
88 Chateau, Leroy, Rahayu & Taniar

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Chapter IV

Practical Case Study
of a Web-Based Tutor

Payment System
Tanguy Chateau and Cecile Leroy

Ecole Centrale d’Electronique, France

Johanna Wenny Rahayu
La Trobe University, Australia

David Taniar
Monash University, Australia

ABSTRACT
The emerging use of object-relational databases with Web technologies has
only recently begun. This chapter discusses a practical realization of an
application using this technology. The aim is to show readers how to construct
a full application from a design using object-oriented features up to the
implementation. In this chapter, we highlight important or difficult stages with
an emphasis on the mapping of object design into Oracle 8i and the use of
stored procedures with the extended features for objects manipulation of
Oracle 8i. This enables developers to construct professional Web applications
achieving a high modularity and evolution capacity with an accelerated
development phase in comparison with the traditional approach.

INTRODUCTION
This chapter is dedicated to the study of a practical case. We will show a way

of implementing a Web-based application using an object-relational database. To

701 E. Chocolate Avenue, Hershey PA 17033-1240, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

ITB8243

IDEA GROUP PUBLISHING

This chapter appears in the book, Web-Powered Databases, edited by David Taniar. Copyright © 2003,
Idea Group Inc.

Practical Case Study of a Web-Based Tutor Payment System 89

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

justify the use of an object-relational database rather than an object-oriented
database or a relational database, it is important to take into account the constant need
of companies to produce faster applications. The object-oriented model with its
characteristics of modularity, reusability, and extendibility, and its ability to stay the
nearest as possible from the real world, is very suitable for these requirements.
However, object-oriented databases are still not widely deployed and most compa-
nies want to be able to use the object technology without having to change their
database systems. Moreover, because developers know relational systems very
well, applications may be developed faster. This is the reason that we chose a system
combining the advantages of relational and object-oriented features. We chose
Oracle 8i. Since version 8, Oracle has provided some object functionalities, such as
objects, ref types, collection types, nested objects, etc. This new era of DBMS
(Database Management Systems), where relational DBMS is enhanced with some
object-oriented features, is often known as Object-Relational DBMS (Stonebraker
& Moore, 1996). Consequently, database design using object-oriented modeling
needs to be transformed into an object-relational database schema for implementa-
tion (Rahayu and Chang, 1993).

In this case study, the Web part of the application is implemented using PHP
(McCarty, 2001). This allows us to demonstrate the use of a scripting language to
access a database and present the information to users. PHP has also been chosen
as much for its ease of use as for its ability to demonstrate how to use a language
combining presentation and logic facilities. The implementation of the database and
the way to construct queries are also explained and demonstrated using PL/SQL
(Urman, 1997).

The rest of this chapter is organized as follows. Firstly, we describe the case
study and the database design. This is then followed by the implementation
architecture. The database layer implementation using the transformation method-
ology is later described. The components of the two logic layers, the database and
the application logic respectively, are then detailed, as well as the presentation layer.
Finally, some discussions and conclusions are given.

TUTOR PAYMENT SYSTEM: A CASE STUDY
In this section, we briefly describe a tutor payment system, and the design

aspect of the system, using an object-oriented modeling.

Problem Descriptions
The case study is an online tutor claim system, which allows casual tutors to

submit claims of payment for their work. This payment claim is done fortnightly as
the payment in the Australian University system is carried out every fortnight. The
casual tutors are students, mostly postgraduates hired by a university department for
each subject in each semester. They will help lecturers in their work, doing marking,
labs, tutorials, and consultations.

90 Chateau, Leroy, Rahayu & Taniar

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Prior to this online system, tutors have had to lodge a blue claim form every fortnight
to be approved by the associated lecturer in order to be processed in the financial system.
This form contains details of activities (e.g., lab, meeting, preparation, marking, etc.), date
and time, and duration. With this online system, payment claims can be made through the
Web. Database maintenance is carried out by the general office personnel (i.e.
administrator) who maintains tutor details, subject details, semester, budget, etc. More-
over, the general office generates a report of claims and balances. Each lecturer normally
has a certain budget, which can be used to hire casual tutors for the semester. Each
lecturer still needs to approve/reject claims made by his/her tutors. Once a claim is
approved, it is checked by the general office before being sent to the Director of
Undergraduate Studies (DUDS) for approval, then the budget allocated for the tutor is
appropriately reduced. Tutors must also be able to check the state of their claims.
Lecturers have to be able to approve or reject the claims and check the claims that they
have already approved.

Design: Object-Oriented Model
As in any application, a primary phase of design is necessary (Oestereich B.,

1999). The design is a step involving a recursive approach. It requires that the
designer be able to view the application as concepts that are fitting together. A good
approach described in “Developing Software with UML” (Oestereich B. 1999), the
one we follow here, is the rational one. It allows the designer to find the components
of the application and has the advantage of being able to give a very modular
structure, allowing the development of the components in separate teams.

Figure 1 shows an object-oriented diagram of the online tutor claim system. It
consists of 10 classes. Class Staff forms an inheritance hierarchy with classes
Tutor, Lecturer, GO (General Office) and DUDS (Director of Undergraduate
Studies) as its subclasses because they have some common attributes: Staff ID,
Name, user ID (login), password, and email. Also notice that the inheritance is a
union inheritance, meaning that the instances of class staff may be one or more (or
none) of its subclasses. For example, a lecturer may also be a DUDS.

In the diagram, there are two aggregation (whole-part) hierarchies. One
aggregation is where class TutorAccount consists of class Activity, and the other
aggregation is where class BlueClaimForm consists of WorkDetail.

The association relationships are of cardinality one-to-many or many-to-
many. For example, a one-to-many is between Tutor and TutorAccount, where a
tutor may have many TutorAccount (one TutorAccount per subject). A many-to-
many relationship is between Lecturer and Subject, where a lecturer may teach
many subjects, and one subject may be taught by many lecturers.

IMPLEMENTATION ARCHITECTURE
We use a three-tier architecture for the application that can separate the

presentation of the information from the retrieval of information and the data storage.
Figure 2 shows a three-tier architecture.

Practical Case Study of a Web-Based Tutor Payment System 91

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

In the next four sections, we are going to elaborate upon each layer in more
detail. First of all, the database layer will gather all the information needed to map the
object-oriented design into Oracle8i. Each of the relations (inheritance, aggregation,
associations) will be explained and when necessary, a comparison with pure
relational databases will be made. Then, the database logic layer will present how to
use stored-procedures in PL/SQL for database manipulation. The explanation will
begin with simple procedures, which become gradually more complex. Again, we will
compare the traditional method for accessing data (directly with stand-alone queries)
and our method of accessing data with procedures. In the application logic layer, we
will describe how PHP interacts with procedures to manipulate the data. This layer
allows us to keep the presentation layer and database layer separate. It plays the role
of an interface between these two layers. Finally, the presentation layer is respon-

Figure 1: Class diagram

92 Chateau, Leroy, Rahayu & Taniar

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

sible for presenting the data to the user. It gives a way to change easily how the data
are displayed and retrieved from the user. We will show with PHP a possible way
of implementing this module.

DATABASE LAYER
There are three class relationships: associations, inheritance, and aggrega-

tion. In the following sections, we will show how to map each of these relationships.
The mapping process consists of transforming the classes shown in Figure 1 into
tables in Oracle. The object-relational rules used here are adopted from the object-
relational transformation methodology developed by Rahayu et al. (Rahayu et al.,
1993, 1995, 1998, 1999, 2000, 2001, 2002). The transformation process is summa-
rized as follows.

