relation) learning.

The work by Yao et al. (2010) is in the same setting. However, it additionally models

the selectional preferences of the arguments of participating entities in a relation. For

instance, in the presidentOf relation, the first argument should be of type person and

the second argument should be of type country. Following this, Hoffmann et al. (2011)

and Surdeanu et al. (2012) propose models that consider the mapping as multi-instance

multi-label learning. The instances are the mentions of the entity pair in the sentences of

the corpus; also, the entity pair can participate in more than one relation. In the following

subsections, we present a more detailed summary of these works.

Distant supervision for relation extraction without labeled data

As mentioned earlier, one of the first papers that introduced the paradigm of distant

supervision for relation extraction was Mintz et al. (2009). They have a simplistic as-

sumption that all sentences that mention an entity pair express the relation mentioned

in the knowledge base. They combine the features present in all the sentences of an en-

tity pair into one feature vector. The rationale for this type of approach is that features

present in one sentence offer a noisy signal at best to determine the relation expressed

by them. This combination of noisy features will make the model more robust. They

train a multi-class logistic regression classifier to learn the weights of each noisy feature.

Through experiments, the authors argue that syntactic features help more than lexical

features. This is especially true in cases where the related entities are not lexically close

but are close to each other in the dependency path of the sentence.
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Modeling Relations and their Mentions without Labeled Text

Riedel et al. (2010) introduced the at-least-once assumption as an improvement over the

simplistic model of Mintz et al. (2009). To reiterate, previous work assumed that all

sentences that contain an entity pair express the relation mentioned in Freebase for that

pair. However this might not always be true. For example, nationality(Obama, USA)

might be a relation in Freebase; however, in news articles, all sentences that contain Obama

and USA might not actually express the nationality because he is also the President.

Therefore, the paper makes a claim that at least one of the sentences in the corpus ex-

presses the relation rather than all the sentences. They model the at least one constraint

as a factor graph that has latent variables for relation and relation mention. The param-

eters of the model are learned using a technique called SampleRank, which is a version of

constraint-driven semi-supervised learning.

Collective Cross-Document Relation Extraction without Labeled Data

Another important work in the distant supervision literature is that of Yao et al. (2010).

The work models a crucial aspect of relation discovery, namely, selection preferences of

the relation and the participating entities. For instance, in the nationality relation, the

first entity has to be of type person and the second entity has to be of type country

(not any arbitrary location type.) It jointly models the selection preference of the

relation and the participating entities (T join and T pair). The distant supervision

assumption is that of Mintz et al. (2009). The labels for the entities (finer-grained entity

types such as founder, citizen from course entity types such as Person) are obtained

from Freebase. They also use a bias template (T bias) to compute the prior of the

entity types, and mention template (T men) to link a pair of entities (relation latent

variable) to its corresponding mentions in text. They employ a joint-model of the selection

preferences and contrast it with a pipeline model of relations conditioned on entity types

that are predicted previously in the pipeline. An NER tagger is used to obtain the coarse-

grained entity mentions. They use fifty-four most frequently mentioned relations and the

corresponding ten fine-grained entity types.
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Knowledge-based Weak Supervision for Information Extraction of

Overlapping Relations

Hoffmann et al. (2011) present a multi-instance learning algorithm (similar to Riedel

et al. (2010)). However, it additionally considers overlapping relations between entities

and does not treat relations as disjoint. For instance, it models the fact that between the

entities Jobs and Apple, more than one relation label can be true, for instance, CEO(Jobs,

Apple) and Founded(Jobs, Apple). The key modeling differences between this work

and that of Riedel et al. (2010) are: i) The sentence level variables are multi-valued

compared to binary variables; ii) The aggregate relation variables are linked to model

overlap compared to a single aggregate relation variable; and iii) The relation variables are

joined by a deterministic-or compared to an aggregation of features. The authors motivate

by providing some statistics of interest: 18.3% of weak-supervision facts have more than

one relation. The model they propose is an undirected graphical model that allows joint

reasoning about aggregate (corpus-level) and sentence level extraction decisions. The

learning algorithm has perceptron-style parameter updates with two modifications: i)

online learning ii) Viterbi approximation. The inference is cast as solving a weighted

edge-cover problem. We discuss this in detail in Section 4.2 because our work is based on

this model.

Multi-instance Multi-label Learning for Relation Extraction

Surdeanu et al. (2012) also present a state-of-the-art model for distant supervision-based

relation extraction. Similar to Hoffmann et al. (2011), the problem is posed as a multi-

instance (many instances of sentences of a pair of entities in the corpus) multi-label (a

pair of entities can take multiple labels) learning problem. It has a latent variable for

every sentence that contains a pair of entities (mention). It trains a multi-class classifier

over these variables. It has k binary classifiers for each of the relations. It uses an EM-

style algorithm for training. In the E-step the latent mention variables are discovered. In

the M-step, the likelihood of the data given the current assignments of latent variables is

maximized.
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Figure 4.2: Graphical model instantiated for an entity-pair: Hoffmann et al. (2011)

4.2 Modeling Constraints in Distant Supervision

Although, the models presented in Section 4.1.1 work very well in practice, they have a

number of shortcomings. One of them is the possibility that during the alignment, a fact

in the database might not have an instantiation in the corpus. For instance, if our corpus

only contains documents from the years 2000 to 2005, the fact presidentOf(Barack

Obama, United States) will not be present in the corpus. In such cases, the distant

supervision assumption fails to provide a mapping for the fact in the corpus.

In this chapter, we address this situation with a noisy-or model (Srinivas, 1993) in

training the relation extractor by relaxing the “at least one” assumption discussed above.

Our research contributions are the following:

1. We formulate the inference procedures in the training algorithm as integer linear

programming (ILP) problems.

2. We introduce a soft constraint in the ILP objective to model noisy-or in training.

3. Empirically, our algorithm performs better than the procedure by Hoffmann et al.

(2011) under certain settings on two benchmark datasets.

Our work extends the work of Hoffmann et al. (2011). Therefore, we recapitulate

Hoffmann’s model in the following subsection, following which, our additions to this model

are explained in detail.

Hoffmann’s model

As mentioned previously, Hoffmann et al. (2011) present a multi-instance multi-label

model for relation extraction through distant supervision. In this model, a pair of entities
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has multiple mentions (sentence containing the entity pair) in the corpus. An entity

pair can have one or more relation labels (obtained from the database). An example

instantiation for the entity pair <Barack Obama, United States> is shown in Figure 4.2.

The inter-dependencies between relation labels and (hidden) mention labels are modeled

by a Markov Random Field (Figure 4.2).

Objective function

Consider an entity pair (e1, e2) denoted by the index i. The set of sentences containing

the entity pair is denoted xi, and the set of relation labels for the entity pair from the

database is denoted by yi. The mention-level labels are denoted by the latent variable

h (there is one variable hj for each sentence j). To learn the parameters θ, the training

objective to maximize is the likelihood of the facts observed in the database conditioned

on the sentences in the text corpus.

