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“If the facts don’t fit the theory, change the facts.”

Albert Einstein
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Cancer (tumor malignancy) has been seen as one of the most serious diseases for decades.

Tumor contains different mutations among the tumor cells referred as tumor heterogene-

ity. Cancer treatment and therapy development are tumor heterogeneity dependent. For

more accurate treatment and therapy, it is necessary to cluster the mutations of a tumor

sample to find the subpopulations (a set of tumor cells having similar mutations). In

recent years, many researches have done studies with the assumption that – mutations

of a subpopulation do not overlap with others. But in the real world, mutations of a

subpopulation may overlap with other. By considering overlapping mutations among

different subpopulations, we have designed a statistical model: Het-FHMM, based on

Factorial Hidden Markov Model (FHMM). We have carried out several experiments on

our model with synthetic data and compared with an approximation of Pyclone, which

is another state-of-the-art statistical model to analyze tumor heterogeneity. It has been

found that our method outperformed Pyclone in accuracy. Our proposed method works

on mutations overlapping among the subpopulations which help to identify subpopula-

tion of a tumor sample more accurately, although the experiments were only done on

the shortened version of synthetic genome data.
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Chapter 1

Introduction

1.1 Preamble

Cancer is the name for a set of diseases which describes the situation when cells lose

their control on self-replication, and invade and transport to other tissues by the lymph

system or blood [1]. If the spread of uncontrolled cells continues, cancer can lead to

death with high probability. The incidence rate for all kinds of cancers in the United

States is 550.7 (male) and 419.3 (female) per 100,000 people from 2005-2009 [2]. To

show cancer is a worldwide issue, we can look at some local statistics for Australia. The

mortality of cancer in 2012 is 221.7 and 137.6 per 100,000 people for male and female

respectively, which is quite similar to the values in the U.S. [3].

Research studies have been focusing on various aspects of cancer, including the cause of

cancer, the mechanism of cancer, how cancer evolves, different properties of cancer and

how we could deal with cancer. With the aid of computational power, each field in cancer

study has developed greatly. Computers have been playing one of the most important

roles in modern cancer studies and in other relevant biology fields. For example, DNA

sequencing data is usually used as input for study of cancer, and high-throughput DNA

sequencing techniques such as next-generation sequencing (NGS) relies on computational

algorithms in order to achieve reliable results. Details of sequencing techniques will be

discussed separately in later sections in Chapter 2.

As the role of information technology becomes increasingly important in biology re-

searches, one specific research field called “Bioinformatics” also emerged in 1970 [4].

This thesis falls within this area, as it aims at using computational power and statistical

models to analyze a phenomenon in cancer called “clonal heterogeneity”.

1



Chapter 1 2

1.2 The Research Problem

In order to discuss clonal heterogeneity in cancer, we first need to know how cancer

works in a high level. Human body is composed of cells. Each cell contains the same

DNA strand which carries genetic information of one specific person. This DNA strand

not only carries the genetic information, but also controls the behavior of the cell in

which the DNA strand resides. Therefore, once the DNA strand is mutated i.e. the

content of DNA is changed, the behavior of the cell is also affected. Normal cells have

a regulated cell cycle, which controls how the cell grows, splits and dies. Most normal

cells have a fixed length of life and will be replaced by new cells.

When the DNA strand in a cell is mutated, the normal cell cycle process may be changed

so that the cell gains extra advantages and lives longer than other cells. When there are

many mutated cells that become uncontrollable in growth, they are then called “tumor

cells”. A tumor can be benign or malignant. Benign tumors cells only grow locally

but malignant tumor cells invade other tissues and transport to other sites as well.

Cancer is the term that is used to describe the disease when malignant tumor cells

invade other normal cells so that functionalities of normal cells are lost [1].

The process by which cells get mutated and accumulated is complex. There are various

factors which may affect the probability of mutations’ occurring. Hence it is reasonable

that different cells may acquire different mutations. Some cells in the tumor may share

some common properties or the same mutations, and these cells are considered to be

in the same subpopulation or clone. Since different clones react differently to drugs,

we need to identify and target all the clones for a comprehensive treatment of cancer.

Otherwise some clones still remain untreated, and they will generate more tumor cells

and eventually malignant tumors grow again. Clonal heterogeneity refers to the

phenomenon whereby different clones co-exist in a tumor.

The aim of this research project is to develop a computational model that automatically

analyzes data from a tumor and identify clones that exist in the tumor. By identifying

all the clones in the tumor, medical researchers can make the therapy more thorough

and thus prevent the relapse of cancer.

1.3 Objectives, Research Scope and Assumptions

The objective of this thesis is to present a novel computational model that can be

used to automatically identify what clones or cell subpopulations there are in a given

tumor sample. Our model takes next-generation sequencing data as input, and outputs
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the inferred clones. More details about the data will be discussed in Section 2.2. We

evaluate the model based on synthetic data using different evaluation mechanisms. We

compare this model with a baseline model to show the strengths and weaknesses of our

new model.

With respect to the research scope, research on tumor heterogeneity consists of inter-

tumor heterogeneity and intra-tumor heterogeneity lines of research. Figure 1.1 shows

the difference. Inter-tumor heterogeneity research deals with the difference between

the tumors from different people that grow from the same tissue site. For example, both

person A and person B have tumors in the liver tissue, but the mutations acquired in

the tumors may be different. On the other hand, intra-tumor heterogeneity focuses

on the difference between mutations within one human body. As Figure 1.1 shows, three

different parts of one tumor consists of cells from different clones. In this thesis, we focus

our research scope on the intra-tumor heterogeneity only, and all the phrases “clonal

heterogeneity” refer to intra-tumor heterogeneity.

Figure 1.1: The difference between intra-tumor heterogeneity and inter-tumor het-
erogeneity [5]

We also limit our project to artificially generated data for all the experiments at this
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stage. One reason is that although we have access to the sequencing data from 21

breast cancer patients, we do not have the ground truth of those data. The evaluation

becomes extremely difficult without the ground truth. In addition, using synthetic data

allows us to focus on the accuracy of the model for inferring the composition of the

tumor. Although we consider the computational complexity to some extent, it is a

secondary consideration behind investigating the potential of the model and we assume

that there will be an inference algorithm that makes the model applicable to the real

data. Therefore all experiments are done on a shortened genome (3× 104 or 3× 105 for

different experiments).

1.4 Thesis Organization

This thesis is organized into another four chapters. In Chapter 2, we discuss the current

status of researches on related topics involved in analyzing the clonal heterogeneity.

We present our new computational model based on factorial Hidden Markov Model in

Chapter 3. After discussing the new model, in Chapter 4 we present the experiments

carried out for finding the best configuration as well as the evaluation of the new model.

The comparison with a baseline model is also discussed in Chapter 4. Finally, in Chapter

5 we summarize our conclusions regarding the proposed new model and outline potential

future work.



Chapter 2

Background

In this chapter, we present necessary background knowledge required to understand

the research problem. We also survey some state-of-the-art statistical models that are

proposed by researches for solving the problem of clonal heterogeneity. Section 2.1

provides a thorough illustration of the problem of clonal heterogeneity and some studies

that support the existence of it. Various kinds of data that can be used for analyzing

clonal heterogeneity are described in Section 2.2. In Section 2.3 we present a background

on graphical models, which are used as a unified language in our literature review on

this problem in Section 2.4.

2.1 Heterogeneity in Cancer

The basic mechanism of cancer was introduced in Section 1.2, so here we provide a more

detailed description of clonal heterogeneity in cancer. Clonal heterogeneity refers to the

idea that a solid tumor is composed of malignant cells with different genomic aberrations.

In other words, not all tumor cells carry the same set of mutations, instead, the tumor

includes different categories (aka clones, subpopulations or clusters) of cells where the

cells belonging to each category carry similar mutations. Figure 2.1 provides a simplified

illustration of what clonal heterogeneity looks like. In this figure, tumor cells that belong

to the same clone have the same color, where these cells in the same clone share the

same mutations.

5



Chapter 2 6

Figure 2.1: Simplified illustration of clonal heterogeneity in cancer, with 4 clones in
a single tumor.

Intra-tumor heterogeneity is a fairly young topic in cancer research, first formally men-

tioned in 1978 by Heppner[6]. He found that different subpopulations of a tumor had

variance in sensitivity to drugs, which was an indication of intra-tumor heterogeneity.

Similar to many other brilliant new ideas, the concept of “intra-tumor heterogeneity”

was not accepted at first, because cancer was believed to be “mono-clonal”. As Figure

2.2 shows, the “monoclonal model” is based on the assumption that all of the cancer

cells originate from one single cell, whereas the “polyclonal model”, which is the basis

for intra-tumor heterogeneity”, postulates that there are multiple origin cells so that

there are different subpopulations existing in the tumor (represented by different colors

in the figure).

Figure 2.2: Illustration of monoclonality versus polyclonality of tumors [7]. In “mon-
oclonal model”, all tumor cells are believed to originate from one single cell, whereas

in “polyclonal model” there is a great extent of heterogeneity.
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Figure 2.3 provides a more complex but more realistic illustration of the progression

of cancer1 in the monoclonal (2.3A) and polyclonal (2.3B) model. In the monoclonal

model, mutations keep accumulating but the key is that the new cells will contain all the

previous mutations. However in the polyclonal model, not all mutations are inherited

by all the newer cells.

Figure 2.3: More Complex illustration of monoclonality versus polyclonality of tumors
[7]

Although the truth about the mechanism remains controversial, there are several studies

that strongly support the polyclonal model hypothesis [8–10]. In these studies, the core

idea is to cut the whole tumor into different physical segments and analyze each of these

segments, which is referred to as “multiregion sequencing”. All of the studies show

that genomic aberrations acquired in different regions of the same tumor have some

differences, thereby supporting the hypothesis of polyclonal model and the existence of

clonal heterogeneity.

The importance of studying clonal heterogeneity can be seen in [11]. The study hy-

pothesized that the drug resistance that appears during cancer treatment is caused by

intra-tumor heterogeneity, supporting this hypothesis from the perspective of Darwinian

evolution. Figure 2.4 illustrates the basic idea of this study. Genetic heterogeneity keeps

increasing before the drug treatment starts. Once the drug is used, most of the tumor

cells are killed. However, cells from one specific clone are immune to the drug and

1The progression of cancer refers to the history of the development of a cancer.
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therefore “selected” by the drug treatment. This clone then quickly reestablishes clonal

heterogeneity again.

Figure 2.4: Schematic view of tumor heterogeneity during tumor progression and
treatment [11]. It shows how clonal heterogeneity poses difficulties on therapy develop-

ment.

Then the study provides several evidences supporting their hypothesis, including clone

selection caused by cytotoxic chemotherapy and targeted drugs. To conquer this drug

resistance problem, they emphasizes the importance of measuring heterogeneity using

comprehensive tumor sampling techniques in order to identify all clones in the tumor.

Nowadays, researchers can make use of computational techniques to analyze heterogene-

ity [9, 12–16]. The increase in popularity of this research area comes from its crucial role

in developing therapies. Since different clones have differences in sensitivity to drugs,

in order to develop reliable and effective individualized therapies, clonal heterogeneity

must be thoroughly analyzed.

2.2 Data

In this section, we describe various kinds of data that can be used to analyze hetero-

geneity in cancer, which include DNA sequencing data and array Comparative Genome
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Hybridization data. First, we present some relevant background knowledge that is nec-

essary to understand those data.

2.2.1 Mutations

In previous sections, we mentioned that cancer is believed to be caused by DNA mu-

tations, but we have not yet formally introduced what DNA is composed of and what

kinds of mutations there are. DNA is a molecule on which there is a sequence of nu-

cleotides. Genetic information that is used for development and functioning of human

body is encoded in DNA, and it contains two strands. There are four types of nu-

cleotides or bases (A,T,C,G) in the helix structure of DNA, A always matches T and

C always matches G (base pairing rules). Figure 2.5 shows the DNA structure. When

a nucleotide gets mutated, there are three possible ways: one extra nucleotide may be

added, one is deleted or the nucleotide is changed to another one. Figure 2.6 shows the

three possibilities of mutations.

Figure 2.5: Each DNA molecule consists of two strands which are complement [17].
There are four types of nucleotides (A,C,T and G) which can sit at each position on

the strand.

Figure 2.6: Three kinds of point mutations [18]. Missense means a single nucleotide
is changed to another one.
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The three kinds of mutations described above are also called point mutation. There is

also another category of mutations named chromosome copy number variation (CNV).

In contrast to point mutations where a single nucleotide base is altered, CNV describes

the situation where a segment of DNA sequence is amplified or deleted. For example,

a segment of the length 2,000 bases is amplified by having exactly the same sequence

right after the normal segment, hence making an extra copy of that DNA segment. This

concept is shown in Figure 2.7, where deletion and amplification of section C of DNA are

presented. In normal cells, there are two copies for each genomic location and therefore

for all of A,B,C,D there should be two copies in normal cells. By analyzing the CNV, we

can analyze if there is any amplification or deletion of a small segment of DNA, thereby

identifying the intra-tumor heterogeneity.

Figure 2.7: Copy Number Variation (CNV) illustration [19]. The segment of DNA
“C” is deleted or amplified, i.e. the copy number of segment C is changed to 1 or 3

from 2 copies (normal) in this case.

2.2.2 DNA Sequencing

Since we determine clones based on the mutations acquired in cells, if we can determine

the exact composition of the DNA strand we can then infer what clones exist in the

tumor. The process of identifying the order of nucleotides on the DNA strand is called

DNA sequencing. Our project also uses DNA sequencing data as the input to analyze

clonal heterogeneity.

One early sequencing technique that is widely used is Sanger sequencing, also called the

Chain-termination method [20]. This sequencing method also produced the first human

genome in 2001. However, its cost is too much for cancer treatment for most people.

