School of Business Systems

PARALLEL EXECUTION IN
ORACLE

- Report -

ORACLE

PETER XU
ID: 12288624

EMAIL: pxul@student.monash.edu.au
PHONE: 0412310003

Semester 1, 2001

Masters by Project
(BUS4580 and BUS4590)

Supervisor: DR. DAVID TANIAR



Parallel Execution in Oracle Peter Xu, 12288624

COPYRIGHT NOTES

Oracle® and all Oracle-based trademarks and logos are trademarks or registered
trademarks of Oracle Corporation Inc. in the United States and other countries.




Peter Xu, 12288624

Parallel Execution in Oracle

ACKNOWLEDGEMENTS

| would like to acknowledge the individual academic staffs that assisted in this
project, especially Dr. David Taniar who led and supervised this project from start to

finish and have assisted in the overall project. Thank you.

Peter Xu




Parallel Execution in Oracle Peter Xu, 12288624

TABLE OF CONTENTS

(OF =1 o) (=Y M [0 1 (oY [T ) o 6
Chapter 2 - Creation Of tabIES. ......iiee e 10
A 1= o] YN O {F= (o ] [ 11
A I o] [N AN (=] = 110 ] [ 12
Chapter 3 - SELECT STATEMENTS ..ot 13
IS = I O TR 13
B2 AG G REGATE ..ottt e e et e e et e e e e e aaaas 14
3.8 PARALLEL HINTS Lottt e e et e e e e e et e e e e e e eeees 16
LI I | TR 16
B D LESS THAN Lt e e e e e e e et e e e e e eaens 17
I ST @] o TR 18
B7 PLAN TABLE ..o et e et e et e e e e e aees 22
B8 S LE T i aaaa 23
3.0 AG G REGATE ..ot et e e e et e e et e e e e aaaas 25
L0 LIKE ottt e et e et et r e r et aaaaa 27
BLLL LESS THAN Lt e et e e e et e e e et eeeeaaeeees 29
Chapter 4 - SELECT DISTINCT . .couuiiiie ettt e e e e e 31
] RN I N[ TR 31
4.2 ORDER BY .ot 34
4.3 PRIMARY KEY .ottt ettt e e et e e e e e e e e e e et e e e eeaans 35
4.4 NON-PRIMARY KEY ..ottt ettt ettt e e et e et eeeaaans 37
(01 = o1 (= TS [0 [T 39
LT [ 1 | TR 39
LN AN S I = LT 42
B.B SORTING . ...ttt et e e et e e e e e e e e e et e e e eateaeaees 45
LN ] RN I N[ TR 48
5.5 GREATER THAN L. et e e e et e e e e eeees 50
LN ST I | TR 53
LT A | PR 54
LN <IN AN L@ 1 PR 58
LN I N N N TR 61
LT KO o SRR 64
Chapter 6 - GROUP BY ..ot e e et e e e e et e e aan e 69
B.1 GROUP BY oottt ettt et e e et e e e e e e e et e e e e et e eeeeaaa s 70
B.2 WHERE . .. .ottt et e e e e e e et e e e e e e e e e et s 74
6.3 PRIMARY KEY ..ottt ettt ettt e e et e et e e et e e e e eaa s 79
B.4 HAVING ...ttt e e e e et e e e e e e e et s 81
B  WHERE . ...t e e e e e e et e e e e et e e e e et s 86
6.6 MULTIPLE TABLES .. .ot 93
6.7 PRIMARY KEY ..ottt e e et e e e e e s 94




Parallel Execution in Oracle Peter Xu, 12288624

(OF AT T o T AR 1Y/ | TP 101
T.L PARALLEL DML ...t e e e e e e e e e e e eeann 101
L0 ] 2] N PR 102
AT 1N ST = o PR 113
A B ] = I I PP 122

Chapter 8 — EXIENAEA ULIHTIES. ....cenieeeeee et e e e e e e e eaees 130
8.1 PARALLEL DATA LOADING . ... o iee et 130
8.2 SOLALOADER ...ttt 130
8.3 PARALLEL RECOVERY .ottt 131
8.4 PARALLEL REPLICATION .oeniiee ettt e e e e 132

Chapter 9 — CONCIUSION ... eeeet ettt e e et e e e e e e e et e e e e e e renees 133

R B EINCES .. ev et e e ettt 134




Parallel Execution in Oracle Peter Xu, 12288624

CHAPTER 1 - INTRODUCTION

About Parallelism

The amount of space databases take up these days can usually be enormous due to
the information that is required by companies. They require this information for
research and development and for the benefit of the company as a whole as they try
to gain market share by knowing what their customers want and need and try to
deliver their needs to the market. This is only one of the possibilities of why the
databases can be large and thus easily understood why it can sometimes take a big
chunk of time just to search for some small information within a database.

In this case, searching through SQL databases can be quite time consuming if we
are not careful of how we approach the query.

Query optimisation can be viewed as the first step in improving the performance of
queries and improve the response time in which the computer hardware computes.
This optimisation, however, can be ignored when it is performed under limited
number of data sets mainly due to the fact that the duration of the query will not be
affected with the use of simple and direct/linear methods. This can be drastically
changed for the worst if a simple query (where it is best performed via single degree)
is done via a multi-degree approach.

This degree of parallelism will affect the performance of queries no matter if it is
performed on small or large databases. It will affect more on larger databases rather
than small because the structure of the query will be greatly affected by the approach
of the degree of parallelism.

Parallel Processing
So what is parallel processing? Why is it needed? Why not just use a faster computer
to speed up things? There is a simple answer to these questions and it lies largely in
the laws of physics.

Parallel processing is the process of taking a large task and instead of feeding the
computer this large task which may take a long time to complete, the task is divided
into several smaller digestible chunks and then working on each of those smaller
tasks simultaneously. This divide-and-conquer approach is to ultimately aim at
completing a large task in less time than it would have if it were processed in one
large task as a whole.

Since computers were invented, they were intended to solve problems fasters than a
human being could. Up to now, people want computers to do more and more and to
do it faster. The design of the computers have now become more complex than ever
before, and with the improved circuitry design, improved instruction sets and
improved algorithms to meet the demand for faster response times, it is only possible
due to the advances in engineering.

Even with the advances in engineering these complex fast computers, there are
speed limitations. The processing speed of processors depends on the transmission
speed of information between the electronic components within the processor.
Believe it or not, but the speed of these transmission is actually limited by the speed
of light. Now, you may wonder how does speed of light have anything to do with
computers? Well the answer is that, due to the advances in technology, the speed at
which the information travels through a cable is less than the speed of light. Right




Parallel Execution in Oracle Peter Xu, 12288624

now the speed of the information being transferred is reaching up to the speed of
light but cannot achieve due to the laws of physics amongst the cables. With speeds
of processors passed the 1GHz milestone; there is not much improvement that can
be made without the use of optical communication or fibre optics. This fibre optics
enables the speed of light transmission between the components of the computer.
Another factor however is the density of the transistors within a processor; it can be
pushed only to a certain limit. Beyond that limit, the transistors create
electromagnetic interference for one another.

The limitations to the speed of processor's have resulted the hardware designers
looking for another alternative to increase performance. Parallelism is the result of
those efforts. Parallelism enables multiple processors to work simultaneously on
several parts of a task in order to complete it faster than could be done otherwise.

So, why parallel processing and not try other methods of increasing speed? As
discussed earlier, the hardware aspect of things is already to the optimised level,
thus, parallel processing is the alternative to increasing speed. Parallel processing
not only increases processing power, it also offers several other advantages such as
Higher throughput, more fault tolerance and better price for performance, when it is
implemented properly.

Now that we have addressed the need for parallel processing, here is a summary of
the issues that are driving the increasing use of parallel processing in database
environments:

o The need for increased speed or performance: Database sizes are increasing,
gueries are becoming more complex especially in data warehouse systems and
the database software must somehow cope with the increasing demands that
result from this complexity.

o The need for scalability: This requirement goes hand-in-hand with performance.
Databases often grow rapidly, and companies need a way to easily and cost-
effectively scale their systems to match that growth.

o The need for high availability: High availability refers to the need to keep a
database up and running with minimal or no downtime. With the increasing use of
the Internet, companies need to accommodate uses all around the clock.

How parallel Execution works
SQL statements are mostly transparent to the end users when Parallel execution is
implemented. SQL statements are divided into multiple smaller units, each of which
is executed by a separate process. When parallel execution is used, the user's
shadow process takes on the role of the parallel coordinator. The parallel coordinator
is also referred to as parallel execution coordinator or query coordinator. The parallel
coordinator does the following:

1. Dynamically divides the work into smaller units that can be parallelised.

2. Acquires a sufficient number of parallel processes to execute the individual
smaller units. These parallel processes are called parallel execution server
processes and also parallel slave processes and slave processes.

3. Assigns each unit of work to a slave process.

4. Collects and combines the results from the slave processes and return those
results to the user process.

5. Release the slave processes after the work is done.

In Oracle, there are many operations that can be parallelised, below is a list of the
operations:




Parallel Execution in Oracle

Peter Xu, 12288624

List of Oracle Paralellable operations.

The Oracle server can use parallel execution for any of these operations:

VVVVVVVVVVVVVVVVVVVYYY

Table scan

Nested loop join

Sort merge join

Hash join

"Not in"

Group by

Select distinct

Union and union all
Aggregation

PL/SQL functions called from SQL
Order by

Create table as select
Create index

Rebuild index

Rebuild index partition
Move partition

Split partition

Update

Delete

Insert ... select

Enable constraint (the table scan is parallelised)

Star transformation

In this research, a few of the mentioned operations will be examined in detail and the
affect of the degree of parallelism will be shown to demonstrate the parallelism and
the ways that parallelism can be achieved. The investigation is focused on the
degree of parallelism of the commands or queries and different methods of approach
will affect the speed and efficiency of the final result. Through this investigation, the
improvement or advantages of introducing parallelism to selected commands or

gueries form the focus of this research assignment.




Parallel Execution in Oracle Peter Xu, 12288624

Operations Covered in this report.

Chapter 2: CREATE table / Index statements
» Showing Parallel DDL

Chapter 3: SELECT statements
» Showing the degree of parallelism

Chapter 4: SELECT DISCTINCT and/or ORDER BY
1. Showing sorting and in which level it performs the operation.
» The degree of parallelism affected in search.

Chapter 5: JOIN statements
» Showing the join statements

0 Simple join statement:
SELECT
FROM...,...,...
WHERE...;

0 Nested Joins:
SELECT
FROM...
WHERE...(SELECT ...);

Chapter 6: GROUP BY statements
» SELECT ...
FROM...
WHERE...
GROUP BY ...
» Demonstrated through single table operations, and
» Through multiple table operations.

Chapter 7: DML
> UPDATE,

» INSERT,
» DELETE.

Chapter 8: Extended Utilities
» PARALLEL loading
» Parallel recovering / duplication.

Parallel Execution of these queries makes use of the divide-and-conquer method. It
divides a task among multiple processes in order to complete the task faster. This
allows Oracle to get that advantage of multiple CPUs on a machine. The parallel
processes acting on behalf of a single task are called parallel slave processes. In this
research we will be looking mainly on the ways that these slave processes can be
used to increase the performance of queries.




Parallel Execution in Oracle Peter Xu, 12288624

CHAPTER 2 - CREATION OF TABLES.

With creation of tables, the normal clauses are quite well known. They are done
without any extra clauses and thus uses a standardised default format.

For example, a basic method of creating a table without any means of speeding up
the process for later query execution, this is how it would be done.

CREATE T ABLE c ust oner (

custid NUVBER( 5) CONSTRAI NT ¢ ust oner _custi d_pk P Rl MARY KEY,
la st VARCHAR2( 20) NOT N ULL,
fi rst VARCHAR2( 20) NOT N ULL,
Ml VARCHAR2( 1),

cadd VARCHAR2( 30) NOT N ULL,
city VARCHAR2( 30) NOT N ULL,
st ate VARCHAR2( 2) NOT N ULL,
zip VARCHAR2( 10) NOT N ULL,
dphone VARCHAR2( 10),

ephone VARCHAR2( 10))

To check for the level of parallelism of this table, a SQL statement can be used. If we
follow the above table creation with another statement to check the degree of
parallelism, we can do the following clause. This clause can be used anywhere to
check for a table’s use of parallelism.

SELECT *F ROMuser _tabl es
WHERE t abl e_nane=*‘ <tablen ane>';

Thus, for our example this is the finding that resulted:

SQ@ > S ELECT DEGREE F ROM user _t abl es
2 WHEREt able_nane=' CUSTOMER;

We find that the default or nominal degree of parallelism is set to one (1). This one
process thus runs in serial rather than parallel. If the query was executed under a
very heavily loaded database with over 100meg worth of data, there will be dramatic
level of delay noticeable to the human eye.

On the other hand, this creation of tables/indexes can make use of the parallelism
option in Oracle, reducing the amount of turn around time for the query. This is done
via the Parallel clause of the create table and create index statements.

The different ways of creating a table will be investigated; the following is a list of the
attempted trials:

o Table creation in parallel.

o Index Creation in Parallel.

o Serially Created Index.

a Parallel Created Index.

-10 -



Parallel Execution in Oracle Peter Xu, 12288624

2.1 Table Creation
Table creation in parallel.
For example, the creation of customer table above would be the same, except that

an extra clause is placed after the last statement. This clause overrides the default
settings of parallelism for this table alone. An example of this is of below:

CREATE TABLE cust oner (

custid NUMBER( 5) CONSTRAI NT custoner _custid_pk PRI MARY KEY,
| ast VARCHAR2( 20) NOT NULL,
first VARCHAR2( 20) NOT NULL,
M VARCHAR2( 1),

cadd VARCHAR2( 30) NOT NULL,
city VARCHAR2( 30) NOT NULL,
state VARCHAR2( 2) NOT NULL,
zip VARCHAR2( 10) NOT NULL,
dphone VARCHAR2( 10) ,

ephone VARCHAR2( 10) )

PARALLEL (DEGREE 4);

Index Creation in Parallel.

Multiple processes can work together simultaneously to create an index. By dividing
the work necessary to create an index among multiple server processes, the Oracle
Server can create the index more quickly than if a single server process creates the
index sequentially.

Parallel index creation works in much the same way as a table scan with an ORDER
BY clause. The table is randomly sampled and a set of index keys is found that
equally divides the index into the same number of pieces as the degree of
parallelism.

Parallel local index creation uses a single server set. Each server process in the set
is assigned a table partition to scan, and to build an index partition for. Because half
as many server processes are used for a given degree of parallelism, parallel local
index creation can be run with a higher degree of parallelism.

The PARALLEL clause in the CREATE INDEX command is the only way in which
you can specify the degree of parallelism for creating the index. If the degree of
parallelism is not specified along with the parallel clause of CREATE INDEX, then the
number of CPUs is used as the degree of parallelism. If there is no parallel clause,
index creation will be done serially.

Serially Created Index.
SQL> CREATE | NDEX cust _idx1 ON custoner(first, custid);

| ndex created.

Parallel Created Index.
SQL> CREATE | NDEX cust _i dx1 ON custoner(first, custid)
2 PARALLEL (degree 5);

| ndex created.

-11 -



Parallel Execution in Oracle Peter Xu, 12288624

2.2 Table Alterations

Altering tables
Having put the parallel clause in the creation table line, an alternative is to modify the
table structure so that it can be processed in parallel. To do this, we use the ALTER
command.

For example, if the table is either in serial or there is a need to change the degree of
parallelism, then the following can be used to make this change.

SQL> ALTER TABLE customer PARALLEL (degree 8);

Tabl e al tered.

To change the parallelism back to serial processing, the following operation is
performed.

SQL> ALTER TABLE customer PARALLEL (degree 1);

Tabl e al tered.

Degree one (1) means that it will use one processor for this query and thus
performed serially.

Altering tables will be the next experimentation, and this will be the list of the tried
attempts:
0 Index parallelism

Index parallelism:
SQ.> ALTER | NDEX cust_i dx1 PARALLEL (degree 2);

Tabl e al tered.

The same thing with Index, the parallelism can be reverted back to serial processing
by doing the following:

SQ.> ALTER | NDEX cust _i dx1 PARALLEL (degree 1);

Tabl e al tered.

-12 -



Parallel Execution in Oracle Peter Xu, 12288624

CHAPTER 3 - SELECT STATEMENTS

Select statements are the first and most basic level of specifying the degree of
parallelism by using hints or by using a PARALLEL clause. Parallel and
parallel_index hints are used to specify the degree of parallelism used for queries.
From using a normal SELECT statement without any clauses, the default serial
processing will be engaged, where as if a parallel clause is present, a query may be
sped up depending on the size of the database being searched.

There are many ways in which parallel execution can be applied. The following
demonstrates some of the ways possible for such execution.

In normal situations without any extra clauses, the following is the method used. This
is assuming that no parallel clauses were used during the process of creating the
table.

Below is a list of the attempted queries which demonstrates this:
o Normal Select

Parallel Select

Aggregate SELECT statements

Parallel Hint on Primary Key

LIKE clause

Parallel Like

LESS THAN clause

Parallel LESS THAN clause

LESS THAN and OR clause

Parallel LESS THAN and OR clause

LESS THAN clause using only the primary key.

00000000 O0OD

3.1 SELECT

Normal Select

SQ@ > S ELECT DEGREE F ROM user _t abl es
2 WHEREt able_name=' | TEM;

Thus a normal select statement would be,
SQ>SELECT*F ROMitem

| TEM D | TEMDESC CATECORY
894 Wonen' sHi ki ng S horts Waren' s C | ot hi ng
897 Wonen' sF | eece P ul | over Waren' s C | ot hi ng
995 Chi |l dren' s B eachconber S andal s Chi I dren' s C | ot hi ng
559 Men' s E xpedi ti on P ar ka Men' s C | ot hi ng
786 3 - Season T ent Out door G ear

The same results can be obtained in parallel by using the following clause. The
PARALLEL clause in the statement overrides any default or assigned value for the
table. Thus, shown below, shows a select statement with PARALLEL (item, 4). This
literally means that the table is to be searched in parallel of the order of 4" degree.

-13-



Parallel Execution in Oracle Peter Xu, 12288624

Parallel Select

SQ@>SELECT/ *+P ARALLEL(item4 )* /*F ROMite m;
| TEM D | TEMDESC CATEGORY

894 Wonen' sHi kingShorts Waren' s
Clot hi ng

897 Wonen' sF | eece P ul | over Waoren' s
Clot hi ng

995 Chil dren'sB eachconber S andal s Children's
Clot hi ng

559 Men' s E xpedi ti on P ar ka Men' s
Clot hi ng

786 3 - Season T ent Out door
Gear

If we use the V$PQ_TQSTAT view, which is available within the ORACLE view table
pool, the level of parallelism can be shown and proven that the query is actually
doing some work.

SQ@>s electd fo_nunber,t q_id,s erver_type, process,n umrows,b ytes
2 fromv$pg_tgstat
3 orderb yd fo_nunber,t q_id,s erver_type;

DFO_NUMBER TQ | D SERVER _TYP P ROCESS NUM ROWG BYTES
1 0 C onsurner C 30 1113
1 0 P roducer P0O03 0 24
1 0 P roducer P002 0 24
1 0 P roducer P0O01 0 24
1 0 P roducer P0O00O 30 1041

Above illustrates the parallel slave processes act as producers, and the query
coordinator acts as the consumer. It shows four (4) producers (4™ degree) working on
the query where in fact, since it is such as small table, the producer PO00 does all the
processing.

Other possible examples of the statement consist of the aggregate functions, where
multiple clauses hone down to a smaller, more precise portions of the query.

3.2 AGGREGATE

Aggregate SELECT statements
SQ@>SELECTcount(*)A S" StudentC ount",
2 avg(age) A S" Average A ge"

3 FROM st udent;

Student C ount A ver age A ge

The above query gets a total COUNT of the record number of students in the table
and the does an average calculation of the AGE.

The clauses used here are COUNT(*), which counts the number of records (rows)
and AVG(age) calculates the average age of the overall number of students.

~14 -



Parallel Execution in Oracle Peter Xu, 12288624

Then, showing the parallelism used in the above query,
SQ@>s el ectd fo_nunber,t q_id,s erver_type, process,n umrows,b ytes

2 fromv$pg_tgstat
3 orderb yd fo_nunber,t q_id,s erver_type;

DFO_NUMBER TQ | D SERVER _TYP P ROCESS NUM ROWG BYTES
1 0 C onsurner C 30 1113
1 0 P roducer P0O03 0 24
1 0 P roducer P002 0 24
1 0 P roducer P0O01 0 24
1 0 P roducer P0O00 30 1041

Showing that the query is using only one process or one level of parallelism.

Thus for example, the following is an illustration to show the HINT clause to force the
user of parallelism and the proof of the use.

SQ@>SELECT/ *+P ARALLEL ( student,4 )* /
2 count(*)A S" StudentC ount",
3 avg(age)A S" Average A ge"
4 FROMstudent;

Student C ount A ver age A ge

And the proof:
SQ@>s el ectd fo_nunber,t q_id,s erver_type, process,n umrows,b ytes

2 fromv$pg_tgstat
3 orderb yd fo_nunber,t q_id,s erver_type;

DFO_NUMBER TQ | D SERVER _TYP P ROCESS NUM RONG BYTES
1 0 C onsurmer C 5 306
1 0 P roducer P0O03 1 66
1 0 P roducer P002 1 66
1 0 P roducer P0O01 1 66
1 0 P roducer P0O00 2 108

The above indicates the use of each of the four (4) producers PO00 — P003, each of
them does some kind of work and thus make use of the 4" degree of parallelism.

SQ@Q>SELECT/ *+PARALLEL( item4 )* /*F ROM it em
2 VWHERE c ategory="' QutdoorG ear’;

| TEM DI TEMDESC CATEGORY

786 3 - Season T ent Qut door G ear
The above shows the forced PARALLEL clause for a query that is a non-primary key.