θ∗ = argmax
θ

∏

i

Pr(yi|xi; θ) (4.1)

= argmax
θ

∏

i

∑

h

Pr(yi,h|xi; θ) (4.2)

The expression Pr(yi,h|xi) for a given entity pair is defined by two types of factors

in the factor graph. They are extract factors for each mention andmention factors between

a relation label and all the mentions. Pr(y,h|x; θ) is defined as follows:

Pr(Y = y,H = h|x; θ) =
1

Z

∏

r

fmention(y
r,h)

∏

i

fextract(hi, xi) (4.3)

where Z is a normalization constant. The mention factors capture the dependency

between a relation label and its mentions. Here, the at least one assumption that was

discussed in Section 1 is modeled. It is implemented as a simple deterministic-or operator

as given below:

fmention(y
r,h) =





1 if yr is true ∧∃i : hi = r

0 otherwise

(4.4)

The extract factors capture the local signal for each mention and consists of a bunch of

lexical and syntactic features such as POS tags, dependency path between the entities,
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Algorithm 1 Hoffmann et al. (2011) : Training

1: procedure Hoffmann train(Σ, E ,R,∆)

2: for t := 1 to T do // No. of training iterations

3: for i := 1 to N do // No. of entity pairs

4: ŷi, ĥi,= argmax
y,h

Pr
(
yi,hi

∣∣xi; Θ
)

5: if ŷi 6= yi then

6: hi
∗ = argmax

h

Pr
(
hi

∣∣yi,xi; Θ
)

7: Θnew = Θold + Φ(xi,hi
∗)− Φ(xi, ĥi)

8: return Θ

and the like Mintz et al. (2009). They are given by the following expression:

fextract(hi, xi) = exp
(∑

j

θj(hi, xi)φj

)
(4.5)

where the features φj are sensitive to the relation name assigned to extraction variable

hi, if any, and cues from the sentence xi (Hoffmann et al., 2011).

Training algorithm

The learning algorithm is a perceptron-style parameter update scheme with two modifi-

cations: i) online learning ii) Viterbi approximation. The inference is shown to reduce

to the well-known weighted edge-cover problem that can be solved exactly (via maximal

weighted bipartite matching), although Hoffmann et al. (2011) provide an approximate

solution. Instead of computing the maximum weighted bipartite matching, they add

only those highest weighted edges incident on each of the relation nodes in the graphical

model that do not violate the “at-least-one” constraint. Hence it is a greedy approxi-

mation. The procedure during the training (which involves inference as subroutines) is

outlined in Algorithm 1. The input to the algorithm is as follows:

1. Σ: set of sentences

2. E : set of entities mentioned in the sentences

3. R: set of relation labels

4. ∆: database of facts

The output is the extraction model : Θ
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4.3 Inference via Integer Linear Programming Framework

In the training algorithm described above, there are two MAP inference procedures. We

use the same algorithm for training in our approach. However, we replace the inference

procedures. Our contributions in this space are two-fold. Firstly, we have formulated

these as ILP problems. As a result of this, the approximate inference is replaced by an

exact inference procedure. Secondly, we have replaced the deterministic-or by a noisy-or

which provides a soft constraint instead of the hard constraint of Hoffmann. (“at least

one” assumption.)

Our ILP formulations

Described below are the notations and the ILP formulations for a given entity pair in our

training dataset.

Some notations

� hjr : The mention variable hj (or jth sentence) using the relation value r

� sjr : Score for hj by using the value of r. Scores are computed from the extract

factors

� yr : relation label being r

� m : number of mentions (sentences) for the given entity pair

� R: total number of relation labels (excluding the nil label)
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Deterministic-or

The following is the ILP formulation for the exact inference argmaxPr(y, z|xi) in the

model based on deterministic-or:

max
H,Y

{
m∑

j=1

∑

r∈{R,nil}

[
hjrsjr

]}

s.t 1.
∑

r∈{R,nil}
hjr = 1 ∀j

2. hjr ≤ yr ∀j, ∀r

3. yr ≤
m∑

j=1

hjr ∀r

where hjr ∈ {0, 1}, yr ∈ {0, 1}

The first constraint restricts a mention to take only one label. The second and third

constraints impose the at least one assumption. This is the same formulation as Hoffmann

expressed here as an ILP problem. However, posing the inference as an ILP allows us to

add more constraints to it easily.

Noisy-or

As a case-study, we add the noisy-or soft constraint in the objective function above.

The idea is to model the situation in which a fact is present in the database but is not

instantiated in the text. This is a common scenario, since the facts populated in the

database and the text of the corpus can come from different domains and there might not

be a good match.

max
H,Y,ǫ

{(
m∑

j=1

∑

r∈{R,nil}

[
hjrsjr

])
−

(
∑

r∈R
ǫr

)}

s.t 1.
∑

r∈{R,nil}
hjr = 1 ∀j

2. hjr ≤ yr ∀j, ∀r

3. yr ≤

m∑

j=1

hjr + ǫr ∀r

where hjr ∈ {0, 1}, yr ∈ {0, 1}, ǫr ∈ {0, 1}

In the above formulation, the objective function is augmented with a soft penalty. Also,

the third constraint is modified with this penalty term. We call this new term ǫi; It also
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is a binary variable to model noise. Through this term, we encourage the at least one

type of configuration but will not disallow a configuration that does not conform to this.

Essentially, the consequence of this is to allow the case where a fact is present in the

database but is not instantiated in the text.

Comparison to Related Work

Relation Extraction in the paradigm of distant supervision was introduced by Craven and

Kumlien (1999). They used a biological database as the source of distant supervision to

discover relations between biological entities. The progression of models for information

extraction using distant supervision was presented in Section 4.1.1.

Surdeanu et al. (2012) discuss a noisy-or method to combine the scores of various

sentence-level models to rank a relation during evaluation. In our approach, we introduce

the noisy-or mechanism in the training phase of the algorithm.

Our work is inspired by previous works such as Roth and Yih (2004). The use of

ILP for this problem facilitates easy incorporation of different constraints, and to the best

of our knowledge, has not been investigated by the community.

4.4 Experiments

The experimental runs were carried out using the publicly available Stanford’s distantly

supervised slot-filling system3 (Surdeanu et al., 2011) and the system provided by Hoff-

mann et al. (2011)4. The systems are implemented in Java. The system by Surdeanu

et al. (2011) implements models of the following papers: Mintz et al. (2009); Riedel et al.

(2010); Hoffmann et al. (2011); and Surdeanu et al. (2012). The system is an official entry

in the TAC-KBP 2011 shared tasks.

4.4.1 Datasets and Evaluation

We report results on two standard datasets — Riedel and KBP — used as benchmarks by

the community. A complete description of these datasets is presented in Surdeanu et al.

(2012).

3http://nlp.stanford.edu/software/mimlre.shtml
4http://www.cs.washington.edu/ai/raphaelh/mr/
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1. Riedel dataset: This dataset is constructed by aligning Freebase relations with the

New York Times (NYT) corpus. The authors of this dataset are Riedel et al. (2010).

2. KBP dataset: This is constructed from resources distributed for the 2010 and 2011

KBP shared tasks. The knowledge base is a subset of English Wikipedia info-

boxes from a 2008 snapshot. They are aligned with documents from (i) a collection

provided by shared task (ii) a complete snapshot of English Wikipedia from June

2010.

Some statistics of the two datasets from Surdeanu et al. (2012) in Figure 4.3:

Figure 4.3: Statistics of datasets from Surdeanu et al. (2012)

The evaluation setup and module is the same as that described in Surdeanu et al.

(2012). We also use the same set of features used by the various systems in the package

to ensure that the approaches are comparable. As in previous work, we report preci-

sion/recall (P/R) graphs to evaluate the various techniques. We used the publicly avail-

able lp solve package5 to solve our inference problems.

Performance of ILP

The use of ILP raises concerns about performance since it is NP-hard. In our problem,

we solve a separate ILP for every entity pair. The number of variables is limited by the

number of mentions for the given entity pair. Empirically, on the KBP dataset (larger of

the two datasets,) Hoffmann takes around 1hr to run. Our ILP formulation takes around

8.5 hours; however, the algorithm by Surdeanu et al. (2012) (EM-based) takes around 23

hours to converge.

