
MARKET MODEL
OF STOCHASTIC IMPLIED VOLATILITY

WITH APPLICATION TO THE BGM MODEL

ALAN BRACE, BEN GOLDYS, FIMA KLEBANER, AND ROB WOMERSLEY

Abstract. Using a stochastic implied volatility method we show how to introduce smiles
and skews into the BGM interest rate model.
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1. Introduction

The aim of this paper is to present a new model for implied volatility. The main results
and some properties of the model are announced without proofs. Those will be contained in
the second part of this work, currently under preparation.

Suppose, as in [1], there are a full spectrum of zero coupon bonds P (t, T ) maturing at
all times T up to a finite horizon T ∗, and let WT (t) be Brownian motion under the forward
measure PT located at maturity T (with corresponding numeraire P (t, T )). Recall that the
forwards L (t, T ) over the interval [T, T1], where T1 = T + δ, are related to zero coupons via
the relation

L (t, T ) =
1
δ

[
P (t, T )
P (t, T1)

− 1
]
.

From the arbitrage free dynamics of the zero coupon bonds, L (t, T ) must be a positive
martingale under the forward measure PT1 located at the end of [T, T1], so model it with the
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SDE
dL (t, T )
L (t, T )

= θ∗ (t, T ) dWT1 (t) , (1.1)

where in general the volatility function θt = θ (t, T ) is stochastic. The form of the SDE (1.1)
under PT1 is similar to that of a stock under the spot measure P in the standard Black-Scholes
(BS) model when interest rates are zero. So to clarify ideas, first consider modelling stochastic
implied volatility for a stock.

Following the notation and approach of Carr [4] but assuming interest rates are zero, under
the spot arbitrage free measure P, the numeraire will be unity and the underlying stock St is
a martingale which we may assume satisfies the SDE

dSt = St θtdW
(1)
t , (1.2)

where θt is stochastic and dWt is multi-dimensional Brownian motion under P. Note that,
with no loss of generality, we are taking all components of the instantaneous volatility vector
θt to be zero except the first.

The BS implied volatility convention says that if the time t (stochastic) implied volatility
of an option exercising at time T with strike K is

σt = σt (T,K) = σ (t, T,K) ,

then the time t price of a call option will be

Ct = C (t, T,K) = ` (St, σt (T,K) , T − t;K) , (1.3)

where

` = ` (S, σ, τ ;K) = SN (h1)−KN (h2) , (1.4)

h1 =
ln
S

K
σ
√
τ

+
1
2
σ
√
τ , h2 = h1 − σ

√
τ .

If the implied volatility is also a diffusion satisfying an SDE like

dσt = mt (T,K, St, θt, σt) dt+ vt (T,K, St, θt, σt)
∗ dWt = mtdt+ v∗t dWt, (1.5)

then because the calls Ct must also be martingales under P, it follows that the drift mt and
“volvol” vt cannot be arbitrary, but must satisfy certain extra conditions. Those conditions
will lead naturally to a system of SDEs for the implied volatility σt. The dependence of the
volvol vt (T,K, St, θt, σt) on σt will be specified to get rid of some troublesome singularities.

We also suppose there are a full spectrum of call options available for all strikes K and
all maturities T up to some horizon T ∗. This assumption leads to two critical feedback
conditions:

• The implied volatility σt (T,K) of the T -maturing call must remain finite at maturity,
that is for t ≤ T

σ2
t (T,K) (T − t) ≥ 0 and lim

t→T
σ2

t (T,K) (T − t) = 0. (1.6)

• The instantaneous volatility θt of the underlying stock St must equal the implied volatil-
ity of the at-the-money option maturing immediately, that is

θt = σt (t, St) . (1.7)
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Let us emphasise importance of condition (1.6). It imposes a very severe restriction on the
volvol process (vt). It becomes even more striking if we rewrite the SDE for the process
((σt) in terms of a new process ξt = (T − t)σ2

t (see Section 3 for details). In that case we
end up with a stochastic differential equation for the process (ξt) with the initial condition
ξ0(T,K) = f(T,K) (say) and the terminal condition ξT (T,K) = 0. It is well known (see for
example [5], that stochastic differential equations of this type need not have adapted solutions,
unless the coefficients of this equation satisfy certain conditions. In our case, this fact is a
source of mathematical difficulties but on the other hand it allows to obtain a closed system
of equations with the coefficients which are determined intrinsically.

Returning to caps and caplets, two additional problems that must be tackled to integrate
the above approach into the interest rate area are:

• How to approach a spectrum of caplets maturing at T and paying at T1 when the
dynamics of each is specified under its own forward measure PT1 .

• How to use correlation to transfer feedback information from the immediately maturing
caplet to later caplets.

