Modelling and Forecasting Australian Domestic Tourism George Athanasopoulos & Rob Hyndman # **Outline** - Background - Data - Regression models - Exponential smoothing via innovations state space models - Innovations state space models with exogenous variables - Forecasts - Conclusions and future research MONASH University - International Arrivals - Outbound - Omestic Tourism - International Arrivals - Outbound - Domestic Tourism - \$55 billion more than 3 times international arrivals (TFC 2005) - International Arrivals - Outbound - Domestic Tourism - \$55 billion more than 3 times international arrivals (TFC 2005) - Infrastructure maintenance - International Arrivals - Outbound - Domestic Tourism - \$55 billion more than 3 times international arrivals (TFC 2005) - Infrastructure maintenance - International Arrivals - Outbound - Domestic Tourism - \$55 billion more than 3 times international arrivals (TFC 2005) - Infrastructure maintenance My research - Research Fellow - International Arrivals - Outbound - Omestic Tourism - \$55 billion more than 3 times international arrivals (TFC 2005) - Infrastructure maintenance ## My research - Research Fellow - Tourism Australia - STCRC - Monash University ### Outline of presentation: - Data - Regression framework - Exponential smoothing - Exp smoothing + Exogenous variables - Forecasts - Conclusions and Further research # **Outline** - Background - 2 Data - Regression models - Exponential smoothing via innovations state space models - 5 Innovations state space models with exogenous variables - Forecasts - Conclusions and future research MONASH University National Visitor Survey - Visitor Nights (1998Q1-2005:Q2) # National Visitor Survey - Visitor Nights (1998Q1-2005:Q2) # Aggregate Data & TFC Forecasts: # **Outline** - Background - Data - Regression models - Exponential smoothing via innovations state space models - 5 Innovations state space models with exogenous variables - Forecasts - Conclusions and future research MONASH University $VN_t^i = f(t, DEBT_t, DPI_t, GDP_t, BALI_t, OLYMP_t, MAR_t, JUN_t, SEP_t, \varepsilon_t)$ • VN_t^i - In(Visitor nights per capita travelling for purpose i) - VN_t^i In(Visitor nights per capita travelling for purpose i) - t exponential trend - VN_t^i In(Visitor nights per capita travelling for purpose i) - t exponential trend - DEBT_t Growth rate of real personal debt per capita - VN_t^i In(Visitor nights per capita travelling for purpose i) - t exponential trend - DEBT_t Growth rate of real personal debt per capita - DPI_t Growth rate of domestic price index - VN_t^i In(Visitor nights per capita travelling for purpose i) - t exponential trend - lacktriangle DEBT_t Growth rate of real personal debt per capita - \bullet DPI_t Growth rate of domestic price index - GDP_t Growth rate of real GDP per capita - VN_t^i In(Visitor nights per capita travelling for purpose i) - t exponential trend - \bullet DEBT_t Growth rate of real personal debt per capita - DPI_t Growth rate of domestic price index - GDP_t Growth rate of real GDP per capita - BALI_t 1 for 2002:Q4 and beyond, 0 otherwise - VN_t^i In(Visitor nights per capita travelling for purpose i) - t exponential trend - DEBT_t Growth rate of real personal debt per capita - DPI_t Growth rate of