
1. INTRODUCTION

There is a growing need to combine traditional relational data
with new object feature into one integrated systems called as
object-relational database management system (ORBMS)
(Dorsey and Hudicka, 1999; Taniar, Rahayu and Srivastava,
2003). ORBMS is built based on SQL3 model, which consist
object data types, row types, collection and abstract data
types along with basic relational models (Carey, 1992; Stone-
braker and Moore, 1996; Fuh et al., 1999; Taniar, Rahayu
and Srivastava, 2003). The advantage of database applying
SQL3 model is that the system is more flexible and massive
scalability so that the immediate changes in the business pro-
cess can be accommodated fast and easily (Fuh et al., 1999;
Taniar, Rahayu and Srivastava, 2003).

REF is one of essential data structures which have been
introduced in Object-Relational Databases serves as a logical

pointer to define the link between two tables (Taniar,
Rahayu and Srivastava, 2003). This logical pointer has simi-
lar function to pointers in object oriented programming
approach. There are three ways of writing REF join queries
which are: REF Join, Path Expression Join, and
DEREF/VALUE Join. REF Join is the most straightforward
method to write Object-Relational queries where the REF
data structure is used in the SQL statement to retrieve the
REF value (not real data) stored in the ref attribute. Different
with REF join, the final result of a Path expression join is
the real data taken directly from the referred attribute. Final-
ly, the DEREF/VALUE join method retrieves data from the
actual object itself rather than from the table as the other two
methods do (Loney and Koch, 2000; Oracle, 2002).

Query optimization is the most important stage in query
processing where the database optimizer has to choose a
query-evaluation plan with minimized cost and maximized

vol 19 no 6 november 2004 337

Comput Syst Sci & Eng (2004) 6: 337–345
© 2004 CRL Publishing Ltd

The use of hints in object-relational
query optimization

David Taniar*, Hui Yee Khaw*. Haorianto Cokrowijoyo Tijoe* and Johanna Wenny Rahayu†

*School of Business Systems, Monash University, Clayton, Victoria 3800, Australia. Email: {David.Taniar,Haorianto.Tjioe}@infotech.monash.edu.au
†Department of Computer Science and Computer Engineering, La Trobe University, Bundoora, Victoria 3803, Australia
Email: wenny@cs.latrobe.edu.au

International Journal of

Computer Systems
Science & Engineering

Object-Relational queries are queries which can handle data objects feature on the existing relational data environment. REF is one of most impor-
tant data structures in Object-Relational Databases can be explained as a logical pointer to define the link between two tables which similar func-
tion to pointers in object oriented programming language. There are three ways of writing REF join queries which are: REF Join, Path Expression Join
and DEREF/VALUE Join. In this paper, we study optimization technique for Object-Relational queries using hints. Hints are additional comments
which are inserted into an SQL statement for the purpose of instructing or suggesting the optimizer to perform the specified operations. We utilize
various hints including Optimizer hints, Table join and anti-join hints, and Access method hints. We analyse performance of various object-relation-
al queries particularly in three ways of writing REF queries using the TRACE and TKPROF utilities which provide query execution statistics and exe-
cution plans.

Keywords: object-relational query optimization, ORBMS, REF

performance (Graefe, 1993; Jarke, 1985). Without any
doubt, the benefits resulting from the optimisation of any
kind of queries are significant. This will be especially the
case when the query being optimized consumes a consider-
able amount of resources such as physical disk reads and
memory buffer.

Generally, in query optimization process, system will
automatically choose the most efficient optimization strate-
gy. For example, Oracle is using two kinds of optimizer
mode, which are Rule-based Optimizer (RBO) and Cost-
based Optimizer (CBO) for its optimization technique (Ora-
cle, 2001). However, this is not enough to serve the best
query optimization technique. Since Database Administrator
(DBA) often has knowledge about their data than the system
optimizer. By using hints on the SQL statement, it will give
DBA to manually tune on the SQL statement to improve sys-
tem performance.

In this paper, we introduce Object-Relational queries
optimization using hints by focusing on three ways of writ-
ing REF join queries which are: REF Join, Path Expression
Join, and DEREF/VALUE Join. Object-relational query is
relatively newly concept of SQL3 model (Fortier, 1999; Fuh,
et al., 1999; Taniar, Rahayu and Srivastava, 2003). This
object-relational query is capable in cooperating object data
type and traditional relational query. Optimization technique
in object-relational query is considered important since this
query consumes a considerable amount of resources such as
physical disk reads and memory buffers, with hint as an opti-
mization technique could significantly speed up the system
performance and reduce the resource needed for processing
the object-relational queries.