Transformation of One-to-Many Associations
There are four one-to-many relationships in the object-diagram as shown in

Figure 1. To describe this transformation, we use the association between Tutor and
TutorAccount. The first step is to create an object type for the ‘one-part’ of the
relation, and then an object type for the ‘many-part’. The TutorAccount class needs
to refer to the Tutor to know exactly to which Tutor it belongs. To do so, we add
a REF in the many-part (in the TutorAccount type) pointing to Tutor type as
shown in Figure 3. Note that the concept of REF in Oracle 8i is similar to the
concept of logical pointers in object-oriented databases. REF is, however,
different from the traditional references, which normally exist in a primary key
(PK) – foreign key (FK) relationship.

The next step after the creation of types is to create the corresponding
tables. These tables include additional information such as primary keys, which
were not declared in the type creation, because type is not a table, and hence does
not have a primary key. Figure 4 shows the two tables based on the types created
in Figure 3.

In this design, the relationships that exist between tutor, tutor account and
subject have been defined like this: a tutor may have many tutor accounts, one for
each subject, but cannot have two tutor accounts for the same subject. In a
conventional relational database, the attributes TA_Tutor and TA_Subject would

Logic Layer

Presentation
Layer
Php

Database
Logic

(PL/SQL)

Database
Layer

Application
Logic
(Php)

Figure 2: Three-tier architecture

Practical Case Study of a Web-Based Tutor Payment System 93

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

have been, respectively, foreign keys of Tutor and Subject as well as the primary key
of TutorAccount. Here is a reminder of how the tables would have looked:

Tutor (TA_Tutor, Qualification, CourseEnrolled, DayPhoneNo)
Subject (TA_Subject, Code, Description, Level, Year, Semester)
TutorAccount (TA_Tutor*, TA_Subject*, ContractStartDate, [other arguments])
Unfortunately, this is incompatible with the use of the object-oriented features

of Oracle (i.e., REF): TA_Tutor and TA_Subject are REF and cannot also be
primary keys. The solution is to implement this constraint in the business level (in the
stored-procedures or in PHP). We chose to implement it in PHP with the help of a
combo-box, which displays only the subjects that are not already taken by the tutor.

Figure 3: Type creation for a one-to-many association

Figure 4: Table creation for a one-to-many association

CREATE OR REPLACE TYPE Tutor_T AS OBJECT
(

Tutor_Qualif VARCHAR2(20),
Tutor_CourseEnrolled VARCHAR2(20),
Tutor_DayPhoneNo VARCHAR2(20)

)
/
CREATE OR REPLACE TYPE TutorAccount_T AS OBJECT
(

TA_Oid NUMBER(4),
TA_Rate NUMBER(4,2),
TA_StartDate DATE,
TA_NoWeeks NUMBER(2),
TA_TutAppDate DATE,
TA_SupAppDate DATE,
TA_DUDSAppDate DATE,
TA_Status VARCHAR2(2),
TA_Tutor REF Tutor_T

)
/

CREATE TABLE Tutor OF Tutor_T
(

Staff_Id NOT NULL PRIMARY KEY
);

CREATE TABLE TutorAccount OF TutorAccount_T
(

TA_Oid NOT NULL PRIMARY KEY,
TA_StartDate NOT NULL,
TA_NoWeeks NOT NULL,
TA_Rate NOT NULL,
TA_Tutor SCOPE IS Tutor —optional

);

94 Chateau, Leroy, Rahayu & Taniar

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Transformation of Many-to-Many Associations
The only many-to-many association in our design is between Lecturer and

Subject. For this mapping, in addition to the creation for a type and a table for each
class, we need to create a new table Teach to associate these two classes. Figure
5 shows type and table creation for Subject and Lecturer (Permanent Staff), and a
third table, called Teach. Notice how REF is used in table Teach to associate with
the two other tables.

Transformation of Aggregations
In the transformation of an aggregation relationship, we use the BlueClaimForm

and WorkDetail classes. This relationship is created by using a nested table. We
choose to use a nested table rather than clusters because BlueClaimForm and
WorkDetail are tightly linked together (i.e., existent-dependant), which means that

Figure 5: Many-to-many association

CREATE OR REPLACE TYPE Subject_T AS OBJECT
(

Subject_Oid NUMBER(4),
Subject_Code VARCHAR2(8),
Subject_Desc VARCHAR2(60),
Subject_Level NUMBER(1), — 1st, 2nd, 3d or 4th year
Subject_Sem NUMBER(1), — semester 1 or 2
Subject_Year NUMBER(4)

)
/
CREATE OR REPLACE TYPE PermStaff_T AS OBJECT
(

Staff_Id NUMBER(8),
PermStaff_Position VARCHAR2(10)

)
/
CREATE TABLE Subject OF Subject_T
(

Subject_Oid NOT NULL PRIMARY KEY,
Subject_Code NOT NULL,
Subject_Year NOT NULL

);

CREATE TABLE Lecturer OF PermStaff_T
(
 Staff_id NOT NULL PRIMARY KEY REFERENCES Staff (Staff_id)
);

CREATE TABLE Teach
(

Teach_Subject REF Subject_T SCOPE IS Subject,
Teach_lecturer REF PermStaff_T SCOPE IS Lecturer

);

Practical Case Study of a Web-Based Tutor Payment System 95

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

we cannot have a WorkDetail without an associated BlueClaimForm. The limitation
of nested tables is that only one level of aggregation is allowed1. Figure 6 shows the
type and table creation for the above aggregation. Notice also how the nested table
is created.

Transformation of Inheritance
The inheritance hierarchy shown in Figure 1 has class Staff as a superclass and

classes Tutor, Lecturer, GO (General Office) and DUDS (Director of Undergradu-
ate Studies) as subclasses. Because Oracle 8i does not provide any features for
implementing inheritance2, we need to use a combination of primary key and foreign
key (Rahayu et al, 2000, 2002). The subclasses are related to the superclass by the
Staff_Id attribute as a foreign key. It would have been necessary to add a Staff_Type
attribute in the superclass if it were a mutual-exclusion inheritance (i.e. if DUDS

Figure 6: Aggregation using a nested table

CREATE OR REPLACE TYPE WorkDetail_T AS OBJECT
(

Work_Oid NUMBER(4),
Work_Date DATE,
Work_Begin DATE,
Work_NoHours NUMBER(4),
Work_ActivityType VARCHAR2(5),
Work_Comment VARCHAR2(100)

)
/
CREATE OR REPLACE TYPE WorkDetailTable_T AS TABLE OF
WorkDetail_T
/
CREATE OR REPLACE TYPE BlueClaimForm_T AS OBJECT
(

BCF_Oid NUMBER(4),
BCF_School VARCHAR2(20),
BCF_Location VARCHAR2(20),
BCF_ClassifCode NUMBER(4),
BCF_TutorSubmitDate DATE,
BCF_SupAppDate DATE,
BCF_DUDSAppDate DATE,
BCF_GOVerifDate DATE,
BCF_Status VARCHAR2(2),
BCF_WorkDetails WorkDetailTable_T

)
/
CREATE TABLE BlueClaimForm OF BlueClaimForm_T
(

BCF_Oid NOT NULL PRIMARY KEY,
BCF_TutorSubmitDate NOT NULL

)

NESTED TABLE BCF_WorkDetails STORE AS BCF_WorkDetails_Tab;

96 Chateau, Leroy, Rahayu & Taniar

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

were not also a Lecturer) or a partition (i.e. a staff must be of one and only one of
the subtypes). But in our case, since it is a union inheritance, this is not necessary.
Figure 7 shows the type and table creation for the inheritance relationship. Note that
only one object type PermStaff_T was created for DUDS, GO and Lecturer because
they have the same attributes.