SQ@>s el ectd fo_nunber,t q_id,s erver_type, process,n umrows,b ytes
2 fromv$pg_tgstat
3 orderb yd fo_nunber,t q_id,s erver_type;

DFO_NUMBER TQ | D SERVER _TYP P ROCESS NUM RONG BYTES
1 0 C onsurmer C 1 130
1 0 P roducer P0O03 0 24
1 0 P roducer P002 0 24
1 0 P roducer P0O01 0 24
1 0 P roducer P0O00 1 58

As shown above four (4) processes are used to produce the results. It is queried on a
non-primary key, which results in using the parallelism specified.

-15-



Parallel Execution in Oracle Peter Xu, 12288624

3.3 PARALLEL HINTS

Parallel Hint on Primary Key
If the same example was used on the actual primary key, Oracle takes this as a
different situation and a different result is produced.

SQ>SELECT/ *+PARALLEL( item4 )* /*F ROMit em
2 wherei temd=9 07;

| TEM DI TEMDESC CATEGORY

907 HardH at Men' s C | ot hi ng

SQ@>s el ectd fo_nunber,t q_id,s erver_type, process,n umrows,b ytes
2 fromv$pg_tgstat
3 orderb yd fo_nunber,t q_id,s erver_type;

DFO_NUMBER TQ | D SERVER _TYP P ROCESS NUM ROWG BYTES
1 0 C onsurner C 1 130
1 0 P roducer P0O03 0 24
1 0 P roducer P002 0 24
1 0 P roducer P0O01 0 24
1 0 P roducer P0O00 1 58

As shown above, the results are of the previous query (the one that was a non-
primary key). Because the results were of the previous query, the actual query with
Parallel Hint does not really produce any significant on the level of parallelism, thus
no record of parallelism usage.

3.4 LIKE

LIKE clause:
The LIKE clause makes use of the “%” signs to indicate everything else. Specifying
some character between these “%” allows the ORACLE to search for anything with
what was specified. This is very useful when searching for a part of a word within
other words.

SQ@>s elect*f romstudent
2 wheref nanel ike' %% ;

SI D FNAMVE LNAME AGE HCOLOR
HB GHT
10 mel hack 12 g reen
190
11j ones Ng 23 bl ack
180
13 pete flang 24 bl ack
188
16 j ames | ong 15 b rown
155

SQ@>s el ectd fo_nunber,t q_id,s erver_type, process,n umrows,b ytes
2 fromv$pg_tgstat
3 orderb yd fo_nunber,t q_id,s erver_type;

nor owss el ected

Since there is no parallelism specified in the SELECT command, there is no record of
parallel usage.

-16 -



Parallel Execution in Oracle Peter Xu, 12288624

Parallel Like

SQ@>s elect/ *+PARALLEL(student,3 )* /*F RQM student
2 WHEREf narmelL |KE' %% ;

SI D FNAMVE LNAME AGE HCOLOR
HB GHT
10 mel hack 12 g reen
190
11j ones Ng 23 bl ack
180
13 pete flang 24 b |l ack
188
16 j ames | ong 15 b rown
155

SQ@>s el ectd fo_nunber,t q_id,s erver_type, process,n umrows,b ytes
2 fromv$pg_tgstat
3 orderb yd fo_nunber,t q_id,s erver_type;

DFO_NUMBER TQ | D SERVER _TYP P ROCESS NUM RONG BYTES
1 0 C onsurmer C 4 200
1 0 P roducer P002 0 24
1 0 P roducer P0O01 0 24
1 0 P roducer P0O00 4 152

Four (4) rows returned by the query using a PARALLEL hint. The recorded illustrates
parallelism usage of 4 processes and the four rows actually is produced by the first
process and thus does not make use of the other two due to the small size of the
table.

3.5 LESS THAN

LESS THAN clause
The LESS THAN clause uses the “<” as a symbol as a LESS THAN clause. It
compares the value on the right with the one on the left and returns true if it satisfies
the condition.

SQ@>SELECT*F ROMstudent
2 VWHERE age<2 O0;

SI D FNAMVE LNAME AGE HCOLOR
HB GHT

1bob smart 15 b | ack

170
10 mel hack 12 g reen

190
16 j ames | ong 15 b rown

155

SQ@>s el ectd fo_nunber,t q_id,s erver_type, process,n umrows,b ytes
2 fromv$pg_tgstat
3 orderb yd fo_nunber,t q_id,s erver_type;

nor owss el ected

The above illustrates a LESS THAN clause in the query. It does not make use of any
parallelism thus ORACLE does not record any parallel usage.

-17 -



Parallel Execution in Oracle Peter Xu, 12288624

Parallel LESS THAN clause

SQ@>SELECT/ *+P ARALLEL(student,3 )* /*f rom student
2 whereage<2 0;

SI D FNAVE LNAME AGE HCOLOR
HB GHT

1bob smart 15 b | ack

170
10 mel hack 12 g reen

190
16 j ames | ong 15 b rown

155

SQ@>s electd fo_nunber,t q_id,s erver_type, process,n umrows,b ytes
2 fromv$pg_tgstat
3 orderb yd fo_nunber,t q_id,s erver_type;

DFO_NUMBER TQ | D SERVER _TYP P ROCESS NUM ROWG BYTES
1 0 Consurner C 3 168
1 0 P roducer P002 0 24
1 0 P roducer P0O01 0 24
1 0 P roducer P0O00 3 120

The above illustrates a LESS THAN clause with a Parallel Hint. It, again, uses only
the one process and returns the result to the consumer process.

3.6 OR

LESS THAN and OR clause

SQ@Q>SELECT*f romstudent
2 whereage<2 Oorf nanmel ike' %% ;

SI D FNAMVE LNAME AGE HCOLOR
HB GHT

1bob smart 15 b | ack

170
10 mel hack 12 g reen

190
11j ones Ng 23 bl ack

180
13 pete flang 24 b |l ack

188
16 j ames | ong 15 b rown

155

SQ@>s el ectd fo_nunber,t q_id,s erver_type, process,n umrows,b ytes
2 fromv$pg_tgstat
3 orderb yd fo_nunber,t gq_id,s erver_type;

nor owss el ected

-18 -



Parallel Execution in Oracle Peter Xu, 12288624

LESS THAN and OR clause with Parallelism

SQ@>SELECT/ *+P ARALLEL(student,3 )* /*f rom student
2 whereage<2 Oorf nanmel ike' %%;

SI D FNAVE LNAME AGE HCOLOR
HB GHT

1bob smart 15 b | ack

170
10 mel hack 12 g reen

190
11j ones Ng 23 bl ack

180
13 pete flang 24 bl ack

188
16 j ames | ong 15 b rown

155

SQ@>s el ectd fo_nunber,t q_id,s erver_type, process,n umrows,b ytes
2 fromv$pg_tgstat
3 orderb yd fo_nunber,t q_id,s erver_type;

DFO_NUMBER TQ | D SERVER _TYP P ROCESS NUM RONG BYTES
1 0 C onsurner C 5 232
1 0 P roducer P002 0 24
1 0 P roducer P0O01 0 24
1 0 P roducer P0O00 5 184

The above queries illustrate the parallelism being specified, but they only use the one
process thus proves to be no use to the overall purpose.

The only query that proved to be making use of the parallelism is the one below
where two joint clauses AVG() was used. The reason mainly because to calculate the
average, Oracle has to add up all the columns to get the total, then count the number
of rows it used to add up the total, and then do another calculation to generate the
average (total/number of rows).

Thus producing the following:

DFO_NUMBER TQ_I D SERVER TYP P RCCESS NUM ROWS BYTES

1 0 C onsurner C 5
1 0 P roducer P0O03 1
1 0 P roducer P002 1 66
1 0 P roducer P0O01 1
1 0 P roducer P0O00O 2

-19 -



Parallel Execution in Oracle

Peter Xu, 12288624

LESS THAN and OR clause

SQ.> SELECT /*+ PARALLEL(student,
2 WHERE sid < 10 OR sid = 19

10 rows sel ected

SI D FNAVE

HEI GHT

1 bob
170

2 sam
160

3 craig
150

4 tom
166

5 pat
179

6 tim
166

7 paul
187

8 dawn
130

9 jack
180

19 wang
155

3) */ * fromstudent

LNAMVE AGE HCOLCR
smart 15 bl ack
t aps 21 bl ond
stone 34 brown
spat 66 red
stone 45 brown
cray 55 bl ack
craz 77 grey
mal 66 brown
j ones 55 bl ond
chris 21 grey

SQL> sel ect df o_nunber, tqg_id,

server_type

2 fromv$pg_tgstat
3 order by dfo_nunber, tq_id, server_type;
DFO_NUMBER TQ | D SERVER TYP PRCCESS NUM_ROWS BYTES
1 0 Consurmer C 10 388
1 0 Producer P002 0 24
1 0 Producer PO01 0 24
1 0 Producer PO00 10 340

process, numrows, bytes

As shown above, by using the OR clause, the parallel hint is actually used where as
if the query was based upon just the primary key, there is not parallelism used as this

column is already indexed by default.

-20 -



Parallel Execution in Oracle Peter Xu, 12288624

LESS THAN clause using only the primary key.

SQL> SELECT /*+ PARALLEL(student, 3) */ * from student
2 WHERE sid < 10;
SI D FNAMVE LNAME AGE HCOLOR
HEI GHT
1 bob smart 15 bl ack
170
2 sam t aps 21 bl ond
160
3 craig stone 34 brown
150
4 tom spat 66 red
166
5 pat stone 45 br own
179
6 tim cray 55 bl ack
166
7 paul craz 77 grey
187
8 dawn mal 66 brown
130
9 jack j ones 55 bl ond
180
9 rows sel ected.
SQL> sel ect df o_nunber, tq_id, server_type, process, numrows, bytes
2 fromv$pg_tgstat
3 order by dfo_nunber, tq_id, server_type;
no rows sel ected

As illustrated above, there is no parallelism used even if the parallel hint was used.
Thus the parallel hint in this situation is void due to the fact that the primary key is
already indexed.

-21 -



Parallel Execution in Oracle

Peter Xu, 12288624

3.7 PLAN TABLE

Plan table

The EXPLAIN PLAN command displays the execution plan chosen by the Oracle
optimiser for SELECT, UPDATE, INSERT, and DELETE statements. A statement's
execution plan is the sequence of operations that Oracle performs to execute the
statement. By examining the execution plan, you can see exactly how Oracle

executes the SQL statement.

Before you can issue an EXPLAIN PLAN statement, you must create a table to hold

its output.

CREATE TABLE pl an_tabl e

(statenent_id VARCHARZ2( 30) ,
ti nmest anp DATE,
remar ks VARCHAR2( 80) ,
operation VARCHARZ2( 30) ,
opti ons VARCHAR2( 30) ,
obj ect _node VARCHAR2(128) ,
obj ect _owner VARCHAR2( 30) ,
obj ect _nane VARCHARZ2( 30) ,
obj ect _i nstance NUMERI C,
obj ect _type VARCHARZ2( 30) ,
opti m zer VARCHAR2( 255) ,
sear ch_col ums NUVERI C,
id NUMER! C,
parent _id NUMERI C,
posi tion NUMERI C,
cost NUMERI C,
cardinality NUMERI C,
byt es NUMERI C,
ot her _tag VARCHAR2( 255) ,
ot her LONG) ;

Now that the plan table has been established, the prior queries will experimented
using this extra tool, and together with the V$PQ_TQSTAT statistic table provided by
table it is then possible to show how ORACLE processes each of the queries.

-22 -



Parallel Execution in Oracle Peter Xu, 12288624

3.8 SELECT
SELECT STATEMENTS
Select statements selects the data in rows and columns from one or more tables.

Below is a list of the experimented queries, which demonstrate these select
statements.

Normal Select

Parallel Select

Aggregate SELECT statements

Parallel Aggregate SELECT statements
Parallel Clause on NON-primary key

Parallel Hint on Primary Key

Like Clause

Parallel LIKE

LESS THAN clause

Parallel LESS THAN clause

LESS THAN and OR clause — No parallelism

O

00000000 D0O

SQ@>s el ectd egreef romuser_tables
2 wheret able_name="' | TEM;

SQ@>SELECT*F ROMi tem

| TEM D | TEMDESC CATECORY
894 Wonen' sHi ki ng S horts Waren' s C | ot hi ng
897 Wonen' sF | eece P ul | over Waren' s C | ot hi ng
995 Chi |l dren' s B eachconber S andal s Chi I dren' s C | ot hi ng
559 Men' s E xpedi ti on P ar ka Men' s C | ot hi ng
786 3 - Season T ent Out door G ear

SQ@>e xplainplanf or
2 SELECT*F ROMitem

Expl ai ned.

SQ@>s el ecto peration
2 fromplan_table;

OFERATI ON

SHELECT S TATEMENT
TABLE A CCESS

As shown above, the simple select statement simply has one access to the table to
get the query result.

-23-



Parallel Execution in Oracle Peter Xu, 12288624

Parallel Select
SQ>SELECT/ *+PARALLEL(item4 )* /*F ROMite m;

| TEM D | TEMDESC CATEGORY

894 Wonen' sHi kingShorts Waren' s
Clot hi ng

897 Wonen' sF | eece P ul | over Waoren' s
Clot hi ng

995 Chil dren'sB eachconber S andal s Children's
Clot hi ng

559 Men' s E xpedi ti on P ar ka Men' s
Clot hi ng

786 3 - Season T ent Out door
Gear

SQ@>e xplainplanf or
2 SELECT/ *+PARALLEL(item4 )* /*F ROMite m;

Expl ai ned.

SQ@>s el ecto peration
2 fromplan_table;

OFERATI ON

SHELECT S TATEMENT
TABLE A CCESS

As shown above, it has the same table access’ comparing the Normal SELECT and
the Parallel SELECT.

If we use the V$PQ_TQSTAT view, which is available within the ORACLE view table
pool, the level of parallelism can be shown and proven that the query is actually
doing some work.

SQ@>s el ectd fo_nunber,t q_id,s erver_type, process,n umrows,b ytes
2 fromv$pg_tgstat
3 orderb yd fo_nunber,t q_id,s erver_type;

DFO_NUMBER TQ | D SERVER _TYP P ROCESS NUM RONG BYTES
1 0 C onsurmer C 30 1113
1 0 P roducer P0O03 0 24
1 0 P roducer P002 0 24
1 0 P roducer P0O01 0 24
1 0 P roducer P0O00O 30 1041

The above illustrates the parallel slave processes act as producers, and the query
coordinator acts as the consumer. It shows four (4) producers (4™ degree) working on
the query where in fact, since it is such as small table, the producer PO00 does all the
processing. This includes both the TABLE ACCESS and the SELECT statement.

_24 -



Parallel Execution in Oracle Peter Xu, 12288624

3.9 AGGREGATE

Aggregate SELECT statements

SQL> SELECT count(*) AS "Student Count",
2 avg(age) AS "Average Age"
3 FROM st udent;

St udent Count Average Age

The above query gets a total COUNT of the record number of students in the table
and the does an average calculation of the AGE.

The clauses used here are COUNT(*), which counts the number of records (rows)
and AVG(age) calculates the average age of the overall number of students.

SQL> explain plan for
2 SELECT count(*) AS "Student Count",
3 avg(age) AS "Average Age"
4 FROM st udent;

Expl ai ned.

SQL> select id, operation
2 fromplan_table;

| D OPERATI ON
0 SELECT STATEMENT
1 SORT
2 TABLE ACCESS

3 rows sel ected.
Three operations are being made here, as the query goes for a sort before the select
statement.

Then, showing the parallelism used in the above query,
SQL> sel ect df o_nunber, tq_id, server_type, process, numrows, bytes

2 fromv$pg_tgstat
3 order by dfo_nunber, tq_id, server_type;

DFO_NUMBER TQ I D SERVER TYP PROCESS NUM_ROWS BYTES
1 0 Consurmer C 30 1113
1 0 Producer P0O03 0 24
1 0 Producer P002 0 24
1 0 Producer P0O01 0 24
1 0 Producer P0O00 30 1041

Showing that the query is using only one process or one level of parallelism. The first
process does all three of the query, including TABLE ACCESS, SORT and the final
SELECT STATEMENT.

Parallel Aggregate SELECT statements

SQ.> SELECT /*+ PARALLEL (student, 4) */
2 count(*) AS "Student Count",
3 avg(age) AS "Average Age"
4 FROM st udent;

St udent Count Average Age

-25-



Parallel Execution in Oracle Peter Xu, 12288624

SQ@>e xplainplanf or
2 SELECT/ *+ P ARALLEL ( student,4 )* /
3 count(*)A S" StudentC ount",
4 avg(age) A S" Average Age"F ROM st udent;

Expl ai ned.

SQ@>s electi d,o peration
2 fromplan_table;

| D OPERATI ON

0 S ELECT S TATEMENT
1S ORT
2SORT
3T ABLE ACCESS
As illustrated, the operation actually takes two sorts for the query to operate in

parallel.

Using a parallel hint, the following can be observed as more processes are used for
the same outcome.
SQ@>s electd fo_nunber,t q_id,s erver_type, process,n umrows,b ytes

2 fromv$pg_tgstat
3 orderb yd fo_nunber,t q_id,s erver_type;

DFO_NUMBER TQ_I D SERVER TYP P RCCESS NUM ROWS BYTES

0 Consurner C 5

0 P roducer P0O03 1 66
1
1

0 P roducer P002
0 P roducer P0O01
1 0 P roducer P0O00 2 108

The above indicates the use of each of the four (4) producers PO00 — P003, each of
them does some kind of work and thus make use of the 4™ degree of parallelism.

Parallel Clause on NON-primary key

S@>e xplainplanf or
2 SELECT/ *+PARALLEL( item4 )* /*F ROM it em
3 VWHERE c ategory="' QutdoorG ear’;

Expl ai ned.

SQ@>s electi d,o peration
2 fromplan_table;

| D OPERATI ON

0 S ELECT S TATEMENT
1T ABLE ACCESS

The above uses merely two accesses to display the query. The use of this actually
uses the basic straight off table access followed by the select command.

Parallel Hint on Primary Key

SQ@>e xplainplanf or
2 SELECT/ *+PARALLEL ( item4 )* /*F ROMit em
3 wherei temd=9 07;

Expl ai ned.

-26 -



Parallel Execution in Oracle Peter Xu, 12288624

SQ@>s electi d,o peration
2 fromplan_table;

| D OPERATI ON

0 S ELECT S TATEMENT
1T ABLE A CCESS
21 NDEX
As it was expected, this query uses an extra access to the index due to the fact that

the primary key is already on default indexed.

SQ@>s el ectd fo_nunber,t q_id,s erver_type, process,n umrows,b ytes
2 fromv$pg_tgstat
3 orderb yd fo_nunber,t q_id,s erver_type;

DFO_NUMBER TQ | D SERVER _TYP P ROCESS NUM RONG BYTES
1 0 C onsurner C 1
1 0 P roducer P0O03 0
1 0 P roducer P002 0 24
1 0 P roducer P0O01 0
1 0 P roducer P0O00O 1

As shown above, the results are of the previous query (the one that was a non-
primary key). Because the results were of the previous query, the actual query with
Parallel Hint does not really produce any significant on the level of parallelism, thus
no record of parallelism usage

3.10 LIKE

Like Clause

SQ@>s elect*f romstudent
2 wheref nanel ike' %% ;

SI D FNAVE LNAME AGE HCOLOR
HB GHT
10 mel hack 12 g reen
190
11j ones Ng 23 bl ack
180
13 pete flang 24 b |l ack
188
16 j ames | ong 15 b rown
155

SQ@>e xplainplanf or
2 select*f romstudent
3 wheref nanel ike' %% ;

Expl ai ned.

SQ@>s electi d,o peration
2 fromplan_table;

| D OPERATI ON

0 S ELECT S TATEMENT
1T ABLE ACCESS

-27 -



Parallel Execution in Oracle Peter Xu, 12288624

SQ@>s el ectd fo_nunber,t q_id,s erver_type, process,n umrows,b ytes
2 fromv$pg_tgstat
3 orderb yd fo_nunber,t q_id,s erver_type;

nor owss el ected
Since there is no parallelism specified in the SELECT command, there is no record of
parallel usage.

Parallel LIKE
SQ@>s elect/ *+PARALLEL(student,3 )* /*F RQM student
2 WHEREf narmelL |KE' %% ;

SI D FNAMVE LNAME AGE HCOLOR
HB GHT
10 mel hack 12 g reen
190
11j ones Ng 23 bl ack
180
13 pete flang 24 b |l ack
188
16 j ames | ong 15 b rown
155

SQ@>e xplainplanf or
2 select/ *+PARALLEL(student,3 )* /*F ROM student
3 WHEREf narmelL |KE' %% ;

Expl ai ned.

SQ@>s electi d,o peration
2 fromplan_table;

| D OPERATI ON

0 S ELECT S TATEMENT
1T ABLE ACCESS

The above illustrates that there were no difference between the two LIKE clauses
when used in parallel or normal.

SQ@>s el ectd fo_nunber,t q_id,s erver_type, process,n umrows,b ytes
2 fromv$pg_tgstat
3 orderb yd fo_nunber,t q_id,s erver_type;

DFO_NUMBER TQ | D SERVER _TYP P ROCESS NUM RONG BYTES
1 0 Consurner C 4 200
1 0 P roducer P002 0 24
1 0 P roducer P0O01 0 24
1 0 P roducer P0O00 4 152

Four (4) rows returned by the query using a PARALLEL hint. The recorded illustrates
parallelism usage of 4 processes and the four rows actually is produced by the first
process and thus does not make use of the other two due to the small size of the
table. Although there were two operations made to perform this query, there was only
one process used.

-28 -



Parallel Execution in Oracle

Peter Xu, 12288624

3.11 LESS THAN

LESS THAN clause

SQL> SELECT * FROM student
2 WHERE age < 20;

SI D FNAMVE

HEI GHT
1 bob

170

10 nel
190

16 james
155

LNAME AGE HCOLOR
smart 15 bl ack
hack 12 green
| ong 15 brown

SQL> explain plan for
2 SELECT * FROM student
3 WHERE age < 20;

Expl ai ned.
SQL> select id, operation
2 fromplan_table;

| D OPERATI ON

0 SELECT STATEMENT
1 TABLE ACCESS

The above uses the basic direct access to get the above query result.

