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Abstract

Non-intrusive Load Monitors (NILMs) have shown to be useful in providing information on how
electricity is used in a household. Simple feedback from this monitoring has shown to reduce energy
consumption of everyday living. In this study we explore the use of the Hidden Markov Models
(HMMs) in performing energy disaggregation with use of the Reference Energy Disaggregation
Dataset (REDD) we disaggregate energy signals that are made up of a set of devices found within a
household. Initial tests inspired us to further look into methods to increase the accuracy and
efficiency of the Viterbi inference method. The experiments in this study looked into how the
combination of different devices affected the accuracy of Viterbi. We further discuss how big noisy
devices can affect the detection of small usage devices and provide a method of distinguishing
between them. This method involves creating a split between such devices and running inference of
them separately. Results from testing this method showed that it can help to increase accuracy of
inference methods, but it can also decrease accuracy as well. This particular method requires further
study into looking at the best way to create the divide between big and small devices.
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Chapter 1: Introduction
1.1. Overview

The primary aim of this research is to create a tool to analysis the energy usage of individual
devices in a circuit. The process of doing this is called Non-Intrusive Load Monitoring or Energy
Disaggregation. This is the process of taking a whole aggregate energy signal from a household and
using inference techniques to reconstruct the individual signals that come from each device in the
household [1]. The further aims of this research are to evaluate the accuracy of this tool in
performing energy disaggregation and discuss the improvements when alterations to the model are
introduced.

Previous research in this field has shown that the knowledge of device level energy signals
has incurred savings on power bills by considerable amounts [2]. While this is the main use of having
this knowledge other applications have been considered, such as monitoring for faults in devices or
even detecting when illegal devices are being used [3].

Methods for energy disaggregation started with attached monitors to circuits which detect
power spikes that occur in the energy signal [1]. These power spikes were used to identify devices as
they relate to a device being turned on. Research since this has introduced the monitoring of other
electrical features including features such as current wavelengths and voltage noise [4].

This research introduces a technique to help to detect devices with low power levels when
large noise exists from high powered devices. The idea was formed when initial tests showed a low
accuracy of small powered devices when large devices existed in the model. Sometimes these small
devices would be detected incorrectly as on when large positive noise was present. Other times
these small devices get detected as off when negative noise was present.

1.2. Research Scope and Contribution

This research focuses on use of Hidden Markov Models for energy disaggregation. The main goal of
this project was to create a framework for a HMM with the intended use of studying energy
consumption. To fulfil this goal the study involves the creation of an automated classifier for the
purpose of classifying an energy signal into separate device-level signals. An important distinction is
that the tools used in this project which can commonly machine learning tools are not used for
automated learning and any parameters for the HMMs are defined beforehand.

The research also looks into the idea of being able to split devices into two groups based on the size
of their power usage. The actual choice of how to split devices is not contained in the scope of this
research however tests to show that this choice is meaningful are undertaken.

This research contributes an analysis of the accuracy of general HMM methods and shows
how minor alterations to the framework can help to increase efficiency and accuracy of the
inference methods used. The research also provides future researchers in the field a platform for
performing energy disaggregation for them to expand on. The main contribution of this study
however is the introduction of a method to better detect small usage devices in a circuit where
electrical noise is present.



1.3. Thesis Structure

The remaining chapters are organised as follows:

Chapter 2 will present the literature review of the topic presenting the relevant concepts
and terms for the research. This chapter will also introduce the framework used in this
research

Chapter 3 discusses the research methods used in undertaking this study. The framework
creating is explained detailing how parameters for the model are found. Also discussed in
this section are the inference methods used and the alterations made to the framework to
help increase the accuracy of the model.

Chapter 4 presents the results of initial tests to justify the use of certain simplifications of
the framework. The chapter further discusses the results of beanchmarking tests to
demonstrate that complex methods are required to disaggregate an energy signal. This
chapter further discusses the result of subsequent tests.

Chapter 5 provides a complete summary of the research and discusses possible future work
expanding from this study.



Chapter 2: Literature review
2.1. Energy Disaggregation Background

Energy Disaggregation is the process of taking an entire aggregate energy signal and
breaking it up into device-level readings that contribute towards the total aggregate. For example in
figure 2.1 below, the plot of the right is an example of a very simple energy signal, the idea of energy
disaggregation is to take that reading and find when each device is on. The two plots on the right
show what would be expected if you were to disaggregate this signal.
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Figure 2.1 an example of an energy signal and two devices | | I " |
after disaggregation

2.1.1. Outcomes of energy disaggregation

Hart [1] outlines many uses of knowing how appliances are used within a house. The most
obvious application of knowing where your electricity goes is to provide the information to
consumers as feedback so they know exactly what is contributing to their electricity bill. Having this
knowledge will help consumers save money and lower their energy usage in general. Previous
research has indicated that when consumers are provided with feedback on their energy usage they
can incur savings of up to 15% [2,3]. However this saving does depend on the type of feedback given,
if it’s done via the billing process than savings of up to 10% have be shown [2], whereas the study in
[3] assumed there is a direct method to give feedback to consumers on demand which shows a
saving of up to 15%.

Another major use of this tool also outlined by Hart [1] is the monitoring of devices to
identify faults. This consists of checking for unusual power signals coming from devices, if an unusual
signal is detected we can infer that there is a fault with some device in the circuit. Previous field tests
have had success in monitoring for faults, in one situation an unusually low signal was found to be
coming from an underground septic tank and discovered to be faulty [5]. Other tests have found
defective fridges that were using too much power [1]. These particular findings show that this form
of energy monitoring can help to lower energy consumption as well as find broken machines that
may have had an impact of health and hygiene if not found otherwise. An alternative to identifying
faults is to also monitor to predict when devices will need maintenance to prevent faults from ever
occurring.

Hart [1] also mentions the use of this for load management control, which is a process used
by energy utilities to reduce power usage and demand during peak times. These load management
procedures might be to ask consumers to simply reduce the use of high powered devices during
peak times, energy disaggregation can be used to monitor if consumers are correctly following these
directions [6].



An alternative and somewhat concerning use for disaggregated energy knowledge is the
detection of behavioural patterns in people. By having full knowledge of when devices in a
household are being used you can monitor for habits and find out when a house is most likely to be
empty, however the current data taken from houses is only smart meter readings, which are
reported less frequently than the data used in most studies. While it could be used for criminals to
detect when to burgle houses it can also be used to monitor for criminal activity in suspected or
known criminals. For example a printing press may have a distinctive energy signal and you could
monitor a known counterfeiter’s house for this signal in order to check if they are forging currency
[5], you could even monitor for chemical equipment being used by suspected drug dealers. These
concerning uses do bring up a few privacy issues though, current research in this field looks into
using non-intrusive load monitors as a way of not having too much knowledge of households.

2.1.2. Non-intrusive monitors

Non-Intrusive Appliance Load Monitor (NALMs) were first introduced by Hart [1] as a device
designed to monitor entire aggregate energy signals from a circuit. This is in contrast to previous
methods of load monitoring which required using separate monitors for each device in a circuit, this
sort of monitoring was seen as intrusive and required too much prior knowledge of a house [5].
There are two main ways in which NALMs can be setup, manual and automatic [1]. The manual
setup can be seen as an intrusive approach but only during the setup period. For this type of setup
the signatures of each appliance are measured within a household by manually activated every state
of the device. The automatic setup however is much less intrusive as it uses prior knowledge about
the signatures of possible devices that can be found within a house. This prior knowledge is used to
identify the important appliances within a house via the electrical signals without the need to
actually go inside and check.

Using the nonintrusive methods have a few advantages over the other intrusive methods,
with the obvious improvement being on the time and cost of installing the monitors in a house.
Maintaining the monitors is another issue, having to return to a consumer’s household to change
around monitors whenever devices within the house are changed, since may not occur much but if it
was required of every house then it becomes quite time consuming. There have also been studies in
the past that show when a person is aware that there energy is being monitored they will
unconsciously change their behaviour which gives skewed results when finding the general energy
usage of houses [5]. Having the monitors present in a house all the time is shown to be a constant
reminder that your energy is being monitored.