CREATE OR REPLACE TYPE Staff_T AS OBJECT
(

Staff_Id NUMBER(8),
Staff_Userid VARCHAR2(8),
Staff_Name VARCHAR2(40),
Staff_Password VARCHAR2(20),
Staff_Email VARCHAR2(60)

)
/
CREATE OR REPLACE TYPE Tutor_T AS OBJECT
(

Staff_Id NUMBER(8),
Tutor_Qualif VARCHAR2(20),
Tutor_CourseEnrolled VARCHAR2(20),
Tutor_DayPhoneNo VARCHAR2(20)

)
/
CREATE OR REPLACE TYPE PermStaff_T AS OBJECT
(

Staff_Id NUMBER(8),
PermStaff_Position VARCHAR2(10)

)
/
CREATE TABLE Staff OF Staff_T
(

Staff_Id NOT NULL PRIMARY KEY
);
CREATE TABLE Tutor OF Tutor_T
(
Staff_Id NOT NULL PRIMARY KEY REFERENCES Staff (Staff_Id)
);
CREATE TABLE Lecturer OF PermStaff_T
(
Staff_Id NOT NULL PRIMARY KEY REFERENCES Staff (Staff_Id)
);
CREATE TABLE GO OF PermStaff_T
(
Staff_Id NOT NULL PRIMARY KEY REFERENCES Staff (Staff_Id)
);
CREATE TABLE DUDS OF PermStaff_T
(
Staff_Id NOT NULL PRIMARY KEY REFERENCES Staff (Staff_Id)
);

Figure 7: Inheritance relationships

Practical Case Study of a Web-Based Tutor Payment System 97

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

LOGIC LAYER: DATABASE LOGIC (PL/SQL)
The database logic layer contains all the procedures necessary to insert and

retrieve data from the database. It is the only access point to the database for the
users (the Web-application). In other words, a user cannot create applications that
run unauthorized operations. In the following sections, we will examine several
stored-procedures which gradually become more complex.

Simple Insertion
Figure 8 shows a simple procedure that consists of creating a new subject. The

Add_New_Subject procedure receives necessary parameters, which are the actual
value of each attribute in table Subject. The procedure then calls the Insert Into
statement to actually insert these attribute values into the corresponding attributes.

The only particularity of this procedure is the use of a sequence to increment the
Subject_Oid automatically. Note that we first need to create the sequence as follows:

CREATE SEQUENCE Subject_Oid_Seq;

Simple Retrieval
We will now explain the procedure for retrieving a list of data. Two major points

have to be taken into account: (i) the use of the cursor in retrieving a list of
information; and subsequently, (ii) the use of a package. Firstly, we need to create
a package header that allows the declaration of a new cursor and contains the
procedure’s header. Figure 9 shows a package specification, which contains a
procedure called Get_Tutor_Info that requires two parameters, where the second
parameter is also an output parameter.

After a package specification is defined, we need to declare the package body.
Figure 10 gives the package body of the package specification shown in Figure 9.
Basically, in the Get_Tutor_Info procedure, a cursor that contains the SQL to
retrieve the requested data is open.

PROCEDURE Add_New_Subject
(P_Code Subject.Subject_Code%TYPE,

P_Desc Subject.Subject_Desc%TYPE,
P_Level Subject.Subject_Level%TYPE,
P_Sem Subject.Subject_Sem%TYPE,
P_Year Subject.Subject_Year%TYPE

) IS
BEGIN
INSERT INTO Subject
(Subject_Oid, Subject_Code, Subject_Desc,Subject_Level,
Subject_Sem, Subject_Year)
VALUES
(Subject_Oid_Seq.NEXTVAL,P_Code,P_Desc, P_Level, P_Sem, P_Year);
END Add_New_Subject;

Figure 8: Simple procedure for insertion

98 Chateau, Leroy, Rahayu & Taniar

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Insertion in a Nested Table
The insertion of data into a nested table with procedures does not impose any

particular difficulty. However, we have to take into account the case where the
nested table does not contain any information prior to the insertion of data. Therefore,
we first need to test in the procedure the existence of the nested table. To avoid this,
we could automatically create a line with blank information in the nested table to
insure its existence. Figure 11 shows how to test the existence of information in the
nested table before proceeding to the insertion.

We do not insert the information in the table BlueClaimForm and in the nested
table WorkDetail at the same time. This is because we cannot tell in advance the
number of rows that the user will need to insert in the nested table for a particular
blue claim form. It is better to make it possible for users to use a specific procedure
in order to insert information in the nested table.

Another point is the use of function Max_Work_Oid instead of using a
sequence. The only aim of this function is to provide a ‘sequence’ of numbers for a

CREATE OR REPLACE PACKAGE TPS AS
TYPE TPS_Cursor IS REF CURSOR;
PROCEDURE Get_Tutor_Info
(

P_Staffid Tutor.Staff_Id%TYPE,
P_Tutor_Curs IN OUT TPS_Cursor
);

END TPS;

Figure 9: Package specification

CREATE OR REPLACE PACKAGE BODY TPS
AS
PROCEDURE Get_Tutor_Info(

P_Staffid Tutor.Staff_Id%TYPE,
P_Tutor_Curs IN OUT TPS_Cursor

)
IS
BEGIN

OPEN P_Tutor_Curs FOR
SELECT S.Staff_Name AS Name,

S.Staff_Userid AS Userid,
T.Tutor_Qualif AS Qualif

FROM Tutor T,
Staff S

WHERE S.Staff_Id = T.Staff_Id
AND T.Staff_Id = P_Staffid;

END Get_Tutor_Info;
END TPS;

Figure 10: Package body for simple retrieval

Practical Case Study of a Web-Based Tutor Payment System 99

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

PROCEDURE Add_New_Workdetail
(P_Bcf_Oid BlueClaimForm.Bcf_Oid%TYPE,

P_Date DATE,
P_Begin VARCHAR2,
P_Hours NUMBER,
P_Acttype VARCHAR2,
P_Comment VARCHAR2

)
IS
BEGIN

DECLARE
WDET WorkDetailTable_T;

BEGIN
SELECT Bcf_WorkDetails INTO WDET
FROM BlueClaimForm
WHERE Bcf_Oid = P_Bcf_Oid;
IF WDET IS NULL THEN

UPDATE BlueClaimForm
SET Bcf_WorkDetails =

WorkDetailTable_T(WorkDetail_T
(1,
P_Date,
TO_DATE(’01-01-01' ||
P_Begin,’DD-MM-YY HH24:MI’),
P_Hours,
P_ActType,
P_Comment))

WHERE Bcf_Oid = P_Bcf_Oid;
ELSE

INSERT INTO THE (
SELECT Bcf_WorkDetails
FROM BlueClaimForm
WHERE BCF_Oid = P_BCF_Oid)

(Work_Oid,
Work_Date,
Work_Begin,
Work_NoHours,
Work_ActivityType,
Work_Comment)

VALUES
(MAX_Works_Oid(P_BCF_Oid),
P_Date,
TO_DATE(’01-01-01' || P_Begin,
‘DD-MM-YY HH24:MI’),
P_Hours,
P_ActType,
P_Comment);

END IF;
END;

END Add_New_WorkDetail;

Figure 11: Insertion into a nested table

100 Chateau, Leroy, Rahayu & Taniar

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

given blue claim form. If we had used a single sequence, the number would have
increased in function of all the blue claim forms inserted, which is not what we
wanted! We would have had to construct dynamically those sequences needed to
obtain the same result as we did with our function.