SQL> sel ect df o_nunber,
2 fromv$pg_tgstat
3 order by dfo_nunber,

tq_id,
tq_id,

no rows sel ected

server_type,

process, numrows, bytes

server_type;

The above illustrates a LESS THAN clause in the query. It does not make use of any
parallelism thus ORACLE does not record any parallel usage.

Parallel LESS THAN clause

SQ.> SELECT /*+ PARALLEL(student,
2 where age < 20;

SI D FNAMVE

HEI GHT
1 bob

170

10 nel
190

16 james
155

3) */ * from student

LNAME AGE HCOLOR
smart 15 bl ack
hack 12 green
| ong 15 brown

SQL> explain plan for
2 SELECT /*+ PARALLEL(student,
3 where age < 20;

Expl ai ned.

3) */ * from student

-29 -




Parallel Execution in Oracle Peter Xu, 12288624

SQ@>s electi d,o peration
2 fromplan_table;

| D OPERATI ON

0 S ELECT S TATEMENT
1T ABLE ACCESS

SQ@>s el ectd fo_nunber,t q_id,s erver_type, process,n umrows,b ytes
2 fromv$pg_tgstat
3 orderb yd fo_nunber,t q_id,s erver_type;

DFO_NUMBER TQ | D SERVER _TYP P ROCESS NUM RONG BYTES
1 0 C onsurner C 3 168
1 0 P roducer P002 0 24
1 0 P roducer P0O01 0 24
1 0 P roducer P0O00 3 120

lllustrated above, is the parallelism that is used to process the above query. Although
the query uses two operations, there is only one process used to produce the output.
Once again, this is due to the size of the table thus only one process is used.

LESS THAN and OR clause — No parallelism

SQ@Q>SELECT*f romstudent
2 whereage<2 Oorf nanmel ike' %% ;

SI D FNAMVE LNAME AGE HCOLOR
HB GHT

1bob smart 15 b | ack

170
10 mel hack 12 g reen

190
11j ones Ng 23 bl ack

180
13 pete flang 24 b |l ack

188
16 j ames | ong 15 b rown

155

SQ@>s electi d,o peration
2 fromplan_table;

| D OPERATI ON

0 S ELECT S TATEMENT
1T ABLE ACCESS

SQ@>s electd fo_nunber,t q_id,s erver_type, process,n umrows,b ytes
2 fromv$pg_tgstat
3 orderb yd fo_nunber,t q_id,s erver_type;

nor owss el ected

The same operations as the parallel version are being performed here but yielding
the same results.

-30 -



Parallel Execution in Oracle Peter Xu, 12288624

CHAPTER 4 - SELECT DISTINCT

Select distinct shows the list of requested data one once only. Thus other repeated or
same records with the matching characters will not be displayed. This is useful in
cases where you want to know how many different types to categorise the data.

Below is a list of the experimented queries, which demonstrate this.
o WITHOUT DISTINCT on non-PK, ORDER BY
WITHOUT DISTINCT on non-PK with Parallelism, ORDER BY
With DISTINCT, without parallelism, ORDER BY
Without DISTINCT on Primary Key, without parallelism
With DISTINCT on PK, with Parallelism.
With DISTINCT, non-PK
With DISTINCT and parallelism

O00000D

4.1 DISTINCT

WITHOUT DISTINCT on non-PK, ORDER BY

SQL> sel ect fnane from student
2 order by fnane;

20 rows sel ected.

Here, we see duplicates in the FNAME field. Thus, if we want to see how many
different names we have for this STUDENT table, we can make use of the DISTINCT
clause.

SQL> explain plan for
2 select fnane from student
3 order by fnane;

Expl ai ned.

-31-



Parallel Execution in Oracle Peter Xu, 12288624

SQL> select id, operation
2 fromplan_table;

I D OPERATI ON

0 SELECT STATEMENT
1 SORT
2 TABLE ACCESS

SQL> sel ect dfo_nunber, tq_id, server_type, process, numrows, bytes
2 fromv$pg_tgstat
3 order by dfo_nunber, tq_id, server_type;

no rows sel ected

As it can be seen, from the result of the plan table, and the results from the
V$PQ_TQSTAT table, it is clearly shown that the query was performed serially and
that this query requires three (3) operations to complete.

WITHOUT DISTINCT on non-PK with Parallelism, ORDER BY

SQL> select /*+ parallel (student, 4) */ fnane
2 from student
3 order by fnane;

20 rows selected

-32-



Parallel Execution in Oracle Peter Xu, 12288624

SQL> sel ect dfo_nunber, tq_id, server_type, process, numrows, bytes
2 fromv$pg_tgstat
3 order by dfo_nunber, tq_id, server_type;

DFO_NUMBER TQ | D SERVER TYP PROCESS NUM_ROWS BYTES
1 0 Consurmer PO0O1 8 72
1 0 Consurmer P0O0O 12 99
1 0 Producer P004 20 141
1 0 Producer P002 0 24
1 0 Ranger C 20 336
1 1 Consuner C 20 165
1 1 Producer P0O01 8 69
1 1 Producer P0O0O 12 96

8 rows sel ected.

SQL> explain plan for
2 select /*+ parallel (student, 4) */ fpane
3 from student
4 order by fnaneg;

Expl ai ned.

SQL> select id, operation
2 fromplan_table;

I D OPERATI ON

0 SELECT STATEMENT

1 SCRT

2 TABLE ACCESS
It can be shown that, four processes are used to produce this query result. It first
takes the table and accesses the records, sorting the records according to ORDER
BY clause and finally selects the required fields from the table as the output.

-33-



Parallel Execution in Oracle

Peter Xu, 12288624

4.2 ORDER BY

With DISTINCT, without parallelism, ORDER BY

SQL> sel ect distinct fnane
2 from student
3 order by fnane;

17 rows sel ected

SQL> explain plan for
2 select distinct fnanme
3 from student
4 order by fnaneg;

Expl ai ned

SQL> select id, operation
2 fromplan_table;

I D OPERATI ON

0 SELECT STATEMENT
1 SORT
2 TABLE ACCESS

SQL> sel ect df o_nunber,
2 fromv$pg_tgstat
3 order by df o_nunber,

tq_id, server_type, process

tq_id, server_type

no rows sel ected

numrows, bytes

Using a DISTINCT clause makes little difference as it can be seen. The query still

requires three (3) operations to yield the result.

-34-



Parallel Execution in Oracle Peter Xu, 12288624

4.3 PRIMARY KEY

Without DISTINCT on Primary Key, without parallelism
SQL> SELECT DI STINCT sid FROM st udent ;

20 rows sel ected.

SQL> explain plan for
2 SELECT DI STINCT sid FROM student;

Expl ai ned.

SQL> select id, operation
2 fromplan_table;

I D OPERATI ON
0 SELECT STATEMENT
1 SORT
2 TABLE ACCESS

SQL> sel ect dfo_nunber, tq_id, server_type, process, numrows, bytes
2 fromv$pg_tgstat
3 order by dfo_nunber, tq_id, server_type;

no rows sel ected

As it can be seen, the query illustrates the same results as if it was

Since this query was made on the indexed primary key. Lets see if a parallel hint will
make any difference to the result if a parallel hint was made on the primary key.

-35-



Parallel Execution in Oracle Peter Xu, 12288624

With DISTINCT on PK, with Parallelism.

SQL> SELECT /*+ PARALLEL(student,3) */ DI STINCT sid
2 FROM st udent;

20 rows sel ected.

SQL> explain plan for
2 SELECT /*+ PARALLEL(student,3) */ DI STINCT sid
3 from student;

Expl ai ned.

SQL> select id, operation
2 fromplan_table;

I D OPERATI ON
0 SELECT STATEMENT
1 SORT
2 TABLE ACCESS

SQL> sel ect df o_nunber, tq_id, server_type, process, numrows, bytes
2 fromv$pg_tgstat
3 order by dfo_nunber, tq_id, server_type;

DFO_NUMBER TQ I D SERVER TYP PROCESS NUM_ROWS BYTES
1 0 Consuner POO1 12 96
1 0 Consuner PO0O 8 80
1 0 Producer P004 0 48
1 0 Producer P0O03 20 128
1 1 Consuner C 20 128
1 1 Producer P0O01 12 72
1 1 Producer P0O00 8 56

As shown above, the parallel hint is actually used, unlike in previous experiments,
this example uses the parallelism due to the fact that the processing of the whole
table was required before a choosing the individual records to be displayed, ensuring
that the record was displayed only once.

-36 -



Parallel Execution in Oracle

Peter Xu, 12288624

4.4 NON-PRIMARY KEY

With DISTINCT, non-PK

SQL> SELECT DI STI NCT FNAME FROM STUDENT,;

17 rows sel ect ed.

SQL> sel ect df o_nunber,
2 fromv$pg_tgstat
3 order by df o_nunber,

tq_id, server_type, process,

tq_id, server_type;

no rows sel ected

numrows, bytes

SQL> explain plan for
2 select distinct fnanme
3 from student;

Expl ai ned.

SQL> select id, operation
2 fromplan_table;

I D OPERATI ON

0 SELECT STATEMENT
1 TABLE ACCESS

8 rows sel ected.

The above illustrates the use of distinct without parallelism on a non-primary key.

And the process that it uses in order to produce this result.

-37 -



Parallel Execution in Oracle

Peter Xu, 12288624

With DISTINCT and parallelism

SQL> SELECT /*+ PARALLEL (student,
2 from student;

17 rows sel ect ed.

3) */ DISTINCT fname

SQL> sel ect df o_nunber,
2 fromv$pg_tgstat

tq_id,

server_type,

process,

3 order by dfo_nunber, tq_id, server_type;
DFO_NUMBER TQ I D SERVER TYP PROCESS NUM_ROWS
1 0 Consuner POO1 11
1 0 Consuner PO0O 9
1 0 Producer P004 0
1 0 Producer P0O03 20
1 1 Consuner 17
1 1 Producer P0O01 9
1 1 Producer P0O00O 8

numrows, bytes

SQL> explain plan for
2 SELECT /*+ PARALLEL (student,
3 from student;

Expl ai ned.

3) */ DISTINCT fname

SQL> select id, operation
2 fromplan_table;

I D OPERATI ON
0 SELECT STATEMENT
1 SORT
2 TABLE ACCESS

11 rows sel ect ed.

-38-



Parallel Execution in Oracle Peter Xu, 12288624

CHAPTER 5 — JOIN

Join statements allow linkage of two or more tables for a query statement. To
illustrate this and the different ways of performing parallelism, the following
operations are performed:

A normal Join statement to join two or more tables,

A parallel hinted Join statement joining two or more tables

A normal Nested Query

A parallel hinted Nested Query

A normal Nested Join,

A parallel hinted nested join,

A normal Join statement with SORTing,

A parallel hinted statement with SORTing,

A normal join statement with SORTing and DISTINCT clause,

A parallel hinted statement with SORTing and DISTINCT clause.

A nested join statement with SORTing and GREATER THAN clause.

A parallel hinted nested join statement with SORTing and GREATER THAN
clause.

A nested join statement with SORTing and LIKE clause.

A parallel hinted, nested join statement with SORTing and LIKE clause.

Nested Query with IN operator

Nested Query with IN operator with Parallelism

Nested Query with NOT IN operator

Nested Query with NOT IN operator with Parallelism

Nested Query with ANY operator

Nested Query with ANY operator and parallelism

Nested Query with EXIST operator

Nested Query with EXIST operator, with parallelism

0000000000 O0D

00000000 O0OD

5.1 JOIN

Normal Join

SQ@>s electc .first,c .last,c o.orderdate,ol .order_price,o |.quantity
2 fromcustonerc ,c ust_orderc 0,0 rderline ol
3 wherec .custid=c o.custidAND
4 co.orderid=0 |.orderidAND
5 c.last=" Harris"

FI RST LAST ORCERDATE ORDER PRI CE  QUANTI TY

Paul a Harris 29- MAY-01 259. 99 1
The above links the three tables customer, cust_order and orderline choosing data
from each table and displaying only the matching query according to the WHERE
condition.

Analysing the processing of this query, we perform the EXPLAIN PLAN and view the
v$pg_tgstat table for the necessary information.

Checking the default degree for each of the tables so that we know what degree was
used for each table;

For the CUSTOMER table:

SQ@>s el ectd egreef romuser_tabl es
2 wheret able_nane=' CUSTOMER;

-39 -



Parallel Execution in Oracle Peter Xu, 12288624

SQ@>s el ectd egreef romuser_tabl es
2 wheret able_name=' CUST_ORDER;

SQ@>s el ectd egreef romuser_tabl es
2 wheret able_nane=' ORDERLI NE';

Using degree of eight (8) for only the customer table and the rest using the default
degree of one (1), the following result was recorded:

SQ@>s el ectd fo_nunber,t q_id,s erver_type, process,n umrows,b ytes
2 fromv$pg_tgstat
3 orderb yd fo_nunber,t q_id,s erver_type;

DFO_NUMBER TQ_I D SERVER TYP P RCCESS NUM ROWS BYTES

1 0 C onsurner C 1
1 0 P roducer P004 0
1 0 P roducer P0O03 0
1 0 P roducer P002 0 24
1 0 P roducer P0O01 0
1 0 P roducer P0O00 1

SQ@>e xplainplanf or

selectc .first,c .last,c o.orderdate,ol .order_price,o |.quantity
3 fromcustonerc ,c ust_orderc 0,0 rderlin e ol

4 wherec .custid=c o.custidAND
5
6

N

co.orderid=0 |.orderidAND
c.last=" Harris"

Expl ai ned.

SQ@>s electi d,o peration
2 fromplan_table;

| D OPERATI ON

0 S ELECT S TATEMENT
1 NESTED L OOPS
2 N ESTED L QOPS
3 T ABLE ACCESS
4T ABLE ACCESS
5T ABLE ACCESS

6 rowss el ected.

By observing the results above, the operations needed to complete this query has
increased. Instead of accessing only one table like previously, there are now three
tables being accessed. Nested Loops are now used to find the link between the
tables and then the final SELECT STATEMENT. Observing the v$pq_tgstat results, it
shows the parallelism usage. It shows that ORACLE is only using the single process
to complete each task breakdown. By having the CUSTOMER table as degree of
eight (8), it was hoping that the v$pqg_tgstat would show something different but due
to the size of the tables, ORACLE only uses one process for efficiency.

~40 -



Parallel Execution in Oracle Peter Xu, 12288624

Parallel Hinted Join

Because we are using a parallel hint, the default values of degree will be overwritten,
thus the original values of the degree of each table can be ignored.

Here, we are using the degree of two (2) for each of the tables for this query.

SQ@>s elect/ *+parallel( custoner,2 ,o0 rderl ine,2 ,c ust_order,2 )* /

2 c.first,c .last,c o.orderdate,o |.order_price,o |.quantity

3 fromcustonerc ,c ust_orderc 0,0 rderlin e ol

4 wherec .custid=c o.custidAND

5 co.orderid=0o |.orderidAND

6 c.last=' Harris"
FI RST LAST ORCERDATE ORDER PRI CE  QUANTI TY
Paul a Harris 29- MAY-01 259. 99

SQ@>s el ectd fo_nunber,t q_id,s erver_type, process,n umrows,b ytes
2 fromv$pg_tgstat
3 orderb yd fo_nunber,t q_id,s erver_type;

DFO_NUMBER TQ_I D SERVER TYP P RCCESS NUM ROWS BYTES

1 0 C onsurner C 1
1 0 P roducer P004 0
1 0 P roducer P0O03 0 24
1 0 P roducer P002 0
1 0 P roducer P0O01 0
1 0 P roducer P0O00O 1

SQ@>e xplainplanf or
2 select/ *+parallel( customer,2 ,o rderl ine,2 ,c ust_order,2 )* /
c.first,c .last,c o.orderdate,o |.order_price,o |.quantity
4 fromcustonerc ,c ust_orderc o,0 rderline ol
5 wherec .custid=c o.custidAND
6 co.orderid=o0 |.orderidAND
7 c.last=' Harris"

Expl ai ned.

SQ@>s electi d,o peration
2 fromplan_table;

| D OPERATI ON
0 S ELECT S TATEMENT
1 NESTED L OOPS
2 N ESTED L QOPS
3 T ABLE ACCESS
4T ABLE ACCESS
5T ABLE ACCESS

6 rowss el ected.

From the above result, it differs very little from the normal join statement and the
parallel hinted join statement. This is because of the fact that because they are using
different tables, ORACLE automatically uses a different process for each table
access.

~41 -



Parallel Execution in Oracle Peter Xu, 12288624

5.2 NESTED

A normal Nested,
Here, a normal nested query is performed. It makes use of two select statements,
one as an outer final select where the inner select finds the maximum height from the
table and uses this figure for the outer SELECT to perform the final query.

SQL> sel ect fname, height
2 from student
3 where height = (sel ect nax(height) from student);

SQL> explain plan for
2 select fnane, height
3 from student
4 where height = (select max(height) from student);

Expl ai ned

SQL> select id, operation
2 fromplan_table;

| D OPERATI ON
0 SELECT STATEMENT
1 FILTER
2 TABLE ACCESS
3 SORT
4 TABLE ACCESS

As it can be seen, since we are using two level of select statements, there are two
table access’, but they are performed one statement from a SORT operation. The
first table access is the inner SELECT where it finds the maximum height from the
student table. The sort operation is performed to find the maximum height for the
inner select statement. The second table access is to access the student table where
a FILTER is used to filter out the height of students that do not match the maximum
height, and there the final select statement is made to complete the query.

A parallel hinted Nested Query
SQL> select /*+ parallel (student, 2) */
2 fname, height
3 from student
4 where height = (select max(height) from student);

SQL> explain plan for

2 select /*+ parallel (student, 2) */

3 fname, height

4 from student

5 where height = (sel ect nax(height) from student);
Expl ai ned

~42 -



Parallel Execution in Oracle

SQL> select id, operation
2 fromplan_table;

| D OPERATI ON

0 SELECT STATEMENT
1 TABLE ACCESS

2 SORT

3 TABLE ACCESS

DFO_NUMBER TQ I D SERVER TYP PROCESS NUM_ROWS BYTES
1 0 Consurmer C 1 58
1 0 Producer P0O01 0 24
1 0 Producer P0O00 1 34

It can be seen here that a parallel hinted nested operation uses one less operation,
the filter. This proves to show that using parallelism in the right time can actually save
processing time and thus increase efficiency of the query.

Peter Xu, 12288624

A normal Nested Join

SQL> select c.first, co.nethpnt, o.quantity

2 fromcustoner c, cust_order co, orderline o

3 where c.custid = co.custid AND

4 co.orderid = o.orderid AND

5 o.quantity = (select max(quantity) fromorderline);
FI RST METHPMI QUANTI TY
Al i ssa CcC 3

Because of the fact that all default degree for each table is used (degree of 1) there
is no record of any parallelism usage.

SQL> sel ect df o_nunber, tq_id, server_type, numrows, bytes

2 fromv$pg_tgstat
3 order by df o_nunber,

process,
tq_id, server_type

no rows sel ected

SQL> explain plan for
select c.first, co.methpnt
fromcustonmer ¢, cust_order co

2 o.quantity
3
4 where c.custid = co.custid AND
5
6

orderline o

co.orderid = o.orderid AND

o.quantity = (select max(quantity) from orderline);

Expl ai ned

~43-



Parallel Execution in Oracle Peter Xu, 12288624

SQL> select id, operation
2 fromplan_table;

| D OPERATI ON
SELECT STATEMENT
NESTED LOOPS
NESTED LOOPS
TABLE ACCESS
SORT
TABLE ACCESS
TABLE ACCESS
I NDEX
TABLE ACCESS
I NDEX

©Co~NOOOB~AWNE O

10 rows sel ected

As it can be seen here, that the nested join requires many operations to satisfy the
query. It involves indexing, nested loops and sorting to get this query, and thus
proving to be a very expensive query.

A parallel hinted nested join

Three tables used in this query was modified to have a degree of 2 for the purpose of
experimenting with parallel hinted nested join queries.

SQL> ALTER TABLE customer parallel (degree 2);

Tabl e al tered
SQL> ALTER TABLE cust_order parallel (degree 2);
Tabl e al tered
SQL> ALTER TABLE orderline parallel (degree 2);

Tabl e altered

SQL> select c.first, co.nethpnt, o.quantity

2 fromcustoner c, cust_order co, orderline o

3 where c.custid = co.custid AND

4 co.orderid = o.orderid AND

5 o.quantity = (select max(quantity) fromorderline);
FI RST METHPMI QUANTI TY
Al i ssa CcC 3

SQL> explain plan for
2 select c.first, co.methpnt, o.quantity
3 fromcustoner c, cust_order co, orderline o
4 where c.custid = co.custid AND
5 co.orderid = o.orderid AND
6 o.quantity = (select max(quantity) fromorderline);

Expl ai ned

~44 -



Parallel Execution in Oracle

SQL> select id, operation
2 fromplan_table;

| D OPERATI ON
SELECT STATEMENT
NESTED LOOPS
NESTED LOOPS
TABLE ACCESS
SORT
SORT
TABLE ACCESS
TABLE ACCESS
I NDEX
TABLE ACCESS
I NDEX

QOwoo~NOCUDWNEFO

[E=Y

11 rows sel ected

SQL> sel ect dfo_nunber, tq_id, server_type, process, numrows, bytes
2 fromv$pg_tgstat
3 order by dfo_nunber, tq_id, server_type;

DFO_NUMBER TQ | D SERVER TYP PROCESS NUM_ROWS BYTES
1 0 Producer P0O00 1 84
1 0 Producer P0O01 0 24

Since the parallel hint have been default changed all the tables to 2 degree of
parallelism, it can be seen from above that there were two processes used, and in
this case, more operations were used to produce this query.

5.3 SORTING

A normal Join statement with SORTing,

All tables were changed back to default serial processing for this normal join
statement experimentation.