1.1. Derivative formulae. Here are some formulae that will be required later, for the first
and second partial derivatives (∂x stands for ∂

∂x etc) of the BS call with respect to the
underlying stock, strike and implied volatility. Starting with

` = ` (S, σ, τ ;K) = SN (h1)−KN (h2) ,

h1 =
ln
S

K
σ
√
τ

+
1
2
σ
√
τ , h2 = h1 − σ

√
τ ,

∂Sh1 = ∂Sh2 =
1

Sσ
√
τ
, ∂Kh1 = ∂Kh2 = − 1

Kσ
√
τ
,

∂σh2 = ∂σh1 −
√
τ , ∂σh1 = −h2

σ
, ∂σh2 = −h1

σ
,

where N (•) is the standard normal cumulative density function, and using

KN′ (h2) = KN′ (h1) exp
(
h1σ

√
τ − 1

2
σ2τ

)
= SN′ (h1) ,

the first partial derivatives of ` with respect to S, σ and K are respectively

∂S` = N (h1) + SN′ (h1) ∂Sh1 −KN′ (h2) ∂Sh2 = N (h1) ,

∂σ` = SN′ (h1) ∂σh1 −KN′ (h2) ∂σh2 =
√
τKN′ (h2) =

√
τSN′ (h1) ,

∂K` = SN′ (h1) ∂Kh1 −N (h2)−KN′ (h2) ∂Kh2 = −N (h2) .
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Then, recalling that N′′ (x) = −xN′ (x), the second partial derivatives are

∂2
S` = N′ (h1)

∂h1

∂S
=

1
Sσ

√
τ
N′ (h1) ,

∂2
K` = −N′ (h2)

∂h2

∂K
=

1
Kσ

√
τ
N′ (h2) =

S

K2σ
√
τ
N′ (h1) ,

∂2
σ` =

√
τSN′′ (h1)

∂h1

∂σ
=
S
√
τ

σ
h1h2N′ (h1) ,

∂S∂K` = N′ (h1)
∂h1

∂K
= − 1

Kσ
√
τ
N′ (h1) ,

∂S∂σ` = N′ (h1)
∂h1

∂σ
= −h2

σ
N′ (h1) ,

∂K∂σ` = −N′ (h2)
∂h2

∂σ
=
h1

σ
N′ (h2) =

S h1

K σ
N′ (h1) .

In addition we have the relation

∂τ ` =
1
2
σ2S2∂2

S` =
σS

2
√
τ
N′ (h1) ,

which comes from the BS partial differential equation, and holds for any option in the BS
world.

Exercise 1.1. Show that in the normal Bachelier model where

dSt = θtdW
(1)
t , Ct = E

{
[ST −K]+

∣∣Ft

}
= σ

√
T − tΦ

(
St −K

σ
√
T − t

)
,

with Φ (x) =
∫ x

−∞
N (u) du = N′ (x) + xN (x) ,

and ` = ` (S, σ, τ ;K) = σ
√
τΦ (h) , h =

(S −K)
σ
√
τ

,

the equivalent expressions for the first and second derivatives of ` with respect to S and σ are

∂S` = −∂K` = N (h) , ∂σ` =
√
τΦ (h)−√

τhN (h) =
√
τN′ (h) ,

∂2
S` = −∂S∂K` = ∂2

K` =
1

σ
√
τ
N′ (h) , ∂2

σ` = −√τN′′ (h)
h

σ
=
√
τ

σ
h2N′ (h) ,

∂S∂σ` = −∂K∂σ` = −h
σ
N′ (h) , ∂τ ` =

1
2
σ2 ∂2

S` =
1
2
σ√
τ
N′ (h) .
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2. Dynamics of the implied volatility surface

Assuming that the drift m (·) and volvol v (·) in (1.5) are well behaved functions, applying
Ito to (1.3) produces the following SDE for a call option:

dCt = ∂τCtdt+ ∂SCtdSt +
1
2
∂2

SCtd 〈S〉t + ∂σCtdσt +
1
2
∂2

σCtd 〈σ〉t + ∂S∂σCtd 〈S, σ〉t ,

= − σtSt

2
√
T − t

N′ (h1) dt+ N (h1) dSt +
1
2

1
Stσt

√
T − t

N′ (h1) d 〈S〉t

+
√
T − tStN′ (h1) dσt +

1
2
St

√
T − t

σt
h1h2N′ (h1) d 〈σ〉t −

h2

σt
N′ (h1) d 〈S, σ〉t ,

= N (h1)StθtdW
(1)
t +

√
T − tStN′ (h1) v∗t dWt (2.1)

+
√
T − tStN′ (h1)

[
mt +

θ2
t

2σt (T − t)
− σt

2 (T − t)
+
h1h2 |vt|2

2σt
− h2θtv

(1)
t

σt

√
T − t

]
dt.

For this to be a martingale under the arbitrage free measure P, its drift must be zero, and so

mt =
1

2σt (T − t)

[
σ2

t − θ2
t − (T − t)h1h2 |vt|2 + 2

√
T − th2θtv

(1)
t

]
, (2.2)

=
1

2σt (T − t)



σ2
t − θ2

t +

1
4
σ2

t (T − t)2 −
ln2 K

St

σ2
t

 |vt|2

−

1
2
σt (T − t) +

ln
K

St

σt

 2θtv
(1)
t


,

and the arbitrage free dynamics of Ct becomes

dCt = N (h1)StθtdW
(1)
t +

√
T − tStN′ (h1) v∗t dWt. (2.3)

The only reasonable choice for the dependence of the volvol vt on the implied volatility σt

is now seen to be linear because that removes the troublesome singularities in (2.2). Setting

vt = vt (T,K, St, θt, σt) = σt ut (T,K, St) = σt ut,

from (1.4), (1.5) and (2.2) the dynamics of St, θt and σt are therefore determined by the
non-linear set of equations

dSt = StθtdW
(1)
t , θt = σ (t, t, St) , lim

t→T
σt (T,K) <∞, (2.4)

dσt =
1

2σt (T − t)

 σ2
t + 1

4σ
4
t (T − t)2 |ut|2 − σ2

t (T − t) θtu
(1)
t

−
∣∣∣∣θt + ut ln

K

St

∣∣∣∣2 dt
 dt+ σtu

∗
tdWt,

and we now analyse this system further.
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3. Different formulations

Our aim in this section is to list four different formulations of the stochastic implied volatil-
ity problem, so as to have the flexibility of choosing one that is most convenient to the problem
at hand. In (2.4) we derived SDEs for the implied volatility σt (T,K) expressed in terms of
the “absolute parameters” T and K. But implied volatility can also be expressed “ relatively”
as follows.