Basically, hints are some additional comments that are
placed within an SQL statement aiming to directly force the
optimizer to alter the optimized execution plan (Burleson,
2001). Hints can be categorized into optimizer hints, table
join and anti-join hints, access method hints (Burleson, 2001;
Oracle, 2001). We will apply these hints on CBO optimizer
mode and compare the result with the normal RBO optimizer.

The organisation of the rest of the paper is as follows. In
section 2, we discuss about Object-Relational queries, opti-
mization technique using hints and the optimizer modes used
in our experiments followed by performance evaluation with
some results showing the effectiveness of using hints in sec-
tion 3. Finally in section 4, we give conclusions of the work
and discuss future work.

2. BACKGROUND

In this section we explain the object relational queries, opti-
mization technique using hints and the optimizer modes used
in our experiments.

2.1 Object-relational queries

Object-relational queries are using the SQL3 model which
has incorporated many new data structures such as REF
(Fortier, 1999; Fuh et al., 1999; Taniar, Rahayu and Srivas-
tava, 2003). The introduction of the REF data structure
incorporates the idea of object oriented programming lan-
guage into database, which means the tables are now viewed as

separate objects (Oracle, 2002; Taniar, Rahayu and Srivastava,
2003). Hence, the REF pointer can be used outside the scope of
the database. While a foreign key only references the corre-
sponding primary key, the REF pointer holds the complete
information of the primary table. There is also an association
relationship can be applied for REF data structure such as many
to many, one to many, and one to one (Loney and Koch, 2000).
On the other hand, in a conventional DBMS, the idea of the pri-
mary key-foreign key is used to maintain data integrity between
two tables using the CONSTRAINT and REFERENCES com-
mands (see Figure 1). That is, data values in the foreign key
attribute must be originated from the primary table and these
values can only be referred to within the database system.

As can be seen on Figure 2, first we create object with its
attributes and than we create another object which has REF
syntax to previous object, finally we create tables based on
those objects. REF structure has two important attributes
which are: referred attribute which stores real data and asso-
ciated REF value and ref attribute which stores REF value as
if it was the real data.

In Figure 3, there are syntaxes of creating table Student
and Login. Attribute SidLogin in Login table can be identi-
fied as ref attribute. It stores the pointer value of table Stu-
dent as its real data value. While attribute StudentId in
Student table can be identified as referred attribute. It keeps
real data value not the pointer value.

We classify Object-Relational query by using REF struc-
ture mainly based on three ways of writing REF join queries
which are: REF Join, Path Expression Join, and
DEREF/VALUE Join (Taniar, Rahayu and Srivastava, 2003)

2.1.1 REF Join
REF Join is the most straightforward method to write
Object-Relational queries where the REF data structure is

338 computer systems science & engineering

D TANIAR ET AL

Figure 1 General syntax of creating table on Relational DB

Figure 2 General syntax of creating table on Object-Relational DB

used in the SQL statement to retrieve the REF value (not real
data) stored in the ref attribute. Every real data from referred
attribute always has a unique system generated REF value.
REF value is not a real data which the referred attribute
actually has, it only a pointer address which will point to the
real data. Once created a ref attribute, the REF value will be
save as the real data. The following presents the syntax and a
query example for the REF join structure:

General Syntax
SELECT <Attribute>
FROM <Table1> <alias1>, <Table2> <alias2>
WHERE <alias2>.<Ref Attribute> = REF (<alias1>);

Example
SELECT s.staffid, s.sname
FROM staff2 s, cust_order2 r
WHERE r.staffid_obj = REF (s);

Based on above example, table cust_order2 consists of ref
attribute which is staffid_obj where it will refer to referred
attribute in table staff2. The REF(s) on that WHERE condi-
tion means that all values of all attributes on table staff2 will
be compared with attribute staffid_obj on table cust_order2.

