
Implementation of Parallel Collection Equi-Join
Using MPI

Nung Kion Lee1, David Taniar2, J. Wenny Rahayu1, and
Mafruz Zaman Ashrafi2

1 Monash University
School of Business Systems

Vic 3800, Australia
{David.Taniar,Mafruz.Ashrafi}@infotech.monash.edu.au

2 La Trobe University
Department of Computer Science and Engineering

Australia
wenny@cs.latrobe.edu.au, csinkl@pop.latrobe.edu.au

Abstract. One of the collection joins types in Object Oriented Database
(OODB) is collection equi-join. The main feature of collection joins is
that they involve collection types. In this paper we present our experience
in implementing collection equi-join algorithms by using Message Passing
Interface (MPI). In particular, it layouts the fundamental techniques
that are used in the implementation and that may be applicable to other
collection joins. Two collection equi-joins discussed here are Double Sort-
merge and Sort Hash Join. The implementation was done on a clustered
environment and employed a data parallelism concept.

1 Introduction

Object-Oriented Databases (OODB) queries have many unique features as com-
pared to Relational Databases. One of the features is that OODB can contain
collection types [1,2]. A collection can be a set, a list/array, or a bag. The main
difference among these collection types is that whether they are structured or
unstructured [3]. For example, in a list/array, the ordering semantic is important,
whereas in a set it is not. One of the particular queries for OODB is collection
join. Collection join is very similar to the relational equivalent operator, but in
OODB the attributes involved are of collection types. The join queries depend
on the collection type and the operator involved (that is whether it is an equi,
a sub-collection, an intersect or a proper subset) [3].

As database size becomes very large, query processing time will become sig-
nificant. In order to reduce the processing time, parallel algorithm is being used.
Many parallel algorithms have been developed for implementing queries in Re-
lational Databases (for example sort-merge, hash based and hybrid hash). The
main objectives of parallel algorithms are to speed up and scale up when more
resources are employ. To achieve the same result in OODB, parallel object query
processing becomes an active research area.

J. Fagerholm et al. (Eds.): PARA 2002, LNCS 2367, pp. 217–226, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

218 N.K. Lee et al.

In this paper we are going to share our experience in developing Collection
Equi-Join queries based on Sort-Hash and Double Sort-Merge Join proposed in
[4,5]. The implementation outlines some techniques that we used.

2 Background

2.1 Collection Equi-Join Queries

Collection-Equi Join Queries contain join predicates in a form of standard com-
parison using a relational operator (i.e. the = operator). The operands of these
queries are collection attribute types. The standard collection types defined by
ODMG are set, list, array, and bag [1]. Set is unordered collections that do not
allow duplicates. List/array is ordered collections that allow duplicates. Where
as bag is similar to set but allow duplicates.

The value of the collection type attribute is a collection of Object Identifier
(OID) of the object instance that it references to. An OID is a unique universal
identification for an instance of object. As an illustration consider an equi-join
query that follows.

Select A, B
From A in Journal, B in Proceedings
Where A.editor-in-chief = B.program-chair
In the query above, A is object of Journal class and B is object of Pro-

ceedings class respectively. Suppose editor-in-chief and program-chair are two
collection attributes of Person class. The OID value of these two attributes will
be the OID for Person object instance it’s referred to (example editor-in-chief
= {15,20,200}). In our implementation, we assume the OID is simply an integer
data type. This query also used in our implementation. We referred to the Jour-
nal class as class A and Proceedings class as class B in our subsequence section
of our explanation.

2.2 Double Sort-Merge Join

This algorithm can be divided into two main steps. The first is the data-
partitioning step for both class A and B, which produces disjoint partitions,
and the second step is joining. In the partitioning step, the object instance for
a class is partitioned based on their first elements (for lists/arrays), or their
minimum value OID elements (for bags/sets). In the joining step, the collection
elements for all object instance of class A and B need to be sorted in ascend-
ing order (for sets/bags only). These two classes are then sorted based on the
first element of the collection type attribute. Subsequently, these two classes are
merged in class and collection level. The merging in class level involves finding
two object instance of class A and B that has the same first element of its col-
lection attribute. On the other hand, the collection level merge involves merging
that two matched first element object instances start from the second element
of their collection attribute values.

Implementation of Parallel Collection Equi-Join Using MPI 219

2.3 Sort Hash Join

The first step of this algorithm is the same as the sort-merge algorithm. In the
second step, the collection attribute element of class A and B needs to be sorted
(for set/bag only). But for sorting object class, only class A needs to be sorted.
The chained hash table is then built by the hash object instance of class A
based on the first element of its collection attribute. In the joining step, the
hash table is examined for a match object instance for class B. To do so, class
B is hashed by using the same hash function of class A to find the correct hash
table bucket. The chained objects of class A are then checked and found matches
at a collection level.