Hart [1] categorises consumer appliances into three possible groups that are dependent on
the possible state setup of device. These groups are as follows:

Type 1: Devices with only two state or ON\OFF devices, examples of this includes basic lights,
toaster, water pumps etc.

Type 2: Multi-state appliance with a finite number of states, known as finite state machines (FSM).
Examples of these appliances might be washing machines, refrigerators, stoves and similar devices.
Figure 2.2 over the page shows examples of these two state devices.
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Figure 2.2 Left: an example of an on/off device,
Right: an example of a FSM

Type 3: Continuously variable devices (CVD), these devices have no fixed number of states, some
examples of these are power drills, or light dimmers.

A further fourth type of device was introduced in [7], this type 4 device is the set of devices
that remain active for long periods of time and consume power at a constant rate. Examples of these
types of devices are clocks, smoke alarms or telephones. These devices however are often battery
powered and will not be part of the aggregate signal [4].

The basic method of a NALM for energy disaggregation is done by connecting to a circuit to
first read the aggregate electrical load, past studies take the readings between 1-3 seconds [3, 8].
The device can then monitor the load by detecting events in the energy signal that relate to some
activity performed by an appliance. For example if a step increase is detected it can be seen that
some appliance is turned on. The actual size of the increase can then be used to determine what
device has been activated by finding what devices are likely to have that same energy signal.
Similarly this can be done if a decrease is found, which in the same way relates to an appliances
being turned off [1].

2.1.3. Methods of energy Disaggregation

Different methods of energy disaggregation work on different ways, the main differences
between methods relate to the types of signals being used to infer appliance usage and the types of
devices explained in the previous section. Different methods are also performed with the use of
different models, which have their own strengths and weaknesses depending on the type of energy
reading being used.

The two main types of device signatures are steady state and transient state signatures.
Steady state features are the power signatures of a device when they are in a steady state i.e. non
changing state. Transient signatures however use the signatures given by a device during the
transitional state in which the behaviour is unstable [4]. Figure 2.3 over the page shows an example
of a signature from a device, you can see at the start of each signature is a spike above the rest, then
it trails off, the beginning of this signature is a basic example of a transient event as it’s when the
device turns on, however to properly measure the transient state a higher frequency measurement
would be needed. The part that trails off in this graph would be used together to form a steady state
signature of the device.



Figure 2.3 Signature of a device showing initial transient signature then steady state signature

Steady State Signatures

Both signature types then have their own individual types of readings as well. For the steady
state methods there are three main types, the first we have already seen with the most basic NALM
approach by considering the power change approach [1]. This method basically searches for spikes
in the power signal and identifies which device caused that spike. However having only the one
variable to identify a device limits how well the method can identify a device, if there were two
devices will a similar power spike this method would not be able to tell the different between the
two devices.

An approach to remedy this uses more than just power data, these methods use voltage and
current information as well to help to identify devices [4]. This uses the harmonic signatures of the
voltage and current on a circuit, there are several characteristics of these harmonics that are used,
such as the root mean squared or phase difference, these are quite technical and won’t be expanded
on. The use of all of these factors results in a greater accuracy of the disaggregation, however there
are still some issues present with the overlap of signatures. There is also an issue when retrieving
this data, to properly define every possible harmonic signal you need to find the harmonics for every
combination of devices in the house, this is quite a large sample size and is very time consuming [9].

While these methods may be quite accurate when identifying operating devices, they don’t
work with all types of appliance. The simple power chance approach is only set up for simple On\Off
devices, whereas harmonic signatures will expand and work on FSMs and some CVDs with low
accuracy [4]. A third steady state feature is defined as the voltage noise which can be used to
correctly find CVDs. Voltage noise is measured by the EMI signatures made from devices that use a
switch mode power supply (SMPS), this type of power supply generates high frequency EMI
signatures that is used as an identification for the device. Methods using this signature type are very
accurate however are only available for devices with SMPS, which is a small subset of devices [10].

Transient State Signatures

Transient methods take similar approaches, but only using readings during the transitional
phases of a device. The simplest method is to simply monitor for power changes that relate to the
transient state of devices, this method can work for any type of device as well as being able to
differentiate overlapping signatures. Methods using this have issues when there is the rare instance
of simultaneous state changes in multiple devices, the resulting spike from a simultaneous change
may not relate to any device or be confused with another device [4]. Due to this issue to properly
find the transient state of every device you need to find the transient state of every combination of
devices, similar to that of voltage noise. Another issue with this that arises in many transient
signature methods is the difficulty of measured at a high enough frequency to capture every feature
of the change.



Transient methods have other signature types similar to steady state methods, with
categorising devices based on the initial spike in the current [11] or even measuring the voltage
noise during the transient event of a device [12]. These feature many of the same strengths and
weaknesses as the steady state methods, but are found to be more accurate, however are harder to
measure as they are high frequency measurements [4].

Types of Models

Some past studies have looked into the use of additional features outside of the energy
reading to increase the accuracy of the models used, these often include time of day data [8],
current weather conditions or even the light and audio level readings in the environment at the time
[13].

Quite a few different inference models have been used to perform energy disaggregation in the
past. The models don’t all work the same way, some working with different signatures, some
working better on certain types of devices, all having a different range in accuracy [4].

The simplest of these models is a Bayesian network [4], these networks are steady state
models and only work with FSMs. This model detects the most likely stat sequence based on the
probabilities contained within the model, the states are also assumed to be independent of each
other.

Another model is a Hidden Markov Model (HMM) [7, 14], which is the model used in this
research and will be the focus of the entire paper. They are similar to a Bayesian network working
with the same devices, however the underlying probabilities and dependencies are a bit more
complex, HMMs will be explained further in section 2.2.

Two other models that have been used in past studies that both use transient features of
devices are Support Vector Machines and Neural Networks. These models both work with a large
amount of devices, they are generally used for finding patterns in data which can be applied to
finding patterns within an energy signal to isolate different devices [15]. Neural Networks can also
work without prior knowledge of the environment, however they required exhaustive training when
a new appliance is added to the system [7, 16].

While there are many inference models that have been used for energy disaggregation in
the past there is one key difference with Hidden Markov Models. Past studies have used HMMs
without supervised training, which gives the machines a minimal setup time and cost which when
using other models with manual learning can be very cost and time expensive [4].

2.2. Factorial Hidden Markov Models
2.2.1. Hidden Markov Models

A Markov Model is a stochastic process made up of a number of states and transitions rates
relating to the likelihood of moving from one state to another. Each transition rate depends only on
the current state and does not depend on any past or future states. Markov models are often used
in research for processes in which the state is always observable, in contrast to this however are
Hidden Markov Models (HMMs). HMMs are much similar to Markov Models with the key different
that the active state at any given time is non-observable. Instead we make an observation based on
some distribution within each states. HMMs still contain the regular transition rates like a regular
Markov Model. The combination of the observation and the transition rate leads to a doubly-
stochastic process with two underlying probability distributions [14, 17]. HMMs are chosen in
studies where we do not know the state of a process and are required to find the active set of states.
Ghahramani [17] represents a HMM with two sequences, one for states and one for observations, as
defined above the sequence of states {S;} which is the active state at time t, is hidden from the
observer. The other sequence which is observable is the observation sequence {Y;}.



The two probabilities are defined as:
P(St+11S¢) (1)
P(Y¢ |Se) (2)

Where (1) is the probability of the active state being S;,; given that the active state at time t
was S;. And (2) is the probability of making the observation Y; given that the current active state is
S¢. Figure 2.4 below shows an example of these two sequences, the top row being the state
sequence which only has dependencies on previous states in the sequence. Below the states is the
observation sequence with dependencies only coming from each state at any given time.

Figure 2.4 A directed graph showing the relations between the states and observation sequences

There are three tasks that HMMs are commonly used for, each task requires its own algorithm to
solve. These problems are defines as:
Problem 1 — given a possible observation sequence, and a model with known probabilities,

what is the likelihood of the observation sequence?

Problem 2 — given an observation sequence, what is the sequence of states that produced
this output?

Problem 3 — How can we adjust the model to maximise the probability of a given
observation sequence.

The process of energy disaggregation relates directly to solving problem 2.