2.1.2 Path Expression Join
Unlike REF join, the final result of a Path expression join is
the real data taken directly from the referred attribute. First-
ly, Oracle optimizer will use the logical pointer (REF value)
stored in the ref attribute to search the corresponding table
for the same value and then retrieve the real data from the
referred attribute. The following presents the syntax for the
path expression join structure:

General Syntax
SELECT <Attribute>
FROM <Table1> <alias1>, <Table2> <alias2>
WHERE <alias1>.<Referred Attribute> =

<alias2>.<Ref Attribute> . <Referred Attribute>;

Example
SELECT s.staffid, s.sname

FROM staff2 s, cust_order2 r
WHERE s.staffid = r.staffid_obj.staffid;

Based on above example, table cust_order2 consists of ref
attribute which is staffed_obj where it will refer to referred
attribute in table staff2. WHERE condition on above example,
consist of a comparison between staffid attribute in table
staff2 with staffid_obj attribute as a ref attribute in table
cust_order2 where a specific attribute on staffid_obj
attribute is staffid.

2.1.3 DEREF/VALUE Join
The DEREF/VALUE join method retrieves data from the
actual object itself rather than from the table as the other two
methods do (Loney and Koch, 2000; Oracle, 2002). The
direct access to objects limits the competence of the method
from certain operations.

General Syntax
SELECT <Attribute>
FROM <Table1> <alias1>, <Table2> <alias2>
WHERE DEREF (<alias2> . <Ref Attribute>) = VALUE
(<alias1>);

Example
SELECT s.staffid, s.sname
FROM staff2 s, cust_order2 r
WHERE DEREF (r.staffid_obj) = VALUE(s);

Based on above example, table cust_order2 consists of ref
attribute which is staffid_obj as an object which as the same
information on object staff2. Using DEREF/VALUE we look
at the data as an object, thus on above WHERE condition
DEREF syntax contain staffid_obj object which compared val-
ues of a ref attribute from table cust_order2 with values on
object table staff2 using syntax VALUE(s).

2.2 Optimization technique: Hints

As can be seen in Figure 4, all hints have to be written after a
SELECT /UPDATE /INSERT/ DELETE statement with /*+
hint */. In this example, we use first_row hint to optimize
the Object-Relational queries between tables Staff and
Cust_order. Oracle provides an extensive list of hints that
can be used to tune various aspects of a query performance
(Oracle, 2001). We categorize hints for Object-Relational
queries optimization into three parts: (a) Optimizer Hints, (b)
Table Join and Anti-Join Hints, (c) Access Method Hints
(Burleson, 2001; Oracle, 2001). Optimizer hints apply differ-
ent optimizer to a query. Meanwhile, table join and anti-join
hint focus on applying different hints to join operations.
Access method hints concern with using index and table
access hint for optimizing Object-Relational queries opera-
tion based on its access path.

339

THE USE OF HINTS IN OBJECT-RELATIONAL QUERY OPTIMIZATION

vol 19 no 6 november 2004

Figure 3 Example of implementing REF structure on
Object-Relational DB

Figure 4 Using a hint in an SQL statement

We categorize hints for Object-Relational queries opti-
mization into three parts: (1) Optimizer Hints, (2) Table Join
and Anti-Join Hints, (3) Access Method Hints. The details of
them are explained in the following sections.

2.2.1 Optimizer Hints
Optimizer hints apply a different optimizer to a query, which
in turns redirect the overall processing goal (Burleson,
2001). Oracle offers four kinds of optimizer hints, which are
all_rows, first_rows, rule, and choose (refer to Figure 5).
The all_rows hint explicitly chooses the cost-based approach
(CBO) to optimize a statement block with a goal of best
throughput (that is, minimum total resource consumption).

The choose hint causes the optimizer to choose between
the rule-based (RBO) and cost-based (CBO) approaches for a
SQL statement. The optimizer bases its selection on the pres-
ence of statistics for the tables accessed by the statement. If
the data dictionary has statistics for at least one of these
tables, then the optimizer uses the cost-based approach and
optimizes with the goal of best throughput. If the data dictio-
nary does not have statistics for these tables, then it uses the
rule-based approach.

The first_rows hint favors full-index scan and invokes the
cost-based optimizer (CBO) to return the first row of a query
within the shortest processing time and minimum resource
usage. Since its goal is to achieve the best response time, it is
suitable used for Online Transaction Processing (OLTP). In
our performance evaluation, only the first_rows hint is used
due to the following considerations:

• The default optimizer mode is set to rule-based (RBO).
Thus, the rule hint is inapplicable or unnecessary.

• The adding of hints in a rule-based environment will auto-
matically redirect the optimizer to the all_rows mode.

• The choose hint does not have a fixed goal, as it causes
the optimizer to choose between the rule-based and the
cost-based approach.