After the mid-2000s, with the invention of so-called next generation sequencing
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(NGS) techniques, the cost of sequencing per genome decreased dramatically from $100

million in 2001 to $10,000 in 2011 [21]. In this section, we only focus on NGS, because

all the current studies that use DNA sequencing data as input use NGS data.

Next generation sequencing techniques focus on providing high-throughput and low-cost

sequencing. Multiple copies of the sample genome are required for NGS and these copies

are broken into fragments (or reads) of length ranging from 50 bases to 10,000 bases

for different platforms. The second step is to determine the nucleotides on each read.

Lastly, these sequenced short reads can be used to reconstruct the whole DNA sequence

in two ways, either DNA alignment or DNA de novo assembly. In DNA alignment, the

short reads are aligned to a reference genome, whereas in DNA assembly, the short reads

are assembled together based on the common sequence section at the beginning and end

of each read. DNA assembly and alignment are two major research areas that draw

many researchers’ interest, but since they are not directly related to our thesis, we do

not review them in detail.

In this thesis, we rely on the ”alignment” approach in putting the “reads” together to

reconstruct the genome. Figure 2.8 illustrates how the data look like in detail. There are

multiple reads aligned to each position. The total number of reads that cover a single

position is called the read depth. In order to analyze the sample tumor, researchers

usually compare the reads against a normal DNA sequence as a reference. Reference

count refers to the number of reads that match the reference DNA. Some studies also

use non-matches. Then if there are 2 out of 3 reads that do not match the reference,

we say that the B allele frequency (BAF) for this position is 2/3. Usually B allele

refers to the number of reads that does not match the reference and A allele refers to

the number of matches. BAF is used as the input data for most of the studies which use

NGS data. Another important data that is used is called log-R ratio. It is achieved by

running the sequencing twice, one on the normal tissue and one on the normal tissue.

Then the log ratio of the read depth of tumor tissue over normal tissue is taken. This

ratio reflects the tumor/normal read depth of a single position and therefore it represents

the copy number information.

Figure 2.8: NGS data illustration. In this picture, short reads are aligned to a
reference DNA (DNA alignment).
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2.2.3 Array Comparative Genomic Hybridization

There are also a number of studies [8, 22–24] using Array Comparative Genomic

Hybridization (aCGH) data as the source of analyzing clonal heterogeneity. aCGH is

an improved version of CGH which is developed to detect copy number variation. Since

this thesis is not a biology thesis, we would not cover the mechanism of this technique,

instead, we only introduce what the data look like.

aCGH is an array in which each element is a signal representing the copy number of a

segment of the DNA sequence. Current aCGH techniques allows copy number variation

at a level of 5-10 kilo bases (kb) to be detected [25]. Figure 2.9 is an example of aCGH

data plot. The value of each element in the array is plotted in the chart.

Figure 2.9: Example of aCGH data. X-axis represents the positions on DNA sequence
and Y-axis is the log2 of the signal values, where 0 is normal because the normal copy

number is 2. [26] The red lines indicate the segmentations of the data.

Since the resolution of aCGH is 5-10 kb and the total human genome has 3.2 billion

bases, there are so many data points in the array that the data can be seen as continuous.

Therefore studies using aCGH data mainly focus on how the continuous data can be

segmented and how to assign a value for each segment. Once the data are segmented,

such as the red line segments in Figure 2.9, segments with the same values belong to

one clone.

2.3 Graphical Models

In above sections we have clarified the problem of clonal heterogeneity on the biological

side, but we have not linked it to computer science. To summarize the problem in

one sentence, we need to identify the clonal heterogeneity in cancer (hidden facts),
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based on some observations (sequencing data), believing that the observations give some

information about the clonal heterogeneity that exist in tumor. More concisely, in our

project, we infer what mutations there are and how we can identify clones, given the

data from NGS machine. In other words, we can say there are two sets of variables, one

set for the observations and one for the representation of heterogeneity. We analyze the

heterogeneity based on the observations and the relationship between observations

and the clonal heterogeneity. Hence, using statistical models is a popular way for solving

this problem, because it formalizes the relationship between random variables. In the

problem of identifying intra-tumor heterogeneity, a statistical model can be used to

quantify the relationship between the variables that represent the composition of the

tumor and the variables representing the observations (sequencing data).

2.3.1 General Graphical Models

Graphical model is a framework to represent a statistical model where each node

represents a random variable. An edge between nodes shows the relationship between the

variables, which is usually quantified by conditional probabilities (in directed graphs).

Linking to the problem of clonal heterogeneity, for example, if we know the sequencing

data or the aCGH signal for a position as observations, we can infer the composition of

the tumor, thereby identifying the heterogeneity.

Figure 2.10: An example of graphical models. Variable C is dependent on both A
and B, variable D is dependent on C.

A graphical can be either directed or undirected. The undirected graph model is also

called “Markov Random Fields”, and we only focus on directed graph models because

all the models related to this thesis are directed graph models. Directed graphical

model is also called “Bayesian Network” and Figure 2.10 gives a simple illustration of

directed graphical models. In the figure there are four random variables representing four
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different events. The relationship between these events are represented by the links (or

arcs) between the nodes. Conditional probabilities are used to quantify this relationship.

For example, the arc A→ C represents P (C|A), which means the probability of getting

any value of C given the value of A.

Overall, using graphical models we aim to infer the most likely values of all the random

variables. In “Maximum Likelihood”, we determine the values which give the highest

joint probability (likelihood function) of the model to be the most likely ones. The joint

probability is the product of all the conditional probabilities in the model. For example

in Figure 2.10, the likelihood function of the model is calculated as P (D|C) ·P (C|A,B) ·
P (A) · P (B).

Below we describe two specific graphical models that are related to our project in detail.

2.3.2 Hidden Markov Model

A Hidden Markov Model (HMM) is a graphical model where there is a chain of hidden

random variables, which are the same random variables whose value may change over

time. They are called hidden because their values cannot be directly observed. However,

there are some other variables whose values can be observed, and these variables are

called “observations” or “evidence” which gives some information about the hidden

variables. If we know the values of the observations, we can make inference on the

values of hidden variables. HMM is useful when we model a problem where one random

variable appears again and again but the values change over time or locations, and

the previous variable gives some information about the value of the variable at next

position. The chain that links all the hidden variables quantifies this relationship, which

is also called “transition probability”. Figure 2.11 gives an example of HMM. Each xt

is dependent on the previous variable xt−1 and thus all the horizontal edges form the

chain. To infer these hidden variables, we model the relationship between the hidden

variables x and observations y. More precisely, the hidden variable at each position

gives some information about the value we can observe. This relationship is represented

by the vertical edges, and it is quantified by the “observation probability”, p(yt|xt).
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Figure 2.11: An example of HMM. x0 . . . xT represents the hidden variable chain.
xn is dependent on xn−1 and this condition probability is also called “transition prob-
ability”. y0 . . . yT are the observations, and the conditional probability representing
this is called “observation probability”. Each observation is dependent on one hidden

variable.

To give a simple example of the application of HMM, suppose we want to infer whether

it rains or not each day based on the observations as to whether a person takes an

umbrella for that day. Figure 2.12 represents the problem as an HMM. If it rains on day

t, the probability of rain on day t + 1 is 0.7. Also, if it rains on day t, the probability

that the person takes the umbrella is 0.9. Based on these conditional probabilities and

the observed values for Umbrella, we can make inference on whether it rains or not each

day, argmaxx0:TP (x0:T |y0:T ).

Figure 2.12: Rain example of an HMM.

2.3.3 Factorial Hidden Markov Model

Factorial Hidden Markov Model (FHMM) is a generalization of conventional HMM de-

veloped by Jordan and Ghahramani [27]. Instead of having only one chain of hidden

variables, there are multiple chains of hidden variables. All hidden variables at one

position share the same observation. However, there is no direct dependency between

hidden variables from different chains. In other words, all the chains in the model are

independent of each other. Figure 2.13 shows the graphical structure of an FHMM,

with three chains of hidden variables S(1), S(2), S(3), and one observation variable Yt for

all the three hidden variables at the same position. Vertical arcs S′t → Yt represent

conditional probabilities which describe the dependencies between hidden variables and

observations.
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Figure 2.13: The structure of Factorial Hidden Markov Model

Note that the hidden variables at the same positions on all chains can actually be

combined to form one hidden variable. Therefore, FHMM can be converted into a

conventional HMM. The reason we split the repeated hidden variables (S(1), S(2), S(3))

is that it may make the inference task more tractable. Furthermore, it may naturally

make more sense to have multiple chains when modeling a given problem.

2.4 Statistical Models for Studying Heterogeneity

In section 2.3 we have discussed what graphical models are and how they can be used.

We have also introduced the well-known Hidden Markov Model, which has been widely

applied in many research studies in bioinformatics. In this section, we provide a current

status of research that focuses on using statistical models to analyze clonal heterogeneity.

The whole section is divided into two parts, models based on HMM and non-HMM based

models. The difference will be discussed below in detail.

As mentioned in Section 2.3, the main idea for analyzing intra-tumor heterogeneity us-

ing computational techniques is to use statistical models. In statistical models, there is

a set of variables representing the input data (observation variables), and another set

of variables representing the real composition of the tumor (hidden variables, because

we cannot directly observe their values). The following models all focus on faithfully

quantifying the relationship between hidden variables and observation variables, and

the relationship between hidden variables. Having faithfully quantified these dependen-

cies, analyzing the clonal heterogeneity amounts inferring the values of hidden variables.

These models differ in assuming what relationships actually exist and by which probabil-

ity distributions they are quantified. The pros and cons of each model will be discussed

below.
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Although different models have different notations for the variables, most of them actu-

ally use similar variables. A list of symbols can be found at the beginning of this thesis

and same variables with different notations are grouped together. We do not introduce

a universal notation for all them for the convenience of referring back to their original

papers.

2.4.1 HMM based Models

We firstly review the models based on HMM. The key characteristic of HMM based

models that differs from non-HMM based models is that in HMM, the hidden states are

dependent on other hidden states, whereas in non-HMM based models, independence

between hidden states is assumed. In studies of clonal heterogeneity, the hidden variables

usually represent the composition of nucleotides on the DNA sequence of a single base

or a segment of bases. Using HMM, we assume that the composition of nucleotides on

one position gives some information of the composition on the neighboring nucleotides.

These positions may not be actually consecutive on the DNA strand if only some parts

of the whole genome are selected to be analyzed.

Three HMM based models will be discussed in this section. HMM-Mix [23] takes aCGH

data as input and does the clustering task, i.e. identifying the clones that exist in the

tumor. HMMCNA [22] also uses aCGH data as input but in a way of finding clusters that

is optimized for constructing the progress history of the whole tumor. PennCNV [28]

uses next generation sequencing data as input, and clusters the mutations into different

clones.

2.4.1.1 HMM-Mix: A Model for clustering aCGH data

HMM-Mix [23] is a mixture of HMM models where there are multiple HMMs, each

representing a clone. This model is also capable of taking multi-sample data, where

each patient provides one sample. In the model, the log ratios of raw CGH data is

represented by Y p
t for probe t ∈ (1, . . . , T ) patient p ∈ (1, . . . , P ). Thus the input data

is represented by a matrix Y 1:P
1:T , which is also the observation of the HMM. Hidden

variables Z ∈ {L,N,G} reflects copy number loss, normal and gain.
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Figure 2.14: The graphical model of HMM-Mix2[23]

To summarize, their target is to based on observed data Y 1:P
1:T , infer what group Gp the

patient p belongs to, and a posterior distribution of Mgs in each group g for a given

profile. The graphical model is shown in Figure 2.14. The shaded variables Y s are

observed and treated as evidence. In addition to Y s, all shaded nodes are observed.

δ, π, α and φ are fixed parameters for the priors or distribution parameters. AgM is the

transition matrix, whose values are learned by fitting the data. Mg
t is the hidden state

on the chain. Mg
t ∈ {G,B,L} representing gain, background and loss. This variable

is very similar to Z but separated from Z because in this way, hidden states of M can

be shared among different patients and each patient has their own Zs to represent their

probe signals. θg is a parameter which is dependent on Mg and a fixed parameter αc

to determine Zp. Finally Gp ∈ {1 . . . G} represents the group number that a patient

belongs to. On the inference side, the iterative conditional modes (ICM) algorithm is

used. ICM can be seen as a deterministic version of Gibbs sampling. ICM always choose

the most probable value for a random variable based on its neighbors in the graphical

model.

Before discussing the pros and cons of HMM-Mix, there is one major problem with the

model – it is clustering patients rather than clustering mutations or CNVs, although

in [22] it is seen as dealing with intra-tumor heterogeneity issues. Finding subgroups

among a patient cohort can be useful, but it does not really contribute to the problem

of intra-tumor clonal heterogeneity, which deals with the subpopulations within one

patient.

2Not all variables are explained in this thesis. For more details please refer to the original paper.
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In terms of the model itself, it has its own strengths and limitations. As an HMM-

based model, it considers the possibility that the state of one position may affect the

next position. In addition, the transition probability Ag is learned by fitting the training

data instead of making it a fixed value, such as in [22]. Ag is calculated as p(Ag|Mg
1:T , δA)

where δA is the fixed Dirichlet hyper-parameter. The other advantage of this model is

the inference algorithm. Both MCMC and EM algorithms were considered but they both

turned out to be too slow. The ICM algorithm adopted in the study gives satisfactory

results and performs well in terms of time taken. On the other hand, one important

limitation of this study is that the state space is limited to gain, neutral and loss. The

copy number can be amplified to 3,4 or even 5 copies, but in this model they will all be

classified as “gain”, which loses information of the original data.