Retrieval from a Nested Table
To illustrate retrieval from a nest table, we are going to take the case of tutor’s

activities. The activities information is kept in the nested table Activities of Tutor
Account. The Figure 12 shows how to access these data.

Without using a procedure, it is also possible to use the technique of Figure 13
called “unnesting technique”.

Insertion with REF
In this section, we will show how to insert some data in a table containing REF.

To illustrate this, we will use the following example: for a given TutorAccount (i.e.,
for a specific Tutor and for a specific Subject), a Tutor wants to submit a new
BlueClaimForm. The process consists of inserting into the BlueClaimForm table the
value of the attributes (i.e., school, classification code, tutorSubmitDate, …). These
values are passed as parameters to a procedure called Add_New_BCF. The
TutorAccount ID is also given as a parameter to know to which TutorAccount this
BlueClaimForm is associated with. Figure 14 shows the procedure Add_New_BCF.

There are two main points to take into consideration. Firstly, in a stored procedure,
we need to define a variable (in Figure 14 it is called TA_REF) to be able to use REF.
In a stand-alone query (i.e., not in a stored-procedure), we should use REF in the INSERT
INTO command, as is shown in Figure 15. The bold part of Figure 16 presents how to
use REF in a stored procedure (using an intermediate variable TA_REF).

PROCEDURE Get_Activities(P_Ta_Oid Tutoraccount.Ta_Oid%TYPE,
P_Act_Curs IN OUT Tps_Cursor)

IS
BEGIN
OPEN P_Act_Curs FOR

SELECT A.Activity_Hours AS Hours
FROM THE (SELECT T.Ta_Activities

 FROM TutorAccount T
 WHERE T.Ta_Oid = P_Ta_Oid) A;

END Get_Activities;

Figure 12: Retrieval from a nested table

SELECT A.Activity_Hours AS Hours
FROM TutorAccount T, TABLE(T.Ta_Activities) A
WHERE T.Ta_Oid = P_Ta_Oid;

Figure 13: Retrieval with unnesting technique

Practical Case Study of a Web-Based Tutor Payment System 101

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Figure 14: Insertion with REF
PROCEDURE Add_New_Bcf
(
P_School BlueClaimForm.Bcf_School%TYPE,
P_Loc BlueClaimForm.Bcf_Location%TYPE,
P_Code BlueClaimForm.Bcf_ClassifCode%TYPE,
P_Tsd BlueClaimForm.Bcf_TutorSubmitDate%TYPE,
P_Ta_Oid TutorAccount.Ta_Oid%TYPE,
P_CursOid IN OUT TPS_Cursor
)
IS
BEGIN

DECLARE
V_BCF_Oid NUMBER;
TA_REF REF TutorAccount_T;

BEGIN
SELECT REF(T) INTO TA_REF
FROM TutorAccount T
WHERE T.TA_Oid = P_TA_Oid;

SELECT BCF_Oid_Seq.NEXTVAL INTO V_Bcf_Oid FROM DUAL;

OPEN P_CursOid FOR
SELECT BCF_Oid_SEQ.CurVal AS BCFOid FROM DUAL;

INSERT INTO BlueClaimForm(
BCF_Oid,
BCF_School,
BCF_Location,
BCF_ClassifCode,
BCF_TutorSubmitDate,
BCF_Status,
BCF_TutorAccount)

VALUES (V_BCF_Oid,
P_School,
P_Loc,
P_Code,
P_Tsd,
‘S1’,
TA_REF);

END;
END ADD_NEW_BCF;

INSERT INTO BlueClaimForm(— same as above)
VALUES (V_BCF_Oid, P_School, P_Loc, P_Code, P_TSD, ‘S1’,

(SELECT REF(T)
FROM TutorAccount T
WHERE T.TA_Oid = P_TA_Oid));

Figure 15: The usual way for using REF

102 Chateau, Leroy, Rahayu & Taniar

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

The second point is the use of cursor P_CURSOID. As we use two different
procedures to insert data in the BlueClaimForm and in the nested table WorkDetail
associated with this BlueClaimForm, we need to retrieve BCF_Oid created with the
AddNewBCF procedure.

Figure 17 may seem to be a solution but has two drawbacks. Firstly, an
affectation like the one in bold is not supported by Oracle when used in a stored
procedure. Furthermore, the OUT parameter provokes an error in PHP. It works
well until the P_BCFOid reaches 9 but as soon as the number is greater than 9, PHP
collapses with an error: “OCIStmtExecute ORA-06502: PL/SQL: Numeric or Value
error, character string buffer too small”. The solution in Figure 18 was to use the Dual
table and a cursor.

PROCEDURE Add_New_BCF
(
P_TA_Oid TutorAccount.TA_Oid%TYPE,
P_CursOid IN OUT TPS_Cursor
)
IS
BEGIN

DECLARE
TA_REF REF TutorAccount_T;

BEGIN
SELECT REF(T) INTO TA_REF
FROM TutorAccount T
WHERE T.TA_Oid = P_TA_Oid;

INSERT INTO BlueClaimForm(BCF_TutorAccount)
VALUES (TA_REF);
END;

END Add_New_BCF;

Figure 16: Using REF in a procedure

PROCEDURE Add_New_BCF
(
P_TA_Oid TutorAccount.TA_Oid%TYPE,
P_BCFOid OUT NUMBER
)
IS
 BEGIN

P_BCFOid := BCF_Seq.NEXTVAL;

INSERT INTO BlueClaimForm(BCF_Oid)
VALUES (P_BCF_Oid);

 END;
END Add_New_Bcf;

Figure 17: Return value of a procedure with an OUT parameter

Practical Case Study of a Web-Based Tutor Payment System 103

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Member Functions
We use some functions to execute specific operations like the calculation of

budget. It would have been worth encapsulating these functions in the class as
member functions (A member function is a function that may only be invoked by the
object it belongs to). This would have enforced the concept of object-encapsulation.

A member function can be declared in a create type, as shown in Figure 19. This
works well, as long as we do not use stored procedures; otherwise, an “invalid
number error” occurs. To resolve this problem, we create a standalone function (see
Figure 20). The parameter Tutor Account ID is now required to indicate on which
tutor account the operations must be carried out. Note that we now declare a variable
V_Budget. Since we are no longer inside a class, we need to perform a selection in
the TutorAccount table to calculate the budget.

LOGIC LAYER: APPLICATION LOGIC (PHP)
The access module in PHP is composed of functions that can be gathered in a

PHP class. Each function has the aim to access one or more stored procedures from
the Oracle database. There are two examples of functions: one to call a procedure
that inserts data, the other one to retrieve a list of data (the content of a cursor sent
back by the stored procedure).

Figure 21 shows how to call the procedure to insert a new tutor. The function
takes the parameters we are going to insert into the tutor table, and a parameter for
the connection to the database ($connection has been obtained using the function
ocilogon). The function first creates a variable $sql with the code to call the stored

PROCEDURE Add_New_Bcf
(
P_CursOid IN OUT TPS_Cursor
)
IS
BEGIN

DECLARE
V_BCF_Oid NUMBER;

BEGIN
SELECT BCF_Oid_Seq.NEXTVAL INTO V_BCF_Oid FROM DUAL;

OPEN P_CursOid FOR
SELECT BCF_Oid_Seq.CurrVal AS BCFOid FROM DUAL;

INSERT INTO BlueClaimForm(BCF_Oid)
VALUES (V_BCF_Ood);

END;
END Add_New_Bcf;

Figure 18: Return values in a procedure with a cursor

104 Chateau, Leroy, Rahayu & Taniar

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

procedure Insert_Tutor of the package TPS. The statement begins with the keyword
BEGIN and ends with the keyword END followed by a semi colon. Once this
statement is created, the function executes a PHP function OCIParse to create the
executable code and keep it in variable $stmt. Then, it is necessary to bind the PHP
variable to the parameters of the procedure. This is done with the OCIBindByName
function. Finally, the executable code of $stmt is executed by OCIExecute and
memory space is freed by OCIFreeStatement. For more information on PHP
functions see the PHP official Website and the McCarty’s book (2001).