Figure 6 shows that the optimizer goal has been changed
from no hint to add first_rows hint to the select statement. In
Figure 6(a) the goal of select statement is rule (rule based) in
which we do not apply any hint since this rule hint is a
default optimizer mode from the system. By applying
first_rows hint in Figure 6(b), the select statement goal is
forced to change from its default. Although the execution
plan between Figure 6(a) and 6(b) is quite the same, however
by applying a hint, it gives a better performance result.

2.2.2 Table Join and Anti-Join Hints
There are several hints on table join and anti-join hints pro-

vided by Oracle as shown in Figure 7, which are: use_nl hint,
use_merge hint and use_hash hint. The use_nl hint causes
Oracle to join each specified table to other row source with a
nested loop join uses the specified table as the inner table. In
general, the default join method in Oracle is the nested loop
join. Therefore, use_nl hint is not used in the performance
evaluation. There are two hints which can be used for
Object-Relational queries optimization:

• The use_hash hint. The hint invokes a hash join algorithm
to merge the rows of the specified tables. In many circum-
stances, it changes the access path to a table in addition to
the change in join method.

• The use_merge hint. Alternatively, the hint forces the
optimizer to join tables using the sort-merge operation.

As can be seen from Figure 8, either use_merge example and
use_hash example, it has been specified tables student and
login to be joined to the row source resulting from joining
the previous tables in the join order either using a sort merge
join and a hash join.

2.2.3 Access Method Hints
Access method hints can be classified into hints without
index and hints with index. Rowid hint is one of hints without
index. Hints with index consist of index hint, index_ join hint
and index_ffs hint. As shown in Figure 9, there is a select
statement with index_ffs hint consist of two parameters
which are student as the table student and sid_index as the
table index of table student. We will briefly explain each hint
on access method hints as follow:

• The Rowid hint. The hint forces the optimizer to scan the
specified table by rowid, which is generally gathered from

340 computer systems science & engineering

D TANIAR ET AL

Figure 5 Optimizer hints

Figure 6 The effect of adding optimizer hint

Figure 8 Table Join and Anti-Join Hints examples

Figure 7 Table Join and Anti-Join hints

an index. Syntax /*+ROWID(<table>)*/
• The Index hint. The hint explicitly instructs the optimizer

to use an index scan as the access path to the specified
table. Syntax /*+INDEX(<table> <index name)*/

• The Index_join hint. The hint alters the optimizer to
access the specified table using the index join method.
Syntax /*+INDEX_JOIN(<table> <index name>)*/

• The Index_ffs hint. The invoked index fast full scan oper-
ation by the hint will fully access an index in random
order. It is suitable to be used in cases where access to
index alone is sufficient to resolve the query. In other
words, it is unnecessary to access the table rows. Syntax
/*+INDEX_FFS(<table> <index name>)*/

2.3 Optimizer modes

There are two kinds of optimizer modes in Oracle, which
are: rule based optimizer (RBO) and cost based optimizer
(CBO) (Oracle, 2001). RBO is used as a default optimizer
mode in Oracle where no hint is applied in this optimizer
mode. Different from RBO, in CBO all hint regards its cate-
gory will be used in this optimizer mode. We use RBO to
compare the advantages of using hints in CBO to optimize
join nested query operations.

The Rule-Based optimizer (RBO) mode is using a heuris-
tic optimization technique. Its main function is to reduce the
size of the intermediate result. In general, the SELECT and
PROJECT operations, which reduce the number of records
and the number of attributes respectively, are found to the
most restrictive operations (Elmasri and Navathe, 2000).
Apparently, the re-ordering of the leaf nodes on the query
tree can have significant impact on the system performance
and hence good heuristics should be applied whenever possi-
ble. However, as shown on performance evaluation section,
this optimizer mode is less effective on many join nested
queries optimization if compared with using hints on CBO
optimizer mode.

The Cost-Based Optimizer (CBO) mode determines which
execution plan is most efficient by considering available
access paths and by factoring in information based on statis-
tics for the schema objects (tables or indexes) accessed by
the SQL statement (Harris and Ramamohanarao, 1996). For
instance, the decision to choose between an index scan and a
full-table scan for a table with skewed (disproportional) data
will not always be obvious, and hence cannot be concluded
without first looking at the statistics.

CBO will favor an index scan over a full-table scan if a
given query retrieves less than 40% of the data in a table. On
the other hand, a full-table scan will be preferred if the
retrieved data will be over 60%. As can be seen, the CBO is
more flexible and intelligent in choosing the SQL opera-
tions. Therefore, it should make a better execution plan than
the RBO does if it has all the statistical information it needs.
Moreover, CBO has two main optimization goals, which are:

the fastest response time with minimum resource usage and
the best throughput with minimum total resource consump-
tion.