For given constants x > 0 and y, define η by the equations

ηt (x, y) = σt (t+ x, eySt) , σt (T,K) = ηt

(
T − t, ln

K

St

)
.

The correct interpretation of this transformation is that ηt (·, ·) is the relative volatility surface
at time t as seen by an observer moving with the stock. The parameters

x = T − t ≥ 0, y = ln
K

St
,

are, respectively, relative maturity (x becomes zero as options mature) and log-moneyness (y
is zero at-the-money and negative for out-of-the-money puts or in-the-money calls), and the
relative surface at time t is obtained by plotting ηt (x, y) against x and y. Note that because

θt = ηt (0, 0) ,

a system of SDEs for ηt will also include one for the spot volatility θt.
To get SDEs for ηt = ηt (x, y) we need to make the parameters T and K in σt = σt (T,K)

into stochastic variables Tt and Kt like

Tt = t+ x, dTt = dt

Kt = eySt, dKt = eydSt = eyStθtdW
(1)
t ,

and then rewrite the SDE (2.4) for σt using the Ito-Venttsel formula described in Appendix-
A.As we shall see, that will require the following partial derivatives:

∂Tσt (T,K) = ∂T ηt

(
T − t, ln

K

St

)
= ∂xηt (x, y) ; (3.1)

∂Kσt (T,K) = ∂Kηt

(
T − t, ln

K

St

)
=

1
K
∂yηt (x, y) =

1
eySt

∂yηt (x, y) ;

∂2
Kσt (T,K) = ∂2

Kηt

(
T − t, ln

K

St

)
= ∂K

{
1
K
∂yηt

(
T − t, ln

K

St

)}
,

=
1
K2

{
∂2

yηt (x, y)− ∂yηt (x, y)
}

=
1

e2yS2
t

{
∂2

yηt (x, y)− ∂yηt (x, y)
}
.

We are now in a position to obtain four systems of SDEs describing the evolution of the
stochastic implied volatility surface in terms of:

• The absolute implied volatility σt = σt (T,K) as in (2.4).
• The square of the absolute implied volatility multiplied by time to maturity.

ξt = ξt (T,K) = σ2
t (T − t) = σ2

t (T,K) (T − t) .

• The relative implied volatility ηt = ηt (x, y).
• The square of the relative implied volatility multiplied by relative maturity

ζt = ζt (x, y) = η2
t x = η2

t (x, y) x.
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Repeating (2.4), the σt- formulation is

dSt = StθtdW
(1)
t (spot SDE)

dσt =
1

2σt (T − t)

[
σ2

t −
∣∣∣∣θt + ut ln

K

St

∣∣∣∣2
]
dt

+

[
1
8σ

3
t (T − t) |ut|2
−1

2σtθtu
(1)
t

]
dt+ σtu

∗
tdWt,

σ0 (T,K) specified (initial condition),{
θt = σ (t, t, St) and
limt→T σt (T,K) <∞ (feedback).

(3.2)

Multiplying the SDE (3.2) by 2σt (T − t) and using

dξt = d
[
σ2

t (T − t)
]

= (T − t) 2σtdσt + (T − t)σ2
t |ut|2 dt− σ2

t dt,

produces the ξ-formulation

ξt = ξt (T,K) = σ2
t (T − t) (definition)

dSt = StθtdW
(1)
t (spot SDE)

dξt = ξt

{[
1 + 1

4ξt
] |ut|2 − θtu

(1)
t

}
dt−

∣∣∣∣θt + ut ln
K

St

∣∣∣∣2 dt+ 2ξt u∗tdWt

ξ0 (T,K) specified (initial condition){
ξt (t,K) = 0 and
θ2
t = ∂T ξt (t,K) (feedback).

(3.3)

In the SDE (3.2) for σt set

Tt = t+ x, dTt = dt,

Kt = eySt, dKt = eydSt = eyStθtdW
(1)
t ,

and apply the Ito-Venttsel TheoremA to get

dσt (Tt,Kt) = dσt (t+ x, eySt) = dηt (x, y)

dSt = StθtdW
(1)
t , θt = σt (t, St) , lim

t→T
σt (T,K) <∞,

dσt =
1

2σt (T − t)

[
σ2

t − θ2
t − |υt|2 ln2 K

St
− 2θtu

(1)
t ln

K

St

]
dt

+
[
1
8
σ3

t (T − t) |ut|2 − 1
2
σtθtu

(1)
t

]
dt+ σtu

∗
tdWt

+
[
∂Tσt (T,K) +

1
2
∂2

Kσt (T,K) e2yS2
t θ

2
t + ∂K

(
σtυ

(1)
t

)
eyStθt

]
dt

+∂Kσt (T,K) eyStθtdW
(1)
t .