SQL> ALTER TABLE customrer parallel (degree 1);
Tabl e al tered

SQL> ALTER TABLE cust_order parallel (degree 1);
Tabl e al tered

SQL> ALTER TABLE orderline parallel (degree 1);

Tabl e altered

Since using sub queries, one result usually are produced. Thus for this example an
extra clause of ORDER BY is used to see what the implications it has on the query.

SQL> select c.first, co.nethpnt, o.quantity

2 fromcustoner c, cust_order co, orderline o
3 where c.custid = co.custid AND
4 co.orderid = o.orderid AND
5 o.quantity = (select max(quantity) from orderline)
6 order by c.first;
FI RST METHPMI QUANTI TY
Al i ssa CcC 3

_45 -

Peter Xu, 12288624




Parallel Execution in Oracle Peter Xu, 12288624

Since the query is performed serially, there is no parallelism used.
SQL> sel ect df o_nunber, tq_id, server_type, process, numrows, bytes

2 fromv$pg_tgstat
3 order by dfo_nunber, tq_id, server_type;

no rows sel ected

SQL> explain plan for

2 select c.first, co.methpnt, o.quantity
3 fromcustoner c, cust_order co, orderline o
4 where c.custid = co.custid AND
5 <co.orderid = o.orderid AND
6 o.quantity = (select max(quantity) from orderline)
7 order by c.first;
Expl ai ned

SQL> select id, operation
2 fromplan_table;

| D OPERATI ON
SELECT STATEMENT
SORT
NESTED LOOPS
NESTED LOOPS
TABLE ACCESS
SORT
TABLE ACCESS
TABLE ACCESS
I NDEX
TABLE ACCESS
I NDEX

QOwoo~NOOUDWNEFO

[E=Y

11 rows sel ected

The above illustrates the wasted ORDER BY clause where it doesn’t do anything for
this query as only one result is only produced. The operations total however is the
same as the previous parallel hinted nested join of 11 operations.

The only difference is that ID 1 has a SORT here where as the previous query on the
parallel hinted nested join has an ID 1 of NESTED LOOPS.

A parallel hinted statement with SORTing,
The tables are updated with parallelism of 2 for each of the three tables.
SQL> ALTER TABLE customrer parallel (degree 2);

Tabl e altered
SQL> ALTER TABLE cust_order parallel (degree 2);
Tabl e altered

SQL> ALTER TABLE orderline parallel (degree 2);

Tabl e altered

~46 -



Parallel Execution in Oracle

SQL> select c.first, co.nethpnt, o.quantity
2 fromcustoner c, cust_order co, orderline o
3 where c.custid = co.custid AND
4 co.orderid = o.orderid AND
5 o.quantity = (select max(quantity) from orderline)
6 order by c.first;

FI RST METHPMT QUANTI TY

SQL> sel ect df o_nunber, tq_id, server_type, process, numrows, bytes
2 fromv$pg_tgstat
3 order by dfo_nunber, tq_id, server_type;

DFO_NUMBER TQ I D SERVER TYP PROCESS NUM_ROWS BYTES
1 0 Consuner POO1 0 27
1 0 Consuner PO0O 1 43
1 0 Producer P0O03 0 24
1 0 Producer P002 1 40
1 0 Ranger C 1 139
1 1 Consuner C 1 64
1 1 Producer P0O01 0 24
1 1 Producer P0O00 1 40

SQL> explain plan for

2 select c.first, co.methpnt, o.quantity
3 fromcustoner c, cust_order co, orderline o
4 where c.custid = co.custid AND
5 <co.orderid = o.orderid AND
6 o.quantity = (select max(quantity) from orderline)
7 order by c.first;
Expl ai ned

SQL> select id, operation
2 fromplan_table;

| D OPERATI ON
SELECT STATEMENT
SORT
NESTED LOOPS
NESTED LOOPS
TABLE ACCESS
SORT
SORT
TABLE ACCESS
TABLE ACCESS
I NDEX
TABLE ACCESS
I NDEX

12 rows sel ect ed.

The above shows that using parallelism in this case uses an extra operation where
as before uses one less.

~47 -

Peter Xu, 12288624




Parallel Execution in Oracle Peter Xu, 12288624

5.4 DISTINCT

A normal join statement with SORTing and DISTINCT clause,
The tables were changed back to their original form of being serial processing.

SQL> alter table customer parallel (degree 1);
Tabl e al tered

SQL> alter table cust_order parallel (degree 1);
Tabl e al tered

SQL> alter table orderline parallel (degree 1);

Tabl e altered

SQL> select distinct c.first, co.nethpnt, o.quantity
2 fromcustoner c, cust_order co, orderline o
3 where c.custid = co.custid AND
4 co.orderid = o.orderid AND
5 o.quantity = (select mn(quantity) from orderline)
6 order by c.first;

FI RST METHPMI QUANTI TY
Al i ssa CcC 1
Paul a CcC 1

SQL> explain plan for

2 select distinct c.first, co.methpnt, o.quantity
3 fromcustoner c, cust_order co, orderline o
4 where c.custid = co.custid AND
5 <co.orderid = o.orderid AND
6 o.quantity = (select mn(quantity) fromorderline)
7 order by c.first;
Expl ai ned

SQL> select id, operation
2 fromplan_table;

| D OPERATI ON
SELECT STATEMENT
SORT
NESTED LOOPS
NESTED LOOPS
TABLE ACCESS
SORT
TABLE ACCESS
TABLE ACCESS
I NDEX
TABLE ACCESS
I NDEX

QOwoo~NOUDWNEFO

[E=Y

11 rows sel ected

SQL> sel ect df o_nunber, tq_id, server_type, process, numrows, bytes
2 fromv$pg_tgstat
3 order by dfo_nunber, tq_id, server_type;

no rows sel ected

- 48 -



Parallel Execution in Oracle Peter Xu, 12288624

Since the query is performed under serial, there is no rows selected when viewing
the v$pg_tgstat table.

Form the results above, it illustrates that many NESTED LOOPS and tables
accesses are required to perform this query.

A parallel hinted, nested join statement with SORTing and DISTINCT clause.

SQL> select distinct c.first, co.nethpnt, o.quantity
2 fromcustoner c, cust_order co, orderline o
3 where c.custid = co.custid AND
4 co.orderid = o.orderid AND
5 o.quantity = (select mn(quantity) from orderline)
6 order by c.first;

FI RST METHPMI QUANTI TY
Al i ssa CcC 1
Paul a CcC 1

SQL> explain plan for

2 select distinct c.first, co.methpnt, o.quantity
3 fromcustoner c, cust_order co, orderline o
4 where c.custid = co.custid AND
5 <co.orderid = o.orderid AND
6 o.quantity = (select mn(quantity) fromorderline)
7 order by c.first;
Expl ai ned.

SQL> select id, operation
2 fromplan_table;

| D OPERATI ON
0 SELECT STATEMENT
1 SORT
2 NESTED LQOOPS
3 NESTED LQOOPS
4 TABLE ACCESS
5 SORT
6 SORT
7 TABLE ACCESS
8 TABLE ACCESS
9 | NDEX
0 TABLE ACCESS
1 1 NDEX

12 rows sel ect ed.

SQL> sel ect dfo_nunber, tq_id, server_type, process, numrows, bytes
2 fromv$pg_tgstat
3 order by dfo_nunber, tq_id, server_type;

DFO_NUMBER TQ I D SERVER TYP PROCESS NUM_ROWS BYTES
1 0 Consuner POO1 1 42
1 0 Consuner PO0O 2 59
1 0 Producer P0O03 0 24
1 0 Producer P002 3 71
1 0 Ranger C 3 196
1 1 Consuner C 2 79
1 1 Producer P0O01 1 39
1 1 Producer P0O00 1 40

~49 -



Parallel Execution in Oracle Peter Xu, 12288624

8 rows sel ected

As it can be observed from the result above, the operation for this query requires one
less amount of operations, however, for this query, ORACLE makes use of the
parallelism of degree 2.

5.5 GREATER THAN

A nested join statement with SORTing and GREATER THAN clause.
The tables were given the original degree of 1, thus running in series.
SQL> alter table customer parallel (degree 1);

Tabl e al tered
SQL> alter table cust_order parallel (degree 1);
Tabl e al tered

SQL> alter table orderline parallel (degree 1);

Tabl e altered

The nested join statement with SORTing and GREATER THAN clause.

SQL> select distinct c.first, co.nethpnt, o.quantity
2 fromcustoner c, cust_order co, orderline o
3 where c.custid = co.custid AND
4 co.orderid = o.orderid AND
5
6

o.quantity > (select avg(quantity) from orderline)
order by c.first;

FI RST METHPMT QUANTI TY

SQL> sel ect df o_nunber, tq_id, server_type, process, numrows, bytes
2 fromv$pg_tgstat
3 order by dfo_nunber, tq_id, server_type;

no rows sel ected

SQL> explain plan for

2 select distinct c.first, co.methpnt, o.quantity
3 fromcustoner c, cust_order co, orderline o
4 where c.custid = co.custid AND
5 <co.orderid = o.orderid AND
6 o.quantity > (select avg(quantity) from orderline)
7 order by c.first;
Expl ai ned

SQL> select id, operation
2 fromplan_table;

I D OPERATI ON
SELECT STATEMENT
SORT
FI LTER
HASH JO N
HASH JO N
TABLE ACCESS

ah~hwWNEFO

-850 -



Parallel Execution in Oracle

6 TABLE ACCESS
7 TABLE ACCESS

8 SORT
9 TABLE ACCESS

10 rows sel ect ed.

As it can be seen, the GREATER THAN clause created the use of HASH JOINs for
this query. It has accessed the tables in four occasions with other operations such as
FILTER and SORT. Let see how this changes with parallelism execution.

A parallel hinted nested join statement with SORTing and GREATER THAN clause.

The tables were given the degree of two (2) giving all three tables parallelism of two
processes.

SQL> ALTER TABLE customrer parallel (degree 2);
Tabl e al tered.

SQL> ALTER TABLE cust_order parallel (degree 2);
Tabl e al tered.

SQL> TABLE orderline parallel (degree 2);

Tabl e al tered.

SQL> select distinct c.first, co.nethpnt, o.quantity
2 fromcustoner c, cust_order co, orderline o
3 where c.custid = co.custid AND
4 co.orderid = o.orderid AND
5 o.quantity > (select avg(quantity) from orderline)
6 order by c.first;

FI RST METHPMT QUANTI TY

Al i ssa CcC 3

SQL> sel ect df o_nunber, tq_id, server_type, process, numrows, bytes
2 fromv$pg_tgstat
3 order by dfo_nunber, tq_id, server_type;

DFO_NUMBER TQ | D SERVER TYP PROCESS NUM_ROWS BYTES
1 0 Consurmer P0O03 1 60
1 0 Consurmer P002 5 102
1 0 Producer P0O01 0 48
1 0 Producer P0O0O 6 114
1 1 Consuner P0O03 1 62
1 1 Consuner P002 5 121
1 1 Producer P0O01 0 48
1 1 Producer P0O0O 6 135
1 2 Consurmer PO0O1 2 82
1 2 Consurmer P0O0O 4 113
1 2 Producer P003 1 64
1 2 Producer P002 5 131
1 3 Consuner PO0O1 3 75
1 3 Consuner =(010]0] 1 57
1 3 Producer P003 0 48
1 3 Producer P002 4 84
1 4 Producer P0O01 3 72
1 4 Producer P0O0O 1 39

-51-

Peter Xu, 12288624




Parallel Execution in Oracle Peter Xu, 12288624

SQ@>e xplainplanf or

2 selectd istinctc .first,c o.methpnt,o .quantity
fromcustonmerc ,c ust_orderc o,0 rderline o
wherec .custid=c o.custidAND
co.orderid=0 .orderidAND
o.quantity>( selecta vg(quantity)f rom orderline)
orderb yc .first;

~No ol bhWw

Expl ai ned.

SQ@>s electi d,o peration
2 fromplan_table;

| D OPERATI ON
0 S ELECT S TATEMENT
1SCORT
2FILTER
3HASHJAON
4HASHJAN
5T ABLE A CCESS
6 T ABLE A CCESS
7T ABLE A CCESS
8S ORT
9S ORT

10 T ABLE ACCESS

11r owss el ect ed.

Comparing the normal serial access and the parallel access, it can be seen that for
parallel execution of this query, an extra SORT is required to complete the operation.

A nested join statement with SORTing and LIKE clause.
The tables are returned back to the serial execution method.
SQ@>ALTERTABLE c ustonerp aral |l el ( degree 1);

Tableal tered.
SQ@>altert ablec ust_orderp arallel( degree 1);
Tablealtered.
SQ@>altert ableorderlineparallel( degree 1);

Tabl eal tered.

SQ@>s electd istinctc .first,c o.nethpnt,o .quantity

2 fromcustonerc ,c ust_orderc 0,0 rderline o
3 wherec .custid=c o.custidAND
4 co.orderid=0o .orderidAND
5 co.methpmL | KE( selectd istinctmethpmt fromcust_order
6 wheremethpn=' CC);
FI RST METHPMI QUANTI TY
Alissa CcC 1
Alissa CcC 3
Paul a CcC 1

SQ@>s el ectd fo_nunber,t q_id,s erver_type, process,n umrows,b ytes
2 fromv$pg_tgstat
3 orderb yd fo_nunber,t q_id,s erver_type;

nor owss el ected

-52 -



Parallel Execution in Oracle Peter Xu, 12288624

SQ@>e xplainplanf or

2 selectd istinctc .first,c o.methpnt,o .quantity
3 fromcustonerc ,c ust_orderc 0,0 rderline o
4 wherec .custid=c o0.custidAND
5 co.orderid=0 .orderidAND
6 co.methpmL | KE( selectd istinctmethpmt fromcust_order
7 wheremethpn="' CC);
Expl ai ned.

SQ@>s electi d,o peration
2 fromplan_table;

| D OPERATI ON
0 S ELECT S TATEMENT
1SCORT
2FILTER
3HASHJAON
4HASHJAON
5T ABLE A CCESS
6 T ABLE A CCESS
7T ABLE A CCESS
8S ORT
9T ABLE A CCESS

10r owss el ect ed.

Using the LIKE clause in this JOIN statement creates a similar execution style to the
previous nested join statement with SORTing and GREATER THAN clause. They
both have the same operations and both were running in serial. Lets see if this is the
case with the parallel execution method.

5.6 LIKE

A parallel hinted, nested join statement with SORTing and LIKE clause.
The tables where given a parallelism of two (2).
SQ@>ALTERTABLE c ustonerp aral |l el ( degree 2);

Tableal tered.

SQ@>ALTERTABLE c ust_orderp arallel( degree 2);
Tablealtered.

SQ>ALTERTABLEorderlinep arallel( degree 2);

Tabl eal tered.

SQ@>s electd istinctc .first,c o.nethpnt,o .quantity

2 fromcustonerc ,c ust_orderc 0,0 rderline o
3 wherec .custid=c o.custidAND
4 co.orderid=0o .orderidAND
5 co.methpmL | KE( selectd istinctmethpmt fromcust_order
6 wheremethpn=' CC);
FI RST METHPMI QUANTI TY
Alissa CcC 1
Alissa CcC 3
Paul a CcC 1

-53-



Parallel Execution in Oracle Peter Xu, 12288624

SQL> sel ect dfo_nunber, tq_id, server_type, process, numrows, bytes
2 fromv$pg_tgstat
3 order by dfo_nunber, tq_id, server_type;

DFO_NUMBER TQ | D SERVER TYP PROCESS NUM_ROWS BYTES
1 0 Consurmer P0O03 1 62
1 0 Consurmer P002 5 121
1 0 Producer P0O01 0 48
1 0 Producer P0O0O 6 135
1 1 Consuner P0O03 1 60
1 1 Consuner P002 5 102
1 1 Producer P0O01 0 48
1 1 Producer P0O0O 6 114
1 2 Consurmer PO0O1 2 82
1 2 Consurmer P0O0O 4 113
1 2 Producer P003 1 64
1 2 Producer P002 5 131
1 3 Consuner PO0O1 3 75
1 3 Consuner =(010]0] 1 57
1 3 Producer P003 0 48
1 3 Producer P002 4 84
1 4 Consurmer C 4 111
1 4 Producer P0O01 3 72
1 4 Producer P0O0O 1 39

19 rows sel ect ed.

By observing the results of the number of processes that were used, it shows that by
joining three tables together and if there was a parallel hints, each table is given a
process each in which to operate on. Hence the above, PO00 to PO03 as there were
four tables that were access during this query; three on the normal select and one on
the nested select.

5.7 1IN

Nested Query with IN operator
The In Operator in this example lists the first name, last name and the item name of
customers whose first name is also in the student table.

The tables are given parallel degree of one (1), which is running in serial.
SQL> ALTER TABLE customrer parallel (degree 1);

Tabl e al tered.

SQL> alter table cust_order parallel (degree 1);
Tabl e al tered.

SQL> alter table orderline parallel (degree 1);

Tabl e al tered.

_54 -



Parallel Execution in Oracle Peter Xu, 12288624

SQL> select c.first, c.last, i.itendesc
2 fromcustoner ¢, itemi, inventory inv, cust_order co, orderline o
3 where c.custid = co.custid AND
4 co.orderid = ol.orderid AND
5 ol.invid = inv.invid AND
6 inv.itemid=i.itemd AND
7 c.first IN (select fname from student);
FI RST LAST | TEMDESC
Paul a Harris 3-Season Tent

SQL> sel ect dfo_nunber, tq_id, server_type, process, numrows, bytes
2 fromv$pg_tgstat
3 order by dfo_nunber, tq_id, server_type;

no rows selected

Since there is no parallelism used, the above doesn't yield any results.

SQL> explain plan for
2 select c.first, c.last, i.itendesc
3 fromcustoner ¢, itemi, inventory inv, cust_order co, orderline o
4 where c.custid = co.custid AND
5 <co.orderid = ol .orderid AND
6 ol.invid = inv.invid AND
7 inv.itemd =i.itemd AND
8 c.first IN (select fname from student);

Expl ai ned

SQL> sel ect id, operation, cost
2 fromplan_table;

I D OPERATI ON CosT
0 SELECT STATEMENT 13
1 HASH JON 13
2 HASH JON 11
3 HASH JON 9
4 HASH JON
5 HASH JO N 5
6 TABLE ACCESS 1
7 VI EW 3
8 SCORT 3
9 TABLE ACCESS 1
0 TABLE ACCESS 1

I D OPERATI ON CosT

11 TABLE ACCESS 1
12 TABLE ACCESS 1
13 TABLE ACCESS 1

14 rows sel ect ed.

The above illustrates the cost of the IN operation. It makes use of many HASH JOINs
where the most costly operations were performed.

-55-



Parallel Execution in Oracle

Peter Xu, 12288624

Nested Query with IN operator with Parallelism

The tables where given a parallelism of two (2).

Tabl e al tered.
SQL> ALTER TABLE cust_order parall el

Tabl e al tered.

Tabl e al tered.

SQL> ALTER TABLE customrer parallel (degree 2);

(degree 2);

SQL> ALTER TABLE orderline parallel (degree 2);

| TEMDESC

SQL> select c.first, c.last, i.itendesc
2 fromcustoner ¢, itemi, inventory inv,
3 where c.custid = co.custid AND
4 co.orderid = ol.orderid AND
5 ol.invid = inv.invid AND
6 inv.itemd=i.itemd AND
7 c.first IN (select fname from student);
FI RST LAST
Paul a Harris

cust _order co, orderline ol

3- Season Tent

-56 -



Parallel Execution in Oracle

Peter Xu, 12288624

server_type

server_type

process, numrows, bytes

PORORRPROROORAOFRWRORODOUIRPNORRLRO®OO®O
~
a

i nventory inv,

SQL> sel ect df o_nunber, tqg_id,
2 fromv$pg_tgstat
3 order by dfo_nunber, tq_id,
DFO_NUMBER TQ | D SERVER TYP PROCESS
1 0 Consurmer PO0O1
1 0 Consurmer P0O0O
1 0 Producer C
1 1 Consuner P0O03
1 1 Consuner P002
1 1 Producer C
1 2 Consurmer PO0O1
1 2 Consurmer =(010]0]
1 2 Producer C
1 3 Consuner P0O0O1
1 3 Consuner =(010]0]
1 3 Producer P003
1 3 Producer P002
1 4 Consuner P0O03
1 4 Consuner P002
1 4 Producer P0O01
1 4 Producer P0O0O
1 5 Consuner P0O03
1 5 Consuner P002
1 5 Producer P0O01
1 5 Producer P0O0O
1 6 Consurmer PO0O1
1 6 Consurmer =(010]0]
1 6 Producer P003
1 6 Producer P002
1 7 Consurmer PO0O1
1 7 Consurmer =(010]0]
1 7 Producer P003
1 7 Producer P002
1 8 Consuner P0O03
1 8 Consuner P0O02
1 8 Producer P0O01
1 8 Producer P0O0O
1 9 Consunmer PO0O1
1 9 Consurmer P0O0O
1 9 Producer P003
1 9 Producer P002
1 10 Consurmer QC
1 10 Producer P0O01
1 10 Producer P0O0O
40 rows sel ected
SQL> EXPLAI N PLAN FOR
2 select c.first, c.last, i.itendesc
3 fromcustoner c, itemi,
4 where c.custid = co.custid AND
5 <co.orderid = ol .orderid AND
6 ol.invid = inv.invid AND
7 inv.itemd =i.itemd AND
8 c.first IN (select fname from student);
Expl ai ned

cust_order co, orderline o

-57 -



Parallel Execution in Oracle Peter Xu, 12288624

SQ@>s el ecti d,o peration,c ost
2 fromplan_table;

| D OPERATI ON CosT
0 S ELECT S TATEMENT 13
1HASHJON 13
2HASHJAN 11
3HASHJAON 9
4HASHJAN

5HASHJAON 5
6 T ABLE A CCESS 1
7VIEW 3
8S ORT 3
9T ABLE A CCESS 1
10 T ABLE ACCESS 1

| D OPERATI ON CosT

11T ABLE ACCESS 1
12 T ABLE ACCESS 1
13T ABLE ACCESS 1

14r owss el ect ed.