Unfortunately, CBO’s performance is unpredictable and
not as stable as the RBO. The introduction of hints in cost-
based optimization has indicated the inability of the CBO to
produce the best strategy for every query. By applying hints
as an optimization technique in CBO, it will improve a sig-
nificant result in faster response time and lower resource
consumption.

3. OBJECT-RELATIONAL QUERIES
OPTIMIZATION

As been discussed above, Object-Relational queries are
query which either can be applied by combining traditional
relational database with new object feature or just using only
objects data. Since object-relational queries is different with
a normal relational join queries and also this query consumes
a considerable amount of resources such as physical disk
reads and memory buffers. REF is one of most important
data structure in Object-Relational database has three ways
of writing REF join query which are REF Join, Path Expres-
sion Join, DEREF/VALUE Join (Taniar, Rahayu and Srivas-
tava, 2003). Here we use hint as an optimization technique to
speed up the time processing, reduce the physical disk reads
and memory buffers. In this section, we present our perfor-
mance evaluation result incorporating hints with three ways
of writing REF join query using TKPROF utility in Oracle.

3.1 Execution plan (query tree) and
TKPROF utilities

In general, an execution plan is the strategy produced and
used by the optimizer to process a query in order to get the
desired result (Jarke et al, 1985). It is also known as the
query tree due to its tree-like structure. It is essential to
understand the functioning of the execution plan, as it pro-
vides a useful indication on the performance of the query
processing. For instance, as show on the following illustra-
tion (see Figure 10), an indexed nested loop join is used to
join the tables in the given query. The join method may indi-
cate an efficient processing, as the previous section
explained that the presence of an index in the inner table
may dramatically improve the performance of the nested
loop join. However, the operations used in the execution
plan are only an indicator but not an absolute answer. More-
over, its main function is to explain the steps involved in the
processing and the sequence of execution. As can be seen,
there are four steps involved in the processing of the given
query, which are:

341

THE USE OF HINTS IN OBJECT-RELATIONAL QUERY OPTIMIZATION

vol 19 no 6 november 2004

Figure 10 Example of execution plan

Figure 9 Syntax and example of access method hints

Step 1: Nested Loops
Step 2: Full table access to Cust_order2 table
Step 3: Index unique scan on the Staff2_Staffid_Pk

or SYS_C00831 of the Staff2 table

The operations below the nested loops are indented indicat-
ing that they should be executed prior to the join operation.
Hence, the first execution is Step 2, which will retrieve a row
from the Cust_order2 table and return it to Step 1. Then,
Step 1 will send the Staffid (Staff number) to Step 3 for
every row obtained from Step 2. In Step 3, the optimizer will
perform an index unique scan on the Staff2_Staffid_Pk or
SYS_C00831 of the Staff2 table. Finally, Step 3 will return
the row to Step 1, where the row will be joined with that
from step2 if the staffid equal to REF(s).The steps will be
carried out recursively until all the rows have been pro-
cessed.

The TRACE utility is also known as the SQL trace facili-
ty, which can only be activated by setting the relevant
parameters. There are two types of parameters that need to
be carefully set (Burleson, 2001): (a) file size and location
parameters (eq. User_dump_dest = c:\orahome\trace-
file) (b) function enabling parameters (e.q time_statistics
and sql_trace). However, the report produced is difficult to
understand. Therefore, it must be used in conjunction with
the TKPROF utility, whose task is to translate the traced
result into a readable format (Burleson, 2001). When the
Oracle database is installed, TKPROF is automatically
installed in the directory \orahome\bin. Firstly, we add \ora-
home\bin to the current path. Then, the utility is invoked by
using the following command:

Tkprof <TraceFile> <OutputFile> [explain
= <username>/<password>]

The trace file has an extension of .trc, while the output file
that is in the readable format will have an extension of .prf. It
is essential to specify the location in both the <TraceFile>
and the <OutputFile>, otherwise, TKPROF would not be
able to perform its task due to the missing file. The following
shows the command line we use to invoke TKPROF:

Tkprof d:\ora0001.trc d:\trace.prf explain
= system/manager.

As shown on Figure 11, TKPROF result is divided into three
parts which are: sql statement, statistic information and exe-
cution plan. On the statistics section contains seven statistics

measurements and one call column (the first column) indi-
cating the phases of query execution. The following will pro-
vide a description on the phases and the statistics
measurements.