4.4.2 Experimental Results and Discussion

We would primarily like to highlight two settings on which we report the Precision-

Recall (P/R) curves and contrast it with Hoffmann et al. (2011). Firstly, we replace the

5http://lpsolve.sourceforge.net/5.5/
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Figure 4.4: Results : KBP dataset

approximate inference in that work with our ILP-based exact inference; we call this setting

the hoffmann-ilp. Secondly, we replace the deterministic-or in the model with a noisy-

or, and call this setting the noisy-or. We further compare our approach with Surdeanu

et al. (2012) (mimlre). The P/R curves for the various techniques on the two datasets

are shown in Figures 4.4 and 4.5. We also report the highest F1 point in the P/R curve

for both the datasets in Tables 4.1 and 4.2.

Discussion

We would like to discuss the results in the above two scenarios.

1. Performance of hoffmann-ilp

On the KBP dataset, we observe that hoffmann-ilp has higher precision in the

range of 0.05 to 0.1 at lower recall (0 to 0.04). In other parts of the curve, it is

very close to the baseline (although hoffmann’s algorithm is slightly better). In

Table 4.1, we notice that the recall of hoffmann-ilp is lower in comparison to
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Precision Recall F1

hoffmann 30.645 19.791 24.050

mimlre 28.061 28.645 28.350

noisy-or 29.700 18.923 23.117

hoffmann-ilp 29.301 18.923 22.996

Table 4.1: Highest F1 point in P/R curve: KBP Dataset

Precision Recall F1

hoffmann 32.054 24.049 27.480

mimlre 28.061 28.645 28.350

noisy-or 31.700 18.139 23.075

Hoffmann-ilp 36.701 12.692 18.862

Table 4.2: Highest F1 point in P/R curve: Riedel Dataset

hoffmann’s algorithm.

On the Riedel dataset, we observe that hoffmann-ilp has better precision (0.15 to

0.2) than mimlre within recall of 0.1. At recall > 0.1, precision drops drastically.

This is because hoffmann-ilp predicts significantly more nil labels. However, nil

labels are not part of the label-set in the P/R curves reported in the community.

In Table 4.2, we see that hoffmann-ilp has higher precision (0.04) compared to

Hoffmann’s algorithm.

2. Performance of noisy-or

In Figure 4.4 we see that there is a big jump in the precision (around 0.4) of

noisy-or compared to Hoffmann’s model in most parts of the curve on the KBP

dataset. However, in Figure 4.5 (Riedel dataset), we do not see such a trend. How-

ever, we do perform better than mimlre by Surdeanu et al. (2012) (precision > 0.15

for recall < 0.15).
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Figure 4.5: Results : Riedel dataset

On both datasets, noisy-or has higher precision than mimlre, as seen from Ta-

bles 4.1 and 4.2. However, the recall reduces. More investigation in this direction

is part of future work.

4.5 Chapter Summary

In this chapter we have described an important addition to Hoffmann’s model through the

use of the noisy-or soft constraint to further relax the at least one assumption. Since we

posed the inference procedures in Hoffmann using ILP, we could easily add this constraint

during the training and inference.

Empirically, we showed that the resulting P/R curves have a significant performance

boost over Hoffmann’s algorithm as a result of this newly added constraint. Although our

system has a lower recall when compared to mimlre (Surdeanu et al., 2012), it performs

competitively with respect to the precision at low recall.

Figure 4.6 highlights the part presented in this chapter and the accompanying pub-
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Figure 4.6: Thesis Organization: Chapter 4

lication that overlaps with the material presented.
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Chapter 5

Distant Supervision in a Max-margin Setting

In this Chapter, we present a large-margin method to learn parameters of latent variable

models for a wide range of non-linear multivariate performance measures such as Fβ. Our

method can be applied to learning graphical models that incorporate inter-dependencies

among the output variables directly or indirectly, through hidden variables.

5.1 Latent Variable Structure Prediction Tasks

Rich models with latent variables are popular in many problems in natural language

processing. For instance, in Information Extraction, one needs to predict the relation

labels y that an entity-pair x can take based on the hidden relation mentions h, that

is, the relation labels for occurrences of the entity-pair in a given corpus. However,

these models are often trained by optimizing performance measures (such as conditional

log-likelihood or error rate) that are not directly related to the task-specific non-linear

performance measure, for example, the F1-score.

Similarly, state-of-the-art Machine Translation models describe the translation pro-

cess from the source sentence x to the target sentence y through the latent linguistic

structure h, for example, parse tree or the alignment.

A typical approach is to populate and fix the latent alignments in the early stages of

the pipeline, and then to learn parameters at later stages by optimizing for the translation

performance. However, better models may be trained by optimizing the task-specific

performance measure while allowing latent variables to adapt their values accordingly.
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5.1.1 Related Work

Many machine learning problems have a very rich structure associated with the features in

the input as well as output spaces. Modeling this rich structure is facilitated by graphical

models such as Bayesian networks and Markov Random Fields. There is a wide variety

of techniques to learn the parameters of the model. The broad categories of training

algorithms are generative and discriminative. A typical generative approach maximizes

the likelihood of the training data modeling the joint probability Pr(x,y) of input features

and output labels. A discriminative model directly models the dependency of y or x either

by modeling Pr(y|x) or by learning a discriminant function in the case of Support Vector

Machines (SVMs).

In general, discriminative approaches are shown to perform much better when com-

pared to generative approaches, especially on large datasets (Ng and Jordan, 2002). Large-

margin methods, in particular, SVMs, are a powerful class of learners that are used effec-

tively in large structure prediction tasks (Taskar et al., 2003). SVMs are a highly flexible

framework, in which a number of modeling complexities can be easily incorporated. For

instance, models that have hidden variables can be cast in the SVM formulation (Yu and

Joachims, 2009). The SVM framework also provides techniques to learn models that op-

timize non-decomposable performance measures such as the F1 score which is computed

on the entire data sample.

As stated earlier, large-margin methods have been shown to be a compelling ap-

proach to learn rich models that detail the inter-dependencies among the output variables.

This is achieved by optimizing loss functions that are either decomposable over the train-

ing instances (Taskar et al., 2003; Tsochantaridis et al., 2004) or non-decomposable loss

functions (Ranjbar et al., 2013; Tarlow and Zemel, 2012; Rosenfeld et al., 2014; Keshet,

2014). Large-margin methods have also been shown to be powerful when applied to la-

tent variable models — when optimizing for decomposable loss functions (Wang and Mori,

2011; Felzenszwalb et al., 2010; Yu and Joachims, 2009).

5.1.2 Our Contributions

Our large-margin method learns latent variable models by optimizing non-decomposable

loss functions. It interleaves the Concave-Convex Procedure (CCCP) (Yuille and Ran-

garajan, 2003) to populate latent variables with dual decomposition (Komodakis et al.,
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2011; Rush and Collins, 2012). The latter factorizes the hard optimization problem (en-

countered in learning) into smaller independent sub-problems over the training instances.

We present linear programming and local search methods for effective optimization of the

sub-problems encountered in the dual decomposition. Our local search algorithm leads

to a speed up of 7,000 times compared to the exhaustive search used in the literature

(Joachims, 2005; Ranjbar et al., 2012).

Our work is the first of its kind in the use of max-margin training in distant super-

vision of relation extraction models. We demonstrate the effectiveness of our proposed

method in comparison with two strong baseline systems that optimize for the error rate

and conditional likelihood — including a state-of-the-art system by Hoffmann et al. (2011).

On several data conditions, we show that our method outperforms the baseline and results

in up to 8.5% improvement in the F1-score.