From the above, it can be seen that there is the same costs between the serial and
the parallel implementation methods, however, there the more processes used, and
there may be a speed improvement, but because there is an increase in machine
usage, that is the only down side. But usually if the usage is the same, and there is
an improvement in speed, then that is the optimum goal.

5.8 NOT IN

Nested Query with NOT IN operator
The tables are given parallel degree of one (1), which is running in serial.
SQ@>ALTERTABLE c ustonerp aral |l el ( degree 1);

Tablealtered.
SQ@>altert ablec ust_orderp arallel( degree 1);
Tablealtered.
SQ@>altert ableorderlineparallel( degree 1);

Tabl eal tered.

SQ@>s electc .first,c .last,i .itendesc
2 fromcustonerc ,i temi,i nventoryi nv, cust_orderc o,0 rderlineol
3 wherec .custid=c o.custidAND
4 co.orderid=0o |.orderidAND
5 ol.invid=i nv.invidAND
6 inv.itemd=i .itemidAND
7 c.firstN OTl N(selectf nanef romstudent) ;

FI RST LAST | TEMDESC

Alissa Chang 3-Season T ent

Alissa Chang Wonen' sHikingShorts
Alissa Chang Wonen' sHikingShorts

-58 -



Parallel Execution in Oracle

Peter Xu, 12288624

SQL> sel ect df o_nunber,
2 fromv$pg_tgstat
3 order by df o_nunber,

tq_id, server_type

tq_id, server_type

no rows sel ected

process,

numrows, bytes

Since there is no parallelism used, the above doesn't yield any results.

SQL> explain plan for
select c.first,
from custoner c,
where c.custid = co.custid AND

2 i.itendesc
3
4
5 <co.orderid = ol .orderid AND
6
7
8

i nventory inv,

c. |l ast,
itemi,

ol.invid = inv.invid AND
inv.itemd =i.itemd AND
c.first NOT IN (select fnane from student);

Expl ai ned

cust _order co,

orderline ol

SQL> sel ect id, operation, cost

2 fromplan_table;

OPERATI ON
SELECT STATEMENT
FI LTER

HASH JO N
HASH JO N
HASH JO N
HASH JO N
TABLE ACCESS
TABLE ACCESS
TABLE ACCESS
TABLE ACCESS
TABLE ACCESS
TABLE ACCESS

RPOOWOO~NOOAWNEO

e

12 rows sel ected

RPRRPRPRPRPRPWONO

The above illustrates the cost in the NOT IN. It makes use of many HASH JOINs

where the most costly operations were performed.

Nested Query with NOT IN operator with Parallelism
The tables were given degree of two (2).

SQL> ALTER TABLE customrer parallel (degree 2);

Tabl e altered

SQL> ALTER TABLE cust_order parallel (degree 2);
Tabl e al tered
SQL> ALTER TABLE orderline parallel (degree 2);

Tabl e altered

-59 -



Parallel Execution in Oracle

SQ@>s elect/ *+parallel( student,2 )* /

c.first,c .last,i .itendesc

fromcustonerc ,i temi,i nventoryi nv, cust_orderc o,0 rderlineol
4 wherec .custid=c o.custidAND

5 co.orderid=0o |.orderidAND

6 ol.invid=i nv.invidAND
7
8

w N

inv.itemd=i .item dAND
c.firstN OT'l N( selectf nanef romstudent) ;

FI RST LAST | TEVMDESC

Alissa Chang 3-Season T ent

Alissa Chang VWnen' sHi ki ng S horts
Alissa Chang VWnen' sHi ki ng S horts

SQ@>s el ectd fo_nunber,t q_id,s erver_type, process,n umrows,b ytes
2 fromv$pg_tgstat
3 orderb yd fo_nunber,t q_id,s erver_type;

DFO_NUMBER TQ | D SERVER _TYP P ROCESS NUM_ROWS BYTES
1 0 Consurer PO0O1 6 190
1 0 Consurmer =(010]0] 2 74
1 0 Producer C 8 264
1 1 Consuner PO0O1 3 81
1 1 Consuner =(010]0] 1 59
1 1P roducer P003 0 48
1 1P roducer P002 4 92
1 2 Consurmer P0O03 3 124
1 2 Consurmer P002 1 68
1 2 Producer P0O01 3 124
1 2 Producer P0O0O 1 68

DFO_NUMBER TQ | D SERVER _TYP P ROCESS NUM_ROWS BYTES
1 3 Consuner P0O03 2 68
1 3 Consuner P002 4 88
1 3 Producer P0O01 0 48
1 3 Producer P0O0O 6 108
1 4 C onsuner P0O0O1 0 48
1 4 C onsuner =(010]0] 4 144
1 4 P roducer P003 3 124
1 4 P roducer P002 1 68
1 5 Consuner PO0O1 2 87
1 5 Consuner =(010]0] 4 126
1 5P roducer P003 0 48

DFO_NUMBER TQ | D SERVER _TYP P ROCESS NUM_ROWS BYTES
1 5P roducer P002 6 165
1 6 C onsuner C 4 184
1 6 P roducer P0O01 0 24
1 6 P roducer P0O0O 4 160

26r owss el ect ed.

SQ@>e xplainplanf or

2 selectc .first,c .last,i .itendesc
fromcustonerc ,i temi,i nventoryi nv, cust_orderc o,0 rderlineol

3

4 wherec .custid=c o.custidAND

5 co.orderid=0o |.orderidAND

6 ol.invid=i nv.invidAND

7 inv.itemd=i .itemdAND

8 c.firstN OTl N(selectf nanef romstudent) ;

Expl ai ned.

-60 -

Peter Xu, 12288624




Parallel Execution in Oracle Peter Xu, 12288624

SQL> sel ect id, operation, cost
2 fromplan_table;

I D OPERATI ON CosT
SELECT STATEMENT 9
FI LTER
HASH JO N 9
HASH JO N 7
HASH JO N 5
HASH JO N 3
TABLE ACCESS 1
TABLE ACCESS 1
TABLE ACCESS 1
TABLE ACCESS 1
TABLE ACCESS 1

Qowoo~NOoOUWNEFO

[E=Y

I D OPERATI ON CosT

11 TABLE ACCESS 1

12 rows sel ected
Here we can see that HASH JOIN is quite costly operation to do.

5.9 ANY

Nested Query with ANY operator
The ANY operator is true if any value returned meets the condition.

The tables are given parallel degree of one (1), which is running in serial.
SQL> ALTER TABLE customrer parallel (degree 1);

Tabl e al tered
SQL> alter table cust_order parallel (degree 1);
Tabl e al tered
SQL> alter table orderline parallel (degree 1);

Tabl e altered

SQL> select distinct c.first, co.nethpnt, o.quantity
2 fromcustoner c, cust_order co, orderline o
3 where c.custid = co.custid AND
4 co.orderid = o.orderid AND
5 o.quantity > ANY (sel ect avg(quantity) from orderline);

FI RST METHPMT QUANTI TY

Al i ssa CcC 3

SQL> sel ect df o_nunber, tq_id, server_type, process, numrows, bytes
2 fromv$pg_tgstat
3 order by dfo_nunber, tq_id, server_type;

no rows sel ected

-61 -



Parallel Execution in Oracle

SQL> explain plan for
2 select distinct c.first, co.methpnt, o.quantity
3 fromcustoner c, cust_order co, orderline o
4 where c.custid = co.custid AND
5 <co.orderid = o.orderid AND
6 o.quantity > ANY (select avg(quantity) from orderline);

Expl ai ned

SQL> sel ect id, operation, cost
2 fromplan_table;

I D OPERATI ON CosT
SELECT STATEMENT
SORT
FI LTER
HASH JO N 5
HASH JO N 3
TABLE ACCESS 1
TABLE ACCESS 1
TABLE ACCESS 1
SORT
TABLE ACCESS 1

©Co~NOOOR~AWNE O

10 rows sel ected

SQL> sel ect sun(cost) as "Total Cost"
2 fromplan_table;

Total Cost

By observing, the above query has a total cost of 26. It is here we can see that
FILTER and SORT doesn't really have a cost on top of all the other operations to
satisfy this query.

Nested Query with ANY operator and parallelism

SQL> ALTER TABLE customrer parallel (degree 2);
Tabl e al tered

SQL> ALTER TABLE cust_order parallel (degree 2);
Tabl e al tered

SQL> ALTER TABLE orderline parallel (degree 2);

Tabl e altered

SQL> select distinct c.first, co.nethpnt, o.quantity
2 fromcustoner c, cust_order co, orderline o
3 where c.custid = co.custid AND
4 co.orderid = o.orderid AND
5 o.quantity > ANY (sel ect avg(quantity) from orderline);

FI RST METHPMT QUANTI TY

Al i ssa CcC 3

-62 -

Peter Xu, 12288624




Parallel Execution in Oracle

Peter Xu, 12288624

SQL> sel ect df o_nunber,
2 fromv$pg_tgstat

tq_id, server_type, process,

numrows, bytes

3 order by dfo_nunber, tq_id, server_type;

DFO_NUMBER TQ | D SERVER TYP PROCESS NUM_ROWS BYTES
1 0 Consurmer P0O03 2 71
1 0 Consurmer P002 4 95
1 0 Producer P0O01 0 48
1 0 Producer P0O0O 6 118
1 1 Consuner P0O03 1 62
1 1 Consuner P002 5 121
1 1 Producer P0O01 0 48
1 1 Producer P0O0O 6 135
1 2 Consurmer PO0O1 2 82
1 2 Consurmer P0O0O 4 113
1 2 Producer P003 1 64

DFO_NUMBER TQ | D SERVER TYP PROCESS NUM_ROWS BYTES
1 2 Producer P002 5 131
1 3 Consuner PO0O1 3 75
1 3 Consuner P0O0O 1 57
1 3 Producer P003 0 48
1 3 Producer P002 4 84
1 4 Producer P0O01 3 72
1 4 Producer P0O0O 1 39

18 rows sel ect ed.

SQL> EXPLAIN PLAN FOR

select distinct c.first, co.nmethpnt, o.quantity

2

3 fromcustoner c, cust_order co, orderline o
4 where c.custid = co.custid AND

5 <co.orderid = o.orderid AND

6

o.quantity > ANY (sel ect avg(quantity) from orderline);

Expl ai ned.

SQL> sel ect id, operation, cost

2 fromplan_table;

I D OPERATI ON

SELECT STATEMENT

SORT

FI LTER

HASH JO N 5

HASH JO N 3

TABLE ACCESS 1
1
1

TABLE ACCESS

TABLE ACCESS

SORT

SORT

TABLE ACCESS 1

Qowoo~NOoOUWNEFO

[E=Y

11 rows sel ect ed.

SQL> sel ect sun(cost) as "Total Cost"

2 fromplan_table;

Total Cost

-63 -



Parallel Execution in Oracle Peter Xu, 12288624

Again, with three tables being accessed, and a parallel hint, each table uses one
process each to process their part. This query has a cost of 26, same as the non-
parallel one.

5.10 EXIST

Nested Query with EXIST operator
The tables are given parallel degree of one (1), which is running in serial.
SQ@>ALTERTABLE c ustonerp aral |l el ( degree 1);

Tablealtered.
SQ@>altert ablec ust_orderp arallel( degree 1);
Tableal tered.
SQ@>altert ableorderlineparallel( degree 1);

Tabl eal tered.

SQ@>s electc .first,c .last,i .itendesc
2 fromcustonerc ,i temi,i nventoryi nv, cust_orderc o,0 rderlineol
3 wherec .custid=c o.custidAND

4 co.orderid=o0 |.orderidAND
5 ol.invid=i nv.invidAND
6 inv.itemd=i .itemdAND
7 exists( select*f romstudent
8 wheref nane=" pete');

FI RST LAST

IT EMDESC

Alissa Chang

Waren' sHi ki ng S horts

Alissa Chang
Waren' sHi ki ng S horts

Alissa Chang
3- Season T ent

FI RST LAST
IT EMDESC
Paul a Har ris

3- Season T ent

SQ@>s el ectd fo_nunber,t q_id,s erver_type, process,n umrows,b ytes
2 fromv$pg_tgstat
3 orderb yd fo_nunber,t q_id,s erver_type;

nor owss el ected

There is no use of parallelism here, thus there are no rows selected or recorded in
the parallel statistics record table.

- 64 -



Parallel Execution in Oracle

Peter Xu, 12288624

SQ@>e xplainplanf or

2 selectc .first,c .last,i .itendesc
3 fromcustonerc ,i temi,i nventoryi nv, cust_orderc o,0 rderlineol
4 wherec .custid=c o.custidAND
5 co.orderid=0o |.orderidAND
6 ol.invid=i nv.invidAND
7 inv.itemd=i .itemdAND
8 exists( select*f romstudent
9 wheref nane=" pete');
Expl ai ned.

SQ@>s el ecti d,o peration,c ost
2 fromplan_table;

| D OPERATI ON CosT
0 S ELECT S TATEMENT
1FILTER
2HASHJAN
3HASHJAON
4HASHJAN
5HASHJAON
6 T ABLE A CCESS
7T ABLE A CCESS
8 T ABLE A CCESS
9T ABLE A CCESS
10 T ABLE ACCESS

©

RPRRRRPWAN©

| D OPERATI ON CosT

11T ABLE ACCESS 1

12r owss el ect ed.

Here, we see that since there are JOINS, the operations will be very costly. By
observing the other operations, they merely have one (1) cost which is minimal

compared to the JOIN statements.

Nested Query with EXIST operator, with parallelism
The tables were given all degree of two (2).

SQ@>ALTERTABLE c ustonerp aral |l el ( degree 2);
Tablealtered.

SQ>ALTERTABLE c ust_orderp arallel( degree 2);
Tablealtered.

SQ>ALTERTABLEorderlinep aral lel( degree 2);

Tabl eal tered.

-65 -



Parallel Execution in Oracle Peter Xu, 12288624

SQ@>s electc .first,c .last,i .itendesc
2 fromcustonerc ,i temi,i nventoryi nv, cust_orderc o,o rderlineol
3 wherec .custid=c o.custidAND

4 co.orderid=o0 |.orderidAND
5 ol.invid=i nv.invidAND
6 inv.itemd=i .itemdAND
7 exists( select*f romstudent
8 wheref nane="' pete');

FI RST LAST

IT EMDESC

Ali ssa Chang

Waren' sHi ki ng S horts

Alissa Chang
Waren' sHi ki ng S horts

Alissa Chang
3- Season T ent

FI RST LAST
IT EMDESC
Paul a Har ris

3- Season T ent

- 66 -



Parallel Execution in Oracle

Peter Xu, 12288624

SQ@>s el ectd fo_nunber,t q_id,s erver_type,
2 fromv$pg_tgstat
3 orderb yd fo_nunber,t gq_id,s erver_type;
DFO_NUMBER TQ | D SERVER _TYP P ROCESS

1 0 Consurner P0O02
1 0 Consurner P0O03
1 0 P roducer C

1 1 Consuner =(010]0]
1 1 Consuner P0O0O1
1 1P roducer C

1 2 Consurmer P002
1 2 Consurmer P0O03
1 2 Producer P0O0O
1 2 Producer P0O01
1 3 Consuner P0O02
1 3 Consuner P0O03
1 3 Producer P0O0O
1 3 Producer P0O01
1 4 C onsuner =(010]0]
1 4 C onsuner PO0O1
1 4 P roducer P002
1 4 P roducer P003
1 5 Consuner =(010]0]
1 5 Consuner P0O0O1
1 5P roducer P002
1 5P roducer P003
1 6 Consuner P0O02
1 6 Consuner P0O03
1 6 P roducer P0O0O
1 6 P roducer P0O01
1 7 Consuner =(010]0]
1 7 Consuner PO0O1
1 7 P roducer P002
1 7 P roducer P003
1 8 C onsuner C

1 8 P roducer P0O0O
1 8 P roducer P0O01

ORrPWFROPMRWFRPRWFROPMWRPFRPUONMOORLRUGIOONSM

process,n umrows,b ytes

108
184
160

24

This operation have used many producers and consumers swapping information

amongst each other. This is the parallelism working.

Lets see what the plan will show.

S@>e xplainplanf or
2 selectc .first,c .last,i .itendesc
3 fromcustonerc ,i temi,i nventoryi nv,
4 wherec .custid=c o.custidAND
5 co.orderid=0o |.orderidAND
6 ol.invid=i nv.invidAND
7 inv.itemd=i .itemdAND
8 exists( select*f romstudent
9 wheref nane="' pete');
Expl ai ned.

cust _orderc o,0 rderlineol

- 67 -



Parallel Execution in Oracle Peter Xu, 12288624

SQL> sel ect id, operation, cost
2 fromplan_table;

I D OPERATI ON CosT
SELECT STATEMENT 9
FI LTER
HASH JO N
HASH JO N
HASH JO N
HASH JO N
TABLE ACCESS
TABLE ACCESS
TABLE ACCESS
TABLE ACCESS
TABLE ACCESS
TABLE ACCESS

FOOONOUAWNRO
RFRRRRRPWONO

e

12 rows sel ect ed.

It shows that the most work is done during the HASH JOINS. Thus we need to be
very careful when joining tables because it is very costly operation.

-68 -



Parallel Execution in Oracle Peter Xu, 12288624

CHAPTER 6 - GROUP BY

The GROUP BY clause is used to group selected rows and return a single row of
summary information. Oracle collects each group of rows based on the values of the
expression(s) specified in the GROUP BY clause.

If a SELECT statement contains the GROUP BY clause, the select list can contain
only the following types of expressions:

Constants

Group functions

The functions USER, UID, and SYSDATE

Expressions identical to those in the GROUP BY clause

Expressions involving the above expressions that evaluate to the same value
for all rows in a group

0O00O0D0

Expressions in the GROUP BY clause can contain any columns in the tables, views,
and snapshots in the FROM clause, regardless of whether the columns appear in the
select list.

The GROUP BY clause can contain no more than 255 expressions. The total number
of bytes in all expressions in the GROUP BY clause is limited to the size of a data
block minus some overhead.

The following is a list of the queries that was experimented:

SINGLE TABLE:
o Normal Group BY

Normal Group BY with parallelism

Grouping by more than one column

Grouping by more than one column with parallelism

Grouping with Where clause

Grouping with Where clause and parallelism

Grouping with more than one columns and more than one Where clauses

Grouping with more than one columns and more than one Where clauses

with parallelism.

Group by on primary key

Group by on primary key, with parallelism

Simple Group by with the HAVING clause

Simple Group by with the HAVING clause and with parallelism

Simple Group by with the HAVING clause on more than one column

Simple Group by with the HAVING clause on more than one column, with

parallelism

Simple Group by with the HAVING clause and WHERE clause on more than

one column.

o Simple Group by with the HAVING clause and WHERE clause on more than
one column with parallelism.

o Grouping with HAVING, with more than one columns and more than one
Where clauses

o Grouping with HAVING, with more than one columns and more than one
Where clauses, with parallelism.

o Group by with HAVING on primary key

o Group by with HAVING on primary key, with parallelism

O0O00O0O0OD

00000 DO

O

-69 -



Parallel Execution in Oracle Peter Xu, 12288624

MULTIPLE TABLES:
o Normal Group BY with multiple tables, without join and with parallelism of 2
for each table.

o Normal Group BY with multiple tables
o Normal Group BY with multiple tables and parallelism.
o Group BY with multiple tables on Primary Key
o Group BY with multiple tables on Primary Key with parallelism
o Simple Group by with the HAVING clause on multiple tables
o Simple Group by with the HAVING clause on multiple tables with parallelism
o Group by not the same as Join attrib with parallelism
6.1 GROUP BY
Normal Group BY
SQL> sel ect fnane, count(*)
2 from student
3 group by fnane;

FNAVE COUNT( *)

Paul a 1

bob 1

craig 1

dawn 1

j ack 2

j ames 1

j ohn 1

j ones 1

el 1

pat 1

paul 2

pete 1

rick 1

sam 1

st an 2

tim 1

tom 1

wang 1

18 rows sel ected

The above returns the first names of the students and the number of times the first
names that the students occur.

SQL> sel ect dfo_nunber, tq_id, server_type, process, numrows, bytes
2 fromv$pg_tgstat
3 order by dfo_nunber, tq_id, server_type;

no rows sel ected

There is no use of parallelism here, thus there are no rows selected or recorded in
the parallel statistics record table.

SQL> explain plan for
2 select fnane, count(*)
3 from student
4 group by fnaneg;

Expl ai ned

-70 -



Parallel Execution in Oracle

SQL> sel ect id, operation, cost
2 fromplan_table;

I D OPERATI ON CosT
0 SELECT STATEMENT
1 SORT
2 TABLE ACCESS

For this query, there were minimal accesses to the tables or operations. The only
operation that was additional was the SORT, which was needed for the group by
operation.

If the same GROUP BY clause was used with parallelism, there may be a difference
in the overall performance. Lets have a look,

Normal Group BY, with parallelism

SQL> select /*+ parallel (student, 3) */
2 fname, count(*)
3 from student
4 group by fnaneg;

)

)

c

)
PNRPRRPRRPRPRPREPRPRPRREPRENRERNRR

18 rows sel ect ed.

From here, we can already see a difference in the order of the results reported. So
there is some kind of difference between the serial query and the parallel query.

Doing further analysis on this we yield the following:

SQL> sel ect df o_nunber, tq_id, server_type, process, numrows, bytes
2 fromv$pg_tgstat
3 order by dfo_nunber, tq_id, server_type;

DFO_NUMBER TQ | D SERVER TYP PROCESS NUM_ROWS BYTES
1 0 Consurmer P0O01 9 199
1 0 Consurmer P0O0O 9 201
1 0 Producer P003 18 352
1 0 Producer P004 0 48
1 1 Consuner C 18 226
1 1 Producer P0O01 9 112
1 1 Producer P0O0O 9 114

7 rows sel ected.