2.4.1.2 HMMCNA: Copy Number Analysis based on aCGH Data

Subramanian et al. developed a model that is based on HMM to identify subpopulations

[22]. They use aCGH data which is introduced in Section 2.2 as input, and then use

the model named Hidden Markov Model Copy Number Analysis (HMMCNA) to group

the whole DNA sequence into different segments according to copy number. Then these

different segments can then be considered as clones or subpopulations. For example in

Figure 2.9, the red solid line segments represent the segmentation and the segments with

the same log ratio value are grouped into one clone.

First, the probes in copy number profile (aCGH data) are combined into groups so that

one single state variable in the model can represent a set of probes (e.g. 500 probes).

Then Figure 2.15 illustrates what this study is trying to do, i.e. for each set, we want

to determine its “true” copy number value, since the data is noisy. In HMM, each state

represents if a set of probes is categorized as amplified(1) or normal(0). In the example

of Figure 2.15 there are two samples under analysis, and 00 means both of the samples

are normal in one set of probes. The state of one position gives some information about

the next state as well as the observation, which is the actual data from aCGH. Once

we achieve these segments, we can divide the whole DNA sequence into different clones.

The inference task is that given the noisy data as evidence, we need to compute the

value (0 or 1) for each state that represents a set of probes. The observation matrix is

believed to follow an additive Gaussian noisy Xij = Sij + N (0, σ2), where Xij is the

hidden state and Sij is the observed signal. In this study, the inference is done using

Viterbi algorithm [29].
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Figure 2.15: Hidden Markov Model Copy Number Analysis [22]

The strongest advantage of this model in addition to the previous HMM-Mix is that

HMMCNA tries to find the clones that are optimized for building the phylogeny of

cancer. Cancer phylogeny refers to the history of cancer and how different clones emerged

from one single clone. This problem can be seen as the next step of analyzing clonal

heterogeneity because once we understand how cancer develops, we can develop effective

therapies. Many studies also combine the two problems, such as [8, 10, 15]. HMMCNA

takes “multiple samples” as input whereas many other models can only take a single

sample as observation. The number of samples is crucial for accuracy in inference task.

However, one important disadvantage of this model is that Subramanian et al. treated

the copy number amplification and deletion in the same way, i.e. they only had nor-

mal/amplified state. The accuracy of the result may be doubtful since the deletion

and amplification may disguise each other’s effect. Also, unlike the previous model, the

transition probabilities are fixed and therefore not learned from the data. The key prob-

abilities are pNA and pAA, representing the probability of going from normal to aberrant

state and staying aberrant, and other transition probabilities are just uniform. Prior

assumptions are made on pNA and pAA, which is open to doubt. The details of these

probabilities can be found in their original paper.

2.4.1.3 PennCNV: Copy Number Analysis based on B Allele Frequency and

log R Ratio

PennCNV is a statistical model based on HMM developed by Kai Wang et al.[28].

Instead of using aCGH data, it uses DNA high intensity sequencing data from Illumina

platform. The output of the model is very similar to the previous HMMCNA model

[22]. It finds the most likely state for each hidden variable, which represents the CNV

genotype of each position. Genotype here refers to the composition of the bases on the

DNA sequence. In this study, they adopted a six-state definition for the hidden states,

which is shown in Table 2.1.
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Table 2.1: The six-state definition adopted in [28]. For each genotype, letter A
represents that the data from sequencing matches the reference genome and B means
mismatch. The relationship between match and mismatch in term of copy number is

coded as the genotype representation.

B Allele Frequency (BAF) and log R Ratio (LRR) are the two main observations that

are used as input in this model. Both of them have been introduced in Section 2.2. The

hidden variables in the hidden chain are the genotypes for each base, and there are two

random variables for observations since we have two types of observations, BAF and

LRR. In this study, ri, bi, zi are the notations for the LRR, BAF and copy number state

(genotypes) at position i respectively. The transition probability is calculated as

where di denotes the distance between two positions and D is a constant. p is an

unknown parameter and estimated using EM algorithm. The observation probability

follows the Illumina BAF calculation procedure and models the “boundary truncation”

event. More details can be found in [28]. The inference task in this study is also achieved

by the classical Viterbi algorithm [29].

Compared to the previous two related work, this model does have many advantages.

First, this model adopts a larger state space for the hidden variables. In HMM-Mix and

HMMCNA, only “gain”, “neutral” and “loss” three cases are included in the state space,

while PennCNV uses six states (copy number from 0 to 4, where there are 2 states for 2

copies). This allows the copy number CNV events to be modeled more precisely. Second,

the parameter p in the transition probability calculation is learned from data, and not

fixed beforehand. Third, the observation probability is not an arbitrary distribution

but a calculation that considers the “boundary truncation” event, which is a normalized

measure of BAF and makes the results from different samples more comparable.

However, there are still limitations for this model. Including HMM-Mix and HMMCNA,

all three models share one important assumption, which is that the mutations from

different clones do not overlap. Other limitations of this study are mainly related to the
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data they use. Since they are using the SNP array3 and SNP is not equally distributed

across the whole genome, the CNV may not be captured if they happen between two

SNP positions that are far from each other.

2.4.2 Non-HMM based Models

In the last section we presented three statistical models that are based on HMM to

analyze clonal heterogeneity using different kinds of input. The strength of HMM based

model is apparent – it considers the relationship between neighboring positions on the

DNA sequence. However there are still a number of studies focusing on models that

assume independence between the positions. In this section we discuss three models that

are not HMM-based. The first model to be discussed, THetA, does not involve graphical

models but develops an algorithm based on maximum likelihood theory. PhyloSub is a

hierarchical method, which infers the structure of whole phylogeny tree first and then

infer the cellular prevalence for each clone. The last model discussed in this section is

very similar to our proposed model but is not based on HMM.

2.4.2.1 THetA: Copy Number Analysis using Maximum Likelihood Mixture

Decomposition Problem

The algorithm named Tumor Heterogeneity Analysis (THetA), designed by Oesper et

al.[13], is based on Maximum Likelihood Mixture Decomposition Problem (MLMDP).

The input data that is used as input in this study is high-throughput DNA sequencing

data. More specifically, it uses the total read depth of each position as observation to

infer different clones. The overview of how the algorithm is described in Figure 2.16.

Firstly suppose we have 3 cells, 2 normal cells and 1 aberrant cell. In the aberrant cell,

the copy number of middle segment is amplified to 3. Then after aligning all the reads

to the reference genome, we can get a distribution of reads over segments. Then this

distribution is used as the input to the MLMDP problem solving method. The last part

shows the result returned from the algorithm. µ denotes the cellular prevalence of the

corresponding clone and C is the segment count matrix, where each row represents a

segment and each column represent its copy number in each of the clones.

This algorithm was shown to outperform three other methods on simulated data, which

are ASCAT, CNAnorm and ABSOLUTE. The result of the study was also used to

compare with the result in [9], as both of the study use the same data. While Navin

et al. went through a huge amount of manual analysis, the result from THetA almost

3SNP stands for Single Nucleotide Polymorphism. It is a subset of bases of the whole human genome
and it only contains the positions that are believed to be more likely to have mutations.
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Figure 2.16: THetA algorithm overview.[13]

resembled the result from Navin et al.’s study automatically. Secondly, this method

automatically reports the clones found from the sample, whereas all the methods we

have been discussed above only segment the data. The output of cellular prevalence

of each clone and the copy number matrix are more meaningful and easier for medical

researchers to use.

The shortages of this method also cannot be ignored. Firstly, it excludes all the possible

relationship between different positions. In other words, the genotype in one position

does not tell us any information about which genotype is likely to appear in the next

position. Secondly, THetA only considers read depth as observation, without taking the

frequency of mutations into account. This means subpopulations without CNV would

not be identified by THetA such as point mutation. Although CNV is ubiquitous in

tumors, there are also point mutations.

2.4.2.2 PhyloSub: Hierarchical Bayesian Model Designed for Phylogeny

Reconstruction

PhyloSub is a graphical model developed by Jiao et al. that is used to reconstruct the

phylogeny of cancer [16]. As mentioned in section 2.4.1.2, phylogeny reconstruction is

the next step of clonal heterogeneity analysis. This model infer the tree structure and

cellular prevalence of each mutation using Gibbs sampling. Since the scope of this thesis

only deals with clonal heterogeneity study, we omit the part of phylogeny construction

but focus on clones identification.

The model uses read depth and reference count from DNA sequencing data as input,

and generates a phylogeny tree with cellular prevalence of each node in the tree. Figure

2.17 gives an example of the phylogeny tree.
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Figure 2.17: Phylogeny tree generated by PhyloSub model. The label of the nodes
are the corresponding cellular prevalence and weights, where

∑
v∈V ηv = 1 and φv ≥∑

w∈C(v) φw [16]

Figure 2.18 gives the details of the graphical model. All shaded variables represent

observations, while others are hidden variables we need to infer. i = 1 . . . N represents

location 1 to N on the DNA sequence. Gi is the genotype in position i and evidence used

include read depth di, reference count ai, probabilities µ of sampling a given genotype.

Dirichlet parameters H,α, γ, δ are used to determine the structure of the tree. µri and µvi

are the probabilities of getting a reference allele from reference and variant population

respectively. The important variable φ̃i denotes the cellular prevalence from the variant

population at position i. The notations and parameters are very similar to PennCNV

model, discussed in section 2.4.1.3.

Figure 2.18: The graphical model of PhyloSub4[16].

4Not all variables are explained in this thesis. For more details please refer to the original paper.
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Figure 2.19: The graphical model of PyClone and related conditional probabili-
ties5[31].

The advantage of this model is that it takes a good number of factors into account, so

that the model is more faithful to the real world. However, as any other non-HMM

based model, the relationship between neighboring positions are not modeled.

2.4.2.3 PyClone: Bayesian Model using Beta-Binomial Emission Densities

The last model that is to be discussed is the PyClone model developed by Roth et al. [31].

It uses deep DNA sequencing data as input. More specifically, they use deeply sequenced

mutations whose coverage (total read depth) is larger than 100. The model clusters the

mutations according to their cellular prevalence. The graphical model of PyClone is very

similar to the graphical model of PhyloSub, but uses a different observation probability

distribution and an another method for clustering. Figure 2.19 shows the model in

detail and conditional probabilities are listed on the right, where n = 1 . . . N represents

N different clones and m = 1 . . .M represents M samples from one tumor.

As in any other graphical models, shaded variables are observed. H0, aα, as, bα, bs and

π are priors that are used for non-parametric clustering, Gamma distribution and prior

for genotypes. d denotes the total read depth and b represents the B allele count (non-

matches against reference). tm shows the purity of sample m, which is the proportion of

tumor cells in the sample. The two important hidden variables that are to be inferred

are φn and ψnm, which denote cellular prevalence of a mutation in the sample and the
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genotypes of a mutation, respectively. The inference task in done by MCMC sampling,

which is a widely adopted method for inference in graphical models.

Compared to the two models discussed above, this model is more faithful in terms of

analyzing clonal heterogeneity. Firstly, the beta-binomial distribution is used for the

link between allele count and genotypes, which is more robust in modeling data that

has a higher variance in allelic measurement. All other models discussed above, except

for PennCNV [28], use binomial distribution for this probability, which is reasonable

because for each read, it is either a match (A allele) or mismatch (B allele). Due to

the noise of data, proportion of normal cells and the copy number of the mutation, the

allelic prevalence is not directly related to cellular prevalence. In order to account for

this issue, beta-binomial is shown to be more robust than the binomial model. Secondly,

this model also follows a non-parametric clustering method, which does not limit the

number of clones that can be found.

This model does have many limitations, but most of these limitations are shared with all

the methods discussed above, which is what motivates our study. First, the model as-

sumes mutations persist in the clone and each base can only have one kind of mutations.

This assumption is made in all of the studies discussed in this section, because without

this assumption, the inference task usually becomes intractable. This is also the main

motivation for our study. Second, they cluster the mutations according to their cellu-

lar prevalence instead of actual compositions. Having the same cellular prevalence is a

necessary condition for two mutations to be in one clone but not a sufficient condition.

2.4.3 Summary for Related Work

Having discussed all the models, a summary of strengths and limitations of each model

is presented in Table 2.2.

5Not all variables are explained in this thesis. For more details please refer to the original paper.
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Input Advantages Disadvantages
HMM-

based?

HMM-Mix CGH

Transition probabilities

learned from data. Ad-

vanced inference algo-

rithm

Limited state space.

Group patients instead

of mutations

Yes

HMMCNA aCGH

Optimized for phy-

logeny construction.

Multi-sample.

Fixed transition prob-

ability. Limited state

space.

Yes

PennCNV NGS

Six-state space. Tran-

sition probabilities

learned from data. So-

phisticated observation

probability

Only used SNP array as

input
Yes

THetA NGS

Automatically report

clusters. Accurate

performance.

Assume independence

between positions.

Only consider read

depth.

No

PhyloSub NGS
Model is used to build

phylogeny tree.

Assume independence

between positions.

Only consider read

depth.

No

PyClone NGS
More robust observa-

tion probability.

Assume independence

between positions.