In addition, our approach can be applied more generally to a class of loss functions,

the maximum value of which can be computed efficiently. As an example, our method

can be applied to graphical models that incorporate inter-dependencies among the output

variables either directly, or indirectly through hidden variables.

5.2 Max-margin Formulation

5.2.1 Distant Supervision as a Large-margin Problem

Our framework is motivated by distant supervision for learning relation extraction mod-

els (Mintz et al., 2009). The goal is to learn relation extraction models by aligning facts

in a database to sentences in a large unlabeled corpus. Since the individual sentences are

not hand labeled, the facts in the database act as “weak” or “distant” labels; hence, the

learning scenario is termed as distantly supervised.

Prior work casts this problem as a multi-instance multi-label learning problem (Hoff-

mann et al., 2011; Surdeanu et al., 2012). It is multi-instance, since for a given entity-

pair, only the label of the bag of sentences containing both entities (also known as men-

tions) is given. It is multi-label since a bag of mentions can have multiple labels. The

inter-dependencies between relation labels and (hidden) mention labels are modeled by a

Markov Random Field (Figure 5.1) (Hoffmann et al., 2011). The learning algorithms used

in the literature for this problem optimize the (conditional) likelihood, but the evaluation
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Figure 5.1: Graphical model instantiated for an entity-pair

measure is commonly the F -score.

Formally, the training data is D := {(xi,yi)}
N
i=1 where xi ∈ X is the entity-pair,

yi ∈ Y denotes the relation labels, and hi ∈ H denotes the hidden mention labels.

The possible relation labels for the entity-pair are observed from a given knowledge base.

If there are L candidate relation labels in the knowledge base, then yi ∈ {0, 1}
L, (for

example, yi,ℓ is 1 if the relation ℓ is licensed by the knowledge-base for the entity-pair)

and hi ∈ {1, .., L, nil}
|xi| (that is, each mention realizes one of the relation labels or nil.)

Notation

In the rest of this chapter, we denote the collection of all entity-pairs {xi}
N
i=1 by X ∈

X := X × .. × X , the collection of mention relations {hi}
N
i=1 by H ∈ H := H × .. × H,

and the collection of relation labels {yi}
N
i=1 by Y ∈ Y := Y × ..× Y .

The aim is to learn a parameter vector w ∈ R
d, by which the relation labels for a

new entity-pair x can be predicted

fw(x) := argmax
y

max
h

w · Φ(x,h,y) (5.1)

where Φ ∈ R
d is a feature vector defined according to the Markov Random Field, modeling

the inter-dependencies between x and y through h (Figure 5.1). In training, we would

like to minimize the loss function ∆ by which the model will be assessed at test time. For

the relation extraction task, the loss can be considered to be the negative of the Fβ score:

Fβ =
1

β

Precision
+ 1−β

Recall

(5.2)

where β = 0.5 results in optimizing against F1-score. Our proposed learning method

optimizes those loss functions ∆ that cannot be decomposed over individual training
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instances. For example, Fβ depends non-linearly on Precision and Recall which in turn

requires the predictions for all the entity-pairs in the training set; hence it cannot be

decomposed over individual training instances.

5.2.2 Introduction to Structured Prediction Learning

The goal of our learning problem is to find w ∈ Rd, which minimizes the expected loss

— also known as risk — over a new sample D′ of size N ′:

R∆
fw

:=

∫
∆
((

fw(x
′
1), .., fw(x

′
N ′)
)
,
(
y′
1, ..,y

′
N ′

))
dPr(D′) (5.3)

Generally, the loss function ∆ cannot be decomposed into a linear combination of a loss

function δ over individual training samples. However, most discriminative large-margin

learning algorithms assume for simplicity that the loss function is decomposable and the

samples are i.i.d. (independent and identically distributed), which simplifies the sample

risk R∆
fw

as:

Rδ
fw

:=

∫
δ(fw(x

′),y′)dPr(x′,y′) (5.4)

Often learning algorithms make use of empirical risk as an approximation of sample risk:

R̂δ
fw

:=
1

N

N∑

i=1

δ(fw(xi),yi) (5.5)

For non-decomposable loss functions such as Fβ, ∆ cannot be expressed in terms of

instance-specific loss function δ to construct the empirical risk of the kind in Equation

(5.5). Instead, we need to optimize the empirical risk that is constructed based on the

sample loss:

R̂∆
fw

:= ∆
((

fw(x1), .., fw(xN)
)
,
(
y1, ..,yN

))
(5.6)

or equivalently

R̂∆
fw

:= ∆(fw(X),Y) (5.7)

where fw(X) := (fw(x1), .., fw(xN)).

Having defined the empirical risk in Eq (5.7), we formulate the learning problem as a

structured prediction problem. Instead of learning a mapping function fw : X → Y from

an individual instance x ∈ X to its label y ∈ Y , we learn a mapping function f : X → Y

from all instances X ∈ X to their labels Y ∈ Y . We then define the best labeling using

a linear discriminant function:

f(X) := arg max
Y′∈Y

max
H′∈H

{
w ·Ψ(X,H′,Y′)

}
(5.8)
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where Ψ(X,H′,Y′) :=
∑N

i=1 Φ(xi,h
′
i,y

′
i). Based on the margin re-scaling formulation of

structured prediction problems (Tsochantaridis et al., 2004), the training objective can

be written as the following unconstrained optimization problem:

min
w

1

2
||w||22 + Cmax

Y′

{
max
H′

w ·Ψ(X,H′,Y′)

−max
H′

w ·Ψ(X,H′,Y) + ∆(Y′,Y)
}

(5.9)

which is similar to the training objective for the latent SVMs (Yu and Joachims, 2009).

The difference is that the instance-dependent loss function δ is replaced by the sample

loss function ∆. To learn w by optimizing the objective function mentioned above is

challenging, and is the subject of the next section.

5.3 Optimizing Multi-variate Performance Measures

In this section we present our method to learn latent SVMs with non-decomposable loss

functions. Our training objective is Equation (5.9), which can be equivalently expressed

as:

min
w

1

2
||w||22 + C max

y′
1,..,y

′

N

{
∆

(
(y1, ..,yN ), (y

′
1, ..,y

′
N )

)

+
N∑

i=1

max
h

w · Φ(xi,h,y
′
i)−

N∑

i=1

max
h

w · Φ(xi,h,yi)

}
(5.10)

The training objective is non-convex, since it is the difference of two convex functions. In

this section we make use of the CCCP to populate the hidden variables (Yu and Joachims,

2009; Yuille and Rangarajan, 2003), and interleave it with dual decomposition (DD) to

solve the resulting intermediate loss-augmented inference problems (Ranjbar et al., 2012;

Rush and Collins, 2012; Komodakis et al., 2011).

5.3.1 Concave-Convex Procedure (CCCP)

The CCCP (Yuille and Rangarajan, 2003) offers a general iterative method to optimize

those non-convex objective functions that can be written as the difference of two convex

functions g1(w) − g2(w). The idea is to iteratively lowerbound g2 with a linear function

g2(w
(t)) + v · (w −w(t)), and take the following step to update w:

wt+1 := argmin
w

{
g1(w)−w · vt

}
(5.11)
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Algorithm 2 The Training Algorithm (Optimizing Equation 5.10)

1: procedure opt-latentSVM(X,Y)

2: Initialize w(0) and set t = 0

3: repeat

4: for i := 1 to N do

5: h∗
i := argmaxh w

(t) · Φ(xi,h,yi)

// Optimizing Equation 5.12

6: w(t+1) := optSVM(X,H∗,Y)

7: t := t+ 1

8: until some stopping condition is met

9: return w(t)

In our case, the training objective in Equation (5.10) is the difference of two convex

functions where the second function g2 is C
∑N

i=1 maxh
{
w·Φ(xi,h,yi)

}
. The upperbound

of g1(w)− g2(w) involves populating the hidden variables by:

h∗
i := argmax

h

{
w(t) · Φ(xi,h,yi)

}
.