Each of these problems uses a different algorithm to solce, For problem one the forward-
backward procedure can be used [19]. This method defines two new variables in the model, the
forward variablea;, this is defined to be the probability of a partial observation sequence from (1,t).
The other variable is the backward variable §; which is the probability of the other end of the
observation sequence from t+1 to T, where T is the end of the sequence.

These two variables are defined mathematically as:

ar = P(S¢, Y1.e-1)

= z at_1P(5t|St—1) P(Ytlst)

St-1

Bt = P(Ye41.71S¢)
= z Be+1P(St411S)P (Yey1Ses)

St+1



Using these probabilities we can calculate the entire arwhich gives us the probability of the
entire sequence up until the last state, where we can just marginalize over the final state to find the
probability of the full sequence P(Y).

Problem 2 is solved by use of the Viterbi algorithm, this algorithm works similar to the
forward-backward procedure, however rather than having the summation process to find the
probability, instead the max previous state probability is chosen for each state, this algorithm will be
explored more in-depth throughout the paper, more background is given in section 2.2.2.

Problem 3 is a learning problem, one way to learn the model is done by using the Baum-Welch
algorithm [14]. This algorithm defines two new variables of the model, these are y; the probability of
being in any state at a particular time given the observation sequence. The other variable is &, the
probability of going from state S; to Sy, given the observation sequence.

Ye = P(S¢|Y)
Py
- P(Y)
& = P(St, Se41lY)
_ a;P(Se11|S)P (YIS By
- P(Y)
These two variables are re-estimations of the probabilities in the transition and observation

features of the model, the algorithm works by repeatedly running this re-estimation until a
convergence is met.

2.2.2. Viterbi Inference

The Viterbi algorithm is used to find an answer to problem (2) in the Hidden Markov Model
section. Using this algorithm we can infer the most likely state sequence in a HMM given an
observation. This is a dynamic algorithm and defines two new equations to calculate the likelihood
of states and the optimal previous state which maximises this likelihood, the equations are as
follows [14]:

6 = rg??[at—lp(stlst—l)]P(Ytlst)

Pt = argg{lti‘f[at—lp(stlst—l)]
&; is the probability of a state and observation occurring given a previous state, the previous state is
chosen as the state that maximises this probability, ¢, stores this state. The algorithm can be
defined in 4 main steps these are:

Step 1 — Initialization, this set up the initial values where t = 1.

Step 2 — Recursion, this iterates over the given observation signal and calculates the
probability of each state, and finds the previous state to maximise the probability,

Step 3 — Termination, when the recursion stops i.e. reaches the end of the observation
sequence the max value at the end of the observation chain is chosen and is used as the final state in
the model.

Step 4 — Path backtracking, this uses the second equation ¢; to create a path back to the
beginning on the observation chain based on the chain of best previous states that was calculated.
The path created is then considered to be the most likely state sequence.



2.2.3. Further extensions

Ghahramani [17, 18] defines an extension to the HMM called a Factorial Hidden Markov
Model (FHMM). The model is defines as having each state represented as a collection of state
variables, this is also classified as a model consisting of multiple independent HMMs working in
parallel with a joint function on the observation distribution in each HMM [19]. The approaches to
problem solving with FHMM are very similar for performing inference and learning, with the main
difference being how the observation is computed. Figure 2.5 below shows an example of the state
and observation sequence similar to that of the regular HMM, instead consisting of three underlying
Markov chains. The figure shows that at each step the states of the three HMMs all contribute to the
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Figure 2.5 A FHMM built up of three independent HMMs

total observation at that point.

Other extensions look into added extra dependencies between HMM states and additional
outside factors [8]. Extra data can be added to incorporate conditional dependencies of states
occurring given what the additional data is, this could be information based on the time of day or
year, or even environmental factors. There are two way to incorporate these factors, the first way
extends the FHMM again to create a Conditional Factorial Hidden Markov Model (CFHMM). In this
model each state is dependent on the additional factors as well as the previous state in the state
sequence.

Another extension to HMMs is known as the Hidden Semi Markov Model (HSMM) [8]. This
extension introduces the idea that states in the model are likely to stay active for a fixed amount of
time before transitioning to another state. An example of this is the cycle of a refrigerator, these
cycles are likely to occur every few hours and last a fixed amount of time. Much like regular HMMs
this model can also be given factorial and conditional factors.
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2.2.4. Applications of FHMMs

Previous research have used HMMs in many other applications as well, some of these include:

Word Recognition
For isolated word recognition the model has a vocabulary of V words and a training set of K

occurrences of each word, such that each occurrence is spoken by a different talker. Each
occurrence of a word also represents an observation sequence for the model, the observations are a
representation of the spoken word.

The speech recognition is performed by creating a set of HMMs based on the vocabulary of the
model, and using the training set to estimate the parameters of each state. Once the model is learnt
from the training set we can perform speech recognition on a test set, which is just another set of
occurrences of spoken words. Using the test set {Y;} we can calculate P(Y) for each word model and
then choose the model with the highest probability to find the most likely word for the set. This can
be done with just the forward-backward procedure, however the Viterbi algorithm is commonly
used to find the maximum likelihood path for the words [20].

Gene Prediction

There have also been studies using HMMs for gene prediction [21]. The states in the model
represent either coding or non-coding DNA, while the observations relate to an observed DNA
sequence. The study in [21] focuses on the genes found in viruses, however this can be used for
predicting genes in anything, in general the HMMs in this can be altered represent any sort of
genome. The methods in this study use the Viterbi algorithm to predict the most likely sequence of
genomes.

Ozone Level Prediction

In a previous study [22] with ozone level prediction HMMs have been used to represent
different levels of ozone, different areas get separated into different amounts of HMMs but in
general the level of ozone in ppb (parts per billion) is used to separate each HMM.
Unlike regular HMMs for the observation of the model there are multiple sequences rather than
one, and hence more distributions for each state. The observation sequences for this model are
observations of climate data such as wind speed, temperature, humidity, solar radiation, etc. The
forward-backward procedure is used to predict which ozone level a location has based on the
multiple observations made.

2.2.5. Energy Disaggregation with FHMMs

Factorial Hidden Markov Models are commonly used for energy disaggregation, they can be
setup by having each individual HMM in the model to represent an particular device in the
household [3]. It is quite simple to represent finite state machines as a HMM, having each state in
the HMM relate directly to each state in the machine. The transition rates are simply the probability
of a device changing state, and the observation distribution is simply the expected power usage the
active states in each device. Generally the joint function for the observation is just the aggregate of
the energy signals coming from each device. However there are some approaches that have looked
at the observation being just the change in power consumption over a transition [19].

11



There have been many past studies using FHMMs for energy disaggregation, in general they are
used for steady state features as they are easier and cheaper to measure [8]. Some methods also
choose to use approximate inference over an exact procedure for when models get too complex
[23]. Other studies look into using multiple features of an electrical signal to increase the accuracy of
identifying devices. These methods look into use real and reactive power along with current and
voltage harmonics of an electrical signal. Using these features has allowed the past studies to
increase the accuracy of more complex state devices, FSMs and CVDs [23].

Altered learning procedures similar to the Baum-Welch algorithm have been used to train the model
to specifically increase the accuracy of the inference procedures used [24]. There alterations look
into finding residuals between the real output of a device and the inferred output and modifies the
model parameters in order to better detect the active states.

While the general approach is to use an additive function over the observation the study performed
in [19] looks into exploiting the features of the aggregate total to find the power change made at any
time, as a difference function of the observation. As a result of this the study also only considers the
use of one device changing state at a time, to properly define a model that considers every state to
change more information would be needed for the change in the power for every combination of
state change.

A study by Kolter [19] uses exact MAP inference to derive methods for approximate MAP
inference by considering only one device changing state at a time. Both the additive and difference
models were considered, giving the resulting algorithm named Additive Factorial Approximate MAP
(AFAMAP). This AFAMAP algorithm was compared to another approximate inference procedure
known as structured variational mean field (SMF). AFAMAP was generally found to have greater
accuracy than SMF, the downsides to these approximate algorithms is that they are only
approximate, these algorithms may never find an exact solution. The assumption that only one
device can change state also lowers the accuracy in the rare case when multiple devices change
state.