To express these equations solely in terms of ηt (x, y) and x, y, assume ut is expressed in
terms of x and y rather than T and K, substitute

x = T − t, y = ln
K

St
, d (lnSt) = θtdW

(1)
t − 1

2
θ2
t dt,
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and apply the change of variable formulae (3.1). The σ-formulation then becomes the η-
formulation

dSt = StθtdW
(1)
t , (spot SDE)

dηt =
1

2ηtx

{
η2

t − |θt + yυt|2
}
dt+

{
1
8η

3
t x |ut|2 − 1

2ηtθtu
(1)
t

}
dt+ ηtu

∗
t dWt

+
{
∂xηt + 1

2θ
2
t ∂

2
yηt + θt∂y

(
ηtu

(1)
t

)}
dt+ ∂yηtd (lnSt)

η0 (x, y) specified (initial condition){
θt = ηt (0, 0)

limx→0 ηt (x, y) <∞ (feedback).

(3.4)

Similarly, applying Ito-Venttsel to the ξ-formulation (3.3) produces the ζ-formulation

ζt = ζt (x, y) = η2
t (x, y) x (definition)

dSt = StθtdW
(1)
t (spot SDE)

dζt = ζt

[(
1 + 1

4ζt
) |ut|2 − θtu

(1)
t

]
dt− |θt + yut|2 dt

+
[
∂xζt + 1

2θ
2
t ∂

2
yζt + 2θt∂y

(
ζtu

(1)
t

)]
dt+ 2ζtu∗t dWt + ∂yζtd (lnSt)

ζ0 (x, y) specified (initial condition){
ζ (t, 0, y) = 0 and
θ2
t = ∂xζt (0, 0) (feedback).

(3.5)

Exercise 3.1. In the Bachelier model define moneyness by

y = K − St,

and also take the volvol vt to be linear in the implied volatility, that is

vt = utσt.

Show that the equivalent formulations for σt, ξt, ηt and ζt have

dσt =
1

2σt (T − t)

[
σ2

t − |θt + (K − St) ut|2
]
dt+ σtu

∗
t dWt,

dξt = ξt |ut|2 dt− |θt + (K − St) ut|2 dt+ 2ξt u∗t dWt,

dηt =
1

2ηtx

[
η2

t − |θt + yut|2
]
dt+ ηtu

∗
tdWt

+
[
∂xηt +

1
2
θ2
t ∂

2
yηt + θt∂y

(
ηtu

(1)
t

)]
dt+ ∂yηtdSt,

dζt = ζt |ut|2 dt− |θt + yut|2 dt+ 2ζtu∗tdWt

+
[
∂xζt +

1
2
θ2
t ∂

2
yζt + 2θt∂y

(
ζtu

(1)
t

)]
dt+ ∂yζtdSt.

Remark 3.2. Considering the ξ-formulations in the Bachelier and Black-Scholes models

dξt = ξt |ut|2 dt− |θt + (K − St) ut|2 dt+ 2ξt u∗t dWt (Bachelier)

dξt = ξt

{[
1 +

1
4
ξt

]
|ut|2 − θtu

(1)
t

}
dt−

∣∣∣∣θt + ut ln
K

St

∣∣∣∣2 dt+ 2ξt u∗t dWt (BS),
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one is struck by the similarity between the two models. The main difference is the unpleasant
non-linear term

1
4
ξ2t |ut|2 dt

in the drift of the Black-Scholes equation.that will cause us some problems.

Remark 3.3. Let us comment on the feedback condition which was introduced in Section 3.
Note that on the boundary x = 0, the condition

ζ (t, 0, y) = 0 ⇒ ∂yζt (0, y) = ∂2
yζt (0, y) = ∂y

(
ζtυ

(1)
t

)
= 0

for all y, so that the SDE for ζt (0, y) on the “leading edge” x = 0 reduces to

dζt (0, y) = − |θt + yut|2 dt+ ∂xζt (0, y) dt.

But for ζt (0, y) to remain zero ∀t ≥ 0 the increment dζt (0, y) itself must also be zero, which
means

∂xζt (0, y) = |θt + yut|2 , ∀y.
In terms of ηt, the boundary conditions at x = 0 are

ηt (0, y) = |θt + yut| <∞,

which we might have obtained directly by asking that the drift in (3.4) not have a singularity
at x = 0. Various skews and smiles of the familiar “upward hook” type can be obtained
by changing the correlation which shifts the vertex of the underlying parabola. The initial
volatility surface must of course satisfy this equation, which gives useful information about
how ut varies with y near the boundary x = 0 (remember also that ut (0, y) can depend on
y).

4. Some properties of solutions

Let (Ω,F , (Ft) ,P) be a filtered probability space with the filtration satisfying the usual
conditions. We assume that this space carries a two-dimensional Wiener process (Wt) =(
W

(1)
t ,W

(2)
t

)
. In this section we will consider the equation

dζt = ζt

(
|ut|2 − θtu

(1)
t

)
dt+ 2ζtu∗tdWt −

(
|θt + yut|2 + 1

2θ
2
t

)
dt

+

∂ζt
∂x

+
1
2
θ2
t

∂2ζt
∂y2

+ 2θt

∂
(
ζtu

(1)
t

)
∂y

 dt+ θt
∂ζt
∂y

dW
(1)
t +

1
4
ζ2
t dt, (4.1)

where θ2
t = ∂xζt(0, 0),

ζ0(x, y) = f(x, y), and ζt(0, y) = 0.