Only cluster mutations

on cellular prevalence

No

Table 2.2: Summary of related work

2.5 Summary

In this section, we provided the background of relevant knowledge in the area of study-

ing clonal heterogeneity. We first explained the phenomenon of clonal heterogeneity in

cancer and the practical problems associated with this phenomenon. Possible causes are

also mentioned. Then we introduced different kinds of data that can be used as input

when analyzing clonal heterogeneity. Knowledge of computational side with respect to

graphical models were presented and discussed in Section 2.3, where we also introduced
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two well-known models, HMM and FHMM. In the last section, we described six statis-

tical models that were developed by other researchers, three of which are HMM-based

and three are not. We believe the relationship between mutations must be captured,

because the processes that cause mutations do not simply affect one nucleotide. Instead,

it works on a segment of the genome. In addition, although the above models all have

their own strengths and limitations, there is one major assumption made by all of the

studies, which is that they assume mutations do not overlap on the DNA sequence. In

other words, one specific mutation can only appear in one clone. However, there is no

evidence for this assumption. Therefore, modeling the relationship between mutations

and allowing mutations to overlap among clones are the two motivations to our proposed

model.
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Studying Heterogeneity in Cancer

using FHMMs

In the previous chapter, we have discussed several state-of-the-art computational models

for analyzing clonal heterogeneity, and we have identified the two issues that motivate

our study, which are the relationship between mutations and the overlap of mutations

among clones. In this chapter, we focus on the details of how we construct our novel

model, which is based on Factorial Hidden Markov Model (see Section 2.3.3). The

model was originally postulated by my supervisor Dr. Gholamreza Haffari. The chapter

begins with a description of the input and output of the model. The details of the model

Het-FHMM are given in Section 3.2. The inference challenges and algorithms used are

presented in Section 3.3, and the related time complexity is discussed in Section 3.4. In

the last section of this chapter, we discuss the theoretical strengths and limitations of

the proposed model.

3.1 Input and Output

Table 3.1 gives a sample of the input file to our model. As mentioned before, it is the

alignment file of the next generation sequencing (NGS) data. Three observations are

used, which include the reference count a, total read depth N and tumor-normal ratio

l. The last column shows the position on the DNA sequence. The distance between

locations is used for transition probability calculation. Figure 2.8 shows how at and Nt

are calculated from the alignment file. lt is computed by doing the sequencing twice, one

for a tumor sample and one for a normal sample. Then lt is calculated as log NtumorNnormal
.

29
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a N l location

235 439 1.7718 0

244 481 0.1 1996
...

...
...

...

Table 3.1: Sample input file

iteration -logLikelihood

1 47200.1

2 47194.6

3 47187.2

4 47183
...

...

clone 0 clone 1

AB AABB

AB AABB

AB AABB

AB AABB
...

...

Table 3.2: Sample output file

There are two outputs from our model. One of them contains the likelihood of the

whole model after each iteration of Gibbs sampling, which is an inference algorithm we

use. The other output shows the genotype at each position returned from the inference

algorithm, as well as the proportion of each clone (cellular prevalence). Details of the

meaning of the genotype and cellular prevalence will be described in next section. Table

3.2 presents the format of the two outputs (cellular prevalence is not shown).

3.2 Our Model: Het-FHMM

The model is named Het-FHMM, which means “a model based on Factorial Hidden

Markov Model (FHMM) to explore Heterogeneity”. We choose to base our model on

FHMM for three reasons. In the last section in Chapter 2, I mentioned that the two

key motivations to this project are that the relationship between mutations should be

captured and other models assume mutations do not overlap among clones. Therefore

first, the transition probabilities model and quantify the relationship between genomic

positions. Second, having multiple chains in the model with each chain representing a

clone, we do not need to assume mutations do not overlap among clones. These two

things make our model more faithful than other models, hence having more representa-

tional power. In addition, existing powerful inference algorithms developed for FHMM

is also a reason we choose FHMM.
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In the general FHMM model, as described in Section 2.3.3, there are multiple hidden

chains. Each hidden variable in one chain is dependent on the previous variable. The

variables at the same position also share the same observation variables. In our FHMM

based model which we call Het-FHMM, we have multiple chains of hidden variables for

genotypes. The genotype of a position represents the composition of nucleotides at each

position from all the cells in the sequencing sample, in terms of matching or mismatching

the reference genome. In Het-FHMM, the value of a genotype at one position is depen-

dent on the genotype at its previous position (quantified by the transition probability).

Different chains in Het-FHMM represent different clones (or subpopulations) that exist

in the tumor. In other words, each clone is modeled by one complete chain of genotype

variables in the model. The link between genotype variables and the next generation

sequencing data (used as the input) is quantified by observation probabilities.

Table 3.3 lists all the variables in the model and the graphical model of Het-FHMM is

shown in Figure 3.1. The genotypes are denoted by Gt,k where t ∈ [0, T ] is the position

on the chain and k ∈ [0,K] denotes which chain or clone the variable belongs to. T and

K denote the length of the genome and the number of chains in the model respectively.

The concept of a genotype was introduced in Section 2.4.1.2, but compared to PennCNV

[28] which considered copy number up to 4, we consider copy number to 5, which gives a

state space of 21 possible values for the genotype variable. Thus the state space for all the

genotype variables is G ∈ {NA,A,B,AA,AB,BB,AAA, . . . BBBBA,BBBBB}. Each

“A” represents a copy that matches the reference genome and “B” represents mismatch

(recall that there are two copies of DNA in normal cells). “NA”, not available, describes

the case when there is no copy at all. The first chain in Het-FHMM (k=0) represents

the normal cells, since even in the tumor sample there is also a portion of normal cells.

As we only consider heterozygous positions1 on the genome, all Gt,0 are set to genotype

AB2.

1Heterozygous positions are those where one of two copies is different from the reference genome. We
only focus on heterozygous positions because if there are two matching copies and one of them mutates,
there is still one functional copy. But for heterozygous positions, although people may stay healthy with
only one function copy, this copy may get mutated so that the function is lost.

2This is equivalent to reduce the state space of Gt,0 to a single value AB.
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Figure 3.1: Graphical model of Het-FHMM

Symbol Meaning

Gt,k ∈ {NA,A,B, . . . , BBBBB} The genotype at position t in chain k

at,x The reference count from sample x at position t

Nt,x The total read depth from sample x at position t

lt,x
The log ratio of tumor-normal read depth from

sample x at position t

S
The vector that represents the cellular prevalence of

each clone, i.e. the proportion of cells.
∑

k Sk = 1

χ The set of all samples of input

Table 3.3: Summary of variables in Het-FHMM

For each chain k, there is a hidden variable Sk representing the cellular prevalence of

that clone. In our Het-FHMM, they are represented with a single node, which is a

vector S = (S0, S1 . . . , SK). The elements of vector S must sum to 1. For example, if

S = (0.4, 0.3, 0.3), it means there are 3 chains (one clone for normal cells and two clones

for tumor cells) in the model, representing 40%, 30%, 30% of all the cells respectively.
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The final components of the model are the observations, which connect the genotype

variables and the cellular prevalence vector S. The three kinds of shaded variables a, N

and l are the observations which are inputs to our model, whose meanings have been

described in the previous section. In Figure 3.1 a and N are put together in one node

because they are closely related. Since our model supports multiple samples as input,

at,x and Nt,x denote the reference count and total read depth for position t from sample

x, and lt,x denotes the log R ratio. χ represents the set of all samples for a given tissue.

For each position t, there could be several samples given as input.

Overall, we aim to use this model to identify the composition of DNA in different cells in

a tumor, thereby identifying clonal heterogeneity. The input of read depth Nt, reference

count at and the log ratio lt are used as observations on which we do the inference. The

genotype at each position is dependent on the genotype of its previous position, because

there is a relationship between neighboring positions. All the genotype variables at one

position determine the observations, that is at,Nt and lt are dependent on Gt,0:K .

Copy Number Genotype

0 NA

1 A,B

2 AA,AB,BB

3 AAA,AAB,ABA,ABB,BAA,BAB,BBA,BBB

4 AAAA,AAAB,. . . ,BBBB

5 AAAAA,AAAAB,. . . ,BBBBB

Table 3.4: Genotype variable space. We consider the case when the copy number is
amplified up to 5. A means the nucleotide matches the reference and B means there is

a mismatch.

The FHMM contains both transition probabilities and observation probabilities. Firstly,

the transition probabilities are expressed in terms of matrices At(i, j), where i and j

range over possible genotypes; the space of genotypes for each site contains 21 possible

states as shown in Table 3.4. The transition probability is defined as:

P (Gt = i|Gt−1 = j)︸ ︷︷ ︸
At(i,j)

=

{
ρt if i = j
1−ρt
D−1 otherwise

(3.1)

where

ρt = 1− 1

2
[1− e

−dt
2L ]
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in which L is the average length of segment3 and D is the dimension of the state space,

which is 21 in this case. dt denotes the distance between position t and t− 1, recalling

that these are heterozygous positions and thus not adjacent in the genome. We employ

this transition probability from the study done by Colella et al. [33], because satisfactory

results have already been achieved from it. The intuition behind the calculation of ρt is

that the closer the two positions, the more likely they have the same genotype. When dt

is 0, ρt is 1, which is reasonable because for the same position there is only one genotype.

As dt increases, i.e. the distance between two heterozygous positions increases, ρt, the

probability of getting the same genotype at the next position, decreases following the

exponential function and it is always larger than 1
2 . The probability of getting one

specific different genotype is the probability of not getting the same genotype, 1 − ρt,
divided by the number of all possible different genotypes, D − 1.

Secondly, the likelihood models for generating the observations based on the hidden

variables are as follows:

P (at|Nt,Gt,S) = Bin(at|Nt, µt(Gt,S)) (3.2)

P (lt|σ,Gt,S, φ) = log(N (lt|mt(Gt,S, φ), σ)) (3.3)

= − log(σ)− 1

2
· log(2π)− 1

2
· (lt −mt)

2

σ2
(3.4)

µt(Gt,S) =

∑K
k=0 Sk · rgt,k · cgt,k∑K

k=0 Sk · cgt,k
(3.5)

mt(Gt,S, φ) =

∑K
k=0 Sk · cgt,k

S0 · cgt,0 +
∑K

k=1 Sk · φ
(3.6)

where cgt,k is the copy number of a given genotype and rgt,k is the allele ratio. The allele

ratio is the ratio of matches over the copy number of a genotype. For example, if Gt is

AAB, then cgt is 3 and rgt is 2/3. φ is a tumor ploidy parameter fixed to 3 in our model

and σ is fixed to 2 for the standard deviation of the normal distribution. These two

parameters are chosen arbitrarily, because we do experiments on synthetic data, they

will not affect the inference results.

The intuition behind the Binomial distribution and Gaussian distribution are as follows.

For the reference count at, it is easy to see that it is either a match or a mismatch for

any read. So if there are Nt number of reads in total, the average number of matches

µt is calculated by formula 3.5. The formula is straightforward to understand, where

the numerator is the number of As (match) in all the chains at one position, and the

3It was observed to be 2 Megabases (2 × 106 bases) in 104 breast tumors (rounded to the nearest
Mb.) [32]
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denominator is the total copy number. Sk is the proportion of each clone, which is to

give different weights to different chains. The tumor-normal depth ratio is modeled by a

Gaussian distribution where the mean mt is calculated by formula 3.6. We use Gaussian

distribution because the ratio is continuous. The length of human genome is about 3.2

billion and since the copy number variation reflects the change of a segment of the DNA,

lt is not supposed to change dramatically and abruptly at each position. Therefore the

value can be seen as continuous. In formula 3.6, the numerator reflects the total read

depth from the tumor sample and the denominator reflects the total read depth from

the normal sample.

In order to infer the hidden variables G and S, we use Maximum Likelihood in which we

pursue G and S which give the highest joint probability of the model. In other words,

we infer variables G and S which maximize the likelihood function of the model:

P (G, l,a,S|N, φ) =
K∏
k=0

T∏
t=0

P (Gt,k|Gt−1,k)∏
x∈X

∏
t

P (at,x|Nt,x, µt,x)P (lt,x|mt,x, σ)

(3.7)

=
K∏
k=0

T∏
t=0

At(Gt,k, Gt−1,k)∏
x∈X

∏
t

Bin(at,x|Nt,x, µt,x)N (lt,x|mt,x, σ)

(3.8)

Because this joint probability involves a large number of variables, its values tends to

be very small. Therefore, in the inference we use negative logarithm of the likelihood

for calculation. We also take the negative for convenience, because the value of the

logarithm of a probability is always small. The target of all the inferences is to minimize

the value of the negative logLikelihood function (equivalent to maximize the original

likelihood function). Details of negative logLikelihood will be introduced in Section 4.2.

3.3 Inference

In this section, we discuss inference algorithms which find G and S so that the likelihood

function is maximized. During inference, we need to (i) Infer the latent variables G

given fixed parameters S, and (ii) Learn the parameters S given fixed setting for latent

variables G. Overall, the strategy we design to do these two tasks is to fix the value

of S and infer the most probable G, and then fix the values of G and infer the best S.
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We use Gibbs Sampling to infer G and Exponentiated Gradient Descent(EG) to infer

S. The process is as follows:

1. Fixing S, use Gibbs sample to infer G.

2. Fixing G, use EG to infer S.

3. Repeat step 1 and 2 till we choose to stop.

3.3.1 Exponentiated Gradient Descent

Having fixed all the values for genotype variables G, the negative logLikelihood can be

minimized using Exponentiated Gradient Descent, which is similar to normal Gradient

Descent. Gradient Descent is an algorithm to find the minimum of a given objective

function (target function) by gradually approaching the minimum along the direction of

the gradient function.

Exponentiated Gradient (EG) [34] Algorithm is a variant of normal Gradient Descent.

The difference is that the update for Gradient Descent is to subtract the gradient of

a target function, where as in EG the update is done by multiplying the exponents of

the negative gradient. One reason we use have to use EG instead of normal Gradient

Descent is the simplex constraint of EG, which means all the elements of the vector S

sum to one and there is no negative element. So in EG we pursue:

max
S∈∆
−L(S)

that is
∑

k Sk = 1 and Sk ≥ 0, where L denotes the objective function. In addition, it

is proved to perform better when the target is sparse. In other words, it allows us to

identify clones even if it contains only a very small proportion of cells.