An alternative to altering the inference techniques is to alter the model itself, this is

commonly done with the consideration of outside factors such as the environment, or the time of
the day/year [8]. The study in [8] introduced the CFHMM described in the previous section by
incorporating this outside data that has no direct effect on an energy signal. The study also
introduced the HSMM, taking into account that an appliance in a house may be used for fixed
periods of time, i.e. refrigerator or a washing machine. The HSMM can also be used to include
dependencies between devices, such as dryer is commonly used after a washing machine is used.
All these changes cause the model to become more complex, making it more computationally
demanded than the regular FHMM. Due to the increased complexities the alternative methods of
inference have been used. The study that introduced the conditional and semi models used
simulated annealing to find an estimation of a state sequence, as iterating over every possible state
giving all the dependencies can be very computationally intractable. The general accuracy of the
CFHMM was greater than that of methods used with the FHMM, however being a lot slower in
computation [8].
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Chapter 3: Methods
3.1. Framework for FHMM

The research performed in this study requires the use of the previously mentioned Factorial
Hidden Markov Model. The setup of the Factorial Hidden Markov in this study is similar to what has
been done in past studies [3]. The FHMM contains n independent HMMs with each HMM
representing a different device, each HMM then contains a different set of parameters specific to
that device.

In each HMM there exists a set of states that describe the possible states of the device,
usually having one state to say the device is ‘off’ then many states describing one or more possible
‘on’ states. Each possible state for each HMM also contains three probability distributions to
describe the usage of the devices, first there is the initial probability of each state which describes
the likelihood of the device being in a particular state. There is also the transition distribution which
describes the probability of a device changing state, which can be seen as a user operating a device.
The third distribution describes the energy output measured in watts that is generated from a
particular state. This is represented as a Gaussian distribution. The observation sequence is simply
the power reading of a device or aggregate reading from multiple devices at a particular time step.

3.2. Building specific Models

After describing the parameters we need to define a HMM, we will look into how we can
calculate their values using the Residential Energy Disaggregation Dataset (REDD) [3].

3.2.1. REDD

This dataset from REDD was gathered in a previous study for the purpose of further research
in Energy Disaggregation, this data was easily accessible and provided us with what was needed to
undertake the study. The dataset was gathered on a range of different houses over the course of
several months, this meant that the data wouldn’t cover the full year and every season so the
readings may be heavily influenced by the time of year it was gathered.

For each house in the set, there were multiple different circuit readings each showing the
power usage of different device or a set of devices. The data acquired for this study contained
readings for 6 houses with up to 25 individual circuits from each house. Only one of these houses
was focused on during the experimental phase of the study, this house had 20 circuits, 2 of which
were for the mains power the rest all representing different devices within the house.

The signals themselves consist of lists of timestamps accompanied by the energy reading
made at that time. For the mains power they have taken measurements every second and for each
separate device they have taken readings every 3 seconds. Some of the circuit readings relate to
individual appliances, such as the fridge or oven. But there are other readings that relate to a group
of devices such readings are called “Kitchenl” or “Lights1” which relate to a group of kitchen
appliance (toaster, kettle, etc.) or a group of lights.

Using the channel data on each device we were able to find the relevant parameters for the
FHMM that described the energy output of the device. The method behind this required us to
perform multiple algorithms to manipulate the data. For the purpose of testing we only used the
first half of each circuit reading when finding the parameters, leaving the second half to be tested
on.
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3.2.2. Reconstruction of state models

In order to create the state space of each device we took the channel data of this device
used clustering techniques to assign each reading to an individual state. Before we could run a
cluster algorithm we had to first make a few manual choices on the data. By observing the data we
can see such things as found in figure 3.1 below that every instance of the usage of this device has
approximately the same energy output, with a number of spikes lasting for about the same about of
time. The assumption from this is that there would be one state for the off state, with a reading of 0
and one state for the on state with a reading of around 4000. The clustering algorithm would then
be given the prior information that this device has two states, and a chosen energy reading for each
state.
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Figure 3.1 Part reading from the Oven, each spike representing the ‘on’ state of the device.

The algorithm using is the K-Means clustering algorithm [25]. This in short associates every
observation point to a single cluster based on how far that point is from the centroid. After every
point is assigned to a cluster the centroids of each cluster are then updated by calculating the
average of the values within each cluster, after the centroids are updated the assignment and
updating processes are then repeated until convergence i.e. The centroids are unchanged after
updating. As the flowchart in figure 3.2 demonstrates the clustering process consists of continuously
running the assignment and updating phases until a convergence property is met.

Initialize Clusters |———» Assignment Phase [€———

v

Update Phase

no

> Calculate Parameters

Converged?

yes

Figure 3.2 Flowchart showing the steps in the clustering and model building stage.
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Once the clustering is done we would have the actual state sequence of the device signal, we
can then use this to find the probability distributions needed for the HMMs. To calculate the initial
probability we find how many points belong to each cluster and divide by the total number of points.
We can then find transition rates by observing consecutive points and their clusters in which they
belong to. To do this we found the frequencies of a transition from one cluster to another. This gave
us the number of times the data stream would move from one state to another, from this we could
then divide the transition frequency from one state to another by to total amount of transitions that
came from one state. This would give us the transition rates from each state, resulting in a table of
size SxS.

The Gaussian for the observation in each state is found simply by taking the centroid of each
cluster which is equivalently just the mean of each state, along with calculating the standard
deviation of the data points within each cluster. This gives us the last parameters we need to define
a device as a HMM.

After initial modelling of the data issues regarding random spikes that reduced accuracy of
the inferred readings and increased complexity were found. In order to accommodate this we chose
to perform some pre-processing techniques on the data. Before processing the data into states we
performed a filter on the data to eliminate any random spikes and errors that would only last for a
split second in the readings. This was inspired from the initial tests that were performed using non-
filtered data, which would often infer incorrect states. The data was ran on a median filter [26], this
process involved running over a data sequence and at each data point the neighbours of that point
and itself are observed and the median of these values is put as the new value for that point in the
data sequence. The amount of neighbours observed by the filter can be simply changed before the
run, for this project we have used a filter of size 7, which would observe two neighbours on either
side of a data point when calculating the median. In figure 3.3 below you can see the circuit reading
of the fridge being put through the median filter. On the left is the signal before filtering and the
right has the signal after filtering, you can clearly see large spikes being removed and a general
smoothing of the signal.
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Figure 3.3 Reading from the fridge being put through the median filter.
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3.3. Inference Techniques
3.3.1. Viterbi

The implementation of the Viterbi algorithm, defined in section 2.2.2, requires two tables to
store the likelihood of each state occurring at each time step and the state from the previous time
step that maximises this likelihood.

The actual process of the algorithm is as follows:

//This loop finds the initial probabilities at the state of the observation sequence.
For each state s in the state space S

ViterbiTable (0,s) = Initial probability of s

Backpointer(0,s) = -1

//This loop fills in the tables with the probability of each state at each time step.
For each time step t in the observation sequence O
For each state S
VibterbiTable(t,S) = maxg,  [ViterbiTable(t —1,S._1)P(S¢|S¢-1)] P(O¢|S;)
Backpointer(t,S) = argmaxg,  [ViterbiTable(t —1,S._1)P(S¢|S¢—1)] P(O¢|Se)

//This section finds state most likely to represent the end of the sequence and backtracks over the
//backpointer table.
maxS = max(ViterbiTable (end))
For each time stept=endto 0
Path(t) = maxS
MaxS = Backpointer(t,maxS)
Return Path

The first loop performs the initialization state finding the starting probabilities of each state,
iterates over every position in the observation sequence to find the probability of that observation
occurring in each state as part of the recursion step of the algorithm. After the loop is completed the
value maxS is chosen as the end of the state sequence as part of the termination step. After this the
backpointer table is iterated over to find the full state sequence for the observation as part of the
final phase of the algorithm, the path backtracking.