3 Implementation Environment

3.1 Parallel Architecture

The parallel implementation environment is based on a shared nothing archi-
tecture. In this architecture each process has its own memory, CPU and disk
[6]. This architecture is chosen because it scales well and doesn’t have the bot-
tleneck that had in other architecture [7]. Interconnected LINUX workstations
were used for the simulation.

3.2 Programming Language

The algorithm was developed using C and Message Passing Interface library
(MPI). MPI libraries consist of message-passing function and can be used for
distributed and parallel algorithms. Message passing function is simply a func-
tion that explicitly transmits data from one process to another. By using MPI
library each process that is running on an individual workstation is assigned a
unique number called process rank. The root process will coordinate most of the
operation for the parallel data joining implementation.

The equi-join employed the data parallelism paradigm. Data is partitioned
to different process for local processing. The main MPI library functions used in
our implementation are Send, Receive, Broadcast, Gather, and All-to-All com-
munication [6].

4 Parallel Data Partitioning

Parallel collection equi-join can be divided into two main phases. The first phase
is data partitioning based on disjoint partition, and the second phase is per-
forming the join algorithm mentioned earlier (i.e. sort-merge or hash join). The
general algorithms is as follows,

1. Using a Send or Scatter function, the root process sends equal (nearly) por-
tions of raw object instances to all other processes.

220 N.K. Lee et al.

2. Each processor partitions its local objects based on a uniform range parti-
tioning vector into p (number of processor) partitions and using the all-to-all
MPI function to send each partition to its destination processor.

3. Each processor performs a local collection equi-join algorithm.

Figure 1 shows the definition of an object class. The OID for an object in-
stance is stored as oid; and collection id is the collection attribute that will store
the Person object OIDs. In our implementation we predefined the maximum
size of (that is COL MAX) collection attribute because dynamic memory allo-
cation will make the message passing between processes more complex. We do
not include other attribute in the object class definition to simplify the imple-
mentation, but it can be easily included.

typedef struct Class_ {
 int oid; // OID for this object instance.
 int collection_id[COL_MAX];// collection attributes
 int col_size; // collection size
 short int col_type; // type of collection

}OBJ_CLASS

Fig. 1. Object class

4.1 Raw Data Transfer

This step divides the raw object instance data of class A or B into equal size
and transfers them to p processes. This is necessary because the local file is not
stored in the each workstation disk. Figure 2 shows the code for this step.

The data is divided evenly between the numbers of processors p. The root
process uses MPI Send to send an equal size of class A object instances to all
other processes. If the whole database is too large to load into root process’
memory, the root process can transfer part of the objects that has been read,
reclaim the free memory and read the remaining. At this stage all processes will
have it local distinct set of class A objects. We perform the same data transfer
to class B not until we obtain the range partitioning vector for object class B
explained in the next section.

4.2 Data Partitioning

The main drawback in data parallelism algorithm is partition skew. It is hard to
derive a fixed range partition vector without properly keep tracks the distribution
of partition attribute. A sample based partitioning algorithm [8, 9] is used to
partition the local class A objects in each processor. The partition is based on the
smallest OID element if the collection type is bag or set, whereas for list/array,
the first element (that is collection id [0]) will be used.

Implementation of Parallel Collection Equi-Join Using MPI 221

if (my_rank == ROOT_PROC){
 ClassA_Size = read_object(&ClassA,fin);

//read class A object instances.
 num_obj = ClassA_Size / processor_size;
}
MPI_Bcast(&num_obj,1,MPI_INT,0,io_comm);
//allocate memory for receive buffer
if (my_rank == ROOT_PROC){
 //send each processor from root it raw data portion.
 for (i=0; i< processor_size-1;i++)
 MPI_Send((ClassA + (i * num_obj)),num_obj,
 obj_cls_typ,i+1,i+1,io_comm);
} else
 MPI_Recv(ClassA,num_obj,obj_cls_typ,ROOT_PROC,my_rank,
 io_comm,&status);

Fig. 2. Raw object transfer

In the sample based partitioning, each processor selects p OID from its local
objects. After the sample OID’s are collected using Gather in the root processor,
it is sorted locally. The root processor then picks up p − 1 distinct OIDs to
form a range-partitioning vector. The range vector is then Broadcast to all other
processors.

Each process then sorts its local instances of class A based on the first element
of collection attribute (for set/bag it is the smallest element). The sorted objects
are divided into p partitions based on a uniform range partition vector. Using
All-total communication, the first partition is sent to processor rank 0, second
partition to processor 1 and so on. At this stage, each processor has disjoint
portion objects of class A. We also partition object of class B based on first
element of collection attribute using the range vector obtained earlier.

