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As in Section 4.1.1, the Law of Large Numbers suggests the approximations

B(t)

Z0
≈ b(t) = b(t)

Z0

Zt

Z0
≈ m(t) = m(t)

Z0
, (4.24)

where b satisfies Equation (4.21), with Z0 replaced by 1, and m is given by Equa-
tion (4.22), with Z0 replaced by 1 and b replaced by b. This approximation is,
indeed, valid in the sense that B(t)/Z0 converges to b(t) and Zt/Z0 converges to
m(t) as Z0 goes to infinity.

Limit theorems of this type can be found in Kurtz (1983) and Solomon (1987).
The limiting model is essentially the standard continuous-time demographic model
(e.g., Keyfitz 1977).

4.2 Discrete-Time Dynamical Systems as Population Models
F.C. Klebaner

Deterministic discrete-time processes are characterized by a recurrence equation
xn+1 = f (xn) that specifies the relation between the value of a state at time n,
xn , and its value one time step later, xn+1. Such processes are used as models
for changes in population size or density. An example is the Ricker model intro-
duced in Section 1.4. The (asymptotic) dynamics of these models is described in
many textbooks on biological systems (e.g., Case 2000). We thus include only a
short survey here, to connect the field with branching processes and to acquaint
those unfamiliar with the area with some basic concepts. Others may well skip
Section 4.2.1 and proceed to Section 4.2.2, in which we relate these models to
branching processes.

4.2.1 Dynamics of deterministic models
Recall the formulation in Section 4.1 of the Ricker model

zn+1 = mzne−bzn , (4.25)

where zn denotes population size. It can be reformulated in terms of population
density by the transformation xn = zn/K , where K is the area occupied by the
population, and rescaling the parameter b. This yields a model of the form

xn+1 = xn R(xn) , (4.26)

which is the general form of density-dependent models that we consider here. Note
that in this section we use “density” in a very loose way. If K is an area, xn is,
indeed, a density in the strict sense, but in the following we also consider cases in
which K represents a different constant, such as carrying capacity in the logistic
model (see below). In either case, we refer to xn as a density.

The function R(x) is the individual reproduction function. This function typ-
ically depends on the availability of resources and, therefore, it is reasonable to
assume that, as population density increases, R(x) tends to zero (the reader may
verify that in the Ricker model this is indeed so). This is called negative density
dependence.
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In the Ricker model, and the other examples given in this section, R(x) tends
to a positive constant as x approaches zero, which signifies that at low population
densities there is no resource limitation and the population grows at a constant rate
independent of its density. The branching process equivalent of this situation is the
Galton–Watson process. There are also models, however, in which a negative den-
sity dependence occurs at low densities too. This so-called “Allee effect” (Allee
1931) can, for instance, result from the difficulty of finding suitable mates when
population size is small.

In ecological models a limitation on population size is often assumed, usually
called a carrying capacity (of the environment for the population in question).
When the population is far from its carrying capacity it reproduces at a constant
rate, and the reproduction rate declines when the population approaches its carry-
ing capacity and resources become exhausted. In this case, we can let K represent
the carrying capacity. The simplest such dependence is linear, with x denoting the
density 0 ≤ x ≤ 1,

R(x) = r(1 − x) . (4.27)

This is how the logistic model for population dynamics is obtained,

xn+1 = rxn(1 − xn) . (4.28)

It is the most studied scheme from a mathematical perspective (see Thompson and
Stuart 1986), and represents a prototype of simple models that exhibit complex
behavior (May 1976).

Another famous density-dependent population approach uses the relation

xn+1 = rxn/(1 + axn)
b , (4.29)

which was applied by Hassell et al. (1976) to compare population dynamics of 28
species of insects (see also Smith 1974).

Iterating the recurrence equation

xn+1 = f (xn) = f ( f (xn−1)) (4.30)

and so on, we obtain that the density in the nth generation is given by the nth
iterate of the function f evaluated at the initial population density x0,

xn = f (n)(x0) , (4.31)

where f (n) means f taken n times.
Behavior of the iterates of functions such as the logistic or Ricker is studied

within non-linear discrete-time dynamics and chaos theory. Typically, the func-
tions have a shape parameter (r in the logistic model) and, depending on the value
of this parameter, the iterates of f converge to a fixed point (a stable fixed point),
or they oscillate between a finite number of points (convergence to a stable cy-
cle), or they exhibit chaotic behavior (which means that their positions for large n
are described by a distribution function, rather than a limited set of predetermined
points).
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A point x is called a fixed point for f if f (x) = x . Clearly, for functions of
the form f (x) = x R(x) the point x = 0 is a fixed point, but there may be others.
What happens if the population density is very low, near to zero, but positive?
Development in this case depends on the stability of the point zero. A fixed point
x∗ is called stable or attracting if for all the initial points x0 near x∗, the iterates
f (n)(x0) converge to x∗ as n = 1, 2, . . . increases.