Phases
• Parse. The parser checks the syntax and the semantics of

the SQL statement, which will be decomposed into rela-
tional algebra expressions for execution.

• Execute. After the parsing and validation stage, the opti-
miser will execute the decomposed SQL statement using
the execution plan operations shown in Figure 11.

• Fetch. Finally, in the fetching phase, the optimizer will
retrieve the final output from the corresponding tables
based on the instruction passed from the query execution
phase.

Statistics
• Count. The number of times the phases (parse, execute,

fetch) are called.
• CPU. The total CPU time (in hundredths of a second) tak-

en for each phase to perform.
• Elapsed. The total processing time for each phase to com-

plete their tasks.
• Disk. The total number of physical disk reads.
• Query. The total number of data buffers retrieved from

memory, which is generally used by the SELECT state-
ment.

• Current. The statistic is similar to the query statistic,
which also indicates the total number of data buffers
retrieved from memory except that this mode is generally
used by the UPDATE, INSERT, and DELETE statements.

• Rows. The total number of rows processed by the SQL
statement.

3.2 Experimental results

For the purpose of experimentation in the paper, a Sales
database has been created as a sample database. Table 1
shows the details of the database, while Figure 12 depicts the
relationships between each individual table along with SQL
for creating Object-Relational tables.

The default optimization approach used in the experi-
ments is set to RBO, which uses the heuristic rules to opti-
mize a given query. The approach is chosen to replace the
default mode due to its stability and predictability as stated
by Burleson (2001). Moreover, the adding of hints to the
SQL statement will redirect the optimization approach to
cost-based (CBO). Hence, analysis can be carried out on the

342 computer systems science & engineering

D TANIAR ET AL

Figure 11 Example of TKPROF result (formatted trace report)

Table Attributes Records

Customer2 (custid, cname, addr, city) 10,010
Staff2 (staffid, sname, city) 1,010
Cust_order2 (ordered, orderdate, custid, staffed) 10,000
Item (itemid, itemdesc, category) 999
Inventory (invid, itemid, curr_price, qoh) 9500
Orderline (ordered, invid, order_price, qty) 15,000

Table 1 Sales database

performance of the RBO and the CBO in the later stage to
reveal the best approach for optimizing a given query. In
fact, the experiment results will enable comparison to be
made on three types of optimization approaches, which are:
(a) Rule-based approach (by default), (b) Cost-based
approach with a goal of best response time (first_rows
mode), (3) Cost-based approach with a goal of best through-
put (all_rows mode).

Although the all_rows hint is not used in the experiments,
the goal of the best throughput can still be accomplished.
According to Burleson (2001), the actual optimizer mode
will be the all_rows mode whenever a hint (except the rule
hint) is added even under the rule-based mode. Therefore,
results produced under different approach are obtained by
the following mean:

• Execute query without adding hints – Query is optimized
with heuristic rules by the RBO.

• Add the optimizer hint (first_rows) – Query is optimized
by the CBO to achieve the best response time.

• Add the other hints (join operation and access method
hints) – Query is optimized by the CBO to achieve the
best throughput.

In the next section we have experimental hints and its results
based on the Object-Relational queries on section 2.

CREATE OR REPLACE TYPE CUST_OBJ AS OBJECT
(CUSTID CHAR (5),
CNAME VARCHAR2 (15),
ADDR VARCHAR2 (30),
CITY VARCHAR2 (15));

CREATE TABLE CUSTOMER2 OF CUST_OBJ
(CUSTID NOT NULL PRIMARY KEY);

CREATE OR REPLACE TYPE STAFF_OBJ AS OBJECT
(STAFFID CHAR (5),
SNAME VARCHAR2 (15),
CITY VARCHAR2 (15));

CREATE TABLE STAFF2 OF STAFF_OBJ
(STAFFID NOT NULL PRIMARY KEY);

CREATE OR REPLACE TYPE CUST_ORDER_OBJ AS OBJECT
(ORDERID CHAR(6),
ORDERDATE DATE,
CUSTID REF CUST_OBJ,
STAFFID REF STAFF_OBJ);

CREATE TABLE CUST_ORDER2 OF CUST_ORDER_OBJ
(ORDERID NOT NULL PRIMARY KEY,
CUSTID SCOPE IS CUSTOMER2,
STAFFID SCOPE IS STAFF2);

3.2.1 Object-relational query optimization
results with REF join

After making the comparison between the other hints (see
Figure 13), it is concluded that the index_ffs hint is still the
best hint that produces the fastest execution plan with the
lowest physical disk reads for Object-Relational queries with
REF Join. The execution plan in Figure 14(b) shows that the
hint causes the optimiser to use the hash join operation in
sync with an index fast full scan on the indexed attribute
(Staff2_Staffid_Pk or SYS_C00831). As a result, the statis-
tics show a dramatic decrease in both the processing time
and the number of disk reads.