5 Parallel Local Join

In OODB, collection equi-join is based on ’total’ equality. That is, for list/array
each collection type element (OID) must be equal in the same order. Whereas
for set/bag two objects are equal if all collection type element object of class A
exist in object of class B in any order. Before the joining can take place, the local
objects for class A and B needs to be sorted. We used quick sort with algorithm
in Figure 3 as the comparison function.

The algorithm performs element-by-element comparison between two collec-
tion attributes until one of the OIDs is not equal or it reaches the end of one
of the collection attributes. For this comparison to perform correctly, collection
attributes of type set or bag must be pre-sorted.

5.1 Double-Sort-Merge

Parallel double-sort-merge algorithm is based on nested loop at the collection
level. It first finds the lower bound index for sorted object class A and class B

222 N.K. Lee et al.

int coll_merge(const int *col1,int size1, const int *col2, int
size2){
 int i=0,j=0;
 while((i< size1) && (j < size2) && (col1[i] == col2[j])){
 i++; j++;
 } //return 1 if col1>col2,-1 if col1<col2,or 0 col1== col2
}

Fig. 3. Total Comparison Function

that has same first elements of its collection attribute. It then finds the upper
bound index of these two classes that has the same first element as the lower
bound index objects.

As an illustration consider an example in Figure 5. The lower bound for both
class A and B is 1. Their upper bounds are 5 for class A and 4 for class B. In
this example the first elements of their collection attribute that equal is OID 4.
After this boundary is found, a nested loop is performed at the collection level
using a comparison function in Figure 3 to find a total equality of two collection
attributes. The code snapshot for this step is shown in Figure 4.

nested_loop_matched(OBJ_CLASS *obj_clsA,int obj_sizeA,OBJ_CLASS
*obj_clsB, int obj_sizeB)
{

long i=0;j=0;m=0;n=0;
//object counter for class A and class B respectively
while((i<obj_sizeA)&&(j<obj_sizeB))
{
//find the lower bound for Class A and Class B.
 if (coll_merge (obj_clsA, obj_clsB) == 1) j++;
 else if (coll_merge (obj_clsA, obj_clsB) == -1) i++;
 else
 {
 m = i + 1;
 //find the upper bound for object Class A.
 while((coll_merge(obj_clsA,obj_clsB)==0)&&(m<obj_sizeA))
 m++; n = j + 1;
 //find the upper bound for object Class B
 while((coll_merge(obj_clsA, obj_clsB)==0)&&(n<obj_sizeB))
 n++;
 //class A and class B collection merging.
 while(i<m){
 k = j;
 while (k < n){
 print_pairwise_obj(&obj_clsA[i],&obj_clsB[k]);
 k++;
 } //while
 i++;
 }
 i = m; j = n; //start next nested loop
} } }

Fig. 4. Collection Merging

Implementation of Parallel Collection Equi-Join Using MPI 223

Fig. 5. Finding lower and upper boundary

5.2 Hash-Join

In this algorithm, the sorting step is not necessary. The only item that needs to
be sorted is the collection attribute of type set or bag. A single chained hash
table is used to store the object instances for Class A. The structure for the hash
table is illustrated in Figure 6.

Initially, the object class A is placed into the hash table by hashing the first
elements of collection attributes. By doing so, all the object instances with the
same first element value will go to the same bucket. These object instances are
chained together using a list data structure.

To perform the collection equi-join, each object instances of class B is hashed
based on the first element of its collection attribute. This will directly find the
object of class A that has the same first element of collection attribute. The
object instances of class B are then compared to all chained object of class A
by using the comparison algorithm in Figure 3.

200 40 500

4

14 15

45

chained objects class A

Person OIDs

Hash table

4

1
2
3
4
..
T

T-1

13

4

Fig. 6. Hash table organization

224 N.K. Lee et al.

6 Performance

The experiment for performance analysis of the two algorithms was carried out.
Sample OIDs were generated for object of class A, B and Person. The experi-
ment setup is based on the architecture mentioned in section 3.1 using 8 Linux
workstations. Although the number of workstations seems to be small, it is ex-
pected the same trend will follow if more workstations are used.

The result in Figure 7 shows that the performance of sort-merge is better
than the sort-hash algorithms. This variation is significant if less workstations
or CPUs are used. Comparison of the overhead for sorting between the set/bag
and the list/array collection type is also shown in the same figure. The results
indicate that this overhead is not significant and it is expected to incur some
overhead if the collection size is large.