Alternatively, if there is an interval that includes x∗ such that for some n
the iterate xn is outside this neighborhood, the fixed point x∗ is called unstable
or repelling. A sufficient condition for the stability of a fixed point x∗ is that
| f ′(x∗)| < 1, and for it to be unstable the condition is | f ′(x∗)| > 1. In the case
| f ′(x∗)| = 1, x∗ may be attracting or repelling. For a necessary and sufficient
condition for a fixed point to be attracting, see, for example, Theorem 2.2.1 in
Sharkovskii et al. (1993).

If 0 is a repelling fixed point, f has another fixed point x∗ that may also be
either attracting or repelling. If it happens to be attracting, the long-term iterates
converge to it, and if it is repelling, a cycling behavior occurs. For example, a
cycle of period 2 means that there are two points, x∗

1 and x∗
2 , such that f (x∗

1 ) = x∗
2

and f (x∗
2 ) = x∗

1 . This cycle is attracting if for large even values of n the iterates
xn are in the vicinity of a point x∗

1 and if for large odd values of n the iterates xn

are in the vicinity of a point x∗
2 . We can also describe a cycle of period 2 by means

of fixed points of the twice-iterated function, f (2). If f has a two-cycle {x∗
1 , x∗

2 },
then f (2) has two fixed points x∗

1 and x∗
2 . The cycle is stable or attracting if these

fixed points are stable. For a cycle to be attracting it is enough that

| f (2)′(x∗
1 )| < 1 . (4.32)

Using the chain rule of differentiation we find that f (2)′(x∗
1 ) = f ′( f (x∗

1 )) f ′(x∗
1 ) =

f ′(x∗
2 ) f ′(x∗

1 ). Thus, a sufficient condition for a cycle to be attracting is given by

| f ′(x∗
1 ) f ′(x∗

2 )| < 1 . (4.33)

Of course, a cycle of period d and its stability are defined similarly.
A large class of dynamical systems has asymptotically periodic trajectories: a

dynamical system is called simple if each of its trajectories is periodic or asymp-
totically periodic. Moreover, there is a class of simple dynamical systems in which
the stable cycle is unique and trajectories (xn) are attracted to it for almost all initial
points x0 (ibid).

Example 4.1 We examine the behavior of the iterates in the logistic model xn+1 = r xn(1 −
xn). The function f (x) = r x(1 − x) has a single fixed point 0 if r ≤ 1, which is attracting,
and xn → 0 as n → ∞ for any x0. For 1 < r ≤ 3, the fixed point zero becomes repelling
and another fixed point appears, x∗ = 1 − 1/r . This point is attracting if r < 3, as
| f ′(x∗)| < 1, ( f ′(x∗) = 2 − r). If r = 3, x∗ is still attracting, although | f ′(2/3)| = 1. If
r ≤ 3, then xn → x∗ as n → ∞ for any x0 �= 0, 1. When r > 3, then x∗ = 1 − 1/r is
repelling as | f ′(x∗)| > 1. For values of r in the range 3 < r < 1 + √

6 ≈ 3.449, f has
a stable cycle of period 2. These points are determined as roots of f (2)(x) = x . For all x0

outside an (actually finite) exceptional set, xn converges to this cycle.
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When r increases further, 1 + √
6 ≤ r , the stable two-cycle becomes unstable and a

stable cycle of period 4 is created. For all points x0 outside an exceptional set (which
contains the fixed points, cycles, and their pre-images), f (n)(x0) converges to this four-
cycle. This phenomenon (appearance of stable cycles of higher powers of two instead of
unstable ones) is known as period doubling bifurcation, and continues until r reaches some
value rc ≈ 3.569 . . . , at which point no stable trajectories of longer periodicity exist, and
the system displays no simple dynamics.