domestic price index - GDP_t Growth rate of real GDP per capita - BALI_t 1 for 2002:Q4 and beyond, 0 otherwise - OLYMP_t 1 for 2000:Q4, 0 otherwise - VN_t^i In(Visitor nights per capita travelling for purpose i) - t exponential trend - DEBT_t Growth rate of real personal debt per capita - \bullet DPI_t Growth rate of domestic price index - GDP_t Growth rate of real GDP per capita - BALI_t 1 for 2002:Q4 and beyond, 0 otherwise - $OLYMP_t$ 1 for 2000:Q4, 0 otherwise - MAR_t , JUN_t , SEP_t Seasonal dummies - VN_t^i In(Visitor nights per capita travelling for purpose i) - t exponential trend - DEBT_t Growth rate of real personal debt per capita - \bullet DPI_t Growth rate of domestic price index - GDP_t Growth rate of real GDP per capita - BALI_t 1 for 2002:Q4 and beyond, 0 otherwise - $OLYMP_t$ 1 for 2000:Q4, 0 otherwise - MAR_t , JUN_t , SEP_t Seasonal dummies - ε_t random error term - VN_t^i In(Visitor nights per capita travelling for purpose i) - t exponential trend - DEBT_t Growth rate of real personal debt per capita - \bullet DPI_t Growth rate of domestic price index - GDP_t Growth rate of real GDP per capita - BALI_t 1 for 2002:Q4 and beyond, 0 otherwise - OLYMP_t 1 for 2000:Q4, 0 otherwise - \bullet MAR_t , JUN_t , SEP_t Seasonal dummies - ε_t random error term $VN_t^i = f(t, DEBT_t, DPI_t, GDP_t, BALI_t, OLYMP_t, MAR_t, JUN_t, SEP_t, \varepsilon_t)$ - VN_t^i In(Visitor nights per capita travelling for purpose i) - t exponential trend - DEBT_t Growth rate of real personal debt per capita - \bullet DPI_t Growth rate of domestic price index - GDP_t Growth rate of real GDP per capita - BALI_t 1 for 2002:Q4 and beyond, 0 otherwise - $OLYMP_t$ 1 for 2000:Q4, 0 otherwise - MAR_t , JUN_t , SEP_t Seasonal dummies - ε_t random error term Step 1: Run OLS and test for upto 1 lag of each variable. - VN_t^i In(Visitor nights per capita travelling for purpose i) - t exponential trend - DEBT_t Growth rate of real personal debt per capita - DPI_t Growth rate of domestic price index - GDP_t Growth rate of real GDP per capita - \bullet BALI_t 1 for 2002:Q4 and beyond, 0 otherwise - $OLYMP_t$ 1 for 2000:Q4, 0 otherwise - MAR_t , JUN_t , SEP_t Seasonal dummies - \bullet ε_t random error term - Step 1: Run OLS and test for upto 1 lag of each variable. - Step 2: Sequentially drop insignificant parameters and estimate efficiently using SUR. ### Estimated demand system: | Regressor | Holiday | VFR | Business | Other | |-------------|---------------------|----------------------|-----------------------|-----------------------| | Intercept | 7505.57*
(13.33) | 7020.25*
(21.03) | 6441.09*
(22.84) | 5771.92*
(47.28) | | t | -5.91^* (0.50) | | -6.17^* (0.88) | | | D_{t-1} | 4.41*
(1.23) | | 5.91 *
(2.00) | | | P_{t-1} | -4.11^* (1.64) | | 7.58 *
(2.89) | | | Y_t | -43.71^{*} (8.14) | | | | | $BALI_t$ | , , | 56.61*
(17.75) | | | | $OLYMP_t$ | | | 148.00*
(51.26) | | | MAR_t | 338.09*
(13.06) | 170.33*
(26.87) | -170.83^{*} (24.28) | -540.23^{*} (64.74) | | JUN_t | -43.19^* (12.40) | -71.36^{*} (26.87) | -42.57
(24.51) | -460.75^* (64.74) | | SEP_t | 27.78
(14.01) | -33.73
(27.84) | 55.03*