In our case, the objective function is the logLikelihood function of the model, i.e. L(S) =

logP (G, l,a,S|N, φ). To solve the above maximization problem, the EG updates are as

follows:

Snewk = Sk exp [−η∇SkL(S)]

where η is the learning rate. After updating each component of the parameter vector

S, the values are normalized so that they sum to one. The above updates are repeated

until convergence.
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In our model, for the EG updates, we need the derivatives which are derived using the

chain rule as follows:

L(S) =
∑
t

log

[(
Nt

at

)
· µatt · (1− µt)Nt−at ·

1

σ
√

2π
e−

(lt−mt)
2

2σ2

]
+ Const

(3.9)

=
∑
t

log

(
Nt

at

)
+ atlogµt + (Nt − at)log(1− µt)

+ log(
1

σ
√

2π
)− (lt −mt)

2

2σ2
+ Const

(3.10)

∇L(S) =
∑
t

[(
at
µt
− Nt − at

1− µt

)
· ∇µt +

lt −mt

σ2
· ∇mt

]
(3.11)

And:

dµt
dSk

=
ct,k · (rt,k − µt)∑K

i=0 Si · ct,i
(3.12)

dmt

dS0
=

ct,0 · (1−mt)

S0 · ct,0 +
∑

i Si · φ
(3.13)

dmt

dSk
=

ct,k − φmt

S0 · ct,0 +
∑

i Si · φ
(3.14)

Substitute dµt
dSk

and dmt
dSk

back to ∇L(S), we can get the gradient of the objective function

with respect to variable S.

Now that we have described how to maximize the log likelihood in terms of the clones

cellular frequencies S, next we present a way of updating the clones genotypes G given

fixed clone proportions S.

3.3.2 Gibbs Sampling

Since the exact inference for FHMM is intractable [27], we use a sampling method to get

an approximation. The complete algorithm is provided in the Appendix A. As mentioned

in Section 2.4, Markov chain Monte Carlo (MCMC) sampling is widely adopted for this

task and Gibbs sample in one simple sampling scheme among MCMC methods. In order

to do Gibbs sampling, we need to start with an initial model with all genotype variables

determined. Except for the normal chain, we randomly choose a genotype for each

variable based on the uniform distribution. Then, each hidden variable is sampled given

the current state of rest of the variables. In our case, the probability of each genotype
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for a hidden variable Gt,k is :

P (Gt,k) ∝ P (Gt,k|Gt−1,k)P (Gt+1,k|Gt,k)P (lt|mt, σ)P (at|Nt, µt) (3.15)

∝ At(Gt,k, Gt−1,k)At+1(Gt+1,k, Gt,k)Bin(at|Nt, µt)N (lt|mt, σ) (3.16)

In other words, we sample each current state given another four variables, the previous

genotype Gt−1, the next genotype Gt+1 and two observations lt and at. These are the

four neighboring variables. The Gibbs stops when the convergence criteria is met. In our

case, we define the number of times that each variable is sampled to be the convergence

criteria. So for example, if the criteria is 1000 iterations, it means each of the random

genotype variables are sampled 1000 times.

3.4 Time Complexity

Since there is no fixed time complexity for EG part of the inference, we assume the time

taken for EG is constant E. For Gibbs sampling, there are T ·K states in the model,

and each state has 21 possible values. Therefore assuming the convergence criteria of

Gibbs Sampling is I, the total time complexity is O(21TKI) = C ·O(TKI).

3.5 Strengths, Limitations and Discussion

The biggest strength of this Het-FHMM is that it is more faithful to reality than other

current models in that it allows mutations to overlap among clones and models the rela-

tionship between mutations in the same clone. More specifically, having multiple chains

in the model allows the mutations to exist in more than one clone. Suppose we have only

one chain (conventional HMM). At one position, there is only one genotype variable, i.e.

only one mutation can be reflected at one position. Thus when clustering the mutations,

this one variable can only be clustered into one group, which indicates that the mutation

can only belong to one clone. This issue can be resolved by having multiple chains with

each chain representing a clone. The model has more representational power than other

models since it is not restrained by the assumption of non-overlapping. Furthermore,

it models the effect of one mutation on its neighboring positions, i.e the positions that

are closer to one mutation are more likely to have mutations than positions that are far

away. In addition to the faithfulness of the model, existing powerful inference techniques

are also one of the strength of our model.

Allowing mutations to overlap among clones usually lead to an intractable inference

problem, but our model uses FHMM to separate the mutations into different chains.
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Using sampling methods, the problem of computational time is alleviated. However,

sampling methods are only to make an approximation. The accuracy of the inference

still has room for improvement.

In terms of the model itself, there is also a limitation, which relates to the relationship

between clones. In Het-FHMM, there is no direct link at all between the variables from

different chains, which means all mutations in one clone do not have any relationship

between the mutations in other clones. However, this is usually not the case in the real

world. According to the tumor progression model described in Section 2.1, mutations

in clones that appear later inherit some mutations from the older clones. The reason

this relationship is omitted in most of research in the area is that it makes the inference

intractable.

Another limitation of our model is that we fix the number of clones. Hierarchical methods

can dynamically determine how many clones there are, but at this stage we can only use

traditional search algorithms to find the number of clones that exist in the tumor. When

doing the search, the negative likelihood function is used as the heuristic function. In

this project we have not addressed the problem of searching for the most likely number

of clones; this is a topic for future research.

There are another two issues worth discussing. The first one is the applicability of HMM

and FHMM in recovering the DNA compositions. Normally HMM is used for modeling a

time series of data, when t actually means the time. The variable Xt−1 always happens

before the variable Xt. However, the positions in the DNA strand do not appear in

time but only have the relationship of relative locations. The genotype variable at

position t− 1 does not appear before the genotype variable t in time but appears next

to t physically. Therefore, Gt is not only dependent on the previous base Gt−1, but also

dependent on its next neighbor Gt+1. Thus, the direction of the chain is arbitrary, which

means inference with the reverse direction gives the same output result as the normal

direction. Also, the two cases shown in Figure 3.2 have the same inference results,

because the transition probability we define only depends on the distance between the

two locations (refer back to equation 3.1), thus is symmetric.

Figure 3.2: The two situations where the inference results are the same
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Another issue is the order of the FHMM. The order of a HMM model means the number

of previous variables which the current variable is dependent on. Het-FHMM is based on

the first order FHMM, which means one genotype variable is dependent on one previous

genotype. Figure 3.3 gives an example of second order HMM, in which each current

random variable is dependent on two previous variables.

We believe there is a relationship between the distance between the locations and the

genotype at each location, but there is no evidence showing the genotype is only depen-

dent on the nearest neighbor. It could also be dependent on nearest two neighbors or

dependent on the locations within a certain distance. Although the higher the order,

the more faithful the model can be, inference is already a challenge for our task and

increasing the order of the model will make the inference even more difficult.

Figure 3.3: An example of second order HMM

Overall, our model has more representational power than other state-of-the-art models

by allowing mutations to overlap between clones and modeling the relationship between

the relationship between neighboring genotypes. The challenge is to find a good trade-off

between the faithfulness of the model and the computational complexity. In other mod-

els, the above two factors make the inference intractable, whereas Het-FHMM models

those two factors with a linear time complexity, although in experiments we only did

experiments on shortened versions of the whole sequence.
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Experiments, Results &

Discussion

In this chapter, we present several different experiments carried out for our novel model

based on FHMM. First we describe the format of the input and output in detail. Then

we describe the evaluation criteria we use, which includes the percentage of correct

predictions, negative log-likelihood. We design a set of experiments to find the best

configuration for the inference algorithm (Gibbs sampling). Then we analyze if the model

is stable across different number of chains and different tissues. Lastly, the comparison

between our model and a baseline model will be discussed.

4.1 Overview

The overall experimental design is shown in a flow chart in Figure 4.1. Firstly we

generate synthetic data on which we carry out our experiments. Originally we plan to

evaluate our model on the real data, but unfortunately we do not have a ground truth of

real data, which makes the evaluation extremely difficult. The only way we can evaluate

the model is to calculate the log-likelihood, but it is more for evaluating the inference

algorithm but not the actual model. Therefore we decided to focus on the synthetic data.

When generating the synthetic data, there are three parameters which we can change.

First the data can be generated from different models. For the following experiments,

except for the baseline comparison section, all the synthetic data is generated from Het-

FHMM. Then another parameter included is the number of chains, which is equal the

number of clones in the tumor. We can also adjust the proportion of each clone, which

is the vector S.

41
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In addition to the three parameters mentioned above, the length of the whole genome

can also be varied. The actual length of the human genome is about 3.2 billion bases, but

in our experiment, we shortened it to 3× 105 or 3× 104 in order to run the experiments

faster. Details on how the data is generated will be discussed in detail later.

After generating the synthetic data, we use it as input to run the inference algorithm

based on our model. For inferring the proportion of clones, we use exponentiated gradient

descent (EG) algorithm and we use Gibbs sampling for inferring the genotypes at each

position. Since we are not doing a non-parametric clustering, we fix the number of clones.

We also use a fixed number for the number of iterations as the convergence criteria of

Gibbs sampling, so we need to run experiments on different number of iterations to

find a reasonable convergence criteria. The last parameter we need to investigate is the

number of times that we need to switch between Gibbs sampling and EG algorithm,

trading off between accuracy and computational time.

Furthermore, as with any other machine learning algorithms, the more samples we in-

clude for observations, the more accurate the results should be. Therefore we also design

experiments to observe the relationship between the performance and the number of sam-

ples we include. If we can show that the results do not vary too much between having

only a small number of samples and having many samples, we can conclude that our

model is robust even when the data is sparse. This is a particularly important aspect of

this study, because usually researches only have one sequencing result for one patient.

At last, results we get from running the inference are evaluated on different measures.

Details about evaluation measures will also be discussed below.

Figure 4.1: The flow chart for the experiment
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The following experiments will be designed based on the four parameters for inference

we mentioned above. In addition, we also did experiments on different tissues with

the same property to show the stability of the model on different tissues from different

patients.

4.2 Evaluation Mechanism

4.2.1 Percentage of Correctly Predicted Genotypes

To evaluate how well the inference performs on synthetic data, the most straightforward

evaluation method is to calculate the how much the origin model/tissue which we use to

generate the data is recovered. Therefore the first evaluation mechanism is to compute

the percentage of correctly predicted genotypes. The accuracy is defined as

Accuracy =
R

T ·K
(4.1)

where R is the number of genotype variables from the output that match the original

model/tissue, and T · K is the total number of genotype variables in the model (K is

the number of chains and T is the length of the genome). This evaluation mechanism is

also referred as Accuracy in the rest of this thesis.

One issue is that when the model generates the output, the chains may be in any order.

This means we need to compare each pair of the output chain and the original chain.

This issue is resolved by considering all permutations of the output chains and comparing

them with the original model. The permutation with the highest accuracy is selected.

4.2.2 Negative log-likelihood

The likelihood function (formula 3.8,3.9) is the probability of an assignment to all vari-

ables of the model. The inference algorithm maximizes the likelihood to find the most

probable configuration. Since there are a huge number of variables in the model, the

joint probability tends to be a very small number between 0 and 1. Therefore, we take

the logarithm of the probability so that the value can be easier to evaluate. Because

the log of a number between 0 and 1 is always negative, we take the negative log of the

probability so that the value is always positive. The lower the negative log-likelihood is,

the more probable an assignment to variables of the model is.
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4.3 Experiments on Synthetic Data

4.3.1 Generation of Synthetic Data

We artificially generate the observed data, which include at (reference count), Nt (total

read depth), lt (log ratio of tumor/normal read depth) and the location of the genotypes,

pretending the model/tissue genotypes are already known, i.e. the value of each random

variable is known. The hidden variables of the first genomic location (G0,1 . . . G0,k) are

assumed to be the normal genotype AB. Having achieved the values for the first variables

in each chain, we sample the values of other hidden states based on the transition

probabilities, which considers the previous genotype and the distance between the two

locations. Once the distribution of the variable at the next position is determined, we

then sample the value according to this distribution. All the variables are generated by

this mechanism. Note that all the genotypes in chain 0 are guaranteed to be AB, which

is the normal genotype. The algorithm for generating synthetic data is shown below.

Before running the data generation program, the proportion of each clone S and the

total number of clones that exist in the tumor must be specified as input.

Synthetic Data Generation Algorithm

Input: S, number of chains

1: Assign G0,0, G0,1 . . . G0,K to be AB

2: Generate a0 and l0 based on the observation matrix

3: t = next mutation position //The next mutation is generated based on an average

distance between mutations with random variance

4: while t ≤ genomeLength do

5: let Gt,0 = AB

6: for i = 1 . . .K do

7: sample Gt,i from the transition probability based on Gt−1,i

8: end for

9: Generate at and lt based on the observation matrix

10: t = next mutation position

11: end while

There are also some other fixed parameters involved in generating the synthetic data.

First, the coverage of each base is set to between 400 and 500. Although the deeper

the sequencing is, the more accurate the result should be, it has no impact on the

inference process. The tumor ploidy parameter φ is set to 3 and the standard deviation

for calculating lt is set to 2.
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The model we use to generate the synthetic data is also referred as the original mod-

el/tissue for the rest of experiments.

4.3.2 Finding the Best Configuration of the Inference Algorithm

In the previous section, we described how we generate a known model/tissue in a proba-

bilistic and generate the synthetic data. Having obtained all the synthetic model/tissue

data, we run the inference algorithm with different setups on the data to see if the orig-

inal model/tissue can be recovered. We run Gibbs sampling for genotype variables and

exponentiated gradient descent (EG) for the latent vector S representing the proportion

of each clone (or chain). For Gibbs sampling, a fixed number of iterations of going

through all the variables is considered as a parameter and we vary this value to find the

minimum number of iterations that gives satisfactory results. In each iteration, each

hidden variable is sampled exactly once.