For any r < rc there is a stable cycle of period 2k (k depends on r), and f (n)(x0)

converges to this cycle for all x0 except those that go to repelling cycles of periods 2i ,
i = 0, 1, . . . , k − 1. The value rc is known as the value for the onset of chaos. For r > rc

there are infinitely many cycles, all of which may be repelling. For certain values (periodic
windows) of the parameter the system admits attracting cycles of periods not restricted to
the powers of 2.

When r = 4, the long-term behavior of f (n)(x0) is described by the probability distribu-
tion

1

π
√

x(1 − x)
, (4.34)

that is, for large n the probability of finding f (n)(x0) in an interval [a, b] is given by
∫ b

a

dx

π
√

x(1 − x)
. (4.35)

♦ ♦ ♦
Remark. For the Ricker model, f (x) = xer−x , a bifurcation to a cycle of period 2 occurs
at r = 2, then further from a 2-cycle to a 4-cycle at 2, 2.526, etc., and the value of onset of
chaos is rc ≈ 2.692.

♦ ♦ ♦
4.2.2 Density dependent branching processes and dynamical systems
Deterministic models of the form xn+1 = f (xn) are macroscopic, they give a rule
according to which the whole population evolves. Branching processes, however,
are microscopic, built upon the individual behavior of population members and
determined by their offspring distribution.

As we have seen, though, the macroscopic models allow feedback in the form
of the effects of population density on growth, and may exhibit periodic be-
havior, which does not appear in branching processes. The bridge between the
two approaches is provided by branching processes with a similar feedback (i.e.,
population-size- and density-dependent branching processes).

In branching processes dependent on population size, the distribution of off-
spring numbers depends on the size of the population z, and in density-dependent
branching processes the distribution of offspring depends on the population den-
sity, or concentration z/K , where K is a parameter such as (but not necessarily)
the carrying capacity. If this parameter is fixed, there is no difference between the
two types of models, but when it becomes large, density-dependent models may
simplify and allow approximations. Indeed, for large values of K they reduce to
deterministic dynamical systems plus a small noise. The dynamical system part
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represents the deterministic approximation and the noise admits a Gaussian ap-
proximation.

This Gaussian approximation is different from the diffusion approximation of
branching processes, treated in the preceding sections. In diffusion approxima-
tions the time is scaled to arrive at a continuous-time process, but in this case
time remains discrete and the limiting process is not continuous, but jumps as the
corresponding dynamical system.

As indicated in Section 2.6, density-dependent branching processes are defined
in the same way as the classic Galton–Watson process, except that offspring dis-
tributions are allowed to depend on population density. This can be written as

Zn+1 =
Zn∑

j=1

ξj,n(Zn/K ) , (4.36)

to indicate that the distribution of ξj,n(Zn/K ) is dependent on Zn/K . The offspring
numbers themselves are independent, with the common distribution being that of
ξ(x) if Zn/K = x .

Example 4.2 Consider branching processes that occur in polymerase chain reactions
(PCRs). PCR is a stepwise procedure in molecular biology whereby in each step DNA
molecules either remain or are replaced by two copies. It is further described in Section 7.5.

The reaction can be modeled as a (single-type) Galton–Watson branching process, in
which each individual has one or two offspring in the next generation. The probability of
the latter event is usually termed the efficiency in the present connection. It is natural from
the experimental setup that the efficiency of the reaction should decrease.

Under classic, so-called Michaelis–Menten kinetics, largely valid for enzymatic reac-
tions, it follows that the probability of successful copying (two offspring) is given by

p(z) = K

K + z
, (4.37)

where z is the number of molecules and K is the Michaelis–Menten constant of the reaction.
Initially, the efficiency is close to 1, since K is large compared to z.

The result is a density-dependent binary splitting Galton–Watson process, whereby the
alternative to splitting is remaining into the next generation (experiment cycle), or equiva-
lently giving birth to one offspring. The offspring number ξ(z) takes values 1 and 2 with
probabilities 1 − p(z) and p(z), respectively.