This equation has a solution only if the process (ut) =
(
u

(1)
t , u

(2)
t

)
is chosen in a special

way. We will start with a simpler problem. Namely, we will study equation (4.1) without the
boundary condition ζt(0, y) = 0 and with the process (ut) given in advance and such that

Hypothesis 4.1. The process (ut) = (ut(x, y)) is adapted for each (x, y), continuous in
(t, x, y)). Moreover, we assume that the process ∂yu

(1)
t (x, y) is well defined and continuous in

(t, x, y).



10 ALAN BRACE, BEN GOLDYS, FIMA KLEBANER, AND ROB WOMERSLEY

By a local solution to (4.1) we mean a process {ζt(x, y) : x ≥ 0, y ∈ R} and a stopping time
τ such that the following holds.

1. The process (ζt(x, y)) is continuous in (t, x, y) ∈ [0, τ)× R+ × R.
2. For each t < τ the function ζt(·, ·) ∈ C1,2 (R+ × R) and the processes

∂ζs
∂x

(x, y),
∂ζ2

s

∂y2
(x, y) and

∂ζs
∂y

(x, y)

are continuous in s < τ for each (x, y) ∈ R+ × R.
3. For each f ∈ C1,2 (R+ × R) and (x, y) ∈ R+ × R we have for t < τ

ζt = f +
∫ t

0
ζs

(
1
4
ζs + |us|2 − θsu

(1)
s

)
ds+

∫ t

0
θs∂yζsdW

(1)
s +

∫ t

0
2ζsu∗sdWs

+
∫ t

0

(
∂xζs +

1
2
θ2
s∂

2
yζs + 2θs∂y

(
ζsu

(1)
s

))
ds−

∫ t

0

(
|θs + yus|2 +

1
2
θ2
s

)
ds,

where the dependence on (x, y) is suppressed, wherever possible.

Theorem 4.2. Assume Hypothesis 4.1. Then for each f ∈ C1,2 (R+ × R) there exists a
unique local solution to (4.1).

Lemma 4.3. Assume Hypothesis 4.1. Let

Mt =
∫ t

0
θsdW

(1)
s ,

and

N t
s(x, y) = 2

∫ t

s
u∗r (x+ t− r, y −Mr) dWr −

∫ t

s
|ur (x+ t− r, y − Sr)|2 dr

+
∫ t

s

(
1
4
ζr (x+ t− r, y −Mr)− θru

(1)
r (x+ t− r, y −Mr)

)
dr.

Then

ζt(x, y) = Xt (x, y +Mt) ,

where

Xt(x, y) = eN
t
0(x,y)f(t+ x, y)−

∫ t

0
eN

t
s(x,y)

(
|θs + (y − Ss) us (x+ t− s, y − Ss)|2 +

1
2
θ2
s

)
.

Exercise 4.4. In the Bachelier Model denote

Nt =
∫ t

0
2u∗sdWs −

∫ t

0
|us|2 ds.

Show that the process ξ if exists, must satisfy an integral equation

ξt = eNtf(T,K)− eNt

∫ T

t
e−Ns |θs − (K − Ss)us|2 ds,

and therefore the feedback condition takes the form

f(T,K) =
∫ T

0
e−Ns |θs − (K − Ss)us|2 ds.
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Finally, show that the process (ξt) exists for all times provided the process (ut) is locally
bounded in t, T,K ≥ 0,

Proposition 4.5. Assume Hypothesis 4.1. Moreover, assume that the process (ut) is chosen
in such a way that ζt(0, y) = 0 for all t < τ and y ∈ R. Then the unique local solution (ζt) is
strictly positive: for each x ≥ 0, y ∈ R and t < τ we have ζt(x, y) ≥ 0.

Proof. Let (ζt) be a local solution to (4.1) and let

dSt = θtStdW
(1)
t , t < τ.

It follows from Section 3 that for t < τ

ζt(t, x) = ξt (t+ x, eySt) ,

and therefore it is enough to show that ξt(T,K) ≥ 0 for t < τ . Let

Lt = Lt(T,K) =
∫ t

0
2u∗sdWs −

∫ t

0

((
1− 1

4
ξs

)
|us|2 + θsu

(1)
s

)
ds.

Then

ξt(T,K) = eLtf(T,K)− eLt

∫ T

0
e−Ls

∣∣∣∣θs + us ln
K

Ss

∣∣∣∣2 ds.
Since ξT (T,K) = 0 we find that

f(T,K)−
∫ t

0
e−Ls

∣∣∣∣θs + us ln
K

Ss

∣∣∣∣2 ds =
∫ T

t
e−Ls

∣∣∣∣θs + us ln
K

Ss

∣∣∣∣2 ds.
Hence

ξt(T,K) = eLt

∫ T

t
e−Lse−Ls

∣∣∣∣θs + us ln
K

Ss

∣∣∣∣2 ds > 0,

for all t < τ .