The number of switches between Gibbs and EG is another parameter we aim to op-

timize. Similarly, we want to see if a large number of switches between Gibbs and EG

is needed or a large number of iterations within Gibbs is more important. In EG, the

learning rate is the parameter we need to adjust. If the learning rate is too large, the

result may actually get increasingly worse, while if the rate is too small it may take too

long to the converge. In our experiment, the learning rate is set to be adaptive, which

means it gets smaller after each iteration in EG. More specifically, the learning rate eta

is set to 1/(initial value + wt), where t is the count of iterations which starts with 0 and

w is the factor we need to adjust. Therefore we have two parameters here, one for the

initial value and one for the change of the learning rate. These two parameters for EG

are learned by manually running the program with different parameters, because if the

learning rate is not appropriate, most of the elements in vector S will quickly become 0.

For the following experiments in this section, in order to make the results more reliable

we do the experiments on one single sample case and one multi-sample (3 samples) case.

4.3.2.1 Experiment 1: Find the best configuration for the convergence cri-

teria

The overall idea is that we run the inference algorithm with two different values as

the convergence criteria and compare the plots of their negative log-likelihood function.

If the negative log-likelihood does not improve too much from the smaller number of

iterations to the large number of iterations, we would choose the smaller one because
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we want the inference to finish as quickly as possible. From other studies such as [31],

we know that for the sampling methods roughly at least 1000 iterations are necessary.

So for the first run we use 1000 as the number of iterations, and we carry out another

experiment of 5000 iterations. Other parameters are set as following for both experi-

ments: 20 times of switches between Gibbs sampling and EG, and 3 hidden chains in the

model. The synthetic data used in these experiments has: 3 chains with the proportion

of 40% normal cells and two tumor clones with cellular prevalence of 30% and 30%, with

the genome length of 3× 105.

(a) (b)

Single

sample

Multi-

samples

Figure 4.2: Negative log-likelihood of (a)running 1000 iterations per Gibbs × 20
switches and (b)running 5000 iterations per Gibbs × 20 switches. The X-axis represent

the total number of iterations done, and Y-axis shows the -LogLikelihood value.

Figure 4.2 shows the plots of negative log-likelihood for using 1000 iterations (column

(a)) and 5000 iterations (column (b)) as convergence criteria respectively. From Figure

4.2(b) of single sample (top right), we can see that the -LogLikelihood decreases mainly

in the first 10000 iterations (5000 iterations × 2 switches). After these 10000 iterations,

there is no drastic improvement. This also indicates that the -LogLikelihood is improved

mostly by the updates of Gibbs sampling compared to EG. The detail of this will be

discussed in next section. Combined with the plots for multi-sample experiments (the

bottom two plots), it confirms that the first 10000 iterations are the most important part

of the inference. The effect of EG is also mostly obvious in the first 10000 iterations.
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In Figure 4.2(b) of the multi-sample (bottom right), we can see two dramatic decrease

that happen around iteration 5000 and 10000, where EG happens.

Apart from the -LogLikelihood comparison, we also check the accuracy of the model.

Table 4.1 shows the results of all above four experiments averaged from 5 runs. Surpris-

ingly, the accuracy of 20 switches × 1000 iterations is even better than 5000 iterations

on single sample. The Student’s t-test shows that for single sample case, 20×1000 iter-

ations is significantly more accurate than the 5000 iteration with the confidence of 80%

(full results for each run can be found in Appendix B). For multi-sample case, the t

test shows there is no significant difference. Although the standard deviation is lower

for 5000 iterations, considering that the computational time taken is much longer for

5000 iterations, we conclude that 20 switches with 1000 iterations being the convergence

criteria is more appropriate than 5000 iterations.

Accuracy

Average

(Single

Sample)

Standard

deviation

Average

(Multi-

sample)

Standard

deviation

20×1000

iterations
0.46 0.083 0.43 0.044

20×5000

iterations
0.39 0.048 0.44 0.027

Table 4.1: Percentage of random variables correctly inferred, averaging from 5 runs

4.3.2.2 Experiment 2: Find the best configuration for the number of switches

between Gibbs sampling and EG

In Experiment 1 we found that the impact of Gibbs sampling is larger than EG. In this

section we describe the experiment we carried out to further investigate this hypothesis.

This experiment is very similar to Experiment 1, in which we compare the plots of

-LogLikelihood and the accuracy.

The top two plots in Figure 4.3 show the plots of -LogLikelihood of two setups - 20

switches × 1000 iterations (Figure 4.3(a)) and 100 switches × 200 iterations (Figure

4.3(b)) for single sample case. The two plots are very similar in terms of both the

trend and the final results. The shapes of the two plots are alike to each other and the

-LogLikelihood decreases to around 3×104 for both of the two setups. This shows there

is no obvious difference in inference outcome between the two setups.
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(a) (b)

Single

sample

Multi-

samples

Figure 4.3: Negative log-likelihood of (a)running 1000 iterations per Gibbs × 20
switches and (b)running 200 iterations per Gibbs × 100 switches. The X-axis represent

the total number of iterations done, and Y-axis shows the -LogLikelihood value.

The plots for multi-sample experiments (bottom two plots in Figure 4.3) also show that

the improvement made on -LogLikelihood are the same for the two setups. They both

decrease to around 1.0677× 105 at the end.

Table 4.2 presents the accuracy of the two setups for running on the same data for 5

times. The average of accuracy and the standard deviation are included in the table.

Looking at the average, 20× 1000 iterations is better than 100×200 iterations because

the average is higher. Student’s t test further confirms the combination of 20×1000 is

better with 60%(single sample) and 80%(multi-sample) confidence.

Accuracy

Average

(Single

Sample)

Standard

deviation

Average

(Multi-

sample)

Standard

deviation

20×1000

iterations
0.46 0.083 0.43 0.044

100×200

iterations
0.41 0.039 0.41 0.034

Table 4.2: Percentage of random variables correctly inferred, averaging from 5 runs
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4.3.2.3 Section Summary

We have presented two experiments to find the best combination of number of iterations

for Gibbs sampling and the number of switches between Gibbs sampling and EG. The

analysis was done by comparing the plots of negative log likelihood of the model and

the accuracy of recovering the original genotypes. Student’s t test was also used to

determine if there is a significant difference between the accuracy of different setups.

The conclusion of the analysis is that the combination of 20 switches × 1000 iterations

being the convergence is significantly more accurate than the other two combinations,

and from the plot we can also determine that the setup of 20 switches × 1000 iterations

is the optimal combination, considering that we want the inference as fast as possible1.

All following experiments use this setup for the inference.

4.3.3 Comparison between Different Number of Chains

In this experiment, we evaluate the performance of the inference when we have different

number of clones. The experiment is designed as follows, and the percentages represent

the cellular prevalence.

Four setups:

1. 2 chains: 40%(normal cells), 60%

2. 3 chains: 20%(normal cells), 30% ,50%

3. 3 chains: 40%(normal cells), 30%, 30%

4. 5 chains: 20%(normal cells), 10%, 20%, 30%, 20%

Genome length: 3× 105 bases.

Note that the cellular prevalence for each setup is arbitrarily chosen, because we are

not focusing on evaluating the cellular prevalence vector S in this project. Therefore,

we do not use an exhaustive set of cellular prevalence, but only make sure they are not

uniform.

The experiment is run for 5 times for each setup. In order to make results more reliable,

we do the experiments on one single sample case and one multi-sample case. Since we

fix the number of chains before we start the inference, at this stage we always set the

number of chains equal to the number of chains in the original model/tissue. Otherwise,

the accuracy of the inference cannot be evaluated directly.

1In this experiment, the time taken for 20×1000 is about 1 day while it needs around 5 days to
complete the 20×5000 inference.
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(a)single sample (b)multi-sample

Figure 4.4: Line chart of running on different chains for five times. Each setup is
represented by one color.

Figure 4.4 presents the line charts of the accuracy of the inference for all of the four

setups for both single sample and multi-sample cases. The X-axis is the experiment

number, and in total there are five experiments. Y-axis is the accuracy of the inference.

Each line represents the accuracy of each setup. From these two line charts we can see

the accuracy is very high (around 90%) when there are only two chains, but it drops

dramatically when there are more than two chains. But with respect to each single

line, there is no dramatic change, which means the inference results are stable and the

standard deviation is low. Focusing on the two 3 chains experiments which have different

S vector, we find that our model is stable when the cellular prevalence is different. The

average accuracy for the two setups are 0.42 (20%,30%,50%) and 0.44 (40%,30%,30%).

Table 4.3 gives the detailed statistics of the experiments.

Accuracy

Average

(Single

sample)

Standard

Deviation

Average

(Multi-

sample)

Standard

Deviation

40%, 60% 0.86 0.049 0.92 0.026

20%, 30%, 50% 0.42 0.032 0.40 0.033

40%, 30%, 30% 0.44 0.056 0.42 0.038

20%, 10%, 20%,

30%, 20%
0.30 0.0046 0.32 0.040

Table 4.3: Result table of running the inference on different number of chains.

To summarize, we found that the accuracy for two chains situation is satisfactory, but

when the number of chains increases, the accuracy deteriorates quickly. However, our

model is robust on different cellular prevalence setups.
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4.3.4 Inference Performance on Different Numbers of Samples Con-

sidered

In this section, we discuss the experiments for analyzing the relationship between the

accuracy and the number of samples included. As stated above, if the difference of

accuracy between accuracy of models with different number of samples is small, we can

conclude that our model is robust even when the data is sparse. In order to be more

inclusive, we carry out the experiments on each of the 2 chains, 3 chains and 5 chains

setup. Also the results are taken from running the inference for five times to take the

average, but since we are interested in the change when the number of samples included,

all results below are already the average results. The genome length is shortened to

3× 104 due to time limitation.

Figure 4.5: Line chart of running on number of samples included averaged from five
times running. Each setup is represented by one color.

Figure 4.5 is the line chart for this experiment, which shows the change of accuracy

when the number of samples included varies from 2 to 50. Each point on the lines is

the accuracy result which is already on average from 5 runs. When there are two chains

(blue line), we can see that as number of samples included increases, the accuracy also

goes up, which is what we expected. However, for the experiment of 3 chains and 5

chains, the change of accuracy is not obvious. Therefore we look at the actual results

to find the optimal number of samples to be included.

Table 4.4 is the data table for Figure 4.5, and the last row shows the average accuracy

among all numbers of samples included for each of the 2, 3 and 5 chains. Then we

compute the difference between the accuracy of each row and the last row. Table 4.5

shows the result of this calculation. In this table, the sum over 2, 3 and 5 chains of the

difference for each number of samples included is calculated in the last column. Ranking

over this sum from high to low, we can find the number of samples included which gives
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the most accurate inference overall. As expected, 50 samples has the highest accuracy,

with 0.08 higher than the three averages in total.

Again considering the computational time issue, we choose 5 samples included to be the

optimal setup, trading off between computational complexity and accuracy. Another

issue we cannot choose a large number is that usually in practical researchers would

not have multiple sequencing on the same tissue in the same patient. The results show

that our model and inference perform well even when the samples are sparse. All three

lines are almost flat, and the standard deviation for the three chains are 0.05(2 chains),

0.03(3 chains) and 0.03(5 chains).

Accuracy 2 chains(40%,60%) 3 chains(40%,30%,30%)
5 chains(20%,10%,

20%,30%,20%)

2 samples 0.93 0.40 0.31

3 samples 0.88 0.48 0.26

4 samples 0.98 0.40 0.27

5 samples 0.98 0.45 0.34

10 samples 1.00 0.45 0.33

20 samples 1.00 0.44 0.30

50 samples 1.00 0.49 0.31

Average 0.97 0.44 0.30

Table 4.4: Result table of running the inference when different number of samples
included

2chains 3chains 5chains sum

50 samples 0.033 0.041 0.002 0.076

10 samples 0.033 0.003 0.029 0.065

5 samples 0.008 0.007 0.038 0.053

20 samples 0.033 -0.002 0.000 0.031

4 samples 0.017 -0.045 -0.034 -0.062

2 samples -0.033 -0.040 0.008 -0.065

3 samples -0.092 0.036 -0.042 -0.098

Table 4.5: The difference between each result in Table 4.4 and its corresponding
average in the last row. The sum is calculated and ranked to find the most accurate

setup.
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4.3.5 Comparison between Different Instantiations of the Model

In this section, we show the results for analyzing the performance of the model on

different instantiations of the model. Different instantiations of the model can be seen as

equivalent to the different instantiations in reality. Therefore the aim of this experiment

is to test the model to see whether the model would be stable across different kinds of

instantiations when it is applied to real data. More specifically, we use the setup of 3

chains with proportion of 40% normal cells, 30% tumor cells of clone 1 and 30% tumor

cells of clone 2. Five different instantiations are generated by running the synthetic

data generation algorithm five times. Since 5 samples were found to be the optimal

number of samples, we only use 5 samples as input for this experiment, and we run the

inference five times to take the average. The genome length is also set to 3×104 for this

experiment.

Figure 4.6: Line chart of running on different instantiations of the model for five
times. Each instantiation is represented by one color. (5 samples used for input)

In Figure 4.6 above, each point represents the accuracy of one of five runs for one

instantiation. Although results vary from experiment 1 to experiment 5, there is no

significant difference among the results for different instantiations. This indicates that

our model and inference is stable across different instantiations. To support this further,

Table 4.6 shows the average accuracy of the five runs for each instantiation and the

standard deviation is calculated in the last row. The standard deviation across different

instantiations is even smaller than all of the standard deviations within each instantiation

across the five runs.
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Accuracy
Average (5

samples)
Standard Deviation

Instantiation 1 0.45 0.04

Instantiation 2 0.37 0.08

Instantiation 3 0.44 0.12

Instantiation 4 0.39 0.06

Instantiation 5 0.47 0.16

Standard Deviation 0.04

Table 4.6: Result table of running the inference on different instantiations with the
same setup (3 chains, 40%, 30%, 30%, 3×104 bases)

4.3.6 Summary

In Section 4.3, we have presented the experiments designed to evaluate our model and

the inference algorithms on the synthetic data. Initially, we described how we had

generated the synthetic data, and then four experiments that we carried out. Firstly,

we determined the best combination for the inference parameters - number of iterations

as the convergence criteria for Gibbs sampling. With two comparisons on the plots as

well as the accuracy, 20 switches × 1000 iterations is chosen. Secondly, we evaluated

the accuracy of our model with respect to the number of chains. Result showed that

our model had around 90% accuracy when there were two chains, but when the chain

number increased to 3 and 5, the accuracy went down quickly to around 43% and 30%

respectively. Moving on to the multi-sample inference, we concluded that 5 samples

was the best choice considering the trade-off between computational time and accuracy.