♦ ♦ ♦
As shown in Section 4.2.1, it is more convenient to consider the density process

x K
n = Zn/K , which evolves according to

x K
n+1 = 1

K

K x K
n∑

j=1

ξj,n(x K
n ) . (4.38)

We show that this model is a stochastic analog of the deterministic model xn+1 =
f (xn) with a suitable function f . Indeed, denote by R(x) = E[ξ(x)] the mean
offspring number when the population density is x . By subtracting and adding it
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within the sum, we have

x K
n+1 = 1

K

K x K
n∑

j=1

R(x K
n ) + 1

K

K x K
n∑

j=1

[ξj,n(x K
n ) − R(x K

n )] , (4.39)

or

x K
n+1 = x K

n R(x K
n ) + ηK

n = f (x K
n ) + ηK

n , (4.40)

where f (x) = x R(x) and

ηK
n = 1

K

K x K
n∑

j=1

[ξj,n(x K
n ) − R(x K

n )] (4.41)

is random. This random term is small for large values of K , essentially by the
Law of Large Numbers. Let xn be the nth iterate of f (x) = x R(x), starting
from x0 = Z0/K . The results below state that, for large values of the carrying
capacity, the process x K

n is approximated by the deterministic sequence xn , with
the difference x K

n − xn being approximately normal with mean zero and variance
of order 1/K .

In the next two theorems we assume that the function f (x) = x R(x) has a
continuous derivative and that the variances σ 2(x) of offsprings ξ(x) are bounded
by some constant, say σ 2(x) ≤ C .

Theorem 4.1 (Consistency theorem) For any fixed n, as K → ∞, x K
n → xn in

probability.

The proof uses induction on n and Chebyshev’s inequality,

E[(ηK
n )2] = E[E[(ηK

n )2|x K
n ]] = 1

K
E[σ 2(x K

n )] ≤ C/K → 0 . (4.42)

Theorem 4.2 (Fluctuation theorem) Assume, in addition, that the third absolute
moments E[(ξ(x) − R(x))3] are bounded. Then, for any fixed n, as K → ∞,
(x K

n − xn)
√

K converges in distribution to a normal random variable N (0, D2
n),

where D0 = 0 and Dn is defined by the recurrence relation

D2
n+1 = xnσ

2(xn) + [ f ′(xn)Dn]2 . (4.43)

The proof of this result follows by induction on n and an analysis of characteristic
functions, and can be found in Klebaner (1993) under less stringent assumptions.
In Klebaner and Nerman (1994) these results are established not only for a sin-
gle fixed n, but also for any collection of times n1, n2, . . . , nk (which corresponds
to the convergence of processes, or the functional version of the limit theorem).
Watkins (2000) generalized these results to multi-type processes (structured pop-
ulations) and referred to them as consistency and fluctuation theorems in biology.
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Example 4.2 (continued) We can express the probability of successful division in PCR
as a function of the so-called dimensionless reduced concentration x = z/K (Schnell and
Mendoza 1997a),

p(x) = 1

1 + x
. (4.44)

Since the expected number of offspring per individual is

m(x) = 1 − p(x) + 2p(x) = 1 + 1/(1 + x) , (4.45)

we obtain that the population density process has the representation

x K
n+1 = f (x K

n ) + ηK
n , (4.46)

with f (x) = xm(x) = x/(1 + x). The reproduction variance can be checked easily to
satisfy

σ 2(x) = p(x)(1 − p(x)) = x/(1 + x)2 , (4.47)

obviously bounded. Thus, for large values of K , the sequence x K
n = Zn/K can be approxi-

mated by the deterministic sequence xn obtained as the nth iterate of f starting at x0. This
is further developed in Jagers and Klebaner (2003).

♦ ♦ ♦

4.3 Branching Processes and Structured Population Dynamics
M. Gyllenberg and P. Jagers

4.3.1 Introduction
Most of the classic deterministic population models developed by Lotka, Volterra,
and others during the “golden age” of theoretical ecology in the 1930s are con-
cerned with a single homogeneous population or with the interaction between
several homogeneous populations. In particular, these models are based on the
assumption that, at least on average, all individuals in a population behave identi-
cally with respect to reproduction, survival, exploitation of resources, competition,
and other processes of importance for the dynamics of the population. They are de-
terministic versions of single-type Markov branching processes, or modifications
of such processes.

In reality, matters are more complex. The reproductive behavior is age specific
and depends on nutrition, and the same applies to survival. A predator is hardly
likely to catch a prey that is larger, stronger, and quicker than itself. The list could
be continued almost forever. In many cases, differences between individuals make
a difference for the resultant dynamics. Moreover, it may be important to pre-
dict the composition and not only the size of a population (think, for instance, of
human demography in which estimates of the future age distribution of the pop-
ulation influence socio-economic decision making). In branching processes, such
considerations lead to multi-type processes with type spaces of varying complex-
ity. In deterministic approaches, they take us to the realm of structured populations
(Metz and Diekmann 1986). In this section a short introduction to the modeling of
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