(25.57) | -109.13 (66.86) | | R^2 | 0.98 | 0.79 | 0.86 | 0.77 | | \bar{R}^2 | 0.98 | 0.75 | 0.82 | 0.74 | ^{*} Significant at the 5% level. # **Outline** - Background - Data - Regression models - Exponential smoothing via innovations state space models - 5 Innovations state space models with exogenous variables - Forecasts - Conclusions and future research MONASH University Innovation state space models - ETS(A,-,A): # Innovation state space models - ETS(A,-,A): | No trend | Additive trend | Damped trend | |---|---|---| | $y_t = l_{t-1} + s_{t-m} + \varepsilon_t$ | $y_t = l_{t-1} + b_{t-1} + s_{t-m} + \varepsilon_t$ | $y_t = l_{t-1} + b_{t-1} + s_{t-m} + \varepsilon_t$ | | $I_t = I_{t-1} + \alpha \varepsilon_t$ | $I_t = I_{t-1} + b_{t-1} + \alpha \varepsilon_t$ | $I_t = I_{t-1} + b_{t-1} + \alpha \varepsilon_t$ | | $s_t = s_{t-m} + \gamma \varepsilon_t$ | $b_t = b_{t-1} + \beta \varepsilon_t$ | $b_t = \phi b_{t-1} + \beta \varepsilon_t$ | | | $s_t = s_{t-m} + \gamma \varepsilon_t$ | $s_t = s_{t-m} + \gamma \varepsilon_t$ | | | | | | | | | | | | | where: $0 < \alpha < 1$, $0 < \beta < \alpha$, $0 < \gamma < 1$, $0 < \phi < 0.98$. # Innovation state space models - ETS(A,-,A): | No trend | Additive trend | Damped trend | |---|---|--| | $y_t = I_{t-1} + s_{t-m} + \varepsilon_t$ | $y_t = I_{t-1} + b_{t-1} + s_{t-m} + \varepsilon_t$ | $y_t = I_{t-1} + b_{t-1} + s_{t-m} + \varepsilon_t$ | | $I_t = I_{t-1} + \alpha \varepsilon_t$ | $I_t = I_{t-1} + b_{t-1} + \alpha \varepsilon_t$ | $I_t = I_{t-1} + b_{t-1} + \alpha \varepsilon_t$ | | $s_t = s_{t-m} + \gamma \varepsilon_t$ | $b_t = b_{t-1} + \beta \varepsilon_t$ | $b_t = \phi b_{t-1} + \beta \varepsilon_t$ | | | $s_t = s_{t-m} + \gamma \varepsilon_t$ | $s_t = s_{t-m} + \gamma \varepsilon_t$ | | ^ / / · · · | ^ L + bb + - | ↑ | | $\hat{y}_{n+h} = I_n + s_{n+h-m}$ | $\hat{y}_{n+h} = l_n + hb_n + s_{n+h-m}$ | $\hat{y}_{n+h} = l_n + (1 + \phi + \dots + \phi^{h-1})b_n + s_{n+h-m}$ | | | | · · n + n + m | where: $0 < \alpha < 1$, $0 < \beta < \alpha$, $0 < \gamma < 1$, $0 < \phi < 0.98$. # **Outline** - Background - Data - Regression models - Exponential smoothing via innovations state space models - Innovations state space models with exogenous variables - Forecasts - Conclusions and future research MONASH University Innovation state space model including exogenous variables - $ETSX(A, A_D, N, \mathbf{X})$: # Innovation state space model including exogenous variables - $ETSX(A, A_D, N, \mathbf{X})$: #### Damped trend $$y_t = I_{t-1} + b_{t-1} + \mathbf{x}_t' \delta + \varepsilon_t$$ # Innovation state space model including exogenous variables - $ETSX(A, A_D, N, \mathbf{X})$: #### Damped trend $$y_t = I_{t-1} + b_{t-1} + \mathbf{x}'_t \delta + \varepsilon_t$$ $$I_t = I_{t-1} + b_{t-1} + \alpha \varepsilon_t$$ $$b_t = \phi b_{t-1} + \beta \varepsilon_t$$ $$\hat{y}_{n+h} = I_n + (1 + \phi + \dots + \phi^{h-1}) b_n + \hat{\mathbf{x}}'_{n+h} \hat{\delta}$$ where: $$0 < \alpha < 1$$, $0 < \beta < \alpha$, $0 < \gamma < 1$, $0 < \phi < 0.98$. $$X = (DEBT, DPI, GDP, BALI, OLYMP, MAR, JUN, SEP)$$ #### Estimates of the ETSX models: | Parameter | Holiday | VFR | Business | Other | |-----------|---------|--------|----------|---------| | α | 0.13 | 0.00 | 0.47 | 0.01 | | β | 0.01 | 0.00 | 0.00 | 0.00 | | ϕ | 0.98 | 0.97 | 0.98 | 0.76 | | Variable | | | | | | D_{t-1} | 6.79 | | 3.78 | | | P_{t-1} | -7.25 | | 4.21 | | | Y_t | -67.67 | | | | | $BALI_t$ | | 132.09 | | | | $OLYMP_t$ | | | 104.05 | | | MAR_t | 661.69 | 213.54 | -95.78 | -129.18 | | JUN_t | -65.52 | -72.54 | -21.25 | -116.15 | | SEP_t | 48.64 | -31.95 | 32.91 | -27.51 | # **Outline** - Background - Data - Regression models - Exponential smoothing via innovations state space models - Innovations state space models with exogenous variables - Forecasts - Conclusions and future research MONASH University | MAPE | Regr | ETS | ETSX | TFC | |----------|------|-----|------|------| | Holiday | 5.8 | 4.8 | 5.0 | 7.0 | | VFR | 4.8 | 5.2 | 5.5 | 8.5 | | Business | 5.2 | 9.5 | 6.4 | 7.4 | | Other | 7.7 | 6.5 | 7.6 | 17.6 | | Total | 4.5 | 4.3 | 4.2 | 4.9 | | | | | | | | MAPE | Regr | ETS | ETSX | TFC | |----------|------|-----|------|------| | Holiday | 5.8 | 4.8 | 5.0 | 7.0 | | VFR | 4.8 | 5.2 | 5.5 | 8.5 | | Business | 5.2 | 9.5 | 6.4 | 7.4 | | Other | 7.7 | 6.5 | 7.6 | 17.6 | | Total | 4.5 | 4.3 | 4.2 | 4.9 | | | | | | | | MAPE | Regr | ETS | ETSX | TFC | |----------|------|-----|------|------| | Holiday | 5.8 | 4.8 | 5.0 | 7.0 | | VFR | 4.8 | 5.2 | 5.5 | 8.5 | | Business | 5.2 | 9.5 | 6.4 | 7.4 | | Other | 7.7 | 6.5 | 7.6 | 17.6 | | Total | 4.5 | 4.3 | 4.2 | 4.9 | | | | | | | | MAPE | Regr | ETS | ETSX | TFC | |----------|------|-----|------|------| | Holiday | 5.8 | 4.8 | 5.0 | 7.0 | | VFR | 4.8 | 5.2 | 5.5 | 8.5 | | Business | 5.2 | 9.5 | 6.4 | 7.4 | | Other | 7.7 | 6.5 | 7.6 | 17.6 | | Total | 4.5 | 4.3 | 4.2 | 4.9 | | Average | 5.9 | 6.5 | 6.1 | 10.1 | ## Long term annual forecasts: ## Long term annual forecasts for each component: # **Outline** - Background - Data - Regression models - Exponential smoothing via innovations state space models - Innovations state space models with exogenous variables - Forecasts - Conclusions and future research MONASH University Statistical models outperform TFC forecasts - Statistical models outperform TFC forecasts - Existing long term forecasts over-optimistic - Statistical models outperform TFC forecasts - Existing long term forecasts over-optimistic - Identified important economic relationships - Statistical models outperform TFC forecasts - Existing long term forecasts over-optimistic - Identified important economic relationships #### Future research: - Statistical models outperform TFC forecasts - Existing long term forecasts over-optimistic - Identified important economic relationships #### Future research: Further development of ETSX - Statistical models outperform TFC forecasts - Existing long term forecasts over-optimistic - Identified important economic relationships #### Future research: - Further development of ETSX - Comprehensive Monte Carlo examining the proposed two step procedure - Construction of prediction intervals via theory or simulation - Application to other data e.g. international arrivals - Statistical models outperform TFC forecasts - Existing long term forecasts over-optimistic - Identified important economic relationships #### Future research: - Further development of ETSX - Comprehensive Monte Carlo examining the proposed two step procedure - Construction of prediction intervals via theory or simulation - Application to other data e.g. international arrivals - Hierarchical forecasting Australia, States, Regional Thank you!!!