The two tables for this algorithm become quite large having |O] * |S| values. |O| being the size
of the observation chain and |S|is the total amount of states in the FHMM. The size of the
observation chain is quite easy to alter being entirely dependent on how many time steps are being
observed, however the size of the state space brings up problems. The amount of states in a FHMM
is equal to the product of the amount of states of all the HMMs within the model. As the number of
devices included in the model is increased the total number of states is increased quite quickly
resulting in quite a few issues that are brought up in chapter 3.4.
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3.3.2. Naive benchmarking

As a way to show that the inference techniques used in the project are actually meaningful
and worth the complexity we have created a very basic method of energy disaggregation as a
benchmark to compare results with. This method is quite simple and runs on the same parameters
used in the rest of the project. The algorithm runs through the observation sequence and at each
point the energy level observed is compared to the mean power signal that comes from each state in
the FHMM. Simply put if the observation is higher than the mean signal of a state then the algorithm
will assume that that state is active and will add it onto the state sequence. This will also only choose
the state with the highest signal that fulfils this requirement so every state is not chosen to be
active. This doesn’t require any sort of probability distribution and the choice of states is
independent of any other state. Due to the simplicity of the method it is expected that similar
devices will get confused and readings that come from certain devices that are much lower than the
mean will also be misclassified.

3.4. Innovations

Preliminary tests revealed a couple of issues regarding the space and time required when
performing the inference procedures. This inspired multiple methods for the purpose of simplifying
the model

3.4.1. Device separation for multiple passes of Viterbi

The largest contribution that was made to the framework was to separate devices based on
their power usage. Then run the inference on each set of devices. This was motivated by the idea
that if a device with a high power usage has a high variance was to run at the same time as a device
with a power signal that would be encapsulated within the high variance then the small usage device
would be incorrectly detected or not detected at all. Another factor that influences this choice was
the complexity issues that were faced when running the program on the entire set of devices. To fix
this we needed to find a way to have a smaller amount of states in the model without a significant
lose in accuracy.

A

Device B
Device A

Power (W)
F

> Time (s)

Figure 3.4 Example of a big and a small device, the noise in the big device is larger than the signal of

the small device

As a result of this choice a dividing line between ‘big’ and ‘small’ devices is chosen, then
each device with a power signal above this line is chosen as a big device the rest are considered
small devices. After this split is made the inference is ran on the big devices followed by another run
on the small devices. However during the run for the small devices the algorithm would ignore any
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time steps when a big device is considered on. Having this ignore when big devices are being used
lets us remove any mistakes caused by the variance of the big device. When a time step is ignored
for a small device the previous state at the first non-skipped point is assumed to be the first state
before the time steps that were skipped. One drawback of this method is that a big device may not
have a very big variance and the split may not actually affect the entire accuracy of the method.

3.4.2. Methods for increasing efficiency

Further methods were also used in order to reduce the complexity of the model and
increase the efficiency of the inference methods.

Change 1. This change was made by collapsing the probability table used in the Viterbi
algorithm. This was done purely to save space in the program as it would not run due to the size of
the table being too large. The collapsing is quite simple, in the algorithm it iterates over every
column in the table, having each column relate to a single observation. Each column is filled with the
probabilities of each state which require the previous column to calculate them. However each
column itself is only used in another calculation once. This means we can delete previous entries to
the table once a column has been completely filled, this lets us change the table which would be of
size |0| * |S]| to instead be of size 2|S]|. This shortens the table by 1/|0| which for larger test is a
significant amount. As a result of this change we were able to run more complex models of a larger
set of data, however this didn’t fix the issue entirely.

Change 2. Another method to try to increase the efficiency of the Viterbi algorithm and
reduce the state space was by simplifying devices and reducing the amount of parameters that
describe each device. For some devices this could not be done without significantly reducing the
accuracy of the model. This was more aimed at the more complex devices which contain a large
number of transitions between states. Some similar states were able to be combined with a minor
reduction in the accuracy of the device. In figure 3.5 below the signal for a Dishwasher is shown, this
contains many changes in the signal that could be seen as a change of state. If we were to model this
device perfectly we could define every one of these transitions as a new state, however this would
create a huge number of state 30+ for just this device. To reduce the state space for devices like this
a fixed number of states were chosen to be approximate to the size of each level. For example in the
graph below you may have one at 0, one at about 200, one at about 400 and another at 1100, which
are the main levels shown just in this plot. However to properly define it a close look may be
needed, some devices have very small usage states and are hidden in larger plots like this.
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Figure 3.5 Plot of the Dishwasher signal, the most complex signal modelled.
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Change 3. The final alteration to Viterbi that was made is during the recursive phase of filling
the tables. When the probability of a state is calculated the algorithm looks at every state as a
possible previous state and selects the maximum from this. In this change instead of every state
being seen as a possibility instead only the states that relate to one device in the model changing are
considered. This is under the assumption that no two devices are able to change state at once, which
is quite a common assumption in past studies in Energy Disaggregation [19]. The issues with this are
that in rare cases it may be possible for multiple states to change at the same time, this leads to
slight inaccuracies having devices being assumed to be on about one step longer than they actually
are.

3.5. Experiments, Output and Performance measures

The experiments performed in this algorithm use the second half of the circuit readings from
each device, as each device is modelled on the first half of the circuit data. The experiments
themselves in order to preserve time are mostly performed on subsets of devices to show that the
issues explored actually exist in the project and show how the methods introduced help to remedy
them.

The setup of any experiment performed used a subset of the devices in one house, with the
observation simply being the aggregate of their respective channel data. These subsets were chosen
where there were similarities between devices, such as device that are often used at the same time,
or devices with similar power levels.

The output of any experiment is inferred reading from each device, to get this we use the
expected state sequence found in the model and plot the mean power usage of each device based
on its expected state at each point in the observation

To check how accurate our inference is we can observe how often an incorrect state is
chosen. This is simply the amount of times a state in the inferred sequence matches the state in the
actual sequence divided by the total number of states. We can also check the accuracy of the
inferred energy signal by observing the differences between the expected state sequence and the
actual state sequence, from this. However this is likely only be the different from the observation
and the mean power level of the predicted state. We can use this difference of the inferred and
actual signals to check how accurately the states in the constructed device relate to the real device.
While checking the accuracy of the correct state being chosen is used to actually check if the correct
state is found. Even if there is a high accuracy for finding the right state it may be just because the
device is modelled too simply, with too few states.
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Chapter 4: Results and Discussion
4.1. Preliminary results

The preliminary tests were performed using small subsets of the devices at a time in order to
check that the algorithm could work properly before performing more intensive tests. When doing
these tests a couple of performance issues arose, the following two chapters will discuss this and the
attempts to fix it.

4.1.1. Justification of using a median filter

The first tests performed were based on models that were derived from the unaltered
version of the data. This data contained many random spikes that would last less than one time step
(3 seconds), these made the devices harder to model and were often put in the incorrect state
leading to large inaccuracies in the inferred usage, this led us to use a median filter to remove this
short random spikes. The graphs below in figure 4.1 and 4.2 show the real and inferred usage before
and after median filtering was used, the graph in before the filtering was performed clearly shows
when these random spikes occurred and the estimated usage at this times is quite off, while after
the filtering was used there is a much more smoother plot and the inferred usage is much closer.
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Figure 4.1 Real and inferred usage of the fridge before median filtering.
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Figure 4.2 Real and inferred usage of fridge after median filtering.
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The general accuracy of the inference in the above to tests was quite good, actually better in
the test before the median filtering having an accuracy of 99.84%, while the test after median
filtering is 99.01%. Still very close together, this difference cause is simply because the model
created after median filtering ignored the random spikes and was able to be modelled to be much
closer to the actual output for the device. An example of this in the above graphs is when the real
usage is at 400W, the first test didn’t pick this up as a state was not placed for that, while it is found
in the second test. So the higher accuracy of the inferred usage is only found because the model
representing the device is too simple and there does not exist enough states that they could be
confused.

Since comparing the accuracy of the correct state being found doesn’t seem to show which
of these tests was better we can then check to see the plots of the absolute error in these devices
which shows us the actual difference in the energy we think is being used by the device. The
accuracy of the correct state however can be used to properly check whether devices can be
identified in more complex tests where many devices are present. The graphs below show just that,
in graph 4.3 it’s shown that there is quite a large error in the predicted output and the actual output,
the total range of this error over the total test was (0.19, 933.46)W, with a mean error of 4.50W. The
error over for the test after the median filtering had a range of (0.01, 229.01)W with a mean error of
2.14W. This comparison shows a large change after the median filtering allowing us to more
accurately predict the usage of devices without random spikes interfering with the modelling and
inference processes. As a result of this increase in accuracy it was decided that the rest of the data
would be put through a median filter as a part of the modelling phase.