Lastly, we demonstrated that our model and inference algorithm were stable in terms of

accuracy among different instantiations.

4.4 Comparison with the baseline

In this section, we compare the performance of Het-FHMM with another recent model

that is published in Nature Methods. Originally we tried to use PyClone model[31] as

a baseline comparison, but there are two issues. First, the input that our model uses

is not exactly the same as what PyClone uses, according to the sample input file they

provide on their websites. Second, since they assume mutations do not overlap between
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different clones, there is no way to directly compare the two models on real data. Only

when we have access to the ground truth of the real data, we can do the real baseline

comparison between models.

Although we cannot compare PyClone and our model directly, we implemented another

model to be an approximation to PyClone. PyClone and our model are very similar

except that we assume the mutations at neighboring positions are not independent.

Therefore, we developed a variant of our model such that all the transition probabilities

between hidden states are removed. Then we compare our model with this variant to

see which model performs better on the synthetic data.

In this experiment, we focus on three setups of 2(40%, 60%), 3(40%, 30%, 30%) and

5(20%, 10%, 20%, 30%, 20%) chains with the genome length of 3×104. The experiments

are repeated 5 times and we take the average. Since the best number of samples to be

included is found to be 5 samples in previous experiments, we only make the model to

consider 5 samples when doing inference.

However, one problem of comparing models based on synthetic data is that how these

data are generated. As mentioned above, the synthetic data that have been used for ex-

periments are generated from the our proposed model. More specifically, the probability

of generating a genotype is dependent on the previous genotype (or referred as “de-

pendent” model). Therefore, FHMM is expected outperform PyClone, because FHMM

models the transition probability.

This becomes a bias when comparing models. In order to avoid this, we generate another

set of synthetic data that is generated from a “independent model” where there is no

transition probability. This set will favor the PyClone model in theory because PyClone

assumes there is no relationship between positions. Then we run both of the models on

both sets of data. More specifically, there are four combinations, Het-FHMM model in-

ference on “dependent” model-generated data, PyClone approximation model inference

on “dependent” model-generated data, Het-FHMM model inference on “independent”

model-generated data and PyClone approximation model inference on “independent”

model-generated data. If we can show our model is better on both sets of data, we can

conclude that our model is better.



Chapter 4 56

4.4.1 Result of Baseline Comparison

Chain Number Het-FHMM PyClone t-test

dependent data 2 0.92 0.78 0.159

dependent data 3 0.46 0.41 0.346

dependent data 5 0.25 0.26 0.679

independent data 2 0.83 0.76 0.033

independent data 3 0.42 0.40 0.298

independent data 5 0.30 0.30 0.784

Average 0.45 0.42 0.046

Table 4.7: Comparison between FHMM based model and approximate PyClone model
averaged from 5 runnings of all 3 setups. The last column shows the t-test value for
checking the significant difference between two models for each setup. The average
performance of FHMM model outperforms the PyClone approximation with confidence

of 95.4% under Student’s t test.

The result of the baseline comparison is summarized in Table 4.7. As mentioned in

the previous section, there are 4 combinations between the data and models. The fist

three rows use the data generated from the “dependent” model, and the last three rows

use the data generated from the ”independent” model. The column “Het-FHMM” and

“PyClone” mean the model that is used to do the inference. The values are averaged

from 5 runs.

The first thing we can observe is that our model is more accurate than PyClone ap-

proximation for most of the cases. More precisely, we can see that the difference is

significant when the number of chains is small. When there are two chains in the model,

the confidence of saying there is a significant difference between the accuracy of the two

models is around 97% for independent data, and 84% for dependent data. But as the

number of chains increases, the difference becomes less significant. One reason may be

because that both models are having low accuracy and therefore the difference is not

apparent any more.

Looking at the overall accuracy, the average accuracy of our model for all 6 experiments

is 0.45, versus 0.42 for the PyClone approximation. The Student’s t test shows that our

model performs better than the PyClone approximate model on overall “dependent”

and “independent” data, with the confidence of 95.4%.
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4.5 Hardware Information & Computational Time

All above experiments were run on Monash Campus Cluster (MCC). MCC is Linux

computer cluster for general-purpose use for many faculties in Monash University [35].

Intel Xeon and AMD Opteron are used as CPUs in the cluster, and memory from 4GB to

1TB can be allocated to a task. According to the wiki page of MCC, the nodes allocated

to our tasks use up to 16 GB and eight CPU cores [36]. Further exact information about

what CPUs are allocated to our tasks is not available.

Although we did not do a complete set of experiments on the aspect of computational

time, we provide some rough results here for future reference. The time taken with

respect to different setups is listed in Table 4.8.

Genome length #iterations #switches #chains #samples Time taken

3× 104 1000 20 2 5 12 mins

3× 104 1000 20 3 5 20 mins

3× 104 1000 20 5 5 33 mins

3× 105 1000 20 2 1 29 mins

3× 105 1000 20 3 1 36 mins

3× 105 1000 20 5 1 58 mins

3× 105 5000 20 2 1 2 hrs 25 mins

3× 105 5000 20 3 1 4 hrs 45 mins

3× 105 5000 20 5 1 6 hrs 55 mins

Table 4.8: Computational time recorded for different setups. The time is recorded by
MCC automatically.

4.6 Summary of All Experiments

Two major categories of experiments were carried out in this project to evaluate our

model and inference. All experiments used synthetic data as input, so we described how

to generate the synthetic data first. Then the two major experiments include evaluating

the model by itself with different setups, and the comparison between our model and a

model implemented as an approximation to PyClone model. Results showed that our

model performed well when two clone existed in the tumor ( 90% accuracy), but the

accuracy decreased while the number of clones increases. As any machine learning model,

the more samples included as observation, the more accurate the results is supposed to

be. Therefore we evaluated how many samples the model were needed to have a good

trade-off between the accuracy and computational time. Results showed that our model
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performed well even when the data was sparse and we determined five samples was the

optimal number of samples. We also evaluated the model on different tissues (data

generated from different assignments of genotypes in the model). We found that our

model stable across different tissues and the model can be considered reliable when it

was applied to different types of cancers in practical use.

To compare our model with another state-of-the-art computational model, we imple-

mented a model that can be used as an approximation to the PyClone model. We could

not use PyClone model directly because the input data and assumption made are dif-

ferent from our model. Results show that our model outperformed the approximation

on average with over 95.4% confidence using Student’s t test.
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Conclusion and Future Work

5.1 Contribution

This thesis presents a novel statistical model, which we call Het-FHMM for identifying

and quantifying the intra-tumor heterogeneity in tumor. The model is based on the

factorial hidden Markov model which is a variation of the well-known hidden Markov

model. It models the information relationship between neighboring mutations (transition

probabilities), and the relationship between the hidden genotype of the mutation and

the sequencing data for that position (observation probabilities). The input to the model

is the alignment file from next generation sequencing data, and the model outputs the

genotypes of mutations in all clones and cellular prevalence of each clone. The original

model was postulated by my supervisor Dr. Gholamreza Haffari. The inference of our

statistical model is done by Gibbs sampling and exponentiated gradient descent (EG),

pursuing the maximum likelihood of the whole model. The inference task is to find the

most probable genotype for each genotype variable and the cellular prevalence S for each

clone.

Our model contributes to the existing researches by resolving the assumption of non-

overlapping of mutations among clones. In previous studies, mutations are assumed

to not exist in more than one clone, but our model allows different mutations to be

shared by different clones. Our model also captures the relationship between neighboring

mutations, which is omitted by many other studies.

Having evaluated our model, we found that our model has a high accuracy when the

number of chains is low. More specifically, the accuracy is around 90% when there

are two chains. When the number of chains increases to 3 or 5, the result becomes less

satisfactory. We also compared our model with an approximate version of another model
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called PyClone1. The result shows that our model is more accurate than PyClone with

95.4% of confidence, again with the improvement at lower number of clones.

5.2 Future Work

Although our model provides reliable results and overcomes the issue that arises from

assuming mutations cannot be shared between different clones, there is much work to

be done in the future. Firstly, the aim of the model is to find different clones in the

tumor, but at the moment we have to fix the number of clones before we start the

inference. The first thing that needs to be done is to extend the approach to do non-

parametric inference so that the number of clones (chains in the model) can be decided

dynamically. Secondly, as presented in Chapter 4, both of our two evaluation methods

focus on the accuracy of genotypes. However, inferring the proportions of clones is also

one of the aims of the project. We need to design an appropriate evaluation mechanism

for checking the cellular prevalence in the future. Another thing that we plan to do

next step is to find a better inference algorithm to replace Gibbs sampling, because the

accuracy of Gibbs sampling is just a simple inference to start with and more advanced

inference techniques aided by Beam sampling for infinite HMM [37], linear programming

algorithms and column generation[38] may give improved performance. Fourth, we

employed the transition probability (formula 3.1) in the model directly from [33], but it

may not capture the truth accurately. In the future, we could make it more robust by

modifying some parameters in the formula. Experiments could be done with respect to

different modifications to evaluate the performance.

Lastly, we have to carry out the experiments on the real data. To evaluate how the model

performs on real data, we also need to find another appropriate evaluation mechanism,

because we do not have the ground truth of the real data.

1Since we could not directly use PyClone for comparison due to different input and assumptions, we
implemented another model which can be seen as an approximation to PyClone.
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Gibbs Sampling

Gibbs Sampling Algorithm

1: for i = 1 to K do
2: for t = 1 to T do
3: Gt,i = pick random genotype
4: end for
5: end for
6: while not Converged do
7: for t = 1 to T do
8: for i = 1 to K do
9: for g = 1 to 18 do

10: //To get the posterior we need for probabilities, which are calculated as
follows

11: Probability at = P (at|Gt,0, Gt,1, . . . , Gt,K)
12: Probability lt = P (lt|Gt,0, Gt,1, . . . , Gt,K)
13: calculate P (Gt,i[g]|P (Gt−1,i))
14: calculate P (Gt+1,i|P (Gt,i[g]))
15: Probability trans[g] = P (Gt−1,i[g]) ∗ P (Gt+1,i[g]) //put together
16: Probability posterior[g] = P trans[g]× P at× P lt
17: end for
18: normalize(P posterior)
19: Gt,i = pick genotype(P posterior) //randomly sample one genotype from

the distribution
20: end for
21: end for
22: end while
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Full Experiment Results

1 sample 100;200 20;1000 20;5000 3 samples 100;200 20;1000 20;5000

1 77.9 77.9 77.2 89.65 89.65 88.62

2 90 85.2 88.3 94.5 94.5 93.1

3 87.2 88.3 95.5 94.8 93.8 82.4

4 86.3 87.4 90.2 92.2 92.2 87.5

5 90.7 90.7 71 87.6 88.6 94.8

Average 86.42 85.9 84.44 91.75 91.75 89.284

Table B.1: Genome length=3 × 105 Cellular prevalence: 40%,60%. Values are in
percentage.

1 sample 100;200 20;1000 20;5000 3 samples 100;200 20;1000 20;5000

1 38.1 41.8 49.1 43.5 42.7 42.4

2 37.3 41.1 39.5 39.7 37.6 40.8

3 38.7 46.7 38.7 44.5 43.7 40

4 46.9 39.2 37.1 45.3 40.3 43.5

5 38.4 38.7 36.8 45.1 36 36.8

Average 39.88 41.5 40.24 43.62 40.06 40.7

Table B.2: Genome length=3 × 105 Cellular prevalence: 20%,30%,50%. Values are
in percentage.
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1 sample 100;200 20;1000 20;5000 3 samples 100;200 20;1000 20;5000

1 44 43 37.2 38.2 37.7 40.4

2 38.1 47.5 43.2 40.5 45.1 46.3

3 36.7 59.5 35.3 40.5 45.1 46.3

4 40.4 44 45.4 40.2 39.3 41.8

5 46.1 37 34.9 47.2 48.4 44.9

Average 41.06 46.2 39.2 41.32 43.12 43.94

Table B.3: Genome length=3 × 105 Cellular prevalence: 40%,30%,30%. Values are
in percentage.