Figure 22 describes how to call a procedure for retrieving the list of all subjects
from the database. We will see how to call this function and use the cursor in the
presentation part. The Get_Subjects stored-procedure has a cursor for parameter.
This sort of parameter needs to be bind into a special variable in PHP. The variable
must be declared using the OCINewCursor function. Once the declaration is done,

Figure 19: A member function

CREATE OR REPLACE TYPE TutorAccount_T AS OBJECT
(

TA_Oid NUMBER(4),
TA_Rate NUMBER(4,2),
MEMBER FUNCTION Calc_Budget RETURN NUMBER

)
/
CREATE OR REPLACE TYPE BODY TutorAccount_T IS

MEMBER FUNCTION Calc_Budget RETURN NUMBER IS
V_HoursWeek NUMBER;

BEGIN
— Calc_Hours calculate the number of hours worked per week

V_HoursWeek := Calc_Hours(TA_Oid);
RETURN TA_NoWeeks*V_HoursWeek*TA_Rate;

END Calc_Budget;
END
/

FUNCTION Calc_Budget(P_TA_Oid TutorAccount.TA_Oid%TYPE) RETURN NUMBER
IS

V_Budget NUMBER;
V_HoursWeek NUMBER;

BEGIN
V_HoursWeek := Calc_Hours(P_TA_Oid);
SELECT (TA_NoWeeks*V_HoursWeek*TA_Rate) INTO V_Budget
FROM TutorAccount
WHERE TA_Oid = P_TA_Oid;

RETURN V_Budget;
END Calc_Budget;

Figure 20: Standalone function

Practical Case Study of a Web-Based Tutor Payment System 105

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.
it is possible to bind the PHP variable created ($cursor in Figure 22) with the
parameter of the stored-procedure (“:S_C” in Figure 22). In the stored procedure,
the cursor stores the result of the query proceed (a select statement). The PHP
variable also needs to be a cursor so that it is possible to iterate through the list of
values returned (by the “:S_C” cursor). Moreover, the command OCIExecute must
be proceeded on the cursor created in PHP (OCIExecute($cursor)), once the stored
procedure has been executed. Finally, the memory space reserved for the statement
may be freed (OCIFreeStatement($stmt)), and the function returns the PHP cursor
variable. This variable will be used when the GetAllSubjects($connection) function
is called. It will contain all the values returned by the query, and it will be possible to
iterate through the values, get a particular value and get the number of values in the
variable. We will see an example of such a call in the presentation layer (Figure 27).

As stated earlier in this chapter, our implementation architecture is based on the
use of stored procedures. The importance of stored procedure can be highlighted by
describing its opposite. First of all, let us examine the InsertTutor function as shown
in Figure 23. The bold part of the function shows how it is different from the call of
a stored-procedure: Now the statement is not a call to a stored procedure, but a query
to be executed directly on the database (an INSERT). The parameters of the query
need to be bound to PHP variables (OCIBindByName), as it also would have been
done for a stored procedure. However, each time a client is going to run this function,
the whole statement (in the $sql variable) will be transmitted. As it is only a simple
query, the amount of information transmitted in comparison with a stored procedure

Figure 21: PHP function calling a PL/SQL prcedure for insertion
function InsertTutor($connection,
 $staffid,
 $qualif,
 $enrol,
 $phone)
{

— PL/SQL to call the procedure INSERT_TUTOR from the package TPS.
 $sql = “BEGIN “ .
 “TPS.Insert_Tutor(:P_StaffId, :P_Qualif, :P_Enrol,

:P_Phone);” .
 “END;” ;

— Prepare the statement to call the procedure
 $stmt = OCIParse($connection, $sql);

— Bind the PHP variables with the parameters of the procedure
 OCIBindByName($stmt, “:P_StaffId”, &$staffid, -1);
 OCIBindbyname($stmt, “:P_Qualif”, &$qualif, -1);
 OCIBindbyname($stmt, “:P_Enrol”, &$enrol, -1);
 OCIBindbyname($stmt, “:P_Phone”, &$phone, -1);

— Execute the prepared statement
 OCIExecute($stmt);

— Free the statement
 OCIFreeStatement($stmt);
}

106 Chateau, Leroy, Rahayu & Taniar

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.
is quite the same. However, if the statement were more complex (per example with
a loop), the statement for the stored procedure would be transmitted only once (doing
the loop inside the stored procedure), whereas the statement for the query would be
transmitted the number of iterations of the loop.

Figure 23 gives an example of performing one operation; that is, inserting a
record into table Tutor. Now consider a procedure with more than one operation.
Figure 24 shows UpdateSubject procedure that contains several SQL statements. In
this stored procedure, four update statements are executed. Figure 25 shows the
PHP that calls this procedure. As has been shown previously, the SQL statement to
run the stored procedure is built first and stored in a PHP variable. Then, the
statement is prepared for execution (OCIParse) and each of the parameters of the
stored procedure is linked to a PHP variable containing the values to pass to the
function. Finally, the prepared statement is executed (OCIExecute) and the memory
space reserved for execution is freed. These steps are executed only once despite
the fact that four different SQL statements will be executed on the database.

On the other hand, Figure 26 shows what would have been necessary if a stored
procedure had not been used. In this case, the steps (defining the query in a PHP
variable, parsing the query before execution, binding the parameters of the query to
PHP variables, executing the prepared statement and freeing the memory) need to
be repeated for each of the four SQL statements. This example illustrates our point
with a few simple queries to perform a task; however, the more complex the task,
the more interesting the use of stored procedures becomes.

function GetAllSubjects($connection)
{

— write the PL/SQL statement
 $sql = “BEGIN “.
 “TPS.Get_Subjects(:S_C); “.
 “END; “;

— Declare the cursor
 $cursor = OCINewCursor($connection);

— Prepare the statement for execution
 $stmt = OCIParse($connection, $sql);

— Bind the PL/SQL cursor with the PHP variable
 OCIBindByName($stmt, “:S_C”, &$cursor, -1, OCI_B_CURSOR);

— Execute the statement prepared
 OCIExecute($stmt);

— Execute the cursor
 OCIExecute($cursor);

— Free the prepared statement
 OCIFreeStatement($stmt);

— Return the cursor (it will be used by the caller of the function)
 return $cursor;
}

Figure 22: PHP funtion calling a PL/SQL procedure for retrieving values

Practical Case Study of a Web-Based Tutor Payment System 107

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Figure 23: PHP function doing an insertion
function InsertTutor($connection,
 $staffid,
 $qualif,
 $enrol,
 $phone)
{

— PL/SQL to call the procedure INSERT_TUTOR from the package TPS.
 $sql = “ INSERT INTO TUTOR “ .

 “(STAFF_ID,TUTOR_QUALIF,TUTOR_COURSEENROLLED,TUTOR_DAYPHONENO)”.
“ VALUES “.

