Modelling and Forecasting Australian Domestic Tourism

George Athanasopoulos & Rob Hyndman

Outline

- Background
- Data
- Regression models
- Exponential smoothing via innovations state space models
- Innovations state space models with exogenous variables
- Forecasts
- Conclusions and future research MONASH University

- International Arrivals
- Outbound
- Omestic Tourism

- International Arrivals
- Outbound
- Domestic Tourism
 - \$55 billion more than 3 times international arrivals (TFC 2005)

- International Arrivals
- Outbound
- Domestic Tourism
 - \$55 billion more than 3 times international arrivals (TFC 2005)
 - Infrastructure maintenance

- International Arrivals
- Outbound
- Domestic Tourism
 - \$55 billion more than 3 times international arrivals (TFC 2005)
 - Infrastructure maintenance

- International Arrivals
- Outbound
- Domestic Tourism
 - \$55 billion more than 3 times international arrivals (TFC 2005)
 - Infrastructure maintenance

My research - Research Fellow

- International Arrivals
- Outbound
- Omestic Tourism
 - \$55 billion more than 3 times international arrivals (TFC 2005)
 - Infrastructure maintenance

My research - Research Fellow

- Tourism Australia
- STCRC
- Monash University

Outline of presentation:

- Data
- Regression framework
- Exponential smoothing
- Exp smoothing + Exogenous variables
- Forecasts
- Conclusions and Further research

Outline

- Background
- 2 Data
- Regression models
- Exponential smoothing via innovations state space models
- 5 Innovations state space models with exogenous variables
- Forecasts
- Conclusions and future research MONASH University

National Visitor Survey - Visitor Nights (1998Q1-2005:Q2)

National Visitor Survey - Visitor Nights (1998Q1-2005:Q2)

Aggregate Data & TFC Forecasts:

Outline

- Background
- Data
- Regression models
- Exponential smoothing via innovations state space models
- 5 Innovations state space models with exogenous variables
- Forecasts
- Conclusions and future research MONASH University

 $VN_t^i = f(t, DEBT_t, DPI_t, GDP_t, BALI_t, OLYMP_t, MAR_t, JUN_t, SEP_t, \varepsilon_t)$

• VN_t^i - In(Visitor nights per capita travelling for purpose i)

- VN_t^i In(Visitor nights per capita travelling for purpose i)
- t exponential trend

- VN_t^i In(Visitor nights per capita travelling for purpose i)
- t exponential trend
- DEBT_t Growth rate of real personal debt per capita

- VN_t^i In(Visitor nights per capita travelling for purpose i)
- t exponential trend
- DEBT_t Growth rate of real personal debt per capita
- DPI_t Growth rate of domestic price index

- VN_t^i In(Visitor nights per capita travelling for purpose i)
- t exponential trend
- lacktriangle DEBT_t Growth rate of real personal debt per capita
- \bullet DPI_t Growth rate of domestic price index
- GDP_t Growth rate of real GDP per capita

- VN_t^i In(Visitor nights per capita travelling for purpose i)
- t exponential trend
- \bullet DEBT_t Growth rate of real personal debt per capita
- DPI_t Growth rate of domestic price index
- GDP_t Growth rate of real GDP per capita
- BALI_t 1 for 2002:Q4 and beyond, 0 otherwise

- VN_t^i In(Visitor nights per capita travelling for purpose i)
- t exponential trend
- DEBT_t Growth rate of real personal debt per capita
- DPI_t Growth rate of domestic price index
- GDP_t Growth rate of real GDP per capita
- BALI_t 1 for 2002:Q4 and beyond, 0 otherwise
- OLYMP_t 1 for 2000:Q4, 0 otherwise

- VN_t^i In(Visitor nights per capita travelling for purpose i)
- t exponential trend
- DEBT_t Growth rate of real personal debt per capita
- \bullet DPI_t Growth rate of domestic price index
- GDP_t Growth rate of real GDP per capita
- BALI_t 1 for 2002:Q4 and beyond, 0 otherwise
- $OLYMP_t$ 1 for 2000:Q4, 0 otherwise
- MAR_t , JUN_t , SEP_t Seasonal dummies

- VN_t^i In(Visitor nights per capita travelling for purpose i)
- t exponential trend
- DEBT_t Growth rate of real personal debt per capita
- \bullet DPI_t Growth rate of domestic price index
- GDP_t Growth rate of real GDP per capita
- BALI_t 1 for 2002:Q4 and beyond, 0 otherwise
- $OLYMP_t$ 1 for 2000:Q4, 0 otherwise
- MAR_t , JUN_t , SEP_t Seasonal dummies
- ε_t random error term

- VN_t^i In(Visitor nights per capita travelling for purpose i)
- t exponential trend
- DEBT_t Growth rate of real personal debt per capita
- \bullet DPI_t Growth rate of domestic price index
- GDP_t Growth rate of real GDP per capita
- BALI_t 1 for 2002:Q4 and beyond, 0 otherwise
- OLYMP_t 1 for 2000:Q4, 0 otherwise
- \bullet MAR_t , JUN_t , SEP_t Seasonal dummies
- ε_t random error term