While it was expected that the number of memory reads
would increase due to the building of the hash table, it has
actually decreased by about 85%. After analysing the
TKPROF result, it is observed that the extensive memory
reads by the RBO (Figure 14(a)) is likely to be caused by the
inefficient nested loop join algorithm where unnecessary
scanning is carried out on the inner table that has an indexed

343

THE USE OF HINTS IN OBJECT-RELATIONAL QUERY OPTIMIZATION

vol 19 no 6 november 2004

Figure 12 Sales order systems

Figure 14 Comparison of rule-based and hint optimised trace reports for
the Object-Relational queries with REF Join

Figure 13 Comparison of all hints experimented on Object-Relational
queries with REF Join

join attribute (SYS_C00831). This can be seen from the
number of rows processed in the execution plan produced
under the rule-based optimization. While the inner table
(Staff2) only has 10 records, it has to be accessed as many
times as the number of records contained in the outer loop
(1,015), which is a hundred times more than the necessary
scan. This is because all records in the outer table match
with those of the inner. For these reasons, it is apparent that
the hash join algorithm is a far more efficient solution for the
processing of this type of Object-Relational queries.

3.2.2 Object-relational query optimization
results with path expression join

Once again, the index_ffs hint is expected to have the most
outstanding performance among the other hints on Object-
Relational queries with Path Expression Join. Although the
rowid hint is able to process the given query within 0.03 sec-
onds as well (see Figure 15), it consumes more resources in
terms of both physical disk and memory reads. Therefore,
the index_ffs hint is chosen to be the best hint for this path
expression join. As usual, the hint has invoked the hash join
operation to replace the original nested loop join leading to a
remarkable cost reduction. These costs include the process-
ing time, the number of data blocks retrieved from the physi-
cal disk, and the memory reads (see Figure 16).

3.2.3 Object-relational query optimization
results with DEREF/VALUE Join

While it was expecting that the index_ffs hint would once

again produce the best execution plan for Object-Relational
queries with DEREF/VALUE Join, the first_rows hint turns
out to be the outstanding one (see Figure 17). This means,
the CBO alone is able to process the given query efficiently
without the intervention of any hints. However, the improve-
ment is not as significant. As can be seen on Figure 18, both
the RBO and the CBO produce an identical execution plan,
the interesting part is that the plan produced by the CBO is
0.06 seconds faster than that of the RBO, and the number of
physical disk reads is slightly reduced (2 data blocks).
Therefore, the DBA has two options when encounter the pro-
cessing of this join, which are: set the optimiser mode as
rule-based and then add the first_rows hint to the SQL state-
ment, or set the optimiser mode as cost-based with the goal
of achieving the best response time (first_rows).

3.3 Discussions

There can be more than one goal when it comes to optimize
a given query. For instance, the main concern of a company
running an online business (Online Transaction Processing)
will be the response time, as customers or clients would not
want to waste their time waiting for web page reloading
while a transaction is being processed. Therefore, the DBMS
must be able to produce and display the first available result
as quickly as possible although it maybe at the expense of
resources or overall processing time. On the other hand,
tasks such as generating a large report generally require the

344 computer systems science & engineering

D TANIAR ET AL

Figure 17 Comparison of all hints experimented on Object-Relational
queries with DEREF/VALUE Join

Figure 15 Comparison of all hints experimented on Object-Relational
queries with Path Expression Join

Figure 16 Comparison of rule-based and hint optimized reports for Object-
Relational queries with Path Expression Join

Figure 18 Comparison of rule-based and hint optimised trace reports for
the Object-Relational queries with DEREF & VALUE Join

best throughput (minimum total resource consumption) since
responsiveness does not play a key role. That is, while it
may need a longer period to display the first record, the
overall performance is better.

In this paper, an optimal hint is chosen based on the
fastest overall processing time. However, it is possible that
some of the chosen hints might be resource intensive. Table
2 recommends the hint that is best for each individual join
structure.