Therefore, in each iteration of our CCCP-based algorithm we need to optimize Eq (5.11)

— reminiscent of the standard structural SVM without latent variables:

min
w

1

2
||w||22 + C max

ỹ1,..,ỹN

{
∆

(
(y1, ..,yN ), (ỹ1, .., ỹN )

)

+
N∑

i=1

max
h

w · Φ(xi,h, ỹi)−
N∑

i=1

w · Φ(xi,h
∗
i ,yi)

}
(5.12)

The objective function mentioned above can be optimized using the standard cutting-

plane algorithms for structural SVM (Tsochantaridis et al., 2004; Joachims, 2005). The

cutting-plane algorithm in turn needs to solve the loss-augmented inference, which is the

subject of the next sub-section. The CCCP-based training algorithm is summarized in

Algorithm 2.
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5.3.2 Loss-Augmented Inference

To be able to optimize the training objective in Equation (5.12), which is encountered in

each iteration of Algorithm 2, we need to solve (the so-called) loss-augmented inference:

max
y′
1,..,y

′

N

∆

(
(y1, ..,yN ), (y

′
1, ..,y

′
N )

)

+
N∑

i=1

max
h

w · Φ(xi,h,y
′
i) (5.13)

We make use of the dual decomposition (DD) technique to decouple the two terms of

the above objective function, and efficiently find an approximate solution. DD is shown

to be an effective technique for loss-augmented inference in structured prediction models

without hidden variables (Ranjbar et al., 2012).

To apply DD to the loss-augmented inference in Equation (5.13), let us rewrite it

as a constrained optimization problem:

max
y′
1,...,y

′

N
,y′′

1 ,...,y
′′

N

∆

(
(y1, . . . ,yN), (y

′
1, . . . ,y

′
N)

)

+
N∑

i=1

max
h

w · Φ(xi,h,yi
′′)

subject to

∀i ∈ {1, . . . , N}, ∀ℓ ∈ {1, . . . , L}, y′i,ℓ = y′′i,ℓ

Introduction of the new variables (y′′
1 , ..,y

′′
N ) decouples the two terms in the objective

function, and leads to an effective optimization algorithm. After forming the Lagrangian,

the dual objective function is derived as:

L(Λ) := max
Y′

∆(Y,Y′) +
∑

i

∑

ℓ

λi(ℓ)y
′
i,ℓ +

max
Y′′

N∑

i=1

max
h

w · Φ(xi,h,yi
′′)−

∑

i

∑

ℓ

λi(ℓ)y
′′
i,ℓ

where Λ := (λλλ1, ..,λλλN), and λλλi is a vector of Lagrange multipliers for L binary variables,

each of which represents a relation label. The two optimization problems involved in the

dual L(Λ) are independent and can be solved separately. The dual is an upperbound

on the loss-augmented objective function for any value of Λ; therefore, we can find the

tightest upperbound as an approximate solution:

min
Λ

L(Λ)
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Algorithm 3 Loss-Augmented Inference

1: procedure opt-LossAug(w,X,Y)

2: Initialize Λ(0) and set t = 0

3: repeat

4: Y
′

∗ := opt-LossLag(Λ,Y) // Eq. (5.14)

5: Y
′′

∗ := opt-ModelLag(Λ,X) // Eq. (5.15)

6: if Y
′

∗ = Y
′′

∗ then

7: return Y
′

∗

8: for i := 1 to N do

9: for ℓ := 1 to L do

10: λ
(t+1)
i (ℓ) := λ

(t)
i (ℓ)− η(t)(y′i,ℓ − y′′i,ℓ)

11: until some stopping condition is met

12: return Y
′

∗

The dual is non-differentiable at those points Λ where either of the two optimization

problems has multiple optima. Therefore, it is optimized using the subgradient descent

method:

Λ(t) := Λ(t−1) − η(t)(Y
′

∗ −Y
′′

∗ )

where η(t) = 1√
t
is the step size1, and

Y
′

∗ := argmax
Y′

∆(Y,Y′) +
∑

i

∑

ℓ

λ
(t−1)
i (ℓ)y′i,ℓ (5.14)

Y
′′

∗ := argmax
Y′′

N∑

i=1

max
h

w · Φ(xi,h,yi
′′)

−
∑

i

∑

ℓ

λ
(t−1)
i (ℓ)y′′i,ℓ (5.15)

The DD algorithm to compute the loss-augmented inference is outlined in Algorithm 3.

The challenge lies in effectively solving the two optimization problems mentioned above,

which is the subject of the following section.

1Other (non-increasing) functions of the iteration number t are also plausible, as far as they satisfy

the following conditions (Komodakis et al., 2011) that are needed to guarantee the convergence to the

optimal solution in the subgradient descent method: η(t) ≥ 0, limt→∞ η(t) = 0,
∑

∞

t=1 η
(t) =∞
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Algorithm 4 Finding Y′
∗ : Local Search

1: procedure opt-LossLag(Λ,Y)

2: (idxn
1 . . . idx

n
#neg)← Sort ↓ (λi(ℓ)) // FPs

3: (idxn
1 . . . idx

n
#pos)← Sort ↑ (λi(ℓ)) // FNs

4: Initialize (fp, fn) on the grid

5: repeat

6: for ((fp′, fn′) ∈ Neigbours(fp, fn) do

7: loss(fp′,fn′) = ∆(fp′, fn′) +Λsorted
3

8: loss(fp′′,fn′′) = argmax(fp′,fn′) loss(fp′,fn′)

9: if loss(fp,fn) > loss(fp′′,fn′′) then

10: break

11: else

12: (fp, fn) = (fp′′, fn′′)

13: until loss(fp,fn) ≤ loss(fp′′,fn′′)

14: return { Y′ corresponding to (fp, fn) }

5.3.3 Effective Optimization of the Dual

The two optimization problems that are involved in the dual are hard in general. More

specifically, the optimization of the affine-augmented model score (in Equation 5.15) is as

difficult as the MAP inference in the underlying graphical model, which can be challenging

for loopy graphs. For the graphical model underlying distant supervision of relation

extraction (Fig 5.1), we formulate the inference as an ILP (integer linear program) as

explained in Chapter 4. Furthermore, we relax the ILP to LP to speed up the inference,

at the expense of trading exact solutions with approximate solutions2.

Likewise, the optimization of the affine-augmented multivariate loss (in Equation

5.14) is difficult. This is because we have to search over the entire space of Y′ ∈ Y , which

is exponentially large O(2N∗L). However, if the loss term ∆ can be expressed in terms of

some aggregate statistics over Y′, such as false positives (FPs) and false negatives (FNs),

2We observed in our experiments that relaxing the ILP to LP does not hurt the performance, but

speeds up the inference significantly.
3For a given (fp, fn), we set y′ by picking the sorted unary terms that maximize the score according

to y.
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the optimization can be performed efficiently. This is due the fact that the number of FPs

can range from zero to the size of the negative labels, and the number of FNs can range

from zero to the number of positive labels. Therefore, the loss term can take O(N2L2)

different values which can be represented on a two-dimensional grid. After fixing FPs and

FNs to a grid point, Λ ·Y′ is maximized with respect to Y′. The grid point that has the

best value for ∆(Y,Y′) +Λ ·Y′ will then provide the optimal solution for the Equation

(5.14).