5. Toy model

Start with the ζ-formulation in the Bachelier model (see Exercises 1.1 and 3.1), and assume
the volvol ut is stochastic but independent of both x and y:

dζt = ζt |ut|2 dt− |θt + yut|2 dt+ ∂yζtθtdW
(1)
t + 2ζtu∗tdWt (5.1)

+
[
∂xζt +

1
2
θ2
t ∂

2
yζt + 2θt∂y

(
ζtu

(1)
t

)]
dt,

ζ0 (x, y) = f (x, y) , (initial condition)

∂xζt (0, y) = |θt + yut|2 . (feedback)

If the initial implied volatility surface ζ0 (x, y) = f (x, y) is quadratic in y then clearly ζt (x, y)
will remain quadratic in y because all terms in the SDE and both initial and feedback condi-
tions appearing in (5.1) are linear in ζ or quadratic in y.

So suppose the initial implied volatility surface is given by

η2
0 = η2

0 (x, y) =

(
1− e−2λx

)
2λx

|θ0 + yu0|2 ,

or ζ0 = ζ0 (x, y) = f (x, y) =
1
2λ

(
1− e−2λx

)
|θ0 + yu0|2 ,
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For values of θ0 around 20%, u0 between 20% and 40% and λ about .2, such initial surfaces
are semi-believable. Setting

Mt =
∫ t

0
θtdW

(1)
t , Nt =

∫ t

0
2u∗sdWs −

∫ t

0
|us|2 ds,

a solution to (5.1) for all x ≥ 0 and y ∈ R is

ζt(x, y) = eNtf (t+ x, y +Mt)− eNt

∫ t

0
e−Ns |θs + (y +Mt −Ms)us|2 ds. (5.2)

Differentiating with respect to x
∂

∂x
ζt(x, y) = eNt

∂

∂x
f (t+ x, y +Mt) = eNte−2λ(t+x) |θ0 + (y +Mt) u0|2 ,

and so the feedback condition at x = 0 gives
∂

∂x
ζt(0, y) = |θt + yut|2 = eNt−2λt |θ0 + (y +Mt) u0|2 ,

or

θ2
t + 2yθtu

(1)
t + y2 |ut|2 = eNt−2λt

 (
θ2
0 + 2θ0u

(1)
0 Mt + |u0|2M2

t

)
+2y

(
θ0u

(1)
0 + |u0|2Mt

)
+ y2 |u0|2

 .
Comparing coefficients of powers of y yields

|ut| = e
1
2
Nt−λt |u0| , (5.3)

θt = e
1
2
Nt−λt |θ0 +Mtu0| ,

u
(1)
t = e

1
2
Nt−λt

(
θ0u

(1)
0 + |u0|2Mt

)
|θ0 +Mtu0| ,

e
1
2
Nt = E

(∫ t

0
u∗sdWs

)
, Mt =

∫ t

0
θtdW

(1)
t .

Re-expressing the equation for |ut| as

|ut| = |u0| E
(∫ t

0
[u∗sdWs − λdt]

)
,

d |ut| = |ut| [u∗sdWs − λdt] ,

and introducing the new Brownian motion W̃t =
∫ t
0

u∗sdWs

|us| , gives

d |ut| = |ut|
[
|ut| dW̃t − λdt

]
= |ut|2

[
dW̃t − λ

|ut|dt
]
,

which in turn, after applying Girsanov (dŴt = dW̃t − λ
|ut|dt), has form

d |ut| = |ut|2 dŴt,

which does not explode in finite time.
In this example it is relatively easy to simulate the equations (5.3): simply increment the

processes Mt and Nt, calculate the values of θt and ut =
(
u

(1)
t , u

(2)
t

)∗
from the feedback

equations, and increment again.



STOCHASTIC VOLATILITY 13

6. Application to BGM

To apply the above results to interest rates, first focus on what will be martingales and
under what measures in a stochastic volatility version of BGM. As mentioned in the intro-
duction, from [1] the Libor forward rates L (t, T ) must be positive martingales under PT1 and
can be taken to satisfy SDEs like

dL (t, T )
L (t, T )

= θ∗t (T ) dWT1 (t) ,

where the θt (T ) are stochastic. We emphasise that here the maturity dependent volatilities
θt (T ) are vectors, unlike the spot volatility θt used for stocks above.

The Black convention for quoting cap prices in the presence of a volatility smile or skew
is similar to that for stocks. The volatility in the Black cap formula, which adds component
caplet values, is adjusted to produce the correct price. To analyse further, return to the
standard lognormal BGM model in which θt (T ) is deterministic. The present value Cplt (T )
of a caplet struck at κ, maturing at T , and paying at T1 = T + δ is given by the Black caplet
formula

Cplt (T ) = P (t, T1) ` {L (t, T ) , σt (T, κ) , T − t;κ} , (6.1)

σt (T, κ) =

√
1

(T − t)

∫ T

t
|θs (T )|2 ds.

Suppose we can break the cap skew down into a caplet skew by distributing the cap prices at
different strikes into Black caplet prices in such a way that the corresponding caplet volatility
profile σt (T, κ) plotted against T and κ, is reasonably smooth (this step could very well
involve some heroic numerical work). Then (after interpolation, if neccessary) we can assume
that for all maturities T we have an initial implied volatility surface σ0 = σ0 (T, κ) which can
be input as a start parameter.