On Object-Relational queries results either with REF Join
and Path Expression Join, it has found that index_ffs hint is
superior among other hints. Different with index_ffs hint,
first_rows hint is the best hint on Object-Relational queries
with DEREF/VALUE Join results.

4. CONCLUSIONS AND FUTURE WORKS

The need for query optimization technique on providing the
best response time and the best throughput in query process-
ing is very important. Considering join queries as the most
complex and expensive operators, this paper has focused on
providing an effective optimization technique by using hints.
The chosen technique is precisely a manual tuning that
requires users to insert additional comments into an SQL
statement.

We have tested various hints which are: (a) Optimizer
hints, (b) Table join and anti-join hints, and (c) Access
method hints on our performance evaluations and provided
the experiments results. We have applied those hints on
Object-Relational queries. The overall studies found that
adding hints to Object-Relational queries on various ways of
writing REF join queries such as REF Join, Path Expression
Join, and DEREF/VALUE Join solely can significantly
improve system performance.

On our future works include evaluating hints as an effec-
tive optimization technique on Object-Relational with aggre-
gation queries and inheritance queries. Since those types of
queries usually represent the processing of real-world query

data which have more complex processes and higher pro-
cessing time which may impact to the system performance.

REFERENCES

1 Burleson, D.K. Oracle High-Performance SQL Tuning (1th
ed.): McGraw Hill, 2001.

2 Carey M. et al. O-R, What Have They Done to DB2? Proceed-
ings of the Very Large Database International Conference
(VLDB), 1999.

3 Date C.J. An Introduction to Database Systems (7th ed.): Addi-
son-Wesley, 2000.

4 Dorsey, P. and Hudicka, J.R. Oracle 8 Design Using UML
Object Modeling, Oracle Press, McGraw Hill, 1999.

5 Elmasri, R., and Navathe, S.B. Fundamentals of Database
Systems (3rd ed.) Sydney: Addison Wesley, 2000.

6 Fortier, P.J. SQL3 Implementing the SQL Foundation Stan-
dard, McGraw Hill, 1999.

7 Fuh Y-C et al. Implementation of SQL3 Structured Types with
Inheritance and Value Substitutability, Proceedings of the Very
Large Databases International Conference (VLDB), 1999.

8 Graefe, G. Query Evaluation Techniques for Large Databases,
ACM Computing Surveys, vol. 25, no. 2, pp. 73–170, June
1993.

9 Graefe, G. and McKenna, W.J. The Volcano optimizer gener-
ator: Extensibility and efficient search, In Proceedings of the
IEEE Conf. on Data Engineering. IEEE, New York 1993.

10 Harris, E.P. and Ramamohanarao, K. Join Algorithm Costs
Revisited, The VLDB Journal, vol. 5, pp. 64–84, 1996.

11 Jarke, M. et al. Introduction to Query Processing, Query Pro-
cessing in Database Systems, W.Kim et al. (eds.), Springer-
Verlag, pp. 3–28, 1985.

12 Loney, K., and Koch, G. Oracle 8i: The Complete Reference,
Osborne McGraw-Hill, 2000.

13 Loney, K., and Koch, G. Oracle 9i: The Complete Reference,
Oracle Press, 2002.

14 Mishra, P. and Eich, M.H. Join Processing in Relational
Databases, ACM Computing Surveys, vol. 24, no. 1, pp.63–113,
March 1992.

15 Oracle Oracle9i Database Performance Guide and Reference,
http://www.oracle.com, 2001.

16 Oracle Oracle9i Database Concepts, http://www.oracle.com,
2002.

17 Ramakrishnan, R. and Gehrke, J. Database Management
Systems (2nd ed.): McGraw Hill, 2000.

18 Stonebraker, M. and Moore, D. Object Relational DBMS’s:
The Next Great Wave, Morgan Kaufmann, 1996.

19 Taniar, D., Rahayu, J.W. and Srivastava, P.G. Chapter 12: A
Taxonomy of Object-Relational Queries, Effective Databases
for Text & Document Management, S.A. Becker(ed.), pp.
183–220, IRM Press, 2003.

345

THE USE OF HINTS IN OBJECT-RELATIONAL QUERY OPTIMIZATION

vol 19 no 6 november 2004

Join Structure Optimal Hint(s)

REF Join Index_ffs
Path Expression Join Index_ffs
DEREF & VALUE Join First_rows

Table 2 Optimal hint(s) for each join structure

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