800

y
error

7001 b

600 b

500 F b

400 b

Power (W)

3001 b

2001 B

14:30 15:00 15:30 16:00
Time of day

Figure 4.3 Error between the real and inferred usage before median filtering.
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Figure 4.4 Error between the real and inferred usage after median filtering.

4.1.2. Benchmarking

The Benchmarking process as described in section 3.3.2 is a simple method of preforming
energy disaggregation, the algorithm simply goes over the observation input and if the reading at a
particular time is greater than the usage of a state then that state is chosen to be active at that time.
The reasoning behind this test is to simply show that our method can achieve a greater accuracy and
is worth the complexity.

The test below in figure 4.5 was done on the same fridge input as the previous test found in
figure 4.2 however with a different section of the output. It's quite clear in the plot that when the
device is being used it finds the correct state only when the reading is above the mean usage of the
state leaving a large chunk in each cycle of the device to be incorrectly assigned to a state. A trivial
solution to this would be to increase the range of deciding when a state is active, for example rather
than having the algorithm check if the power level is above the mean usage it would instead check if
the reading is within three standard deviations of the mean, which would cover 99.7% of the
readings in a particular state. However when there are two states that have overlapping Gaussians
then any reading contained within the overlap may be incorrectly assigned.

The accuracy of find the correct state in this test was 84.14%, the error range is (0.01,
216.51)W with a mean error of 20.71W, so not only is it less accurate but the mean error is larger,
meaning the error in the predicted output is much larger.
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Figure 4.5 the real and expected output from the benchmarking test
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The other benchmarking test performed involved two devices, the washing machine and
dryer, these were chosen together as they are common appliances to use at the same time. The
benchmarking tests showed that there was an accuracy of 99.69% for getting the correct state for
the dryer and 99.39% for getting the correct state of the washing machine, however these devices
aren’t used much so finding the correct ‘off’ state boosts these devices quite a bit. The chance of
finding the ‘on’ state of these devices when the device was in the ‘on’ state was 82.91% for the dryer
and 66.09% for the washing machine. Due to the lack of accuracy of these tests we have the need of
a more complex method of disaggregation, which we will be doing with the FHMM described in
chapter 3. Our proposed method when used on this test with the combined dryer and washing
machine showed an accuracy of 97.22% for detecting the on state of the dryer and 99.27% for
finding when the washing machine was on.

4.1.3. Performance Limitations

Some of the other performance limitations, outside of accuracy was the complexity of the
model. Put simply a test on a large subset of devices required too much memory to run. The first test
that this occurred on was a test with 6 devices, totalling 648 states in the FHMM, with an
observation test size of 372939, half of a circuit reading.

Without being able to run this test it was instead run on smaller inputs, it was decided to use
a third of this input instead, however to check how long it would take it was run on an observation
chain of size 1000.

As a summary, a test with 648 states, observation chain of 1000 took 50 minutes to
compute. This meant if it were run it on the third of the planned data we could estimate it at around
80 hours and all of the planned data (372939 time steps) it would take about 310 hours. It's quite
clear that this would take too long to compute.

Because of these issues a couple of changes were made to the model, as previously mentioned we
collapsed the Viterbi table to save space, and altered the algorithm to only consider one state
change at a time.

With the change of only considering one state change at a time it made the algorithm much
more efficient having the above test last for only 30 minutes, rather than the estimated 310 hours.
The only downside to only considering one device to change state at a time is the rare occurrence
when two devices change at once; so far there has been no evidence of this in tests. These
comparisons can be seen in figure 4.6.

Test type, with 648 states t=1000 t =100000 t=372939
Multiple state changes 50 minutes ~100 hours ~310 hours
One state change < 5 seconds ~10 minutes ~30 minutes

Figure 4.6 Table showing runtime on different size input, t = number of time steps.

The collapsing of the table did well to save space now being able to run the test mentioned
above on the full 372939 size input, this issue occurred again at around 8000 states, but it was
suitable for the rest of the tests undertaken. A possible way to remedy this is to collapse the
backpointer table as well and save it to file every time it is filled.
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4.2. Results after changes to the framework

Once the framework was made and adequate changes were made to fix performance and
accuracy issues, a number of tests were performed. Firstly every device was put into the FHMM by
itself to see how accurate it is to find one device. Combinations of devices were then tested on. The
combinations chosen were carefully chosen to be devices that overlap or have similar power levels.

4.2.1. Detecting a single devices

The first set of tests done was to check if one device by itself could be detected, the model
would just consists of the single device and the observation input was the second half of that devices
circuit reading.

The performance measure from this test looks at how often the correct state is detected,
then further on how much the correct ‘on’ state is detected, the reasoning for this is devices are
more likely to be in the off state which contains a close to zero usage level, so this should never be
incorrectly detected as an on state. Further than this the results look at the min and max error in the
inferred observation and the mean of the error.

The table below in figure 4.7 shows all these results for each device in one of the houses.
The general correctness of the chosen states is quite high. The devices that have less accuracy all
have states that use a very low amount of power the BathGFI for example has an off state with 0.9W
usage with a 0.2W standard deviation and the smallest on state is 12W, but with a 10W standard
deviation. You can see these values in the appendices in chapter 7. These values result in an
overlapping Gaussian of the two states and it is expected that they will be incorrectly assigned. The
devices showing a lower accuracy indicate that they may need to be modelled again and more
carefully. However the downside to remodelling the devices is that the state space will have to be
increased as well to accommodate for the current errors.

Device Correct (%) | Found when on (%) | Min Error (W) | Max Error (W) | Error Mean (W)
Oven 98.604% 99.984% 0.04 3338.30 1.71
Fridge 99.010% 96.305% 0.01 229.01 2.14
Dishwasher 99.809% 99.845% 0.02 1088.60 1.95
Washing Machine | 100.000% | 100.000% 0.02 187.98 0.56
Dryer 99.999% 100.000% 0.01 2074.80 0.59
Kitchenl 97.528% 97.481% 0.18 6.54 0.68
Kitchen2 100.000% | 100.000% 0.06 46.93 0.19
Kitchen3 98.509% 99.962% 0.02 69.71 0.14
Lights1 99.254% 98.570% 0.09 67.76 1.75
Lights2 99.955% 99.998% 0.00 35.88 0.54
Lights3 99.296% 99.930% 0.01 21.38 0.46
BathGFI 93.295% 100.000% 0.04 319.26 0.93
Electric Heating 99.393% 100.000% 0.00 6.87 0.06
Microwave 99.423% 99.981% 0.04 621.72 0.86
Stove 99.338% 99.725% 0.01 558.86 0.15

Figure 4.7 Accuracy of finding correct state and size of errors for single devices
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Figure 4.8 Cycle of the dryer to showing the max error occurring

The actual size of the errors is caused by a couple of issues. One the main issues is during
these tests happened during the times when a device is turned on or off, rather than it going straight
to the state usage level it may instead have one point halfway between the on and off. This was a
very rare occurrence in the data, in figure 4.8 above you can see the dryer and when the max error
in the inferred usage occurs. This happens right at the start of the cycle, you may be able to notice
that the inferred line (blue) reaches the state level slightly earlier, at this same point you can see the
real usage having a point around 500W. A likely cause of this may be due to the readings being every
three seconds, my expectation would be that if we had readings of every second we would see this
sort of behaviour at every instance of use.

The max errors in all of the other large devices occurred in the same way as the dryer, but
the errors the size of the max error only occurred once in the entire test. Considering the next
highest error in the large devices would give a max around half of the original. In order for us to
change this, we would need to remodel the devices similar to fixing the general accuracy, the issue
with this is that the energy readings that occasionally appear between the state transitions aren’t all
the same. For example in the dryer this state of 500W occurred once, the other errors that were
similar to this were around 1000W or 2000W, each occurring once, if we were to update the model
to include these levels it would be much more complex and we would not be able to run larger tests.
Some of the devices also had different states active in the second half of the data that weren’t active
in the first half, this attributed to less accuracy and larger errors, as a way to resolve this some of
these devices were modelled on the second half and tested on the first, however not every device

was like this.
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4.2.2. Combining devices with ground-truth labels

The second round of tests performed consisted of taking subsets of the devices with the
observation being the aggregate of their respective circuit readings. These tests were designed to
see how well it detects devices when other devices are active as well. The combinations of devices
were carefully chosen so there would be conflicts, looking for devices with similar energy signals that
might get confused or looking for devices that are active at the same time.