An exhaustive search in the space of all possible grid points becomes inefficient as

soon as the grid becomes large. Therefore, we have to adapt the techniques proposed in

previous work (Ranjbar et al., 2012; Joachims, 2005). We propose a simple but effective

local search strategy for this purpose. The procedure is outlined in Algorithm 4. We start

with a random grid point, and move to the best neighbor. We keep hill climbing until

there is no neighbor better than the current point. We define the neighborhood by a set

of exponentially spaced points around the current point, to improve the exploration of

the search space. We present some analysis on the benefits of using this search strategy

vis-à-vis the exhaustive search in the Experiments section.

5.4 Experiments

5.4.1 Experimental Setup

Dataset

We use the challenging benchmark dataset created by Riedel et al. (2010) for distant

supervision of relation extraction models. It is created by aligning relations from Freebase4

with the sentences in the New York Times corpus (Sandhaus, 2008). The labels for the

data points come from the Freebase database; however, Freebase is incomplete (Ritter

et al., 2013). So a data point is labeled nil when either no relation exists or the relation is

absent in Freebase. To avoid this ambiguity, we train and evaluate the baseline and our

algorithms on a subset of this dataset, which consists of only non-nil relation labeled data

points (termed as positive dataset). For the sake of completeness, we report the accuracies

of the various approaches on the entire evaluation dataset.

4www.freebase.com
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Systems and Baseline

Hoffmann et al. (2011) describe a state-of-the-art approach for this task. They use a

perceptron-style parameter update scheme adapted to handle latent variables; their train-

ing objective is the conditional likelihood. Out of the two implementations of this algo-

rithm, we use the better5 of these two6 as our baseline (denoted by Hoffmann). For a fair

comparison, the training dataset and the set of features defined over it are common to all

the experiments.

We discuss the results of two of our approaches. One is the LatentSVM max-margin

formulation with the simple decomposable Hamming loss function, which minimizes the

error rate (denoted by MM-hamming). The other is the LatentSVM max-margin formula-

tion with the non-decomposable loss function, which minimizes the negative of Fβ score

(denoted by MM-F-loss)7.

Evaluation Measure

The performance measure is Fβ, which can be expressed in terms of FP and FN as:

Fβ =
Np − FN

β(FP − FN) +Np

where β is the weight assigned to precision (and 1 − β to recall). FP , FN and Np are

defined as :

FP =
∑

i

∑

ℓ

y′i,ℓ(1− yi,l)

FN =
∑

i

∑

ℓ

yi,ℓ(1− y′i,l)

Np =
∑

i

∑

ℓ

yi,ℓ

We use 1− Fβ as the expression for the multivariate loss.

5.4.2 Training on Sub-samples of Data

We performed a number of experiments using different randomized subsets of the Riedel

dataset (10% of the positive dataset) to train the max-margin approaches. This was done

5It is not clear why the performance of the two implementations is different.
6nlp.stanford.edu/software/mimlre.shtml
7We use a combination of F1 loss and Hamming loss, since using only F1 loss overfits the training

dataset, as observed from the experiments.
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Figure 5.2: Experiments on 10% Riedel datasets.

Precision Recall F1

Hoffmann 65.93 47.22 54.91

MM-Hamming 59.74 53.81 56.32

MM-F-loss 64.81 61.63 63.44

Table 5.1: Average results on 10% Riedel datasets.

in order to determine empirically a good set of parameters for training. We also compare

the results of the approaches with Hoffmann trained on the same sub-samples.

Comparison with the Baseline

We report the average over 15 subsets of the dataset with a 90% confidence interval

(using student-t distribution). The results of these experiments are shown in Figure 5.2

and Table 5.1. We observe that both MM-Hamming and MM-F-loss have a higher F1-

score compared to the baseline. There is a significant improvement in the F1-score to

the tune of 8.52% for the multivariate performance measure over Hoffmann. There is

also an improvement in the F1-score of 7.12%, compared to MM-Hamming. This highlights
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Figure 5.3: Weighting of Precision and Recall

the importance of using non-linear loss functions, when compared to using simple loss

functions such as error rate during training.

However, Hoffmann has a marginally higher precision of about 1.13%. We noticed

that this was due to over-fitting of the model on the data, since the performance on the

training datasets was very high. Another interesting observation of MM-F-loss is that it

is fairly balanced with respect to both Precision and Recall, which the other approaches

do not exhibit.

Tuning toward Precision/Recall

Often, we come across situations where either precision or recall is important for a given

application. This is modeled by the notion of Fβ (van Rijsbergen, 1979). One of the main

advantages of using a non-decomposable loss function such as Fβ is the ability to vary the

learning algorithm to factor in such situations. For instance, we can tune the objective

to favor precision more than recall by “up-weighting” precision in the Fβ-score.

As an illustration, in the previous case, we observed that MM-F-loss has a marginally

poorer precision compared to Hoffmann. Suppose we increase the weight of precision,

β = 0.833, we observe a dramatic increase in precision from 65.83% to 86.59%. As

expected, due to the precision-recall trade-off, we observe a decrease in recall. The results
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avg. time per iter. F1

Local Search 0.09s 58.322

Exhaustive Search 630s 58.395

Table 5.2: Local vs. Exhaustive Search.

are shown in Figure 5.3.

Local versus Exhaustive Grid Search

Figure 5.4: Overall accuracies Riedel dataset

As we described in Section 5.3.3, we devise a simple yet efficient local search strategy

to search the space of (FP, FN) grid-points. This enables a speed up of three orders of

magnitude in solving the dual-optimization problem. In Table 5.2, we compare the average

time per iteration and the F1-score when each of these techniques is used for training on a

sub-sample dataset. We observe that there is a significant decrease in training time when

we use local search (almost 7000 times faster), with a negligible decrease in the F1-score

(0.073%).
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Precision Recall F1

Hoffmann 75.436 46.615 57.623

MM-Hamming 76.839 50.462 60.918

MM-F-loss 65.991 65.211 65.598

Table 5.3: Overall results on the positive dataset.

5.4.3 The Overall Results

Figure 5.4 and Table 5.3 present the overall results of our approaches compared to the

baseline on the positive dataset. We observe that MM-F-loss has an increase in F1-score

to the tune of ∼8% compared to the baseline. This confirms our observation on the

sub-sample datasets that we saw earlier.

Precision Recall Fβ

Hoffmann 75.44 46.62 57.62

MM-F-loss-wt 77.04 53.44 63.11

Table 5.4: Increasing weight on Precision in Fβ.

By assigning more weight to precision, we are able to improve over the precision of

Hoffmann by ∼1.6% (Table 5.4). When precision is tuned with a higher weight during the

training of MM-F-loss, we see an improvement in precision without much dip in recall.

5.4.4 Discussion

So far we have discussed the performance of various approaches on the positive evaluation

dataset. Our approach is shown to improve the overall Fβ-score that has better recall

than the baseline. By suitably tweaking the Fβ we show an improvement in precision as

well.

The performance of the approaches when evaluated on the entire test dataset (con-

sisting of both nil and non-nil data points) is shown in Table 5.5. Max-margin based

approaches generally perform well when trained only on the positive dataset, when com-

86



pared to Hoffmann. However, our F1-scores are ∼8% less when we train on the entire

dataset that consists of both nil and non-nil data points.

Trained On→ entire dataset positive dataset

Hoffmann 23.14 3.269

MM-Hamming 13.20 16.26

MM-F-loss 13.94 21.93

Table 5.5: F1-scores on the entire test set.