 $VN_t^i = f(t, DEBT_t, DPI_t, GDP_t, BALI_t, OLYMP_t, MAR_t, JUN_t, SEP_t, \varepsilon_t)$

- VN_t^i In(Visitor nights per capita travelling for purpose i)
- t exponential trend
- DEBT_t Growth rate of real personal debt per capita
- \bullet DPI_t Growth rate of domestic price index
- GDP_t Growth rate of real GDP per capita
- BALI_t 1 for 2002:Q4 and beyond, 0 otherwise
- $OLYMP_t$ 1 for 2000:Q4, 0 otherwise
- MAR_t , JUN_t , SEP_t Seasonal dummies
- ε_t random error term

Step 1: Run OLS and test for upto 1 lag of each variable.

- VN_t^i In(Visitor nights per capita travelling for purpose i)
- t exponential trend
- DEBT_t Growth rate of real personal debt per capita
- DPI_t Growth rate of domestic price index
- GDP_t Growth rate of real GDP per capita
- \bullet BALI_t 1 for 2002:Q4 and beyond, 0 otherwise
- $OLYMP_t$ 1 for 2000:Q4, 0 otherwise
- MAR_t , JUN_t , SEP_t Seasonal dummies
- \bullet ε_t random error term
- Step 1: Run OLS and test for upto 1 lag of each variable.
- Step 2: Sequentially drop insignificant parameters and estimate efficiently using SUR.

Estimated demand system:

Regressor	Holiday	VFR	Business	Other
Intercept	7505.57* (13.33)	7020.25* (21.03)	6441.09* (22.84)	5771.92* (47.28)
t	-5.91^* (0.50)		-6.17^* (0.88)	
D_{t-1}	4.41* (1.23)		5.91 * (2.00)	
P_{t-1}	-4.11^* (1.64)		7.58 * (2.89)	
Y_t	-43.71^{*} (8.14)			
$BALI_t$, ,	56.61* (17.75)		
$OLYMP_t$			148.00* (51.26)	
MAR_t	338.09* (13.06)	170.33* (26.87)	-170.83^{*} (24.28)	-540.23^{*} (64.74)
JUN_t	-43.19^* (12.40)	-71.36^{*} (26.87)	-42.57 (24.51)	-460.75^* (64.74)
SEP_t	27.78 (14.01)	-33.73 (27.84)	55.03* (25.57)	-109.13 (66.86)
R^2	0.98	0.79	0.86	0.77
\bar{R}^2	0.98	0.75	0.82	0.74

^{*} Significant at the 5% level.

Outline

- Background
- Data
- Regression models
- Exponential smoothing via innovations state space models
- 5 Innovations state space models with exogenous variables
- Forecasts
- Conclusions and future research MONASH University

Innovation state space models - ETS(A,-,A):

Innovation state space models - ETS(A,-,A):

No trend	Additive trend	Damped trend
$y_t = l_{t-1} + s_{t-m} + \varepsilon_t$	$y_t = l_{t-1} + b_{t-1} + s_{t-m} + \varepsilon_t$	$y_t = l_{t-1} + b_{t-1} + s_{t-m} + \varepsilon_t$
$I_t = I_{t-1} + \alpha \varepsilon_t$	$I_t = I_{t-1} + b_{t-1} + \alpha \varepsilon_t$	$I_t = I_{t-1} + b_{t-1} + \alpha \varepsilon_t$
$s_t = s_{t-m} + \gamma \varepsilon_t$	$b_t = b_{t-1} + \beta \varepsilon_t$	$b_t = \phi b_{t-1} + \beta \varepsilon_t$
	$s_t = s_{t-m} + \gamma \varepsilon_t$	$s_t = s_{t-m} + \gamma \varepsilon_t$

where: $0 < \alpha < 1$, $0 < \beta < \alpha$, $0 < \gamma < 1$, $0 < \phi < 0.98$.

Innovation state space models - ETS(A,-,A):

No trend	Additive trend	Damped trend
$y_t = I_{t-1} + s_{t-m} + \varepsilon_t$	$y_t = I_{t-1} + b_{t-1} + s_{t-m} + \varepsilon_t$	$y_t = I_{t-1} + b_{t-1} + s_{t-m} + \varepsilon_t$
$I_t = I_{t-1} + \alpha \varepsilon_t$	$I_t = I_{t-1} + b_{t-1} + \alpha \varepsilon_t$	$I_t = I_{t-1} + b_{t-1} + \alpha \varepsilon_t$
$s_t = s_{t-m} + \gamma \varepsilon_t$	$b_t = b_{t-1} + \beta \varepsilon_t$	$b_t = \phi b_{t-1} + \beta \varepsilon_t$
	$s_t = s_{t-m} + \gamma \varepsilon_t$	$s_t = s_{t-m} + \gamma \varepsilon_t$
^ / / · · ·	^ L + bb + -	↑
$\hat{y}_{n+h} = I_n + s_{n+h-m}$	$\hat{y}_{n+h} = l_n + hb_n + s_{n+h-m}$	$\hat{y}_{n+h} = l_n + (1 + \phi + \dots + \phi^{h-1})b_n + s_{n+h-m}$
		· · n + n + m

where: $0 < \alpha < 1$, $0 < \beta < \alpha$, $0 < \gamma < 1$, $0 < \phi < 0.98$.