There are two reasons why sort-merge outperforms sort-hash. Firstly, there
are overheads to create the hash table by chaining the ”whole” object instance
of class A together. In the algorithm, each object instance is ported from an
array structure into a hash table structure. Whereas for the sort-merge, the
array of object instance class A is ready to merge with class B. Secondly, the
sort-merge filter object instances of class A and B that could not be joined. This
was achieved by specifying the lower bound and the upper bound index of the
two object classes to merge. These make the actual comparison in sort-merge
using collmerge less. On the other hand, for hash join, each object instance of
class B needs to be probed to find the matching object instances of class A. In
this case, it may result in many redundant comparison (i.e. not filtered), which
is not desired.

Fig. 7. Execution time

Figure 8 shows the execution time by varying the selectivity of class B. The
time taken for each join algorithm is highly dependent on the distribution of
the data partition. We found out, a sampled-based method will result in small
partition skew if more workstation is being used. Better improvement can be
achieved by also collecting sample OID’s from class B objects.

Implementation of Parallel Collection Equi-Join Using MPI 225

Fig. 8. Class B selectivity

Fig. 9. Speed-Up

Figure 9 shows the speed-up result of both algorithms. The result shows
that the sort-merge achieved higher speed-up as compared to the sort-hash. The
overall speed-up for the two algorithms is low. The main reason for low speed-up
is the high overhead of communication cost in the shared nothing architecture.
These communications cost incurred on finding the range partitioning vector
and data redistribution using MPI Alltoall primitive. In our experiment, we did
not consider disk I/O as one of the overhead.

7 Conclusion

The two algorithms implementation shows a great potential for performing col-
lection equi-join. In overall sort-merge algorithm is more efficient than the sort-
hash due to less numbers of comparison during merging.

There are many improvements that can be made on these two algorithms,
especially in terms of memory management and the representation of OID. For
the sort-hash method, an improvement on the representation of chained list can
be made. For example it may be possible to represent each object instances

226 N.K. Lee et al.

as single valued entity rather than the whole object itself. Another possible
improvement is how to filter out the unnecessary comparison during the probe
phase.

They are few limitation of the implementation that can also be improved. In
our implementation we did not deal with NULL collection values. One possible
solution is to filter out objects that have NULL collection type during the reading
because these objects are not useful for the collection equi-join. We assume a
fixed size of collection attribute type in our implementation. More efficient data
structures to deal with dynamic collection attribute size are desired to save
memory space.

References

1. Cattel, R.G.G. (ed.), The Object Database Standard: ODMG-93, Release 1.1, Mor-
gan Kaufmann, 1994.

2. Taniar, D., and Rahayu, W., “Object-Oriented Collection Join Queries”, Proceed-
ings of TOOLS Pacific’96 International Conference, Melbourne. pp. 115-125, 1996.

3. Taniar, D. and Rahayu, J.W., “Chapter 5: A Taxonomy for Object-Oriented
Queries”, Current Trends in Data Management Technology, A. Dogac, M.T.Ozsu,
and O.Ulusoy (eds.), ISBN: 1-878289-51-9, Idea Group Publishing, pp. 69-96, 1999.

4. Taniar, D. and Rahayu, J.W., “Parallel Collection-Equi Join Algorithms for
Object-Oriented Databases”, Proceedings of International Database Engineering
and Applications Symposium IDEAS’98, IEEE Computer Society Press, pp. 159-
168, 1998.

5. Taniar, D., and Rahayu, W., “Parallel Double Sort-Merge Algorithm for Object-
Oriented Collection Join Queries”, Proceedings of International Conference on
High Performance Computing HPC ASIA’97, IEEE Computer Society Press, Seoul,
Korea, 1997.

6. Pacheco P.S., Parallel Programming with MPI, Morgan Kaufmann, 1997.
7. Ramakrishnan R. and Gehrke J. Management Systems 2nd Edition, McGraw-Hill

2000.
8. Goil S. and Choudhary A., “High Performance OLAP and Data Mining on Par-

allel Computers”, Technical Report 1997, Department of Electrical & Computer
Engineering, Northwestern University.

9. Wang X., Luk W.S., “Parallel Join Algorithm on a Network of Workstations”,
Proceedings of the first international symposium on Databases in Parallel and
Distributed Systems, 1988.

	Introduction
	Background
	Collection Equi-Join Queries
	Double Sort-Merge Join
	Sort Hash Join

	Implementation Environment
	Parallel Architecture
	Programming Language

	Parallel Data Partitioning
	Raw Data Transfer
	Data Partitioning

	Parallel Local Join
	Double-Sort-Merge
	Hash-Join

	Performance
	Conclusion