The table over the page in figure 4.9 shows the accuracy of the 7 tests performed. Tests 1,4,
5 and 7 were chosen as devices that may be used at once. While tests 2 and 3 were chosen as the
devices have similar energy signals. Test 6 on the other hand was chosen as a small device is active
at the same time as a large device as a way to check if they can both be detected, this test will be
further explored in section 4.2.3.

While the accuracy of finding the correct state is high in these tests, it isn’t that meaningful
as most of the states of a device will be off and using no energy, the accuracy of finding the correct
active state however is shown to drop quite significantly when multiple devices are present. For the
tests aimed at devices with similar energy signals the accuracy is quite low for some devices, this is
due to how close each device signal is. In test 2 the accuracy for the BathGFl is 40%, this would mean
that 60% of the time when the BathGFl is active the model instead thinks the Microwave is being
used, vice versa for the times when it doesn’t detect the microwave being on. This causes the errors
in the inferred usage for these devices to be quite large as well, about as equal as that devices
biggest state.

Test 4 with the Washing Machine and Dryer seems to do the best, these devices were
chosen as they are often used at the same time and they are very distinct both having two states
with their active usages being completely different. As these devices are so different it is expected
that they would do just as well as if they were separate.

Test 7 was performed as a combination of test 1 and test 5. Test 1 and 5 show a decrease in
the accuracy originally, then when we combine them the accuracy is even lower, showing that as
more devices are added to the model the lower the accuracy. Kitchen2 in these tests proves to have
amazing accuracy even when combined with other devices. The Kitchen2 model similar to the
Washing Machin and Dryer only has two states are the active state is nowhere near the other states
of the devices in test 7 so it was expected that Kitchen2 would have the highest accuracy.

This confusion found between devices with similar power levels is quite an issue with
disaggregation, in order to find a more distinctive difference between two similar devices more
information is needed, such as outside parameters that affect the usage of device. These might be
the current weather conditions, or the time of day or season, anything that really affects people
using certain devices.
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Correct Found when on | Min Error | Max Error | Error Mean
Device Test (%) (%) (W) (W) (W)
1
Oven 99.859% 95.545% 0.04 3,338.30 1.65
Stove 97.727% 94.869% 0.01 558.86 0.26
2
BathGFI 97.702% 39.618% 0.04 1,643.00 2.85
Microwave 99.640% 78.878% 0.04 1,619.00 3.97
3
Kitchen3 99.748% 78.866% 0.02 1,589.00 3.96
Microwave 99.539% 76.103% 0.04 1,578.70 5.45
4
Washing
Machine 99.998% 100.000% 0.02 441.98 0.57
Dryer 100.000% | 100.000% 0.01 1,222.50 0.58
5
Kitchenl 96.040% 95.993% 0.18 11.18 0.75
Kitchen2 100.000% | 100.000% 0.94 1,068.10 32.23
Kitchen3 98.298% 64.351% 0.02 1,518.30 19.58
6
Electric Heating | 99.851% 99.301% 0.00 18.96 0.04
Kitchen3 98.929% | 92.774% 0.02 69.71 0.15
7
Kitchenl 94.634% 95.424% 0.18 11.18 0.82
Kitchen2 100.000% | 100.000% 0.06 1069.10 0.19
Kitchen3 96.997% | 34.186% 0.02 1514.30 0.30
Stove 97.998% | 69.058% 0.01 1404.30 0.28
Oven 98.702% | 56.464% 0.04 3338.30 1.78

Figure 4.9 Accuracy of the test run on multiple devices
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Below: Figure 4.10 Confusion of electric heat being on when it is not.
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4.2.3. Detecting small usage devices amongst big devices

Test 6 from figure 4.9 as mentioned was chosen to see if the model and find a small usage
device amongst a big signal, the small device being the Electric Heat may have high accuracy but the
actual error found in the inferred usage is around the same as the energy signal for the device. This
suggests that the device is not found one of the times where it is turned on, or it is mistaken as on
when there is large noise from the device.

Figure 4.10 on the previous page shows the time of when the largest error in the heat
occurs. The green line indicates the actual usage of the Electric Heat, the red is it’s inferred usage,
it's quite clear that this point has been assigned the wrong state. The cause of this is from the
Kitchen2 device which is active at the same time, represented as the blue lines. The standard
deviation of Kitchen2 in it’s on state is 17.5W which encapsulates most of the Electric Heat device,
this confusion suggests that the noise during the time that Kitchen2 is active is larger than the
Electric Heat signature and so it is assumed to be active as well.

Another way these devices may have been confused is if the noise from Kitchen2 at the time
the Electric Heat was active was quite low, then the model would assume the Electric Heat signal
was completely part of the Kitchen2 signal, however this scenario did not occur in the test.

The method introduced for us to fix this issue and properly detect small devices requires us
to separate small usage devices from big usage devices. The model is run on first the big devices,
then the small devices while ignoring when the big devices were turned on. Below in figure 4.11 is an
example of the output of this method the graph on the left shows the output before the slitting
method is used, having inferred usages at the same time. The graph on the right shows after the
splitting method is used, the Washing Machine is considered to be a small device and is run
separately on the same input ignoring the times when the Dryer is turned on.

3000

T T T T 3000
washing machine dryer
7 1 1 1 dryer
2500 ¥ 2500 washing machine
2000+ q 2000+
5 18001 5 1500
z z
o &
1000 q 1000 F
500 F ! 500+ u _‘ -
0 n L f \ 0 L L A B
16:00 16:10 16:20 16:30 16:00 16:10 16:20 16:30

Time of day Time of day
Figure 4.11 Example of before and after implementing the splitting method. Devices used are the washing
machine and dryer.

To show that this method increase the accuracy of small devices it was run on tests 4 and 6
from figure 4.9. The table over the page in figure 4.12 contains the accuracy from these tests. Note
that the accuracy calculated for these tests only consider the non-skipped time steps. It is quite clear
that without the big devices interfering the small device gets detected with no problem, and the
errors are shortened.
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Device Correct (%) |[Found when on (%) |Min Error (W) |[Max Error (W) |[Error Mean (W)
Heat 97.56% 100.00% 0.003 7.875 0.209

Kitchen3 100.00% |100.00% 0.000 69.714 12.735
Washing Machine (100.00% |100.00% 0.003 172.980 0.422

Dryer 99.97% 100.00% 0.003 2074.800 28.793

Figure 4.12 Accuracy and Error size from tests 4 and 6 with splitting method implemented.

Further tests with a larger set of devices were performed as well. These tests were done using the
same subset of devices but with a different energy level to split the big and small devices on. The
previous tests have only looked at splitting the devices above and below a 1000W reading. These
last few tests use different levels for this split ranging between 50W to 2000W.

The eight devices chosen for this test were: Dryer, Washing Machine, Kitchenl1, Kitchen2,
Lightsl, Lights2, Electric Heat and the Oven. There were 6 tests done each with different levels for
the split. The 6 tests were split as follows:

Split level = OW — All devices considered big

Split level = 50W — Dryer, Washing Machine, Kitchen2, Oven, Lightsl & 2 considered big,

other two devices are small.

Split level = 100W — Dryer, Washing Machine, Kitchen2, Oven, Lights1 Considered big, three

others devices are small.

Split level = 300W — Dryer, Washing Machine, Kitchen2, Oven considered big, other four are

small.

Split level = 1000W — Dryer, Kitchen2, Oven are considered big, other 5 are small.

Split level = 2000W — Dryer, Oven considered big, other 6 are small.