Outline

- Background
- Data
- Regression models
- Exponential smoothing via innovations state space models
- Innovations state space models with exogenous variables
- Forecasts
- Conclusions and future research MONASH University

Innovation state space model including exogenous variables - $ETSX(A, A_D, N, \mathbf{X})$:

Innovation state space model including exogenous variables - $ETSX(A, A_D, N, \mathbf{X})$:

Damped trend

$$y_t = I_{t-1} + b_{t-1} + \mathbf{x}_t' \delta + \varepsilon_t$$

Innovation state space model including exogenous variables - $ETSX(A, A_D, N, \mathbf{X})$:

Damped trend

$$y_t = I_{t-1} + b_{t-1} + \mathbf{x}'_t \delta + \varepsilon_t$$

$$I_t = I_{t-1} + b_{t-1} + \alpha \varepsilon_t$$

$$b_t = \phi b_{t-1} + \beta \varepsilon_t$$

$$\hat{y}_{n+h} = I_n + (1 + \phi + \dots + \phi^{h-1}) b_n + \hat{\mathbf{x}}'_{n+h} \hat{\delta}$$

where:
$$0 < \alpha < 1$$
, $0 < \beta < \alpha$, $0 < \gamma < 1$, $0 < \phi < 0.98$.

$$X = (DEBT, DPI, GDP, BALI, OLYMP, MAR, JUN, SEP)$$

Estimates of the ETSX models:

Parameter	Holiday	VFR	Business	Other
α	0.13	0.00	0.47	0.01
β	0.01	0.00	0.00	0.00
ϕ	0.98	0.97	0.98	0.76
Variable				
D_{t-1}	6.79		3.78	
P_{t-1}	-7.25		4.21	
Y_t	-67.67			
$BALI_t$		132.09		
$OLYMP_t$			104.05	
MAR_t	661.69	213.54	-95.78	-129.18
JUN_t	-65.52	-72.54	-21.25	-116.15
SEP_t	48.64	-31.95	32.91	-27.51

Outline

- Background
- Data
- Regression models
- Exponential smoothing via innovations state space models
- Innovations state space models with exogenous variables
- Forecasts
- Conclusions and future research MONASH University

MAPE	Regr	ETS	ETSX	TFC
Holiday	5.8	4.8	5.0	7.0
VFR	4.8	5.2	5.5	8.5
Business	5.2	9.5	6.4	7.4
Other	7.7	6.5	7.6	17.6
Total	4.5	4.3	4.2	4.9

MAPE	Regr	ETS	ETSX	TFC
Holiday	5.8	4.8	5.0	7.0
VFR	4.8	5.2	5.5	8.5
Business	5.2	9.5	6.4	7.4
Other	7.7	6.5	7.6	17.6
Total	4.5	4.3	4.2	4.9

MAPE	Regr	ETS	ETSX	TFC
Holiday	5.8	4.8	5.0	7.0
VFR	4.8	5.2	5.5	8.5
Business	5.2	9.5	6.4	7.4
Other	7.7	6.5	7.6	17.6
Total	4.5	4.3	4.2	4.9

MAPE	Regr	ETS	ETSX	TFC
Holiday	5.8	4.8	5.0	7.0
VFR	4.8	5.2	5.5	8.5
Business	5.2	9.5	6.4	7.4
Other	7.7	6.5	7.6	17.6
Total	4.5	4.3	4.2	4.9
Average	5.9	6.5	6.1	10.1

Long term annual forecasts:

Long term annual forecasts for each component:

Outline

- Background
- Data
- Regression models
- Exponential smoothing via innovations state space models
- Innovations state space models with exogenous variables
- Forecasts
- Conclusions and future research MONASH University

Statistical models outperform TFC forecasts

- Statistical models outperform TFC forecasts
- Existing long term forecasts over-optimistic

- Statistical models outperform TFC forecasts
- Existing long term forecasts over-optimistic
- Identified important economic relationships

- Statistical models outperform TFC forecasts
- Existing long term forecasts over-optimistic
- Identified important economic relationships

Future research:

- Statistical models outperform TFC forecasts
- Existing long term forecasts over-optimistic
- Identified important economic relationships

Future research:

Further development of ETSX

- Statistical models outperform TFC forecasts
- Existing long term forecasts over-optimistic
- Identified important economic relationships

Future research:

- Further development of ETSX
 - Comprehensive Monte Carlo examining the proposed two step procedure
 - Construction of prediction intervals via theory or simulation
 - Application to other data e.g. international arrivals

- Statistical models outperform TFC forecasts
- Existing long term forecasts over-optimistic
- Identified important economic relationships

Future research:

- Further development of ETSX
 - Comprehensive Monte Carlo examining the proposed two step procedure
 - Construction of prediction intervals via theory or simulation
 - Application to other data e.g. international arrivals
- Hierarchical forecasting Australia, States, Regional

Thank you!!!