-71 -

Peter Xu, 12288624




Parallel Execution in Oracle

SQL> explain plan for

select /*+ parallel (student, 3) */
fname, count (*)

from st udent

group by fnane;

abwnN

Expl ai ned.

SQL> sel ect id, operation, cost
2 fromplan_table;

I D OPERATI ON CosT
0 SELECT STATEMENT 3
1 SORT 3
2 SORT 3
3 TABLE ACCESS 1

From this, we can see that it uses two (2) sorts rather than on, and the costs are
doubled due to the two sorts.

Grouping by more than one column

SQL> sel ect fnanme, |name, hcol or, avg(age)
2 from student
3 group by fnanme, hcolor, I naneg;

FNAVE LNAME HCOLOR AVG( AGE)
Paul a Mar sh Br own 16
bob smart bl ack 15
craig stone br own 34
dawn mal br own 66
j ack j ones bl ond 55
j ack br own none 26
j anes | ong br own 15
j ohn bl ack bl ack 44
j ones Ng bl ack 23
el hack green 12
pat stone br own 45
paul j ones bl ack 22
paul craz grey 77
pete line Bl ack 19
rick sam br own 25
sam t aps bl ond 21
stan short bl ond 55
stan j ack white 33
tim cray bl ack 55
tom spat red 66
wang chris grey 21

21 rows sel ected.

SQL> sel ect df o_nunber, tq_id, server_type, process, numrows, bytes
2 fromv$pg_tgstat
3 order by dfo_nunber, tq_id, server_type;

no rows sel ected

There is no use of parallelism here, thus there are no rows selected or recorded in
the parallel statistics record table.

-72 -

Peter Xu, 12288624




Parallel Execution in Oracle Peter Xu, 12288624

SQL> explain plan for
2 select fnane, | nane, hcol or, avg(age)
3 from student
4 group by fname, hcolor, I|naneg;

Expl ai ned.

SQL> sel ect id, operation, cost
2 fromplan_table;

I D OPERATI ON CosT

0 SELECT STATEMENT
1 SORT
2 TABLE ACCESS

We can see here, that although there were more group by columns, there is still the
same amount of SORT statements and operations for the serial part. Lets have a
look at the parallel hinted version.

Grouping by more than one column with parallelism

SQL> select /*+ parallel (student, 3) */

2 fname, |nane, hcolor, avg(age)

3 from student

4 group by fname, hcolor, I|naneg;
FNAVE LNAME HCOLOR AVG( AGE)
Paul a Mar sh Br own 16
bob smart bl ack 15
craig stone br own 34
dawn mal br own 66
j ack j ones bl ond 55
j ack br own none 26
j anes | ong br own 15
j ones Ng bl ack 23
el hack green 12
pat stone br own 45
paul j ones bl ack 22
paul craz grey 77
rick sam br own 25
tom spat red 66
wang chris grey 21
j ohn bl ack bl ack 44
pete line Bl ack 19
sam t aps bl ond 21
stan short bl ond 55
stan j ack white 33
tim cray bl ack 55
21 rows sel ect ed.

Just like before, we can see that the results were reportedly different to that of the
serial version.

-73-



Parallel Execution in Oracle Peter Xu, 12288624

Lets do further investigation:

SQL> sel ect df o_nunber, tq_id, server_type, process, numrows, bytes
2 fromv$pg_tgstat
3 order by dfo_nunber, tq_id, server_type;

DFO_NUMBER TQ | D SERVER TYP PROCESS NUM_ROWS BYTES
1 0 Consurmer P0O01 15 842
1 0 Consurmer P0O0O 6 366
1 0 Producer P004 0 48
1 0 Producer P003 21 1160
1 1 Consuner C 21 530
1 1 Producer P0O01 15 368
1 1 Producer P0O0O 6 162

7 rows sel ected.

SQL> explain plan for

select /*+ parallel (student, 3) */
fname, | nane, hcol or, avg(age)
from st udent

group by fnane, hcolor, | namne;

O wWN

Expl ai ned.

SQL> sel ect id, operation, cost
2 fromplan_table;

I D OPERATI ON CosT
0 SELECT STATEMENT 3
1 SORT 3
2 SORT 3
3 TABLE ACCESS 1

Here we can see that there are two sorts compared to one. This is quite similar to the
previous singular grouping by just one column.

6.2 WHERE

Grouping with Where clause

Here we specify a more descriptive clause using the Where clause. For
demonstration purposes only | have used two different student names and did an
average on the two. This is jus to show that grouping by clause requires all specified
to view as result to be in the group by clause.

~74 -



Parallel Execution in Oracle Peter Xu, 12288624

Q> sel ect fname, avg(age), count(*)
2 from student

3 where age > 16

4 group by fnaneg;

FNAVE AV ACE) COUNT( *)
craig 34 1
dawn 66 1
j ack 40. 5 2
j ohn 44 1
j ones 23 1
pat 45 1
paul 49.5 2
pete 19 1
rick 25 1
sam 21 1
stan 44 2
FNAVE AVGE( ACE) COUNT( *)
tim 55 1
tom 66 1
wang 21 1

14 rows sel ect ed.

SQL> sel ect df o_nunber, tq_id, server_type, process, numrows, bytes
2 fromv$pg_tgstat
3 order by dfo_nunber, tq_id, server_type;

no rows sel ected

There are no uses of parallelism here, thus there are no rows selected or recorded in
the parallel statistics record table.

SQL> explain plan for

2 select fname, avg(age), count(*)
3 from student
4 where age > 16
5 group by fnane;
Expl ai ned.

SQL> sel ect id, operation, cost
2 fromplan_table;

I D OPERATI ON CosT

0 SELECT STATEMENT
1 SORT
2 TABLE ACCESS

By viewing the above, it is quite similar to the previous select statements with group
by clauses in that they all are using the same amount of operations to satisfy the

query.

Lets see if there are any major differences to that of the parallel hinted version:

-75 -



Parallel Execution in Oracle Peter Xu, 12288624

Grouping with Where clause and parallelism

The following is hinted with degree of two (2) for the purpose of demonstrating
parallelism and serial execution.

SQL> select /*+ parallel (student, 2) */

2 fname, avg(age), count(*)

3 from student

4 where age > 16

5 group by fnane;
FNAVE AV ACE) COUNT( *)
craig 34 1
j ack 40. 5 2
j ohn 44 1
paul 49.5 2
rick 25 1
sam 21 1
tom 66 1
wang 21 1
dawn 66 1
j ones 23 1
pat 45 1
FNAVE AV ACE) COUNT( *)
pete 19 1
stan 44 2
tim 55 1

14 rows sel ect ed.

SQL> sel ect df o_nunber, tq_id, server_type, process, numrows, bytes
2 fromv$pg_tgstat
3 order by dfo_nunber, tq_id, server_type;

DFO_NUMBER TQ | D SERVER TYP PROCESS NUM_ROWS BYTES
1 0 Consurmer P0O01 8 431
1 0 Consurmer P0O0O 6 335
1 0 Producer P003 0 48
1 0 Producer P002 14 718
1 1 Consuner C 14 244
1 1 Producer P0O01 8 137
1 1 Producer P0O0O 6 107
7 rows sel ected.
SQL> explain plan for
2 select /*+ parallel (student, 2) */
3 fname, avg(age), count(*)
4 from student
5 where age > 16
6 group by fnane;
Expl ai ned.
SQL> sel ect id, operation, cost
2 fromplan_table;
| D OPERATI ON COosT
0 SELECT STATEMENT 3
1 SORT 3
2 SORT 3
3 TABLE ACCESS 1

-76 -



Parallel Execution in Oracle

As we can observe here, there is no difference when executed in serial throughout
the three examples that was performed. There is also no difference in the operation
counts or the cost differences between the three different parallel-executed queries.

Lets have a few more experiments to see whether additional operations will add to
the cost and processes used.

Grouping with more than one columns and more than one Where clauses

SQ@> selectf nane,l nane,a vg(age)a sA age, count (¥

2 fromstudent

3 whereage>1 5AND

4 fname=' pete'O R

5 fname="' john'

6 groupbyf name,| nane;
FNAVE LNAME AAGE  COUNT(*)
jo hn bl ack 44 1
pete line 19 1

SQ@>s el ectd fo_nunber,t q_id,s erver_type, process,n umrows,b ytes
2 fromv$pg_tgstat
3 orderb yd fo_nunber,t q_id,s erver_type;

nor owss el ected

There are no uses of parallelism here, thus there are no rows selected or recorded in
the parallel statistics record table.

SQ@>explainplanf or
2 selectf nane,| name,a vg(age)a sAage, count(*)
fromstudent
whereage>1 5AND
fname="' pete'O R
fname =" john'
groupb yf nane,| nane;

~No Ok~ W

Expl ai ned.

SQ@>s electi d,o peration,c ost
2 fromplan_table;

| D OPERATI ON CosT
0 S ELECT S TATEMENT
1SCORT
2T ABLE A CCESS

The above still looks the same as the previous experiments, so lets have a look at
the parallel version.

-77 -

Peter Xu, 12288624




Parallel Execution in Oracle

Peter Xu, 12288624

Grouping with more than one columns and more than one Where clauses with parallelism.

SQ@>s elect/ *+parallel( student,2 )* /
2 fname,l nane,a vg(age)a sA age,c ount(*)
3 fromstudent
4 whereage>1 5AND
5 fname=' pete'O R
6 fname="' john'
7 groupbyf name,| nane;
FNAVE LNAME AAGE  CQUNT(*)
jo hn bl ack 44 1
pete line 19 1
SQ@>s el ectd fo_nunber,t q_id,s erver_type, process,n umrows,b ytes
2 fromv$pg_tgstat
3 orderb yd fo_nunber,t q_id,s erver_type;
DFO_NUMBER TQ_| D SERVER _TYP P ROCESS NUM_ROWS BYTES
1 0 Consumner PO0O1 2 157
1 0 Consumner PO0O 0 48
1 0 P roducer P002 2 157
1 0 P roducer P0O03 0 48
1 1 Consuner C 2 89
1 1P roducer PO01 2 65
1 1P roducer PO00 0 24
SQ@>explainplanf or
2 select/ *+parallel( student,2 )* /
3 fname,l nane,a vg(age)a sA age,c ount(*)
4 fromstudent
5 whereage>1 5AND
6 fname=' pete'O R
7 fname=' john'
8 groupbyf name,| nane;
Expl ai ned.
SQ@>s electi d,o peration,c ost
2 fromplan_table;
| D OPERATI ON CosT
0 S ELECT S TATEMENT 3
1SORT 3
2S ORT 3
3 T ABLE A CCESS 1

No differences were found.

-78 -




Parallel Execution in Oracle

Peter Xu, 12288624

6.3 PRIMARY KEY

Group by on primary key

SQL> sel ect sid, fname, count(*), avg(age)
2 from student
3 group by sid, fnane;

SI D FNAME COUNT( *) AV AGE)
1 bob 1 15
2 sam 1 21
3 craig 1 34
4 tom 1 66
5 pat 1 45
6 tim 1 55
7 paul 1 77
8 dawn 1 66
9 jack 1 55
10 nel 1 12
11 j ones 1 23
SI D FNAME COUNT( *) AVGE AGE)
12 stan 1 33
14 rick 1 25
15 paul 1 22
16 j ames 1 15
17 jack 1 26
18 stan 1 55
19 wang 1 21
20 j ohn 1 44
989 pete 1 19
999 Paul a 1 16

21 rows sel ected.

SQL> sel ect df o_nunber, tq_id, server_type, process, numrows, bytes
2 fromv$pg_tgstat
3 order by dfo_nunber, tq_id, server_type;

no rows sel ected

There are no uses of parallelism here, thus there are no rows selected or recorded in
the parallel statistics record table.

SQL> explain plan for
2 select sid, fnane, count(*), avg(age)
3 from student
4 group by sid, fname;

Expl ai ned.

SQL> sel ect id, operation, cost
2 fromplan_table;

I D OPERATI ON CosT
0 SELECT STATEMENT
1 SORT
2 TABLE ACCESS

This is something that was not really expected. To see all processes using the same
amount of operations and cost for serial queries and then all the processes the same
with the parallel queries are very surprising.

-79 -




Parallel Execution in Oracle

Group by on primary key, with parallelism

SQL> select /*+ parallel (student, 2) */
2 sid, count(*), avg(age)
3 from student
4 group by sid;

SID COUNT(*)  AVG AGE)

1 1 15
3 1 34
4 1 66
7 1 77
9 1 55
10 1 12
12 1 33
14 1 25
15 1 22
16 1 15
17 1 26

SID COUNT(*) AV AGE)

19 1 21
999 1 16
2 1 21

5 1 45

6 1 55

8 1 66
11 1 23
18 1 55
20 1 44
989 1 19

21 rows sel ected.

At this point there is one difference that can be seen her. The order of the reported
result differs the serial version.

SQL> sel ect dfo_nunber, tq_id, server_type, process, numrows, bytes
2 fromv$pg_tgstat
3 order by dfo_nunber, tq_id, server_type;

DFO_NUMBER TQ | D SERVER _TYP PROCESS NUM_ROWS BYTES
1 0 Consuner POO1 13 647
1 0 Consuner PO00 8 417
1 0 Producer P0O03 0 48
1 0 Producer P002 21 1016
1 1 Consuner C 21 302
1 1 Producer POO1 13 181
1 1 Producer PO00O 8 121
SQL> explain plan for
2 select sid, count(*), avg(age)
3 from student
4 group by sid;
Expl ai ned.

-80 -

Peter Xu, 12288624




Parallel Execution in Oracle Peter Xu, 12288624

SQL> sel ect id, operation, cost
2 fromplan_table;

I D OPERATI ON CosT

0 SELECT STATEMENT
1 SORT
2 TABLE ACCESS

3 rows sel ected.

Here we see something different. The parallel hinted query for the primary key can
clearly be seen here to use the same amount of operations as the serial.

6.4 HAVING

Having Clause
The HAVING clause is used to restrict which groups of rows defined by the GROUP
BY clause is returned by the query. Oracle processes the WHERE, GROUP BY, and
HAVING clauses in the following manner:
o If the statement contains a WHERE clause, Oracle eliminates all rows that do
not satisfy it.
o Oracle calculates and forms the groups as specified in the GROUP BY
clause.
o Oracle removes all groups that do not satisfy the HAVING clause.
Specify the GROUP BY and HAVING clauses after the WHERE and CONNECT BY
clauses. If both the GROUP BY and HAVING clauses are specified, they can appear
in either order.

Simple Group by with the HAVING clause

SQL> sel ect fnanme, count(*), sum(age)

2 from student

3 group by fnanme

4 having sunm(age) > 16;
FNAVE COUNT(*) SUM AGE)
craig 1 34
dawn 1 66
j ack 2 81
j ohn 1 44
j ones 1 23
pat 1 45
paul 2 99
pete 1 19
rick 1 25
sam 1 21
st an 2 88
FNAVE CQOUNT(*) SUM AGE)
tim 1 55
tom 1 66
wang 1 21
14 rows sel ect ed.
SQL> sel ect df o_nunber, tq_id, server_type, process, numrows, bytes

2 fromv$pg_tgstat

3 order by dfo_nunber, tq_id, server_type;

-81-



Parallel Execution in Oracle

Peter Xu, 12288624

| no rows sel ected

There are no uses of parallelism here, thus there are no rows selected or recorded In
the parallel statistics record table.

SQL> explain plan for

sel ect fnane, count(*), sun{age)
from st udent

group by fnane

havi ng sun(age) > 16;

abwnN

Expl ai ned.

SQL> sel ect id, operation, cost
2 fromplan_table;

I D OPERATI ON CosT
0 SELECT STATEMENT
1 SORT
2 TABLE ACCESS

View the results above, it shows not that much difference with the other queries
where the SORT is the major operation that group by uses.

Simple Group by with the HAVING clause and with parallelism

SQL> select /*+ parallel (student, 3) */
2 fname, count(*), sun(age)
3 from student
4 group by fnane
5 having sun{age) > 16;

FNAVE CQOUNT(*) SUM AGE)
dawn 1 66
j ones 1 23
pat 1 45
pete 1 19
stan 2 88
tim 1 55
craig 1 34
j ack 2 81
j ohn 1 44
paul 2 99
rick 1 25
FNAVE COUNT(*) SUM AGE)
sam 1 21
tom 1 66
wang 1 21

14 rows sel ect ed.

-82-



Parallel Execution in Oracle Peter Xu, 12288624

SQL> sel ect dfo_nunber, tq_id, server_type, process, numrows, bytes
2 fromv$pg_tgstat
3 order by dfo_nunber, tq_id, server_type;
DFO_NUMBER TQ | D SERVER TYP PROCESS NUM_ROWS BYTES
1 0 Consuner P0O0O1 9 406
1 0 Consuner P0O00O 9 408
1 0 Producer P004 0 48
1 0 Producer P003 18 766
1 1 Consuner C 14 242
1 1 Producer POO1 8 135
1 1 Producer PO00O 6 107
SQL> explain plan for
2 select /*+ parallel (student, 3) */
3 fname, count(*), sun(age)
4 from student
5 group by fnanme
6 having sun{age) > 16;
Expl ai ned.
SQL> sel ect id, operation, cost
2 fromplan_table;
| D OPERATI ON cosT
0 SELECT STATEMENT 3
1 FILTER
2 SORT 3
3 SORT 3
4 TABLE ACCESS 1

From the results above, it can be seen that the HAVING clause uses a filter which
determines the selection of the output. It also, adds an extra sorting algorithm that
adds to the overhead for this query.

-83-



Parallel Execution in Oracle

Simple Group by with the HAVING clause on more than one column

SQL> sel ect fnanme, |name, hcol or, avg(age)
2 from student
3 group by fname, hcolor, Inane
4 having sunm(age) > 16;

FNAVE LNAME HCOLOR AVG( AGE)
craig stone br own 34
dawn mal br own 66
j ack j ones bl ond 55
j ack br own none 26
j ohn bl ack bl ack 44
j ones Ng bl ack 23
pat stone br own 45
paul j ones bl ack 22
paul craz grey 77
pete line Bl ack 19
rick sam br own 25
FNAVE LNAME HCOLOR AVG( AGE)
sam t aps bl ond 21
stan short bl ond 55
stan j ack white 33
tim cray bl ack 55
tom spat red 66
wang chris grey 21

17 rows sel ect ed.

SQL> sel ect dfo_nunber, tq_id, server_type, process, numrows, bytes
2 fromv$pg_tgstat
3 order by dfo_nunber, tq_id, server_type;

no rows sel ected

There are no uses of parallelism here, thus there are no rows selected or recorded in
the parallel statistics record table.

SQL> explain plan for
2 select fnane, | nane, hcol or, avg(age)
3 from student
4 group by fnanme, hcolor, Inane
5 having sun{age) > 16;

Expl ai ned.

SQL> sel ect id, operation, cost
2 fromplan_table;

I D OPERATI ON CosT
0 SELECT STATEMENT
1 FILTER
2 SORT
3 TABLE ACCESS

We can start to see a pattern here as the HAVING clause merely adds a filter to the
operations where there GROUP BY clause does a sorting algorithm to the table.

-84 -

Peter Xu, 12288624




Parallel Execution in Oracle Peter Xu, 12288624

Simple Group by with the HAVING clause on more than one column, with parallelism

SQL> select /*+ parallel (student, 4) */
2 fname, |nane, hcolor, avg(age)
3 from student
4 group by fnanme, hcolor, Inane
5 having sun{age) > 16;

FNAVE LNAME HCOLOR AVG( AGE)
j ohn bl ack bl ack 44
pete line Bl ack 19
sam t aps bl ond 21
stan short bl ond 55
stan j ack white 33
tim cray bl ack 55
craig stone br own 34
dawn mal br own 66
j ack j ones bl ond 55
j ack br own none 26
j ones Ng bl ack 23
FNAVE LNAME HCOLOR AVG( AGE)
pat stone br own 45
paul j ones bl ack 22
paul craz grey 77
rick sam br own 25
tom spat red 66
wang chris grey 21

17 rows sel ect ed.

SQL> sel ect df o_nunber, tq_id, server_type, process, numrows, bytes
2 fromv$pg_tgstat
3 order by dfo_nunber, tq_id, server_type;

DFO_NUMBER TQ | D SERVER TYP PROCESS NUM_ROWS BYTES
1 0 Consurmer P0O01 15 1187
1 0 Consurmer P0O0O 6 504
1 0 Producer P004 21 1643
1 0 Producer P002 0 48
1 1 Consuner C 17 504
1 1 Producer P0O01 11 318
1 1 Producer P0O0O 6 186

7 rows sel ected.

SQL> explain plan for

2 select /*+ parallel (student, 4) */
3 fname, |nane, hcolor, avg(age)
4 from student
5 group by fnanme, hcolor, Inane
6 having sun{age) > 16;
Expl ai ned.

-85 -



Parallel Execution in Oracle Peter Xu, 12288624

SQ@>s el ecti d,o peration,c ost
2 fromplan_table;
| D OPERATI ON COSsT
0 S ELECT S TATEMENT 4
1FILTER
2SCORT 4
3SCRT 4
4T ABLE A CCESS 1

Here we see that with parallelism added onto this query, there is an extra SORT.

6.5 WHERE

Simple Group by with the HAVING clause and WHERE clause on more than one column.

SQ@>s el ectf name,h color,a vg(age),c ount (¥
2 fromstudent
3 wherehcolor=" black'
4 groupbyf name,h color
5 havings un{age)>1 6;

FNAVE HCOLOR AVGQ ACE) CQUNT(*)
jo hn bl ack 44 1
jo nes bl ack 23 1
paul bl ack 22 1
ti m bl ack 55 1

SQ@>s electd fo_nunber,t q_id,s erver_type, process,n umrows,b ytes
2 fromv$pg_tgstat
3 orderb yd fo_nunber,t q_id,s erver_type;

nor owss el ected

There are no uses of parallelism here, thus there are no rows selected or recorded in
the parallel statistics record table.

SQ@>e xplainplanf or

sel ectf nane,h color,a vg(age),c ount(*)
fromstudent

whereh color=" bl ack'

groupb yf nane, h col or

havi ngs un(age)>1 6;

OO wWN

Expl ai ned.