In a recent work, Xu et al. (2013) provide some statistics about the incompleteness

of the Riedel dataset. Out of the sampled 1854 sentences from NYTimes corpus, most of

the entity-pairs that express a relation in Freebase correspond to FNs. This is one of the

reasons why we do not consider nil labeled data points during training and evaluation.

MIMLRE (Surdeanu et al., 2012) is another state-of-the-art system that is based on

the EM algorithm. Since it uses an additional set of features for the relation variables y,

it is not our primary baseline. On the positive dataset, our model MM-F-loss achieves an

F1-score of 65.598% compared to 65.341% of MIMLRE. As part of the future work, we

would like to incorporate the additional features present in MIMLRE into our approach.

5.5 Chapter Summary

In this chapter, we have described a novel max-margin approach to optimize non-linear

performance measures, such as Fβ, in distant supervision of Information Extraction mod-

els. Our approach is general and can be applied to other latent variable models in NLP.

Our approach involves solving the hard-optimization problem in learning by interleaving

Concave-Convex Procedure with dual decomposition. Dual decomposition allowed us to

solve the hard sub-problems independently. A key aspect of our approach involves a local-

search algorithm, which has led to a speed up of 7,000 times in our experiments. We have

demonstrated the efficacy of our approach in distant supervision of relation extraction.

Under several conditions, we have shown our technique outperforms very strong baselines,

and results in up to 8.5% improvement in F1-score.
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Figure 5.5: Thesis Organization: Chapter 5

Figure 5.5 highlights the part presented in this chapter and the accompanying pub-

lication that overlaps with the material presented.
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Chapter 6

Conclusion

Our thesis can be summarized as shown in Figure 6.1. The broad theme of each work

along with its publication forum is indicated. In the entity extraction setting, we work in

the paradigm of relational feature space exploration, and in the relation extraction setting,

our research has been in the paradigm of learning under distant supervision.

In Chapter 3, we presented a system for efficiently inducing named-entity annotation

rules. We have designed a feature induction approach that aims to produce accurate rules

that can be understood and refined by humans. This has been done by placing special

emphasis on low complexity and efficient computation of the induced rules, while mim-

icking a four-stage approach used for manually constructing rules. The main induction

approach consisted of two stages, namely, candidate definition and candidate refinement,

while the other two stages, that is, basic feature definition and rule consolidation are

assumed to be manually specified. We presented results with both, domain-independent

as well as customized basic features. According to our complexity measure, the induced

rules have good accuracy and low complexity.

While our complexity measure informs the biases in our system and leads to simpler,

smaller extractors, it captures extractor interpretability only to a certain extent. It cap-

tures the notion of interpretability only in the feature language. Some of its shortcomings

are discussed in Section 3.5.3. Therefore, we believe more work is required to devise a

comprehensive quantitative measure for interpretability, and to refine our techniques in

order to increase the interpretability of induced rules. We also provide some directions

for future research in this area that can have far reaching impact.

In a recent paper, Chiticariu et al. (2013) provide a very interesting analysis of the

gulf between industry and academia, in the adoption of rule-based systems. While rule-
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Figure 6.1: Thesis Summary

based systems are extensively used in the industry, the academic community has not been

actively engaging to address some of the research challenges in rule-based IE. Our work is

a small step to bridge this gap. Our experiment with relational features to train statistical

learners reinforces our conviction that rule induction — with emphasis on interpretability

— has a lot of potential in building robust IE systems.

Beyond interpretability in the rule language, rules induced should appeal to human

intuition. This is out of the scope of the current thesis. It requires careful design of human-

computer interaction experiments, in order to present the induced rules to a manual

rule-developer. This future work can have far reaching implications in addressing the so

called man-machine gap. Other interesting directions for future work are the introduction

of more constructs in our framework, and the application of our techniques to other

languages.

In the last couple of years, distant-supervision based relation extraction has been

a highly active area of research in the IE community. It has the potential to create

large training data which is almost impossible to create by human annotators. Although,

the data is extremely noisy and needs sophisticated learning algorithms to learn robust

classifiers. In Chapter 4, we described an important addition to the model by Hoffmann
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et al. (2011) by the use of the noisy-or soft constraint, to further relax the at least one

assumption. Since we posed the inference procedures in Hoffmann using ILP, we could

easily add this constraint during the training and inference. Empirically, we showed that

the resulting P/R curves have a significant performance boost over Hoffmann’s algorithm

as a result of this newly added constraint. Although our system has a lower recall when

compared to MIMLRE (Surdeanu et al., 2012), it performs competitively with respect to

precision at low recall.

Our ILP formulation provides a good framework to add new types of constraints to

the problem. In the future, we would like to experiment with other constraints such as

modeling the selectional preferences of entity types. Additionally, constrains which are

global in nature (for example, a country cannot have more than one head-of-state) are

difficult to enforce, since this would necessitate the interaction across entity pairs. This

would also be an interesting direction of future research.

In Chapter 5, we described a novel max-margin approach to optimize non-linear

performance measures, such as Fβ, in distant supervision of information extraction models.

Our approach is general and can be applied to other latent variable models in NLP. Our

approach involves solving the hard optimization problem in learning by interleaving the

Concave-Convex Procedure with dual decomposition. Dual decomposition allowed us to

solve the hard sub-problems independently. A key aspect of our approach involves a local-

search algorithm, which has led to a 7,000-time speed-up in our experiments. We have

demonstrated the efficacy of our approach in distant supervision of relation extraction.

Under several conditions, we have shown that our technique outperforms very strong

baselines, and results in an improvement of up to 8.5% in the F1-score.

Although we solved the hard optimization problem with an efficient dual-

decomposition formulation, our algorithms do not scale very well to large datasets. As

part of future work, we would like to investigate distributed optimization algorithms as

an extension to our solutions. In addition, we would like to maximize other performance

measures such as the area under the curve, for information extraction models. We would

also like to explore our approach for other latent variable models in NLP, such as those

in machine translation.
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Appendix A

Relational Feature Class Hierarchy

We state some relationships between the relational feature classes defined in Chapter 2.

Claim A.1. PF ⊂ AF .

Proof. From the definition, PF s are AF s with the restriction that a new local vari-

able introduced should be transitively consumed by a single evidence predicate. Hence

PF ⊆ AF . Now, consider the clause a(X) :- b(X,Y), c(Y), d(Y). Since it follows all the

requirements of an AF , it is an absolute feature. However, since there are two evidence

predicates for the local variable Y, it does not qualify to be a PF . Hence, PF 6= AF .

Claim A.2. AF ⊂ CF .

Proof. From the definition, CF s are conjunctions of one or more AF s. Therefore, all AF s

are CF s (unary conjunctions). Now, consider the CF clause a(X) :- b(X,Y), c(Y), b(X,Z),

d(Z). As this a conjunction of two AF s
(
a(X) :- b(X,Y), c(Y) and a(X) :- b(X,Z), d(Z)

)
,

this is not minimal, and hence, not an AF . Hence, AF 6= CF .

Claim A.3. SC ⊂ CF .

Proof. From the definition, CF s are conjunctions of one or more AF s. Also SCs are

conjunctions of evidence predicates at a single sequence position. Since an SC with a

single evidence predicate is also an AF , conjunctions of such single predicate SCs are the

same as conjunctions of single predicate AF s, and thus, all SCs are CF s. Now, consider

the clauses 3, 5 and 7 which are CF s, but not SCs. Therefore, SC 6= CF .

Claim A.4. CF ⊂ DF .
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Proof. From the definition, DF s are first order definite clauses without any restrictions

imposed for CF s. Therefore, CF ⊆ DF . Now consider the clause a(X) :- b(X,Y), which

is a first order relation that does not qualify as a CF , since the variable Y introduced is

not reused. Therefore, CF 6= DF .