“ (:P_StaffId, : P_Qualif, : P_Enrol, :P_Phone);” ;
— Prepare the statement to call the procedure

 $stmt = OCIParse($connection, $sql);
— Bind the PHP variables with the parameters

 OCIBindByName($stmt, “:P_StaffId”, &$staffid, -1);
 OCIBindbyname($stmt, “:P_Qualif”, &$qualif, -1);
 OCIBindbyname($stmt, “:P_Enrol”, &$enrol, -1);
 OCIBindbyname($stmt, “:P_Phone”, &$phone, -1);

— Execute the prepared statement
 OCIExecute($stmt);

— Free the statement
 OCIFreeStatement($stmt);
}

Figure 24: Multi-operations procedure
PROCEDURE UpdateSubject(P_Oid Subject.Subject_Oid%TYPE,

 P_Code Subject.Subject_Code%TYPE,
 P_Level Subject.Subject_Level%TYPE,
 P_Sem Subject.Subject_Sem%TYPE,
 P_Desc Subject.Subject_Desc%TYPE
)

IS
BEGIN

UPDATE Subject
SET Subject_Code = P_Code
WHERE Subject_Oid = P_Oid;

UPDATE Subject
SET Subject_Level = P_Level
WHERE Subject_Oid = P_Oid;

UPDATE Subject
SET Subject_Sem = P_Sem
WHERE Subject_Oid = P_Oid;

UPDATE Subject
SET Subject_Desc = P_Desc
WHERE Subject_Oid = P_Oid;

END UpdateSubject;

108 Chateau, Leroy, Rahayu & Taniar

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.PRESENTATION LAYER
This section shows how to use logic components to present and retrieve data

to/from the user. The presentation component is responsible for displaying informa-
tion it receives from the logic component (i.e., using tables, graphics, text, …), as well
as retrieving the data and actions of the user (i.e., using forms). Then, we are going
to show how to call the function getAllSubjects to present a list of subjects to the user
and insertTutor to insert the information entered within a form by the user.

Figure 27 shows how to display a selection list with all the subjects. The
SELECT tag allows us to build a combo-box on a Web page. The content of the
combo-box is defined with the OPTION tag. In this example, the content of the
combo-box is the list of all the subjects available. To obtain the list of all the subjects,
the function GetAllSubjects is called. This function executes a stored procedure to
retrieve the list of the subjects in a cursor and returns the cursor. The OCIFetch
function in PHP positions the index of the cursor on the current row and returns false
if there are no more rows available in the cursor. The values of the row are retrieved
with the function OCIResult taking as parameters the cursor (positioned on the
current row) and the column’s name of the value.

The OPTION tag is constructed and echoed while there are values available.
Figure 28 details the call of the insertTutor function defined above. The first part

of the code (HTML) builds a part of the form displayed for the user (Figure 29). The
INPUT tags have names that are the same as the PHP names used as parameters
of the inserTutor function. Then, the user enters its information in the text fields.

Figure 25: PHP function calling the UpdateSubject procedure
function updateSubject($connection, $subjectoid, $code, $desc)
{
/* The subject code used at the University was composed by several

information. For example CSE42ADB means a fourth year subject,
second semester in the computer science departement in advanced
databases. So to determine the level and semester we extract the
third and fourth character of the subject code.*/
$level = $code{3};
$sem = $code{4};
$sql = “BEGIN “ .

“ TPS.UpdateSubject(:P_Oid, :P_Code, :P_Level, :P_Sem,
:P_Desc); “ .

“END; “ ;
$stmt = OCIParse($connection, $sql);
OCIBindByName($stmt, “:P_Oid”, &$subjectoid, -1);
OCIBindByName($stmt, “:P_Code”, &$code, -1);
OCIBindByName($stmt, “:P_Desc”, &$desc, -1);
OCIBindByName($stmt, “:P_Level”, &$level,-1);
OCIBindByname($stmt, “:P_Sem”, &$sem, -1);
OCIExecute($stmt);
OCIFreeStatement($stmt);

}

Practical Case Study of a Web-Based Tutor Payment System 109

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

When the user clicks on the button to submit the form, the data is stored in the PHP
variables associated with each field’s name, and the insertTutor function is called
with these variables.

Figure 26: UpdateSubject function (not calling a PL/SQL procedure)
function updateSubject($connection, $subjectoid, $code, $desc)
{

$level = $code{3};
$sem = $code{4};
$sql = “UPDATE Subject” .

“SET Subject_Code = :P_Code” .
“WHERE Subject_Oid = :P_Oid;”;

$stmt = OCIParse($connection, $sql);

OCIBindByName($stmt, “:P_Oid”, &$subjectoid, -1);
OCIBindByName($stmt, “:P_Code”, &$code, -1);
OCIExecute($stmt);
OCIFreeStatement($stmt);

$sql = “UPDATE Subject” .
“SET Subject_Level = :P_Level” .
“WHERE Subject_Oid = :P_Oid;”;

$stmt = OCIParse($connection, $sql);
OCIBindByName($stmt, “:P_LEVEL”, &$level,-1);
OCIBindByName($stmt, “:P_Oid”, &$subjectoid, -1);
OCIExecute($stmt);
OCIFreeStatement($stmt);

$sql = “UPDATE Subject” .
“SET Subject_Sem = :P_Sem” .
“WHERE Subject_Oid = :P_Oid;”;

$stmt = OCIParse($connection, $sql);
OCIBindByname($stmt, “:P_SEM”, &$sem, -1);
OCIBindByName($stmt, “:P_Oid”, &$subjectoid, -1);
OCIExecute($stmt);
OCIFreeStatement($stmt);

$sql = “UPDATE Subject” .
“SET Subject_Level = :P_Level” .
“WHERE Subject_Oid = :P_Oid;”;

$stmt = OCIParse($connection, $sql);
OCIBindByName($stmt, “:P_Desc”, &$desc, -1);
OCIBindByName($stmt, “:P_Oid”, &$subjectoid, -1);
OCIExecute($stmt);
OCIFreeStatement($stmt);

}

110 Chateau, Leroy, Rahayu & Taniar

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Two simple examples illustrating how to display information of the database in
a Web page have just been studied. We are now going to give some tips that could
enhance the presentation and the quality of a Web-site as well as examples of the
result obtained for this application. The presentation’s first rule is to simplify the
user’s task as much as possible. The number of clicks the user has to perform to

Figure 27: Using a PHP function retrieving information
<SELECT>
<?php
/* Call the function getAllSubjects with connection parameter and put

the return value (the content of the query result) in the variable
$cursor */

$cursor=GetAllSubjects($connection);
/* Loop on all the elements of the cursor */
while(OCIFetch(&$cursor))
{
/* SubjectOid and SubjectCode are the name defined in the procedure

*/
$subjectoid = OCIResult($cursor, “SubjectOid”);
$subjectcode = OCIResult($cursor, “SubjectCode”);
/* add the retrieve element in the select */
echo “<OPTION VALUE= $subjectoid> $subjectcode </OPTION>”;
}
/* Free the cursor */
OCIFreeCursor($cursor);
?>
</SELECT>

// First we define a simple form to retrieve the information
<FORM NAME=”insertnewstaff” ACTION=”addnewStaff.php” METHOD=”POST”>
<TABLE><TR>
<TD>Staff id: </TD>
<TD><INPUT TYPE=”TEXT” NAME=”id”></TD> </TR>
<TR><TD>Qualification: </TD>
<TD><INPUT TYPE=”TEXT” NAME=”qualif”></TD>
<TD>Course Enrolled: </TD>
<TD><INPUT TYPE=”TEXT” NAME= “enrol”></TD>
</TR><TR>
<TD>Day Phone No: </TD><TD><INPUT TYPE=”TEXT” NAME= “phone”></TD>
</TR> // add the button to submit the form here.
</TABLE>
</FORM>
// When the form is submitted, it calls the file AddNewStaff.php that

contains the following code.
<?php
insertTutor($connection, $id, $qualif, $enrol, $phone);
?>

Figure 28: Using a PHP function to insert information

Practical Case Study of a Web-Based Tutor Payment System 111

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

access something, or the number of fields he has to fill by himself, must be reduced
to an absolute minimum. For example, the use of combo-boxes or check-boxes is
usually preferable to text fields. The coherence of the database may be enhanced
with this because it restricts the user’s choice for entering his data. As an example,
a date field will never have the same form if left to the user’s initiative, but the use
of combo-boxes (one for the day, one for the month and another one for the year)
will allow the construction of the date format in a consistent manner. Figure 30 shows
how we have used combo-boxes to propose a list of available positions for lecturers,
and check-boxes for the choice of the subjects a lecturer may teach.