Now suppose, following on from our work on stocks above, that the implied volatilities
σt = σt (T, κ) satisfy SDEs of the form

dσt = mt (T, κ, L (t, T ) , θt, σt) dt+ σt ut (T, κ, L (t, T ) , θt)∗ dWT1 (t) ,
= mtdt+ σt u

∗
t dWT1 (t)

under the forward measures PT1, and that caplet values are given by (6.1) with σt = σt (T, κ)
now stochastic. Because the caplets Cplt (T ) are assets, their present values divided by the
numeraire P (t, T1) must be martingales under the forward measure PT1 . That is, for all
positive T and κ, the expression

` {L (t, T ) , σt (T, κ) , T − t;κ}
must be a martingale under the PT1 forward measure. Similarly to (3.3), that leads to the
system

ξt = ξt (T, κ) = σ2
t (T − t) , dL (t, T ) = L (t, T ) θ∗ (t, T ) dWT1 (t) , (6.2)

dξt = ξt

{[
1 +

1
4
ξt

]
|ut|2 − θtu

(1)
t

}
dt−

∣∣∣∣θt + ut ln
κ

L (t, T )

∣∣∣∣2 dt+ 2ξt u∗tdWT1 (t) ,

ξ0 (T, κ) = T σ2
0 (T, κ) = f (T, κ) specified (initial condition),

ξT (T, κ) = 0 ∀T (feedback).
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The Libor forward rate volatility θt (T ) and the implied volvol ut (T, κ) must now be linked
into a feedback loop, otherwise the system (6.2) for L (t, T ) and its derivative caplet volatilities
will be under-specified. Assuming θt (T ) and ut (T, κ) are well defined, a formal solution to
(6.2) is

ξt (T, κ) = eNt(T,κ)f (T, κ)− eNt(T,κ)

∫ t

0
e−Ns(T,κ)

∣∣∣∣θs + us (T, κ) ln
κ

L (s, T )

∣∣∣∣2 ds,
Nt (T, κ) =

∫ t

0
2u∗s (T, κ) dWT1 (s)−

{[
1− 1

4
ξs (T, κ)

]
|us (T, κ)|2 + θsu

(1)
s (T, κ)

}
ds.

The feedback condition ξT (T, κ) = 0 for all maturities T implies

f (T, κ) =
∫ T

0
e−Ns(T,κ)

∣∣∣∣θs (T ) + us (T, κ) ln
κ

L (s, T )

∣∣∣∣2 ds, and

∂T f (T, κ) = e−NT (T,κ)

∣∣∣∣θT + uT (T, κ) ln
κ

L (T, T )

∣∣∣∣2
+

[∫ t

0
∂T e

−Ns(T,κ)

∣∣∣∣θs + us (T, κ) ln
κ

L (s, T )

∣∣∣∣2
]

t=T

.

which means

∂T ξt (T, κ) = ξt (T, κ) ∂TNt (T, κ)

+eNt(T,κ)∂T

{
f (T, κ)−

∫ t

0
e−Ns(T,κ)

∣∣∣∣θs + us (T, κ) ln
κ

L (s, T )

∣∣∣∣2 ds
}
,

and [∂T ξt (T, κ)]t=T = eNT (T,κ)

{
e−NT (T,κ)

∣∣∣∣θT + uT (T, κ) ln
κ

L (T, T )

∣∣∣∣2
}
,

=
∣∣∣∣θT + uT (T, κ) ln

κ

L (T, T )

∣∣∣∣2 .
In other words

ξT (T, κ) = 0 ⇒ [∂T ξt (T, κ)]t=T =
∣∣∣∣θT (T ) + uT (T, κ) ln

κ

L (T, T )

∣∣∣∣2 . (6.3)

Putting κ = L (T, T ) in (6.3) yields the Libor volatility link

|θT (T )|2 = [∂T ξt (T,L (T, T ))]t=T or |θt (t)| = σt (t, L (t, t)) , (6.4)

which can be extended to include θt (T ).at later maturities using correlation information.
Suppose that from historical data analysis with a standard BGM model, we have constructed
a deterministic vector volatility function γt (T ).which reflects the correlation structure we
would like our model to exhibit. Namely, that the instantaneous correlation at time t between
the Ti and Tj Libor forward rates is

ρt (Ti, Tj) =
γ∗t (Ti) γt (Tj)

‖γt (Ti)‖ ‖γt (Tj)‖ .

For the forward rate volatility vector try

θt (T ) = γt (T ) ψt, (6.5)
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where ψt is a scalar stochastic variable free to be determined by feedback (the deterministic
vector γt (T ) is of course already fully specified from the historical data analysis). From (6.4)

ψt =
|θt (t)|
|γt (t)| =

σt (t, L (t, t))
|γt (t)| ,

and so

θt (T ) =
σt (t, L (t, t))

|γt (t)| γt (T ) .

Moreover

d 〈L (·, T )〉t
L2 (t, T )

= |θt (T )|2 dt = ψ2
t |γt (T )|2 dt,

d 〈L (•, Ti) , L (•, Tj)〉t
L (t, Ti)L (t, Tj)

= θ∗t (Ti) θt (Tj) dt = ψ2
t γ

∗
t (Ti) γt (Tj) dt,

which returns the required instantaneous correlation

θ∗t (Ti) θt (Tj)
‖θt (Ti)‖ ‖θt (Tj)‖ = ρt (Ti, Tj) .

The volvol link for ut (T, κ) can be specified in a similar, but somewhat looser, fashion..
The spot volvol ut (t, κ) is largely determined by the feedback condition (6.3), although (as in
the stock case) there is still considerable freedom to engineer its dependence on the strike κ,
and its distribution into components. For later maturities, ut (T, κ) can be specified in term
of its spot value ut (t, κ) so as to exhibit the same sort of decay with respect to maturity T
that is seen in historical data.