1 sample 100;200 20;1000 20;5000 3 samples 100;200 20;1000 20;5000

1 29.4 25.2 30.4 38 30.2 34.3

2 32.9 31.9 25.7 42 34.8 32.3

3 28.5 32.9 41.1 42 34.6 32.3

4 27.7 27.5 30.2 24.8 36.7 38

5 32.1 33.8 25.6 30.2 26.2 36.2

Average 30.12 30.26 30.6 35.4 32.5 34.62

Table B.4: Genome length=3 × 105 Cellular prevalence: 20%,10%,20%,30%,20%.
Values are in percentage.
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#Sample exp1 exp2 exp3 exp4 exp5 Average

2chains/0.4 0.6/tissue1 2 1.00 1.00 1.00 0.50 0.50 0.80

2chains/0.4 0.6/tissue1 3 1.00 1.00 0.50 0.88 0.50 0.78

2chains/0.4 0.6/tissue1 4 0.50 0.71 1.00 1.00 0.50 0.74

2chains/0.4 0.6/tissue1 5 0.50 0.50 1.00 0.50 0.50 0.60

2chains/0.4 0.6/tissue1 10 0.54 0.50 0.50 1.00 0.50 0.61

2chains/0.4 0.6/tissue1 20 0.96 0.50 0.54 0.50 0.83 0.67

2chains/0.4 0.6/tissue1 50 1.00 1.00 1.00 1.00 1.00 1.00

2chains/0.4 0.6/tissue2 2 0.50 0.50 0.67 0.50 0.69 0.57

2chains/0.4 0.6/tissue2 3 0.69 0.69 0.50 0.69 0.69 0.66

2chains/0.4 0.6/tissue2 4 0.69 0.69 0.69 0.64 0.69 0.68

2chains/0.4 0.6/tissue2 5 0.69 0.69 0.69 0.50 0.69 0.66

2chains/0.4 0.6/tissue2 10 0.69 0.50 0.69 0.69 0.69 0.66

2chains/0.4 0.6/tissue2 20 0.69 0.69 0.69 0.69 0.69 0.69

2chains/0.4 0.6/tissue2 50 0.69 0.69 0.69 0.69 0.69 0.69

2chains/0.4 0.6/tissue3 2 0.68 0.74 0.74 0.74 0.68 0.71

2chains/0.4 0.6/tissue3 3 0.76 0.76 0.76 0.76 0.76 0.76

2chains/0.4 0.6/tissue3 4 0.74 0.76 0.76 0.71 0.74 0.74

2chains/0.4 0.6/tissue3 5 0.68 0.68 0.76 0.76 0.68 0.71

2chains/0.4 0.6/tissue3 10 0.71 0.76 0.76 0.71 0.76 0.74

2chains/0.4 0.6/tissue3 20 0.76 0.71 0.71 0.71 0.82 0.74

2chains/0.4 0.6/tissue3 50 0.74 0.74 0.74 0.74 0.74 0.74

2chains/0.4 0.6/tissue4 2 1.00 1.00 1.00 0.79 0.88 0.93

2chains/0.4 0.6/tissue4 3 1.00 0.58 1.00 0.79 1.00 0.88

2chains/0.4 0.6/tissue4 4 0.92 1.00 1.00 1.00 1.00 0.98

2chains/0.4 0.6/tissue4 5 1.00 1.00 1.00 1.00 0.88 0.98

2chains/0.4 0.6/tissue4 10 1.00 1.00 1.00 1.00 1.00 1.00

2chains/0.4 0.6/tissue4 20 1.00 1.00 1.00 1.00 1.00 1.00

2chains/0.4 0.6/tissue4 50 1.00 1.00 1.00 1.00 1.00 1.00

2chains/0.4 0.6/tissue5 2 0.97 0.97 0.87 0.87 0.87 0.91

2chains/0.4 0.6/tissue5 3 0.87 0.87 0.87 1.00 0.87 0.89

2chains/0.4 0.6/tissue5 4 1.00 0.97 0.97 0.97 0.87 0.95

2chains/0.4 0.6/tissue5 5 1.00 0.83 0.87 0.87 1.00 0.91

2chains/0.4 0.6/tissue5 10 0.87 1.00 1.00 0.87 0.87 0.92

2chains/0.4 0.6/tissue5 20 1.00 1.00 1.00 0.90 1.00 0.98

2chains/0.4 0.6/tissue5 50 1.00 1.00 1.00 1.00 1.00 1.00

Table B.5: Genome length=3 × 104 Cellular prevalence: 40%,60%. 20×1000 itera-
tions.
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#Sample exp1 exp2 exp3 exp4 exp5 Average

3chains/0.4 0.3 0.3/tissue1 2 0.50 0.33 0.48 0.33 0.38 0.40

3chains/0.4 0.3 0.3/tissue1 3 0.40 0.79 0.36 0.45 0.40 0.48

3chains/0.4 0.3 0.3/tissue1 4 0.40 0.48 0.40 0.36 0.36 0.40

3chains/0.4 0.3 0.3/tissue1 5 0.50 0.43 0.40 0.43 0.50 0.45

3chains/0.4 0.3 0.3/tissue1 10 0.38 0.55 0.52 0.40 0.38 0.45

3chains/0.4 0.3 0.3/tissue1 20 0.43 0.43 0.52 0.45 0.38 0.44

3chains/0.4 0.3 0.3/tissue1 50 0.52 0.48 0.48 0.43 0.52 0.49

3chains/0.4 0.3 0.3/tissue2 2 0.33 0.77 0.33 0.33 0.33 0.42

3chains/0.4 0.3 0.3/tissue2 3 0.33 0.33 0.33 0.33 0.33 0.33

3chains/0.4 0.3 0.3/tissue2 4 0.36 0.33 0.33 0.33 0.33 0.34

3chains/0.4 0.3 0.3/tissue2 5 0.33 0.38 0.51 0.33 0.33 0.38

3chains/0.4 0.3 0.3/tissue2 10 0.33 0.36 0.41 0.46 0.33 0.38

3chains/0.4 0.3 0.3/tissue2 20 0.44 0.38 0.33 0.38 0.33 0.37

3chains/0.4 0.3 0.3/tissue2 50 0.36 0.36 0.38 0.38 0.33 0.36

3chains/0.4 0.3 0.3/tissue3 2 0.33 0.37 0.57 0.33 0.49 0.42

3chains/0.4 0.3 0.3/tissue3 3 0.55 0.37 0.41 0.65 0.33 0.46

3chains/0.4 0.3 0.3/tissue3 4 0.33 0.41 0.33 0.45 0.39 0.38

3chains/0.4 0.3 0.3/tissue3 5 0.33 0.55 0.33 0.41 0.59 0.44

3chains/0.4 0.3 0.3/tissue3 10 0.51 0.47 0.53 0.33 0.61 0.49

3chains/0.4 0.3 0.3/tissue3 20 0.39 0.37 0.43 0.41 0.39 0.40

3chains/0.4 0.3 0.3/tissue3 50 0.43 0.43 0.39 0.33 0.39 0.40

3chains/0.4 0.3 0.3/tissue4 2 0.46 0.46 0.42 0.35 0.33 0.40

3chains/0.4 0.3 0.3/tissue4 3 0.38 0.67 0.54 0.33 0.40 0.46

3chains/0.4 0.3 0.3/tissue4 4 0.33 0.42 0.50 0.50 0.65 0.48

3chains/0.4 0.3 0.3/tissue4 5 0.48 0.33 0.44 0.35 0.38 0.40

3chains/0.4 0.3 0.3/tissue4 10 0.42 0.33 0.46 0.42 0.56 0.44

3chains/0.4 0.3 0.3/tissue4 20 0.44 0.50 0.50 0.38 0.42 0.45

3chains/0.4 0.3 0.3/tissue4 50 0.40 0.46 0.38 0.50 0.46 0.44

3chains/0.4 0.3 0.3/tissue5 2 0.64 0.33 0.33 0.58 0.47 0.47

3chains/0.4 0.3 0.3/tissue5 3 0.55 0.58 0.41 0.39 0.39 0.46

3chains/0.4 0.3 0.3/tissue5 4 0.50 0.58 0.33 0.50 0.64 0.51

3chains/0.4 0.3 0.3/tissue5 5 0.62 0.38 0.38 0.68 0.33 0.48

3chains/0.4 0.3 0.3/tissue5 10 0.36 0.36 0.39 0.45 0.41 0.40

3chains/0.4 0.3 0.3/tissue5 20 0.41 0.39 0.42 0.39 0.41 0.41

3chains/0.4 0.3 0.3/tissue5 50 0.41 0.42 0.38 0.41 0.41 0.41

Table B.6: Genome length=3 × 104 Cellular prevalence: 40%,30%,30%. 20×1000
iterations.



Appendix B 66

#Sample exp1 exp2 exp3 exp4 exp5 Average

5chains/0.2 0.1 0.2 0.3 0.2/tissue1 2 0.28 0.21 0.39 0.24 0.43 0.31

5chains/0.2 0.1 0.2 0.3 0.2/tissue1 3 0.35 0.24 0.29 0.22 0.20 0.26

5chains/0.2 0.1 0.2 0.3 0.2/tissue1 4 0.26 0.33 0.24 0.28 0.23 0.27

5chains/0.2 0.1 0.2 0.3 0.2/tissue1 5 0.28 0.36 0.38 0.41 0.27 0.34

5chains/0.2 0.1 0.2 0.3 0.2/tissue1 10 0.29 0.39 0.36 0.35 0.27 0.33

5chains/0.2 0.1 0.2 0.3 0.2/tissue1 20 0.29 0.27 0.36 0.33 0.26 0.30

5chains/0.2 0.1 0.2 0.3 0.2/tissue1 50 0.29 0.26 0.34 0.34 0.29 0.31

5chains/0.2 0.1 0.2 0.3 0.2/tissue2 2 0.27 0.49 0.46 0.50 0.46 0.43

5chains/0.2 0.1 0.2 0.3 0.2/tissue2 3 0.23 0.36 0.30 0.49 0.29 0.33

5chains/0.2 0.1 0.2 0.3 0.2/tissue2 4 0.33 0.40 0.40 0.37 0.50 0.40

5chains/0.2 0.1 0.2 0.3 0.2/tissue2 5 0.34 0.23 0.39 0.33 0.33 0.32

5chains/0.2 0.1 0.2 0.3 0.2/tissue2 10 0.23 0.30 0.27 0.46 0.30 0.31

5chains/0.2 0.1 0.2 0.3 0.2/tissue2 20 0.21 0.33 0.36 0.31 0.31 0.31

5chains/0.2 0.1 0.2 0.3 0.2/tissue2 50 0.27 0.24 0.29 0.31 0.29 0.28

5chains/0.2 0.1 0.2 0.3 0.2/tissue3 2 0.25 0.62 0.31 0.48 0.31 0.39

5chains/0.2 0.1 0.2 0.3 0.2/tissue3 3 0.40 0.34 0.37 0.31 0.34 0.35

5chains/0.2 0.1 0.2 0.3 0.2/tissue3 4 0.26 0.31 0.38 0.31 0.42 0.34

5chains/0.2 0.1 0.2 0.3 0.2/tissue3 5 0.34 0.31 0.23 0.34 0.23 0.29

5chains/0.2 0.1 0.2 0.3 0.2/tissue3 10 0.32 0.49 0.42 0.42 0.37 0.40

5chains/0.2 0.1 0.2 0.3 0.2/tissue3 20 0.35 0.38 0.20 0.45 0.42 0.36

5chains/0.2 0.1 0.2 0.3 0.2/tissue3 50 0.25 0.29 0.34 0.26 0.35 0.30

5chains/0.2 0.1 0.2 0.3 0.2/tissue4 2 0.34 0.24 0.24 0.44 0.38 0.33

5chains/0.2 0.1 0.2 0.3 0.2/tissue4 3 0.48 0.32 0.38 0.30 0.36 0.37

5chains/0.2 0.1 0.2 0.3 0.2/tissue4 4 0.34 0.38 0.46 0.26 0.38 0.36

5chains/0.2 0.1 0.2 0.3 0.2/tissue4 5 0.48 0.48 0.24 0.32 0.26 0.36

5chains/0.2 0.1 0.2 0.3 0.2/tissue4 10 0.24 0.46 0.44 0.44 0.40 0.40

5chains/0.2 0.1 0.2 0.3 0.2/tissue4 20 0.26 0.38 0.48 0.36 0.36 0.37

5chains/0.2 0.1 0.2 0.3 0.2/tissue4 50 0.36 0.32 0.36 0.32 0.34 0.34

5chains/0.2 0.1 0.2 0.3 0.2/tissue5 2 0.33 0.34 0.38 0.25 0.35 0.33

5chains/0.2 0.1 0.2 0.3 0.2/tissue5 3 0.40 0.33 0.40 0.35 0.34 0.36

5chains/0.2 0.1 0.2 0.3 0.2/tissue5 4 0.41 0.30 0.24 0.43 0.29 0.33

5chains/0.2 0.1 0.2 0.3 0.2/tissue5 5 0.28 0.24 0.31 0.45 0.29 0.31

5chains/0.2 0.1 0.2 0.3 0.2/tissue5 10 0.46 0.35 0.28 0.38 0.38 0.37

5chains/0.2 0.1 0.2 0.3 0.2/tissue5 20 0.34 0.34 0.34 0.38 0.36 0.35

5chains/0.2 0.1 0.2 0.3 0.2/tissue5 50 0.35 0.31 0.30 0.29 0.33 0.32

Table B.7: Genome length=3 × 104 Cellular prevalence: 20%,10%,20%,30%,20%.
20×1000 iterations.
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fhmm exp1 exp2 exp3 exp4 exp5 Average

5chains/dependent 0.23 0.20 0.34 0.27 0.22 0.25

5chains/independent 0.34 0.31 0.29 0.28 0.31 0.30

2chains/dependent 0.58 1.00 1.00 1.00 1.00 0.92

2chains/independent 0.82 0.79 0.82 0.92 0.79 0.83

3chains/dependent 0.40 0.36 0.55 0.50 0.50 0.46

3chains/independent 0.44 0.44 0.38 0.42 0.40 0.42

PyClone

5chains/dependent 0.26 0.23 0.26 0.27 0.28 0.26

5chains/independent 0.28 0.29 0.35 0.29 0.28 0.30

2chains/dependent 0.75 0.71 0.75 0.88 0.79 0.78

2chains/independent 0.74 0.71 0.76 0.79 0.79 0.76

3chains/dependent 0.40 0.45 0.36 0.38 0.45 0.41

3chains/independent 0.42 0.36 0.38 0.40 0.42 0.40

Table B.8: Genome length=3 × 104 Cellular prevalence: 40%,30%,30%. 20×1000
iterations. Baseline comparison.
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