Claim A.5. Every AF can be constructed from PF s using unifications.

Proof. The difference between an AF and a PF is that an AF can have more than

one evidence predicate for each local variable introduced. Let lp be a relational literal

in the body of an AF clause that introduces only one local variable. Let l1, l2, . . . , lp−1

be the set of relational literals in the body, which lp depends on. Let there be P ≥ 0

number of dependency chains starting from lp to some evidence predicates, each of which

is represented as lip+1, . . . , l
i
k. We define lp as a pivot literal if P > 1. For simplicity, we

assume that there is only one pivot in a clause. Now, we can construct P PF clauses

from this with the body of the ith clause as l1, l2, . . . , lp−1, lp, l
i
p+1, . . . , l

i
k, where lik is an

evidence predicate. It is trivial to see that these P clauses can be unified to construct

the original AF . For multiple pivot literal clauses, the method described above can be

applied recursively until PF clauses are generated. The proof can be extended to pivot

literals with multiple new local variables by using a dependency tree structure in place of

the chain.

Claim A.6. Every CF can be constructed from AF s by conjunctions.

Proof. By definition, a clause qualifies as a CF only if it is constructed from the conjunc-

tion of one or more AF s.

Claim A.7. CF s are first order DF s with local variable reuse restriction.

Proof. AF s include maximal clauses generated only with unification (without conjunc-

tions) of PF s. These clauses have the restriction that all local variables introduced need

to be consumed transitively. CF s capture all possible conjunctions of AF s, and therefore,

can generate any definite clause that is consistent with the local variable consumption

restriction.
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Appendix B

SystemT and AQL

SystemT is a declarative Information Extraction system based on an algebraic framework.

In SystemT, developers write rules in an SQL-like language called Annotation Query

Language (AQL). To represent annotations in a document, AQL uses a simple relational

data model with three types, namely:

1. Span: A region of text within a document identified by its “begin” and “end”

positions.

2. Tuple: A fixed-size list of spans.

3. Relation, or View: A multi-set of tuples, where every tuple in the view must be of

the same size.

Figure B.1 shows a portion of a Person extractor written in AQL. The output of the

rules on a sample snippet from a document is shown in Figure B.2.

Basic Constructs in AQL

The basic building block of AQL is a view. A view is a logical description of a set of tuples

in terms of (i) the document text (denoted as a special view called Document), and (ii)

the contents of other views, as specified in the from clauses of each statement. Figure B.1

also illustrates five of the basic constructs that can be used to define a view, which we

explain next. We note that this set of constructs form only a subset of the AQL language

necessary for the purpose of this work. The complete specification can be found in the

AQL manual (IBM, 2012).
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Figure B.1: Example Person extractor in AQL

The extract statement

The extract statement specifies basic character-level extraction primitives such as regular

expression and dictionary matching over text, creating a tuple for each match. As an
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Figure B.2: Output of Person extractor on a sample document snippet

example, rule R1 uses the extract statement to identify matches (Caps spans) of a regular

expression for capitalized words while R2 and R3 match gazetteers of common first names

(First spans) and last names (Last spans), respectively.

The select statement

The select statement is similar to the SQL select statement, but contains an additional

consolidate on clause (explained further), along with an extensive collection of text-specific

predicates. For example, rule R4 constructs simple person candidate spans from First

spans that are also Caps spans, in which the equality condition is specified using the

join predicate Equals(). Rule R5 illustrates a complex example: it selects First spans

immediately followed within zero tokens by a Last span, where the latter is also a Caps

span. The two conditions are specified using two join predicates: FollowsTok and Equals,

respectively, which returns true if the span in the first argument is followed by the span

in the second argument, within min and max distances measured in tokens (specified by

the next two arguments). For each triplet of First , Last and Caps spans that satisfy the

two predicates, the CombineSpans built-in scalar function in the select clause constructs

larger PersonFirstLast spans that begin at the begin position of the First span, and end
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at the end position of the Last (also Caps) span.

The union all statement

The union all statement merges the outputs of two or more statements. For example,

rule R6 unions person candidates identified by rules R4 and R5.

The minus statement

The minus statement subtracts the output of one statement from the output of another.

For example, rule R8 defines a view PersonAll by filtering out PersonInvalid tuples from the

set of PersonCandidate tuples. Notice that rule R7 used to define the view PersonInvalid

illustrates another join predicate of AQL called Overlaps, which returns true if its two

argument spans overlap in the input text. Therefore, at a high level, rule R8 removes

person candidates that overlap with an Organization span. (The Organization extractor is

not depicted in the figure.)

The consolidate clause

The consolidate clause of a select statement removes selected overlapping spans from

the indicated column of the input tuples, according to the specified policy (for instance,

“ContainedWithin”). For example, rule R9 retains PersonAll spans that are not contained

in other PersonAll spans.
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Appendix C

Induction Target Language

Our goal is to automatically generate NER extractors with good quality, and at the

same time, manageable complexity, so that the extractors can be further refined and

customized by the developer. To this end, we focus on inducing extractors using the

subset of AQL Constructs described in Section B. We note that we have chosen a small

subset of AQL constructs that are sufficient to implement several common operations

required for NER. Our experimental results seem to indicate that the subset we consider

is sufficient to induce NER extractors with the above properties. However, AQL is a much

more expressive language, suitable for general-purpose extraction tasks, and we leave the

study of other AQL constructs in the context of rule induction for future work. In this

section we describe the building blocks of our target language, and propose a simple

definition for measuring the complexity of an extractor.

The components of the target language are as follows, summarized in Table C.1.

Basic features (BF)

BF features are specified using the extract statement, such as rules R1 to R3 in Figure B.1.

In this work, we assume as input a set of basic features consist of dictionaries and regular

expressions.

Candidate definition (CD)

CD features are expressed using the select statement to combine BF features with

join predicates (for example, Equals, FollowsTok or Overlaps), and the CombineSpans

scalar function to construct larger candidate spans from input spans. Rules R4 and R5

in Figure B.1 are example CD rules. In general, a CD view is defined as: ‘‘Select
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Phase name AQL statements Prescription Rule Type

Basic Features extract Off-the-shelf, Learning using prior

work Riloff (1993); Li et al. (2008)

Basic Features Definition

Phase 1 (Clustering and

RLGG)

select Bottom-up learning (LGG), Top-down

refinement

Development of Candidate

Rules

Phase 2 (Propositional

Rule Learning)

select, union

all, minus

RIPPER, Lightweight Rule Induction Candidate Rules Filtering

Consolidation consolidate,

union all

Manually identified consolidation rules,

based on domain knowledge

Consolidation rules

Table C.1: Phases in induction, the language constructs invoked in each phase, the pre-

scriptions for inducing rules in the phase, and the corresponding type of rule in manual

rule-development.

all spans constructed from view1, view2, . . ., viewn, such that all join

predicates are satisfied.’’

Candidate refinement (CR)

CR features are used to discard spans output by the CD features that may be incorrect. In

general, a CR feature is defined as: ‘‘From the list of spans of viewvalid subtract

all those spans that belong to viewinvalid’’. viewvalid is obtained by joining all

the positive CD clues on the Equals predicate and viewinvalid is obtained by joining all

the negative overlapping clues with the Overlaps predicate and subsequently ’union’ing

all the negative clues. (for example, similar in spirit to rules R6, R7 and R8 in Figure B.1,

except that the subtraction is done from a single view and not the union of multiple

views).

Consolidation (CO)

Finally, a select statement with a fixed consolidate clause is used for each entity type to

remove overlapping spans from CR rules. An example CO view is defined by rule R9 in

Figure B.1.
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