It is important to always recall the information the user has already entered, in
particular when there is more than one step in a process. The current information

Figure 29: Creation of a new tutor (insertion)

Figure 30: Creation of a new lecturer

112 Chateau, Leroy, Rahayu & Taniar

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

should nevertheless be clearly displayed. Figure 31 represents the creation of a new
Blue Claim Form and follows the previous advices.

The display of summaries in tables is often a problem for the user when these
tables have many lines and columns. The user will have difficulty finding the right
line or the right column, and it is generally very annoying to be obliged to go back to
the top of a table each time you want to see the title of the columns. We therefore
recommend that titles be repeated (all the 15 lines per example taking into account
the fact that some users may not have very high-definition screens). Figures 32 and
33 are, respectively, the representation and the source code that illustrate this point.
To build the table, we need to retrieve the data from the database, then as explained
above, we use a function that returns a cursor with rows of data (the function runs
a stored procedure on the database that fills the cursor variable with rows of data).
For each row of data in the cursor, we print a line with the values of the row and if
the counter ($nbrows) initialized at zero at the beginning and incremented for each
line is odd, the color for the line is set to grey ($color = #E0E0E0) else the color of
the row is set to white ($color = #FFFFFF). To define the color of a line we set the
value of the parameter BGCOLOR of the tag TR to $color (BGCOLOR = “<?php
Echo $color ?>”).

We will now consider more complex fields that show each of the points we have
previously discussed.

Figure 34 shows a report that is given to the general office. This report
summarises each of the tutor claims for the period, the total amount that has been
paid to date, and the current balance as well as many other useful pieces of
information.

Figure 35 shows the first screen that a tutor sees when he logs into the system.
This gives a summary of all claims that he has made so far with their status shown
by a color code. It is possible to view the details of a claim (clicking on the view
button), or to update a claim either rejected or not already approved (clicking on the
update button).

Figure 36 presents the screen shown to the tutor after clicking on the update
button of Figure 35. All the previous data entered in the claim have been selected by
default in combo-boxes or inserted in text fields. The tutor may delete a row by

Figure 31: Creation of a new blue claim form

Practical Case Study of a Web-Based Tutor Payment System 113

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Figure 32: A table using alternate colours to display lines

Figure 33: How to alternate the color of the lines in a table
<TABLE BORDER=”1" ALIGN=”CENTER”>

<TR>
 <TH>Staff ID</TH>
 // Idem for other titles
</TR>

<?php
$nbrows = 0;
// The function getAllLecturers retrieve the information on
lecturers
$cursorInfo = getAllLecturers($connection);
while(OCIFetch($cursorInfo))
{

$nbrows++;
if($nbrows%2)

$color = “#E0E0E0”;
else

 $color = “#FFFFFF”;
$lectid = OCIResult($cursorInfo, “STAFFID”);
$lectname = OCIResult($cursorInfo, “NAME”);
// Idem for other arguments

?>
<TR BGCOLOR=”<?php echo $color ?>” >
<TD><?php echo $lectid ?></TD>
<TD><?php echo $lectname ?></TD>
// Idem for other cells
</TR>

<?php
}
OCIFreeCursor($cursorInfo);

?>
</TABLE>

114 Chateau, Leroy, Rahayu & Taniar

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Figure 34: The report shown to the general office

Figure 35: The claims status shown to the tutors

checking the corresponding checkbox in the delete column. He may also add one or
more new rows or modify the existing one. The user is restricted in the choices of
values he may enter in the combo-boxes. The three columns from, to and hours are
related so that a change in one of them is reflected in one of the others.

Figure 36: The update of a blue claim form

Practical Case Study of a Web-Based Tutor Payment System 115

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

We allow the general office the possibility of updating a budget for a tutor.
Figure 37 shows the form the general office encounters. The information related to
the tutor is reiterated at the top of the screen. All the information entered during the
creation of the budget is already shown: a change in the Activity table for the hours
changed automatically, the weekly total number of hours and the amount of the
budget. There again, when possible, the choices of the user have been restricted with
combo-boxes (dates, supervisor name, DUDS name).

Figure 37: Update of an allocated budget

116 Chateau, Leroy, Rahayu & Taniar

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

DISCUSSIONS
In this section, we present discussions on two particular aspects of the

implementation: (i) architectural paradigm as previously shown in Figure 2, and (ii)
evaluation of an object-relational paradigm.

Architectural Paradigm
The benefits of the three-layer architecture need to be emphasized. This allows

the architecture to be divided into several modules that will be easily replaceable with
others. For example:

One might want to develop a user interface for the Web and another one for a
standalone client. In this case, we will have to replace only the presentation module
of the architecture instead of having to develop the whole application again.

Similarly, one might want many applications to have access to the database;
in this case, only the logic layer of this application will need to be changed. They
are all going to access the database through the interface given by the database
access module.

Finally, any changes to the database could be done without having to change the
applications as long as the interface is not changed (given by the procedure in our
case); furthermore, these changes will be taken into account in all the applications
dependent on this module.

From the perspective of software engineering, another advantage of such
architecture is that it allows us to allocate different modules to different teams that
can work simultaneously. The main requirements are a very clear design and a
definition of the interfaces between the modules (i.e. name of the functions or
procedures used, their parameters and what they return).

As demonstrated in Figure 2, PL/SQL has been used in the database logic layer
using stored procedures. There are two ways to implement the queries: either by
directly performing the query in PHP, or by using stored procedures called by PHP
functions. We preferred the second method for several reasons:
• For purposes of security: By keeping an object-oriented point of view, stored

procedures allow us to restrict the database operations that users can perform
by allowing them to access data only through procedures and functions. The
restriction of access is especially useful in the case of a Web-database,
allowing us to create a “Web-user” for the database that will only have the
rights to run the procedures and functions.

• For performance: Stored procedure can improve database performance
because it reduces the amount of information that must be sent over network
compared to issuing individual SQL statements.

• For maintenance: Stored procedures may be modified and the changes will be
reflected in the application without a need to recompile.

• For memory usage: In the case of a Web-based application, the number of
users is generally important. Then, as only one copy of the stored procedures

Practical Case Study of a Web-Based Tutor Payment System 117

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

needs to be loaded into memory for execution by multiple users, it reduces the
amount of memory needed.
Stored procedures may also be very useful when several applications are using

the same database. They can be shared among applications, eliminating duplicate
code, coding errors, increasing overall productivity, and also enhancing the integrity
providing consistency of data access across all applications.