SQ@>s el ecti d,o peration,c ost
2 fromplan_table;

| D OPERATI ON CosT
0 S ELECT S TATEMENT
1FILTER
2S ORT
3 T ABLE A CCESS

Adding a WHERE clause does not seem to add any more operations to the query.

-86 -



Parallel Execution in Oracle Peter Xu, 12288624

Simple Group by with the HAVING clause and WHERE clause on more than one column
with parallelism.
SQ@>s elect/ *+parallel( student,4 )* /

2 fname,h color,a vg(age),c ount(*)

3 fromstudent

4 whereh color=" black

5 groupbyf name,h color

6 havings un{age)>1 6;
FNAVE HCOLOR AVGQ ACGE) CQUNT(*)
jo hn bl ack 44 1
paul bl ack 22 1
jo nes bl ack 23 1
ti m bl ack 55 1

SQ@>s el ectd fo_nunber,t q_id,s erver_type, process,n umrows,b ytes
2 fromv$pg_tgstat
3 orderb yd fo_nunber,t q_id,s erver_type;

DFO_NUMBER TQ | D SERVER _TYP P ROCESS NUM_ROWS BYTES
1 0 Consurer PO0O1 2 204
1 0 Consurner =(010]0] 3 281
1 0 P roducer P004 5 437
1 0 P roducer P002 0 48
1 1 Consuner C 4 148
1 1P roducer P0O01 2 74
1 1P roducer P0O0O 2 74

Here we can see that the producers are here performing the SORTs where the
consumers are the filters and select statements.

SQ@>explainplanf or

2 select/ *+parallel( student,4 )* /
3 fname,h color,a vg(age),c ount(*)
4 fromstudent
5 whereh color=" black'
6 groupbyf name,h color
7 havings un{age)>1 6;

Expl ai ned.

SQ@>s el ecti d,o peration,c ost
2 fromplan_table;

| D OPERATI ON CosT
0 S ELECT S TATEMENT 3
1FILTER
2S ORT 3
3S ORT 3
4T ABLE A CCESS 1

An extra SORT was added as an operation just like the other examples where
parallelism was used.

-87 -



Parallel Execution in Oracle Peter Xu, 12288624

Grouping with HAVING, with more than one columns and more than one Where clauses
Here, more than one columns are selected and more than one WHERE clauses are
used in order to see whether they all contribute to any changes. Together with the
HAVING clause and the GROUP By clause, the following result was recorded.

SQ@>s el ectf name,| name,a vg(age)a sAage, count(*)
fromstudent

whereage>1 5AND

4 fname=' pete'O R

5 fname="' john'
6
7

w N

groupb yf nane,| nane
havi ng c ount (*) <5;

FNAVE LNAME AAGE  COUNT(*)
jo hn bl ack 44 1
pete line 19 1

SQ@>s el ectd fo_nunber,t q_id,s erver_type, process,n umrows,b ytes
2 fromv$pg_tgstat
3 orderb yd fo_nunber,t gq_id,s erver_type;

nor owss el ected
Since there was no parallelism used, there are no rows selected in this case.

SQ@>e xplainplanf or

2 selectf nane,| name,a vg(age)a sAage, count(*)
3 fromstudent
4 whereage>1 5AND
5 fname=' pete'O R
6 fname="' john'
7 groupbyf name,| name
8 havingc ount (*)<S5;
Expl ai ned.

SQ@>s electi d,o peration,c ost
2 fromplan_table;

| D OPERATI ON CosT

0 S ELECT S TATEMENT
1FILTER

2S ORT

3 T ABLE ACCESS

We can see here that there are not much changed from previous experiments. Lets
continue to try other combinations.

-88 -



Parallel Execution in Oracle Peter Xu, 12288624

Grouping with HAVING, with more than one columns and more than one Where clauses,
with parallelism.

SQ@>s elect/ *+parallel( student,3 )* /

fname,| nane,a vg(age)a sA age,c ount (¥

fromstudent

4 whereage>1 5AND

5 fname=' pete'O R

6 fname=' john'
7
8

w N

groupb yf nane,| nane
havi ng c ount (*) <5;

FNAVE LNAME AAGE  COUNT(*)
jo hn bl ack 44 1
pete line 19 1

SQ@>s el ectd fo_nunber,t q_id,s erver_type, process,n umrows,b ytes
2 fromv$pg_tgstat
3 orderb yd fo_nunber,t q_id,s erver_type;

DFO_NUMBER TQ | D SERVER _TYP P ROCESS NUM_ROWS BYTES
1 0 Consurer PO0O1 2 157
1 0 Consurner =(010]0] 0 48
1 0 P roducer P004 0 48
1 0 P roducer P003 2 157
1 1 Consuner C 2 89
1 1P roducer P0O01 2 65
1 1P roducer P0O0O 0 24

SQ@>e xplainplanf or

2 select/ *+parallel( student,3 )* /
3 fname,l nane,a vg(age)a sA age,c ount(*)
4 fromstudent
5 whereage>1 5AND
6 fname=' pete'O R
7 fname=' john'
8 groupbyf name,| name
9 havingc ount (*)<S5;
Expl ai ned.

SQ@>s el ecti d,o peration,c ost
2 fromplan_table;

| D OPERATI ON CosT
0 S ELECT S TATEMENT 3
1FILTER
2S ORT 3
3S ORT 3
4T ABLE A CCESS 1

With the use of parallelism, it can be seen that the changes are linear. Linear | mean
by the fact that there are always that extra sort that parallelism has. The processes
that are used here also change linearly.

-89 -



Parallel Execution in Oracle Peter Xu, 12288624

Group by with HAVING on primary key

SQL> sel ect sid, fname, count(*), avg(age)
2 from student
3 group by sid, fnane
4 having count(*) < 5;
SI D FNAME COUNT( *) AV AGE)
1 bob 1 15
2 sam 1 21
3 craig 1 34
4 tom 1 66
5 pat 1 45
6 tim 1 55
7 paul 1 77
8 dawn 1 66
9 jack 1 55
10 nel 1 12
11 j ones 1 23
SI D FNAME COUNT( *) AVGE AGE)
12 stan 1 33
14 rick 1 25
15 paul 1 22
16 j ames 1 15
17 jack 1 26
18 stan 1 55
19 wang 1 21
20 j ohn 1 44
989 pete 1 19
999 Paul a 1 16
21 rows selected
SQL> sel ect df o_nunber, tq_id, server_type, process, numrows, bytes
2 fromv$pg_tgstat
3 order by dfo_nunber, tq_id, server_type;
no rows sel ected

Since there was no parallelism used, there are no rows selected in this case.

SQL> explain plan for
2 select sid, fnane, count(*), avg(age)
3 from student
4 group by sid, fname
5 having count(*) < 5;

Expl ai ned

SQL> sel ect id, operation, cost
2 fromplan_table;

I D OPERATI ON CosT

0 SELECT STATEMENT
1 FILTER
2 SORT
3 TABLE ACCESS
Just like the other examples, there were little changes when extra clauses were

used.

-90 -



Parallel Execution in Oracle

Peter Xu, 12288624

Group by with HAVING on primary key, with parallelism

SQL> select /*+ parallel (student, 4) */
2 sid, fnane, count(*), avg(age)
3 from student
4 group by sid, fname
5 having count(*) < 5;
SI D FNAME COUNT( *) AV AGE)
1 bob 1 15
2 sam 1 21
3 craig 1 34
6 tim 1 55
9 jack 1 55
12 stan 1 33
15 paul 1 22
17 jack 1 26
18 stan 1 55
19 wang 1 21
989 pete 1 19
SI D FNAME COUNT( *) AV AGE)
999 Paul a 1 16
4 tom 1 66
5 pat 1 45
7 paul 1 77
8 dawn 1 66
10 nel 1 12
11 j ones 1 23
14 rick 1 25
16 j ames 1 15
20 j ohn 1 44
21 rows sel ect ed.
SQL> sel ect df o_nunber, tq_id, server_type, process, numrows, bytes
2 fromv$pg_tgstat
3 order by dfo_nunber, tq_id, server_type;
DFO_NUMBER TQ | D SERVER _TYP PROCESS NUM_ROWS BYTES
1 0 Consuner POO1 9 515
1 0 Consuner PO00 12 673
1 0 Producer P004 21 1140
1 0 Producer P002 0 48
1 1 Consuner C 21 426
1 1 Producer POO1 9 185
1 1 Producer PO00O 12 241
SQL> explain plan for
2 select /*+ parallel (student, 4) */
3 sid, fnane, count(*), avg(age)
4 from student
5 group by sid, fnane
6 having count(*) < 5;
Expl ai ned.

-91 -



Parallel Execution in Oracle

Peter Xu, 12288624

SQL> sel ect
2 fromp

id, operation, cost
| an_t abl e;

OPERATI ON

SELECT STATEMENT
FI LTER

SORT

SORT

TABLE ACCESS

There were no dramatic changes here either when the query was applied on the

primary key.

Normal Group BY with multiple tables, without join and with parallelism of 2 for each table.

SQL> select c.first, cu.nethpnt
2 fromcustoner c, cust_order cu
3 group by c.first, cu.nmethpnt;
FI RST METHPMT
Al i ssa CcC
Mtch CcC
Mtch CHECK
Paul a CcC
Paul a CHECK
pete CcC
pete CHECK
Al i ssa CHECK
Lee CcC
Lee CHECK
Mari a CcC
FI RST METHPMT
Mari a CHECK
12 rows sel ect ed.
SQL> explain plan for
2 select c.first, cu. methpnt

3 fromcustoner c, cust_order cu

6 rows sel ected.

4 group by c.first, cu.nethpnt;
Expl ai ned.
SQL> sel ect id, operation, cost
2 fromplan_table;
| D OPERATI ON COSsT
0 SELECT STATEMENT 188
1 SORT 188
2 MERGE JON 83
3 TABLE ACCESS 1
4 SORT 187
5 TABLE ACCESS 1

We can see here that sorting the two tables is a big task when there are no joins
between the tables. There are duplicates here that were displayed unnecessarily,
and thus a waste and not efficient. But again, the join statements require a fair
amount of processing to complete the operation.

-92 -



Parallel Execution in Oracle

Peter Xu, 12288624

6.6 MULTIPLE TABLES

Normal Group BY with multiple tables

SQL> select c.first, cu.nethpnt
2 fromcustoner c, cust_order cu
3 where c.custid = cu.custid
4 group by c.first, cu.nethpnt;
FI RST METHPMI
Al i ssa CcC
Lee CcC
Mari a CHECK
Mtch CcC
Paul a CcC
SQL> sel ect dfo_nunber, tq_id, server_type, process, numrows, bytes
2 fromv$pg_tgstat
3 order by dfo_nunber, tq_id, server_type;
no rows sel ected

There is no use of parallelism here, thus there are no rows selected or recorded in

the parallel statistics record table.

SQL> explain plan for

2 select c.first, cu. methpnt
3 fromcustoner c, cust_order cu
4 where c.custid = cu.custid
5 group by c.first, cu.nmethpnt;
Expl ai ned.
SQL> sel ect id, operation, cost

2 fromplan_table;

| D OPERATI ON

0 SELECT STATEMENT
1 SCRT

2 HASH JO N

3

4

TABLE ACCESS
TABLE ACCESS

We can see here that two tables were accessed whilst one joining clause joins the
two tables with a very expensive cost and then sorting the table before selecting the

appropriate list of results.

Normal Group BY with multiple tables and parallelism.

SQL> select c.first, cu.nethpnt
2 fromcustoner c, cust_order cu
3 where c.custid = cu.custid
4 group by c.first, cu.nethpnt;
FI RST METHPMT
Lee CcC
Mari a CHECK
Al i ssa CcC
Mtch CcC
Paul a CcC

-03-



Parallel Execution in Oracle Peter Xu, 12288624

SQL> sel ect df o_nunber, tq_id, server_type, process, numrows, bytes
2 fromv$pg_tgstat
3 order by dfo_nunber, tq_id, server_type;

DFO_NUMBER TQ | D SERVER TYP PROCESS NUM_ROWS BYTES
1 0 Consurmer P0O03 6 88
1 0 Consurmer P002 6 88
1 0 Producer P0O01 0 48
1 0 Producer P0O0O 12 128
1 1 Consuner P0O01 13 189
1 1 Consuner P0O0O 23 309
1 1 Producer P003 0 48
1 1 Producer P002 36 450
1 2 Consuner C 12 194
1 2 Producer P0O01 5 85
1 2 Producer P0O0O 7 109

SQL> explain plan for
2 select c.first, cu. methpnt
3 fromcustoner c, cust_order cu
4 where c.custid = cu.custid
5 group by c.first, cu.nmethpnt;

Expl ai ned.

SQL> sel ect id, operation, cost
2 fromplan_table;

I D OPERATI ON CosT
0 SELECT STATEMENT 5
1 SORT 5
2 HASH JON 3
3 TABLE ACCESS 1
4 TABLE ACCESS 1

Here we can see that the cost of each operation has been reduced dramatically
when we link the two tables appropriately. The HASH JOIN and SORT are still the

most costly of the overall operation.

6.7 PRIMARY KEY

Group BY with multiple tables on Primary Key

SQL> select c.custid, c.first, cu. methpnt
2 fromcustoner c, cust_order cu
3 where c.custid = cu.custid
4 group by c.custid, c.first, cu.methpnt;

CUSTI D FI RST METHPMT
107 Paul a CcC
133 Mari a CHECK
154 Lee CcC
179 Alissa CcC
232 Mtch CcC

SQL> sel ect dfo_nunber, tq_id, server_type, process, numrows, bytes
2 fromv$pg_tgstat
3 order by dfo_nunber, tq_id, server_type;

no rows sel ected

-94 -



Parallel Execution in Oracle

Peter Xu, 12288624

There is no use of parallelism here, thus there are no rows selected or recorded in
the parallel statistics record table.

2

SQL> explain plan for

2 select c.custid, c.first, cu.methpnt

3 fromcustoner c, cust_order cu

4 where c.custid = cu.custid

5 group by c.custid, c.first, cu.nethpnt
Expl ai ned
SQL> sel ect id, operation, cost

from plan_table;

I D OPERATI ON

0 SELECT STATEMENT
1 SORT

2 HASH JON

3 TABLE ACCESS

4 TABLE ACCESS

We can see here that are two table accesses whilst the JOIN still jumps with the cost.

The sort and select statement is also very high with this query.

Group BY with multiple tables on Primary Key with parallelism
The tables are given a degree of two (2) for the purpose of demonstrating this query

with

parallelism.

SQL>
Tabl
SQL>
Tabl

ALTER TABLE custoner parallel (degree 2);

e altered

ALTER TABLE cust_order parallel (degree 2);

e altered

SQL>
2
3
4

select c.custid, c.first, cu. nmethpnt
fromcustonmer ¢, cust_order cu

where c.custid = cu.custid

group by c.custid, c.first, cu. methpnt

CUSTI D FI RST METHPMT
133 Mari a CHECK
154 Lee
179 Alissa
232 Mtch
107 Paul a

-05-



Parallel Execution in Oracle Peter Xu, 12288624

SQL> sel ect dfo_nunber, tq_id, server_type, process, numrows, bytes
2 fromv$pg_tgstat
3 order by dfo_nunber, tq_id, server_type;

DFO_NUMBER TQ | D SERVER TYP PROCESS NUM_ROWS BYTES
1 0 Consurmer P0O03 2 71
1 0 Consurmer P002 4 95
1 0 Producer P0O01 0 48
1 0 Producer P0O0O 6 118
1 1 Consuner P0O03 1 57
1 1 Consuner P0O02 5 96
1 1 Producer P0O01 0 48
1 1 Producer P0O0O 6 105
1 2 Consurmer PO0O1 1 64
1 2 Consurmer P0O0O 5 131
1 2 Producer P003 1 64
1 2 Producer P002 5 131
1 3 Consuner C 5 130
1 3 Producer P0O01 1 40
1 3 Producer P0O0O 4 90

SQL> explain plan for
2 select c.custid, c.first, cu.methpnt
3 fromcustoner c, cust_order cu
4 where c.custid = cu.custid
5 group by c.custid, c.first, cu.nethpnt;

Expl ai ned.

SQL> select id, operation, cost
2 fromplan_table;

I D OPERATI ON CosT
0 SELECT STATEMENT 5
1 SORT 5
2 HASH JO N 3
3 TABLE ACCESS 1
4 TABLE ACCESS 1

Here the operations are the same as the serial one even though that we executed in
parallel. The v$pg_tgstat table, however, tells us that it is running in parallel and
different tasks are split in to different producers and consumers.

Simple Group by with the HAVING clause on multiple tables

The tables are changed back to serial execution.

SQL> ALTER TABLE customrer parallel (degree 1);
Tabl e al tered.

SQL> ALTER TABLE cust_order parallel (degree 1);

Tabl e al tered.

The HAVING clause here filters down the list by the further check for “CC” from the
cust_order table.

-906 -



Parallel Execution in Oracle Peter Xu, 12288624

SQ@>s electc .custid,c .first,c u.nmethpmt
2 fromcustonerc ,c ust_ordercu
3 wherec .custid=c u.custid
4 groupbyc .custid,c .first,c u.nmethpmt
5 havingc u.nethpnmt=" CC;

CUSTI D FI RST METHPMT
107 P aul a CcC
154 L ee CcC
179 Alissa CcC
232 Mitch CcC

SQ@>s el ectd fo_nunber,t q_id,s erver_type, process,n umrows,b ytes
2 fromv$pg_tgstat
3 orderb yd fo_nunber,t q_id,s erver_type;

nor owss el ected

There is no use of parallelism here, thus there are no rows selected or recorded in
the parallel statistics record table.

SQ@>e xplainplanf or

2 selectc .custid,c .first,c u.nethpmt
3 fromcustonerc ,c ust_ordercu
4 wherec .custid=c u.custid
5 groupbyc .custid,c .first,c u.nethpmt
6 havingc u.nethpnmt=" CC;

Expl ai ned.

SQ@>s electi d,o peration,c ost
2 fromplan_table;

| D OPERATI ON CosT
0 S ELECT S TATEMENT
1FILTER
2S ORT
3HASHJAON
4T ABLE A CCESS
5T ABLE A CCESS

(&)

PP Wwo

6 rowss el ected.
The operations from the plan table are the same as before.

-97 -



Parallel Execution in Oracle Peter Xu, 12288624

Simple Group by with the HAVING clause on multiple tables with parallelism
The tables are changed to degree of two (2) for each of the used tables.
SQ@>ALTERTABLE c ustonerp aral |l el ( degree 2);

Tablealtered.
SQ@>ALTERTABLE c ust_orderp arallel( degree 2);

Tabl eal tered.

SQ@> selectc .custid,c .first,c u.nmethpnt
2 fromcustomerc ,c ust_orderc u
3 wherec .custid=c u.custid
4 groupbyc .custid,c .first,c u.nmethpnt
5 havi ngc u. methpnt="CC;

CUSTI D FI RST METHPMT
107 P aul a CcC
154 L ee CcC
179 Alissa CcC
232 Mitch CcC

SQ@>s el ectd fo_nunber,t q_id,s erver_type, process,n umrows,b ytes
2 fromv$pg_tgstat
3 orderb yd fo_nunber,t q_id,s erver_type;

DFO_NUMBER TQ | D SERVER _TYP P ROCESS NUM_ROWS BYTES
1 0 Consurner P0O03 2 71
1 0 Consurner P002 4 95
1 0 P roducer P0O01 0 48
1 0 P roducer P0O00 6 118
1 1 Consuner P0O03 1 57
1 1 Consuner P002 5 96
1 1P roducer P0O01 0 48
1 1P roducer P0O0O 6 105
1 2 Consurmer P0O0O1 1 64
1 2 Consuner =(010]0] 5 131
1 2 Producer P003 1 64
1 2 Producer P002 5 131
1 3 Consuner C 4 111
1 3 Producer P0O01 1 40
1 3 Producer P0O0O 3 71

SQ@>explainplanf or

2 selectc .custid,c .first,c u.nethpmt
3 fromcustonerc ,c ust_ordercu
4 wherec .custid=c u.custid
5 groupbyc .custid,c .first,c u.nethpmt
6 havingc u.nethpmt=" CC;

Expl ai ned.

-08 -



Parallel Execution in Oracle

Peter Xu, 12288624

SQL> sel ect id, operation, cost
2 fromplan_table;

I D OPERATI ON CosT
SELECT STATEMENT 5
FI LTER
SORT
HASH JO N
TABLE ACCESS
TABLE ACCESS

abhwNDRFO
PP WO

6 rows sel ected.

From these results, it seems like there are very similar usage of the parallel system

as they all pretty much use the same amount of processes.

Group by not the same as Join attrib with parallelism
Each table is given the parallelism of degree two (2).

SQL> ALTER TABLE customner parallel (degree 2);
Tabl e al tered.
SQL> ALTER TABLE cust_order parallel (degree 2);

Tabl e al tered.

SQL> select c.first, cu.nethpnt
2 fromcustoner c, cust_order cu
3 where c.custid = cu.custid
4 group by c.last, c.first, cu.nethpnt;

FI RST METHPMT
Al i ssa CcC
Mtch CcC

Paul a CcC

Mari a CHECK
Lee CcC

SQL> sel ect dfo_nunber, tqg_id, server_type, process,
2 fromv$pg_tgstat
3 order by dfo_nunber, tq_id, server_type;

numrows, bytes

DFO_NUMBER TQ | D SERVER TYP PROCESS NUM_ROWS
1 0 Consurmer P0O03 2
1 0 Consurmer P0O02 4
1 0 Producer P0O01 0
1 0 Producer P0O0O 6
1 1 Consuner P0O03 1
1 1 Consuner P002 5
1 1 Producer P0O01 0
1 1 Producer P0O0O 6
1 2 Consurmer P0O0O1 4
1 2 Consurmer =(010]0] 2
1 2 Producer P003 1
1 2 Producer P002 5
1 3 Consuner C 5
1 3 Producer P0O01 3
1 3 Producer P0O0O 2

-99 -



Parallel Execution in Oracle Peter Xu, 12288624

SQL> explain plan for

2 select c.first, cu. methpnt

3 fromcustoner c, cust_order cu

4 where c.custid = cu.custid

5 group by c.last, c.first, cu.nethpnt;
Expl ai ned.