The results of these tests can be found below in figure 4.12. The results show that the choice
of the split level has a definite change of the accuracy of the model. On first inspection there doesn’t
seem to be a level that works best for every device. With the exception of the Electric Heat every
device performs best when there is no split between the devices. There appears to be a large
variation as the size of the split is changed. This could be the cause of different devices interacting
with one another and it only happens when the devices are in the same side of the split.

Dryer  Accuracy Kitchenl Accuracy Kitchen2  Accuracy Electric Heat  Accuracy
0 | 100.00% 0 62.76% 0 | 100.00% 0 59.22%
50 99.75% 50 16.69% 50 | 100.00% 50 96.92%
100 99.35% 100 32.37% 100 | 100.00% 100 59.55%
300 99.99% 300 51.50% 300 99.98% 300 55.32%
1000 78.47% 1000 61.41% 1000 98.35% 1000 55.14%
2000 73.94% 2000 61.56% 2000 | 100.00% 2000 55.10%
Washing Machine Oven Lights1 Lights2
0 | 100.00% 0 99.29% 0 86.51% 0 83.69%
50 99.74% 50 95.83% 50 26.66% 50 5.02%
100 96.47% 100 48.35% 100 18.62% 100 60.99%
300 53.32% 300 68.37% 300 81.51% 300 79.60%
1000 | 100.00% 1000 16.55% 1000 81.13% 1000 78.56%
2000 | 100.00% 2000 20.06% 2000 81.15% 2000 78.72%

Figure 4.13 Set of tables for each device used in the final tests, shows accuracy of inferring the correct state
given the level of split.
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The graph below in figure 4.14 shows the relation between split level and accuracy of the
device. There is no obvious link between the two variables, showing large variation of the accuracy
at each split level. It’s possible some of the errors found at certain levels is a cause of devices
interfering with each other. For example in the 50W test only the Electric Heat and Kitchenl are
considered small devices, these devices have a very similar output (see Appendix, chapter 7) and
may easily be confused. Further tests when more devices are added to the small device set may then
interfere with the Electric Heat and suggest that Kitchen1 is being active more. To properly look into
this however more work will be needed. Further tests with more devices and more levels to split the
devices on would be required as part of this work.
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Figure 4.14 Plot of the accuracy of each device across each level of split that was used.
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Chapter 5: Conclusion
5.1. Summary and contribution

Non-intrusive load monitoring and energy disaggregation have shown to be quite beneficial
in aiding our understanding how we use electricity and gives insights on how we can save energy.
With obvious benefits being able to save money on power bills, alternate uses also include
monitoring for faults in devices or even monitoring for criminal activity. While there are many
methods for performing energy disaggregation the focus of this research has been through the use
of Hidden Markov Models.

This research project provides a framework for the use of HMMs with the expected use with
energy disaggregation. This study has found many issues regarding the complexity of inference
methods used for HMMs and provides methods with aiding this, the highlight being the idea to split
devices based on their energy signals to help identify small usages devices when noise from large
devices exists. Other methods introduced to increase efficiency have been to simplify the state space
of devices, and to assume only one device is able to change state at a time.

The results from the experiments showed generally that the more complex the model is the
less accuracy of predicting states, and the longer computation time is required. It is also shown
through the benchmarking results that methods of disaggregation can be too simple require more
complexity. The use of the splitting method showed it was easier to detect smaller devices when
ignoring times when a big device is active, along with this the splitting method increased the
efficiency of the model by simply splitting the input.

5.2. Future work

This Research project has found many issues surrounding current approaches to Energy
Disaggregation and as a result has inspired many future areas of research in this area.

While the complexity issues seemed to cause an explosion in the state space of the FHMM, future
studies could look into how the number of devices affects this and the runtime of inference
techniques with HMMS.

Future research in the complexity issues can also be undertaken while looking at how much
information is needed to describe a device. The research would explore how to find an optimal
number of states to encapsulate the behaviour of the device while not risking the accuracy of the
inference methods for the model.

We could also further look into the idea of only one device changing state at a time and
abstract it to saying that ‘k’ devices can change state at once, exploring how the amount of devices
changing state may affect the accuracy of the model, and should almost definitely affect the
runtime.

The use of filtering the data as a pre-processing step introduces the idea of whether the
random spikes in the energy signals was actually random. Research in this may be to see if these
random spikes are part of some cycle within the device usage. This research however would require
a lot more data which would greatly increase the complexity of any inference performed.

Another research area we can use to expand on this project, which was the original plan of
this paper before the complexity issues were found, is use of prior knowledge of devices in the
model and how it may or may not affect the accuracy of the inference performed. Prior knowledge
could be time of day/year, climate data or even the correlations between devices, i.e. when a
washing machine is used the dryer is used shortly after. This requires the use of an extension to the
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FHMM known as Conditional Factorial Hidden Markov Model (CFHMM) or Factorial Hidden Semi
Markov Models (FHSMM) if the use of dependencies between devices is present, or even both as a
CFHSMM.

The biggest contribution of this study was the introduction of splitting devices into the two
groups for big and small devices we may be able to look into how to choose an optimal diving line
for the split between this groups, as a split too high may not be necessary if it splits two very distinct
devices and a split too low may ignore the use of this divide. Alternatively we could look at if
creating a third group of medium usage devices affects the complexity and accuracy of the inference
techniques. At the end of chapter 4 a few tests were performed to see how the level used to split big
and small devices can affect the accuracy. This didn’t show any direct relation but | suspect more
work will be needed to find any possible relation and possible the most optimal split level. Further
work on these tests will require more devices to allow for more splits and to more closely research
the relationship between devices on the same network as this could be the cause of the large
variation of accuracy found in the final tests.
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Chapter 7: Appendices

The following is a list of the devices used for tests in this study.
It contains the device label the number of state and the mean and standard device of the power
signal from each state.

Washing Machine

State 1 2

Mean Power (W) | 0.06 | 441.98

sd of Power 1.95| 46.15

Dryer

State 1 2
Mean Power (W) 0.01 2687.28
Sd of Power 2.04 38.89
Kitchen2

State 1 2
Mean Power (W) 1.06 1070.07
Sd of Power 0.47 17.51
Oven

State 1 2 3
Mean Power (W) | 0.05 | 12.54 | 4003.29

Sd of Power 0.45 | 4.67 | 242.71
BathGFl

State 1 2 3
Mean Power (W) | 0.96 | 12.74 | 1603.28

Sd of Power 0.26 | 10.24 20.52
Kitchenl

State 1 2 3
Mean Power (W) | 13.82 | 20.69 | 23.46

Sd of Power 1.54| 0.80 | 1.13
Kitchen3

State 1 2 3
Mean Power (W) | 0.02 | 4.82 | 1519.29

Sd of Power 0.19 | 1.39 31.62
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Electric Heating

State 1 2 3

Mean Power (W) | 0.00 | 7.87 | 19.96

Sd of Power 0.06 | 1.60 | 0.36

Microwave

State 1 2 3 4

Mean Power (W) | 4.04 | 44.27 | 265.28 | 1518.51

Sd of Power 0.31 | 13.67 | 94.84 46.43

Stove

State 1 2 3 4

Mean Power (W) | 0.01 | 6.67 | 20.18 | 1420.86

Sd of Power 0.13 | 1.29 | 10.47 50.42
Dishwasher

State 1 2 3 4 5
Mean Power (W) | 0.04 | 38.02 | 217.14 | 423.80 | 1089.62
Sd of Power 1.38 | 15.57 | 11.65| 74.18 76.40
Fridge

State 1 2 3 4 5
Mean Power (W) | 6.49 | 46.16 | 191.43 | 214.89 | 423.31
Sd of Power 0.54 | 3.84 5.29 | 11.37 5.06
Lights1

State 1 2 3 4 5
Mean Power (W) | 1.43 | 28.28 | 81.16 | 168.79 | 282.71
Sd of Power 0.81| 231 | 1.95| 10.65| 21.93
Lights2

State 1 2 3 4 5
Mean Power (W) | 0.00 | 7.84 | 31.88 | 64.88 | 97.57

Sd of Power 0.08 | 1.14 | 2.59| 253 | 2.60
Lights3

State 1 2 3 4 5
Mean Power (W) | 1.01 | 9.48 | 44.67 | 56.57 | 68.62

Sd of Power 0.14 | 1.70 | 190 | 1.13| 1.25
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