Stored procedures may be very useful, but they also have some drawbacks.
We have to keep in mind that they do not allow transactional synchronization
(two-phase commit) between stored procedures; the transaction process is
handled only on single procedures. Another problem is the non-standardization
of stored-procedures: each vendor has its own implementation and language,
which is not compatible with others.

Evaluation of Object-Relational Paradigm
The online claim system uses Oracle Extended Object Relational (EOR)

features to implement the online claim system. EOR allows more direct mapping
between the modeling and the implementation. Some of the object-oriented features,
like inheritance, are not directly supported by this version of Oracle. The ability to
create custom data type makes it easy for us to write stored procedures that directly
use that type to define a data type.

We found out that making changes to the EOR transformation is much easier
than in an entity-relationship (ER), because in EOR we use REF to represent an
association. In ER, if for example a Primary Key (PK) of a table is changed, we need
to change the Foreign Key (FK) of all tables referencing to this PK; whereas in EOR,
this is not necessary because of REF.

In performing a query through embedded SQL in PHP or through stored procedure,
we found out the query is simpler and easier to modify. For example to query, join the
BlueClaimForm class and Subject class, we need only to retrieve through path expression
without the need to perform an explicit join (the BlueClaimForm class has a REF called
BCF_TutorAccount on TutorAccount class, and the TutorAccount class has a REF
called TA_Subject on Subject class). Below is an example:

Select bcf.BCF_TutorAccount.TA_Subject.Subject_Code
From BlueClaimForm bcf;

But, if we want only to retrieve BCF_TutorAccount from BlueClaimForm
class, using ER makes it easier to retrieve and more understandable. The reference
value stored in BCF_TutorAccount reference field in BlueClaimForm class is not
legible and is difficult to debug even if the value stored is correct or valid. The
reference value is stored as 16 bytes row object id.

Oracle EOR has a few limitations that we face in our implementations. We
highlight them below.

Dangling Values
If the object to which a REF pointed is deleted, the REF will be left dangling

(pointing to a nonexistent object). Oracle provides the IS-DANGLING predicate to

118 Chateau, Leroy, Rahayu & Taniar

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

check whether a REF is dangling. In our implementation, this will make it difficult to
update rows that have references to another object. For example, a tutor has
submitted a claim for a subject. If a staff member accidentally deleted that subject
from the offered subject table, and later realized that the subject is needed and adds
the same subject to this table, the subject REF by claims class will become dangling
because the REF value points to the old row. This will not happen in Relational DBMS
implementation because of referential integrity constraints.

In our implementation, there are three ways to solve the dangling values problem:
i. Explicitly check for dangling value, and set the REF value to NULL or delete

that record.
ii. Do not allow deletion of a record if it is referenced by another object.
iii. Use the REFERENCES keyword to impose referential integrity, that is, to

create a referential integrity (like relational implementation).
The three solutions above are too restricted and not practical. Firstly, the

solution is visible if we can recreate the link (and we have a history of that link). The
second solution is too inflexible, but in our opinion is the most useful method to impose
integrity constraint. The third solution will violate the object-oriented concept, which
does not allow the use of traditional ER referencing. It also creates a redundant
SCOPE BY constraint.

Type Dependency Problem
This is the most challenging problem we face in our development. We cannot

modify or alter an object that has other objects dependent on it (although this problem
is also found in relational DBMS implementation, it is not a trivial problem). If we
force the alteration, the dependant object will become invalid. It is good if the object
can be altered and Oracle is still able to recreate the dependency. In an object-
oriented implementation, this is a really problematic restriction because there are
many dependencies in stored procedure, type or object table. It is also a good idea
if Oracle is able to automatically drop the object dependency if we alter one object.

To solve this problem, we create a set of drop script to drop the whole database
schemas and recreate again. The drop sequence must be correct, and no other object
must be dependent upon the drop object. Then we must alter the table in SQL script
files and recreate all the schemas again.

CONCLUSIONS
In this chapter, we have described important points for the construction of a

Web application using an object-relational database. The importance of the design,
not only of the database but also of the whole application, has been emphasized. The
advantages of using an object-oriented approach have been explained, with a
consistent focus on accelerating the development life cycle of applications. After the
design of the application was explained, we highlighted both the crucial and
challenging parts of the implementation. The emphasis has been on how to map the

Practical Case Study of a Web-Based Tutor Payment System 119

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

object-oriented design of the database into an object-relational database with an
example for each of the relations identified (i.e. one-to-many, many-to-many,
aggregation, inheritance). Moreover, the use of procedures has been explained with
the particularities involved when we use the extended features of Oracle 8i.

The use of an object-relational database as a support for the Web application
has had some advantages. Firstly, this has allowed the conception of the application
with an object-oriented model and an easier implementation. This model allows a
better modularity and evolution for the application. It allows the development of
reusable components as well as a better modularity. Then, future evolution will be
easier to take into account and future development could benefit from what has
already been done, so that we fulfill the requirements of an object-oriented
development: encapsulation, modularity and reusability.

ENDNOTES
1 This limitation is imposed by Oracle 8i. In a later version (Oracle 9), this

limitation no longer exists.
2 Inheritance is supported in a later version of Oracle: Oracle 9i.

REFERENCES
Dorsey, P. and Hudicka, J. (1999). Oracle 8 design using UML. Oracle Press. New

York: Osborne McGraw-Hill.
McCarty, W. (2001). PHP4: A Beginner’s Guide. New York: McGraw-Hill/Osborne.
Oestereich, B. (1999). Developing Software with UML: Object-Oriented Analy-

sis and Design in Practice. Object Technology Series: Booch, Jacobson,
Rumbaugh, Addison Wesley.

Urman, S. (1997). Oracle8 PL/SQL Programming. New York: McGraw-Hill.
Stonebraker, M. and Moore, D. (1996). Object-Relational DBMSs The Next

Great Wave. New York: Morgan Kaufmann Publisher.
Rahayu, J.W., Chang, E., Dillon, T.S., and Taniar, D. (2002). Relational database

implementation of generic methods in an inheritance hierarchy. International
Journal of Computers and Their Applications.

Rahayu, J.W., Chang, E., Dillon, T.S., and Taniar, D. (2001). Performance
evaluation of the object-relational transformation methodology. Data and
Knowledge Engineering Journal, 28(3), 265-300.

Rahayu, J.W., Chang, E., Dillon, T.S., and Taniar, D. (2000). A methodology for
transforming inheritance relationships in an object-oriented conceptual model
to relational tables. Information and Software Technology Journal, 42(8),
571-592.

Rahayu, J. W., Chang, E. and Dillon, T. S. (1999). Composite indices as a mechanism
for transforming multi-level composite objects into relational databases. The
OBJECT Journal (Best of OOIS’98), 5(1). Hermes Science Publications.

120 Chateau, Leroy, Rahayu & Taniar

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Rahayu, J. W., Chang, E. and Dillon, T. S. (1998). Implementation of object-oriented
association relationships in relational databases. Proceedings of the Interna-
tional Database Engineering and Application Symposium, IEEE Computer
Society Press.

Rahayu, J. W., Chang E. and Dillon T. S. (1995). A methodology for the design of
relational databases from object-oriented conceptual models incorporating
collection types. Proceedings of the 18th International Conference on
Technology of Object-Oriented Languages and Systems. Englewood
Cliffs, NJ: Prentice-Hall.

Rahayu, J. W. and Chang E. (1993). A methodology for transforming an object-
oriented data model to a relational database. Proceedings of the 12th

International Conference on Technology of Object-Oriented Languages
and Systems. Englewood Cliffs, NJ: Prentice-Hall.