Hence the BGM ξ-formulation

ξt = ξt (T,K) = σ2
t (T − t) (definition ξ)

θt (T ) = ψt γt (T ) (volatility of forwards)
dL (t, T ) = L (t, T ) θ∗t (T ) dWT1 (t) (forward dynamics)

dξt = ξt

{[
1 + 1

4ξt
] |ut|2 − θtu

(1)
t

}
dt−

∣∣∣∣θt + ut ln
κ

L (t, T )

∣∣∣∣2 dt+ 2ξt u∗t dWT1 (t)

ξ0 (T, κ) = T σ2
0 (T, κ) = f (T, κ) specified (initial condition)

ξT (T, κ) = 0

[∂T ξt (T, κ)]t=T =
∣∣∣∣θT (T ) + uT (T, κ) ln

κ

L (T, T )

∣∣∣∣2 (feedback).

(6.6)

7. Marginal Distributions

Let p∗(S, T ) denote the marginal distribution, so the price C of a European Call with strike
K and expiry T can be written as

C(K,T ) =
∫ ∞

0
max(S −K)p∗(S, T )dS.
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Following Breeden and Litzenberger [3] the marginal distribution can be recovered by

C(K,T ) =
∫ ∞

K
(S −K)p∗(S, T )ds

∂C(K,T )
∂K

= −
∫ ∞

K
p∗(S, T )dS

∂2C(K,T )
∂K2

= p∗(K,T ).

7.1. Bachelier Model. In the Bachelier model

C(σ,K, t, T ) = σ
√

(T − t)Φ(h) (7.1)

where

h =
S −K

σ
√
T − t

,

Φ(u) =
∫ x

−∞
N(u)du = xN(x) + N′(x),

and N is the standard normal cumulative density function.
If σ does not depend on the strike K then

∂2C

∂K2
=

N′(h)
σ
√
T − t

.

In our model σ = σ(K,T ) depends on the strike K (and other variables). Noting that

ξ = σ2(T − t),

the initial form for σ is implied by the initial volatility surface ξ(x, y) = f(x, y) where x = T−t
is the maturity and y = K − S is the moneyness.

7.2. Derivatives. To use the Breeden and Litzenberger result we need

∂2C(σ(K),K, 0, T )
∂K2

.

As K = S + y it does not matter if we differentiate w.r.t y or K. Using ξ = σ2x and
∂σ

∂y
=

1
2σ
√
x

∂f

∂y

∂2σ

∂y2
=

−1
4σ3x2

(
∂f

∂y

)2

+
1

2σx
∂2f

∂y2
.

Also
∂h

∂y
=

−1
σ
√
x

+
y

σ2
√
x

∂σ

∂y
.

Writing C for C(σ(K), y, x, T ) the Bachelier formula (7.1) eventually gives

∂C

∂K
= −N(h) +

(
C + yN(h)

σ

)
∂σ

∂y

∂2C

∂K2
=

N′(h)
σ
√
x
− 2yN′(h)

σ2
√
x

∂σ

∂y
+
y2N′(h)
σ3
√
x

(
∂σ

∂y

)2

+
(
C + yN(h)

σ

)
∂2σ

∂y2
.
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The marginal distribution implied by the initial volatility surface is then obtained by setting
t = 0, so x = T , and y = K − S0.

7.3. Numerical results. In the simulations the initial volatility surface is given by

f(x, y) =
1− e−2λx

2λ
q(y)

where

q(y) = θ2
0 + 2ρθ0νy + ν2y2,

where ν is the volvol, λ controls the flattening out as maturity x increases, and ρ is the
correlation in the quadratic dependence of the surface on moneyness y. Thus initially at
t = 0

σ2(K) =
1
T

[
1− e−2λT

2λ
θ2
0 + 2ρθ0ν(K − S0) + ν2(K − S0)2

]
.

The Bachelier model was simulated over 5 years using 400 time steps. The parameters in
the initial volatility surface were ν = 20%, λ = 0.25, θ0 = 2% and different values for the
correlation ρ. Figures 1, 2 and 3 show the initial volatility surface and the empirical (using
100,000 simulations) and analytic marginal distributions at 2.5 and 5 years for ρ = 0,−0.7, 0.5
respectively. The agreement in all cases is remarkable.

Appendix A. Ito-Venttsel formula

To write down an SDE for ηt = η (t, x, y) we will need a generalization of the Ito-Venttsel
formula as derived in [6] and [8].

Theorem A.1. Let Wt be multi-dimensional Brownian motion. Suppose F (t, u) is twice
differentiable with respect to the parameter u and satisfies the SDE

dF (t, u) = A (t, u) dt+B∗ (t, u) dWt.

If ut satisfies the SDE

dut = C (t, ut) dt+D∗ (t, ut) dWt,

then an SDE for F (t, ut) is

dF (t, ut) = A (t, ut) dt+B∗ (t, ut) dWt

+
∂

∂u
F (t, ut) dut +

1
2
∂2

∂u2
F (t, ut) |D (t, ut)|2 dt

+
∂

∂u
B∗ (t, ut) D (t, ut) dt.
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Figure 1. Initial volatility surface and marginal distributions, ρ = 0
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Figure 2. Initial volatility surface and marginal distributions, ρ = −0.7
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Figure 3. Initial volatility surface and marginal distributions, ρ = 0.5