SQL> sel ect id, operation, cost
2 fromplan_table;

I D OPERATI ON CosT
0 SELECT STATEMENT 5
1 SORT 5
2 HASH JON 3
3 TABLE ACCESS 1

1

4 TABLE ACCESS
The above shows that having a different attrib from the group by and join statement
does not make a very large difference to the operation at hand.

-100 -



Parallel Execution in Oracle Peter Xu, 12288624

CHAPTER 7 — DML

Data manipulation language (DML) commands query and manipulate data in existing
schema objects. The DML allows one to modify, update and delete certain records in
tables with ease. Together with clauses such as WHERE, IN and other examples
mentioned in the DLL section that can be used here, forms tool that is both flexible
and easy to use.

7.1 PARALLEL DML

Parallel DML
When parallel DML is enabled for the session, all DML portions of statements issued
are considered for parallel execution. Even with parallel DML enabled, some DML
operations are restricted from using parallelised execution, while others may still
execute serially unless parallel hints and clauses are specified.

The following restrictions apply to parallel DML operations:

0 DML operations on clustered tables are not parallelised.

o DML operations with embedded functions that either write or read database
or package states are not parallelised.

o DML operations on tables with triggers that could fire are not parallelised.

o DML operations on tables or schema objects containing object types, LONGs,
or LOB data types are not parallelised.

Parallel DML mode can be modified only between committed transactions. Issuing
this command following an uncommitted transaction generates an error.

Parallel DML Example 1
Issue the following statement to enable parallel DML mode for the current session:

| ALTER SESSI ON ENABLE PARALLEL DM

Parallel DML Example 2
The following example modifies the current session to check all deferrable
constraints immediately following each DML statement:

| ALTER SESSI ON SET CONSTRAI NTS | MVEDI ATE; |

Parallel DML Example 3
The following statement modifies the current session to allow inserts into local index
partitions marked as unusable:

| ALTER SESSI ON SET SKI P_UNUSABLE_| NDEXES=TRUE; |

-101 -



Parallel Execution in Oracle Peter Xu, 12288624

7.2 UPDATE

UPDATE
Update using DML is used for changing data in a table.

For the following tests, the STUDENT table will be used for updating.

The original student table is as follows:

SQL> select * from student;

SI D FNAME LNAVE AGE HCOLOR HEI GHT
1 bob smar t 15 Dbl ack 170
2 sam taps 21 bl ond 160
3 craig st one 34 brown 150
4 tom spat 66 red 166
5 pat st one 45 br own 179
6 tim cray 55 bl ack 166
7 paul craz 77 grey 187
8 dawn nal 66 brown 130
9 jack j ones 55 bl ond 180
10 el hack 12 green 190
11 j ones Ng 23 bl ack 180
12 stan j ack 33 white 170
14 rick sam 25 brown 160
15 paul j ones 22 bl ack 188
16 j ames | ong 15 brown 155
17 jack br own 26 none 160
18 stan short 55 bl ond 178
19 wang chris 21 grey 155
20 j ohn bl ack 44 bl ack 156

999 Paul a Mar sh 16 Brown 177

989 pete l'i ne 19 Bl ack 187

21 rows sel ect ed.

There is a hand full of ways in which a table can be updated. The following is some of the
techniques used to update tables.

The following updates the record(s) in the age column to NULL when the same record’s hcolor
is none. This is an example of when a record needs to be updated but there are only unique
records in another column.

-102 -



Parallel Execution in Oracle

Peter Xu, 12288624

Update example 1 - serial

SQ@>u pdat e s tudent
2 seta ge=N UL
3 whereh color="

1 rowupdated.

none';

After updating the record, the following student was recorded.

S@>s elect*f romstudent;

SI D F NAME

11j ones
12s tan
14r ick
15 p aul

16j ames
17j ack
18s tan
19 wang
20j ohn
999 P aul a
989p ete

21r owss el ect ed.

LNAME

smar t
t aps

st one
spat

st one
cray

craz

mal

j ones
hack

Ng

j ack

sam

j ones
| ong

br own
short
chris
bl ack
Mar sh
l'ine

15b | ack
21b 1l ond
34 b rown
66r ed

45b rown
55b | ack
779 rey

66 b r own
55b | ond
12green
23b | ack
33white
25b rown
22b | ack

QWNn
ond
2lgrey
44 b | ack
16 B rown

19B | ack

170
160
150
166
179
166
187
130
180
190
180
170
160
188
155
160
178
155
156
177
187

The record where once was an age, is now changed to NULL. This is only possible if
that column did not have a not null when the table was created.

Update example 1 - parallel

The table were changed back to the original state before performing the parallel

version.

2 seta ge=N UL
3 wherehcolor="'

1 rowupdated.

none';

SQ@>u pdate/ *+parallel( student,2 )* /s tudent

2 fromplan_table;

| D OPERATI ON

1 U PDATE
2T ABLE ACCESS

SQ@>s electi d,o peration

0 U PDATE S TATEMENT

- 103 -




Parallel Execution in Oracle

Peter Xu, 12288624

After updating the record, the following student was recorded.

SI D F NAME

11j ones
12s tan
14r ick
15 p aul

16j ames
17j ack
18s tan
19 wang
20j ohn
999 P aul a
989p ete

21r owss el ect ed.

S@>s elect*f romstudent;

LNAME

smar t
t aps

st one
spat

st one
cray

craz

mal

j ones
hack

Ng

j ack

sam

j ones
| ong

br own
short
chris
bl ack
Mar sh
l'ine

15b | ack
21b 1l ond
34 b rown
66r ed

45b rown
55b | ack
779 rey

66 b r own
55b | ond
12green
23 bl ack
33white
25b rown
22b | ack

QWNn
ond
2lgrey
44 b | ack
16 B rown

19B | ack

170
160
150
166
179
166
187
130
180
190
180
170
160
188
155
160
178
155
156
177
187

The record where once was an age, is now changed to NULL. This is only possible if
that column did not have a not null when the table was created.

Update example 2 - serial

The following updates the student table and updates more than one column.
The student table original state is after the example prior to this one.

SQ@>u pdat e s tudent
3 hcolor="' Pink'
4 height=' 197
5 wheref nane="'

1 rowupdated.

2 setl name=' Manns',

bob';

-104-




Parallel Execution in Oracle Peter Xu, 12288624

SQ@>s elect*f romstudent;

AGE HCOLOR HElI GHT
15Pink 197

21blend————T60 |
34 b rown 150
66r ed 166
5p at st one 45b rown 179
6t im cray 55b I ack 166
7 p aul craz 779 rey 187
8d awn nal 66 brown 130
9j ack j ones 55b I ond 180
10 mel hack 12green 190
11j ones Ng 23 bl ack 180
12s tan j ack 33white 170
14r ick sam 25b rown 160
15 p aul j ones 22b | ack 188
16j ames | ong 15b rown 155
17j ack br own none 160
18s tan short 55b | ond 178
19w ang chris 21grey 155
20j ohn bl ack 44 b | ack 156
999 P aul a Mar sh 16 Brown 177
989p ete l'i ne 19B 1 ack 187

21r owss el ect ed.

Update example 2 - parallel
The following updates the student table and updates more than one column.
The student table original state is after the example prior to this one.

SQ@>u pdate/ *+parallel( student,2 )* /s tudent
2 setl name=' Manns',
3 hcolor="' Pink'
4 height=' 197
5 wheref nane="' bob";

1 rowupdated.

SQ@>s electi d,o peration
2 fromplan_table;

| D OPERATI ON
0 U PDATE S TATEMENT
1 U PDATE
2T ABLE A CCESS

STATI STI C LAST_QUERY SESSI ON_TOTAL
QueriesParallelized
DM. P arallelized
DFO Tr ees

Server T hreads

Al l ocati onH ei ght

Al l ocati on Wi dth
Local M sgs S ent
DistrM sgs S ent
LocalM sgsR ecv' d
DistrMsgsRecv'd

[E=Y
[E=Y

H
[eoNoNaNoN JENENE =2

H
OCOO0OO0OO0OO0OORFrOR

- 105 -




Parallel Execution in Oracle

Peter Xu, 12288624

SQL> select * from student;

SI D FNAME LNAVE AGE HCOLOR HEI GHT
_____________________________________________________________ m__.\
1 Manns 15 Pink 197
2 sam taps 21 bl ond 1650 |
3 craig st one 34 brown 150
4 tom spat 66 red 166
5 pat st one 45 br own 179
6 tim cray 55 bl ack 166
7 paul craz 77 grey 187
8 dawn nal 66 brown 130
9 jack j ones 55 bl ond 180
10 el hack 12 green 190
11 j ones Ng 23 bl ack 180
12 stan j ack 33 white 170
14 rick sam 25 brown 160
15 paul j ones 22 bl ack 188
16 j ames | ong 15 brown 155
17 jack br own none 160
18 stan short 55 bl ond 178
19 wang chris 21 grey 155
20 j ohn bl ack 44 bl ack 156
999 Paul a Mar sh 16 Brown 177
989 pete l'i ne 19 Bl ack 187

21 rows sel ected.

Update example 3 - serial

Now suppose that the height of each student is required to be in metres rather than
centermeters, we would need to convert it. To do this, we perform the following

operation:

SQL> updat e student
2 set height = height / 100;

22 rows updat ed.

There were no WHERE clause here to select certain records, thus all the records in

the table, for that column is updated.

- 106 -




Parallel Execution in Oracle Peter Xu, 12288624

SQL> select * from student;

SI D FNAME LNAME AGE HCOLOR
1 bob smar t 15 bl ack .7
2 sam taps 21 bl ond .6
3 craig st one 34 brown .5
4 tom spat 66 red 6
5 pat st one 45 br own 9
6 tim cray 55 bl ack 6
7 paul craz 77 grey 7
8 dawn nal 66 brown .3
9 jack j ones 55 bl ond . 8
10 el hack 12 green .9
11 j ones Ng 23 bl ack . 8
12 stan j ack 33 white .7
21 craig st ap 44 green 4
14 rick sam 25 brown .6
15 paul j ones 22 bl ack 1.88
16 j ames | ong 15 brown 1.55
17 jack br own 26 none 1.6
18 stan short 55 bl ond 1.78
19 wang chris 21 grey 1.55
20 j ohn bl ack 44 bl ack 1.56
999 Paul a Mar sh 16 Brown 1.77
989 pete l'i ne 19 Bl ack 1.87

22 rows sel ected.

N\

Update example 3 - parallel
Now suppose that the height of each student is required to be in metres rather than
centermeters, we would need to convert it. To do this, we perform the following
operation:

SQL> update /*+ parallel (student, 2) */ student
2 set height = height / 100;

22 rows updat ed.

There were no WHERE clause here to select certain records, thus all the records in
the table, for that column is updated.

SQL> select id, operation
2 fromplan_table;

I D OPERATI ON
0 UPDATE STATEMENT
1 UPDATE
2 TABLE ACCESS

-107 -




Parallel Execution in Oracle Peter Xu, 12288624

SQ@>s elect*f romv$pg_sesstat;

STATI STI C LAST_QUERY SESSI ON_TOTAL

QueriesParallelized 1 1

DM. P arallelized 0 0

DFO Tr ees 1 1

Server T hreads 2 0

Al l ocati onH ei ght 2 0

Al l ocati on Wi dth 1 0

Local M sgs S ent 21 21

DistrM sgs S ent 0 0

LocalM sgsR ecv' d 21 21

DistrMsgsRecv'd 0 0

10r owss el ect ed.

SQ@>s elect*f romstudent;

S| D F NAME LNAVE AGE HCOLOR
1bob smar t 15b | ack
2s am taps 21blond
3craig st one 34 b rown
4t om spat 66r ed
5p at st one 45b r own
6t im cray 55b I ack
7 p aul craz 779 rey
8d awn nal 66 b rown
9j ack j ones 55b I ond

10 mel hack 12green
11j ones Ng 23b I ack
12s tan j ack 33white
2l1craig st ap 44 g reen
14r ick sam 25b rown
15 p aul j ones 22b | ack
16j ames | ong 15b rown
17j ack br own 26 n one

18s tan short 55b | ond
19w ang chris 21grey

20j ohn bl ack 44 b | ack

999 P aul a Mar sh 16 Brown

989p ete l'i ne 19B 1 ack

22r owss el ect ed.

- 108 -




Parallel Execution in Oracle Peter Xu, 12288624

Update example 4 - serial
The following updates a record in the student table accessible through the database
link bus4410.

SQ@>u pdat e s 12288624. st udent @us4410
2 sets id=6 00
3 wheref nane="' pete';

1 rowupdated.

S@>s elect*f romstudent;

S| D F NAME LNAVE AGE HCOLOR HEI GHT
1bob smar t 15b | ack 1.7
2s am taps 21blond 1.6
3craig st one 34 brown 15
4t om spat 66r ed 1. 66
5p at st one 45b r own 1.79
6t im cray 55 bl ack 1. 66
7 p aul craz 779 rey 1.87
8d awn mal 66 b rown 1.3
9j ack j ones 55b | ond 1.8

10 mel hack 12green 1.9
11j ones Ng 23b I ack 1.8
12s tan j ack 33white 1.7
2l1craig st ap 44 g reen 1.794
14r ick sam 25b rown 1.6
15 p aul j ones 22b | ack 1.88
16j ames | ong 15b rown 1.55
17j ack br own 26 n one 1.6
18s tan short 55b | ond 1.78
19w ang chris 21grey 1.55
20j ohn bl ack 44 b | ack 1.56

999 P aul a Mar sh 16 B rown 1.77
600 pete i ne 19 B ack 1.87

22r owss el ect ed.

Update example 4 - parallel
The following updates a record in the student table accessible through the database
link bus4410.
SQ@>u pdate/ *+parallels 12288624. st udent @us4410* /
2 $12288624. st udent @us4410
3 sets id=6 00
4 wheref name="' pete';

1 rowu pdated.

SQ@>s electi d,o peration
2 fromplan_table;

| D OPERATI ON
0 U PDATE S TATEMENT
1 U PDATE
2T ABLE A CCESS

- 109 -




Parallel Execution in Oracle Peter Xu, 12288624

STATI STI C LAST_QUERY SESSI ON_TOTAL
QueriesParallelized 1 1
DM. P arallelized 0 0
DFO Tr ees 1 1
Server T hreads 2 0
Al | ocati onH ei ght 2 0
Al l ocati on Wi dth 1 0
Local M sgs S ent 1 1
DistrM sgs S ent 0 0
LocalM sgsR ecv' d 1 1
DistrMsgsRecv'd 0 0
SQ@>s elect*f romstudent;

S| D F NAME LNAME AGE HCOLOR HEI GHT
1bob smar t 15b | ack 1.7
2s am taps 21blond 1.6
3craig st one 34 b rown 15
4t om spat 66r ed 1.66
5p at st one 45b r own 1.79
6t im cray 55b I ack 1. 66
7 p aul craz 779 rey 1.87
8d awn nal 66 b rown 1.3
9j ack j ones 55b I ond 1.8

10 mel hack 12green 1.9
11j ones Ng 23b I ack 1.8
12s tan j ack 33white 1.7
2l1craig st ap 44 g reen 1.794
14r ick sam 25b rown 1.6
15 p aul j ones 22b | ack 1.88
16j ames | ong 15b rown 1.55
17j ack br own 26 n one 1.6
18s tan short 55b | ond 1.78
19w ang chris 21grey 1.55
20j ohn bl ack 44 b | ack 1.56

999 P aul a Mar sh 16 B rown 1:77
600 pete i ne 19 B ack 1.87

22r owss el ect ed.

-110-




Parallel Execution in Oracle Peter Xu, 12288624

Update example 5 - serial
This example shows the following syntactic constructs of the UPDATE command:
o both forms of the SET clause together in a single statement
O a correlated sub query, and
o aWHERE clause to limit the updated rows

The below update statement updates only those student(s) who has the last name
‘Line’, sets the age to 1.5 x the average ages and 2 x the average heights from
student table. And updates the records only if first name were also found in the
customer table.

SQ@>u pdat e s tudent
2 sets id=
3 (selects id
4 fromstudent
5 wherel name=" 1Iine'"),
6 (age,h eight)=
7 (selectl .5*avg(age),2 *avg(hei ght)
8 fromstudent)
9 wheref nanei n
10 (selectf irst
11 fromcust onmer
12 wheref irst="' pete');
1 rowu pdated.
SQ@>s elect*f romstudent;

S| D F NAME LNAVE AGE HCOLOR HEI GHT
1bob smar t 15b | ack 1.7
2s am taps 21blond 1.6
3craig st one 34 b rown 15
4t om spat 66r ed 1. 66
5p at st one 45b r own 1.79
6t im cray 55b I ack 1. 66
7 p aul craz 779 rey 1.87
8d awn nal 66 b rown 1.3
9j ack j ones 55b I ond 1.8

10 mel hack 12green 1.9
11j ones Ng 23b I ack 1.8
12s tan j ack 33white 1.7
2l1craig st ap 44 g reen 1.794
14r ick sam 25b rown 1.6
15 p aul j ones 22b | ack 1.88
16j ames | ong 15b rown 1.55
17j ack br own 26 n one 1.6
18s tan short 55b | ond 1.78
19w ang chris 21grey 1.55
20j ohn bl ack 44 b | ack 1.56
999 P aula Narsh 16-Brown 1.77
@ li ne 53. 7954545 B | ack 1338490909

22r owss el ect ed.

-111-




Parallel Execution in Oracle Peter Xu, 12288624

Update example 5 - parallel
This example shows the following syntactic constructs of the UPDATE command:
o both forms of the SET clause together in a single statement
O a correlated sub query, and
o aWHERE clause to limit the updated rows

The below update statement updates only those student(s) who has the last name
‘Line’, sets the age to 1.5 x the average ages and 2 x the average heights from
student table. And updates the records only if first name were also found in the
customer table.

SQ@>u pdate/ *+parallel( student,2 )* /s tudent

2 sets id=

3 (selects id

4 fromstudent

5 wherel name=" 1Iine'"),
6 (age,h eight)=

7 (selectl .5*avg(age),2 *avg(hei ght)
8 fromstudent)
9 wheref namei n

10 (selectf irst

11 from cust oner

12 wheref irst="' pete');

1 rowu pdated.

SQ@>s electi d,o peration
2 fromplan_table;

| D OPERATI ON
0 U PDATE S TATEMENT
1 U PDATE
2T ABLE A CCESS

STATI STI C LAST_QUERY SESSI ON_TOTAL
QueriesParallelized
DM P arallelized
DFO Tr ees

Server T hreads

Al l ocati onH ei ght

Al l ocati on Wi dth
Local M sgs S ent
DistrMsgs S ent
LocalM sgsR ecv' d
DistrMsgsRecv'd

OFrROFRPFPNNRFROPR
OFrPOPFrRPOOCOORFrOR

-112 -



Parallel Execution in Oracle Peter Xu, 12288624

S@>s elect*f romstudent;

S| D F NAME LNAVE AGE HCOLOR HEI GHT
1bob smar t 15b | ack 1.7
2s am taps 21blond 1.6
3craig st one 34 b rown 15
4t om spat 66r ed 1. 66
5p at st one 45b r own 1.79
6t im cray 55b I ack 1. 66
7 p aul craz 779 rey 1.87
8d awn nal 66 b rown 1.3
9j ack j ones 55b | ond 1.8

10 mel hack 12green 1.9
11j ones Ng 23b I ack 1.8
12s tan j ack 33 whi te 1.7
2l1craig st ap 44 g reen 1.794
14r ick sam 25b rown 1.6
15 p aul j ones 22 bla ck 1.88
16j ames | ong 15b rown 1.55
17j ack br own 26 n one 1.6
18s tan short 55 bl ond 1.78
19w ang chris 21grey 1.55
20j ohn bl ack 44 b | ack 1.56
999 P aula Narsh 16-Brown 1.77
600 p ete Ii ne 53. 7954545 B | ack 13.38490909

22r owss el ect ed.

7.3 INSERT

INSERT

Insert command is to insert data records into the tables.

In this example we use the COURSE table.
The original table to begin with:

SQ@>s elect*f romcourse;

CIDCALLID CNAMVE CCREDI T
1MIS101 Intro.t ol nfo.S ystems 3
2MIS301 Systens A nal ysi s 3
3MIS441 Dat abase Managenent 3
4CS155 Programm ngi nC ++ 3
5MIS451 Cient/ServerS ystens 3

Insert example 1 — serial
The normal and simplest method of inserting a record into a table is doing the

following:
SQ@>i nserti ntoc oursev al ues
2 (6," BUS5000',' ReadingUnit',6 );

1 rowcreated.

-113 -



Parallel Execution in Oracle

Peter Xu, 12288624

SQ@>s el ect*f

CIDCALLID
1MIS101
2MIS301
3MIS441
4CS155

romcourse,;

Intro.t ol nfo.S ystems
Systens A nal ysi s

Dat abase Managenent
Programm ngi nC ++

| swMmisasd
6B US5 000

uuuuuuu

ReadingUni t

6 rowss el ected.

Insert example 1 — parallel

The normal and simplest method of inserting a record into a table is doing the

following:
SQ@>i nsert/ *+parallel( course,2 )* /i nto coursev al ues
2 (6," BUS5000'," ReadingUnit',6 );

1 rowcreated.

SQ@>s el ecti d,o perat
2 fromplan_table;

| D OPERATI ON

1 U PDATE

i on

0 U PDATE S TATEMENT

2T ABLE A CCESS

STATI STI C LAST_QUERY SESSI ON_TOTAL
QueriesParallelized 0 0
DM P arallelized 0 0
DFO Tr ees 0 0
Server T hreads 0 0
Al l ocati onH ei ght 0 0
Al l ocati on Wi dth 0 0
Local M sgs S ent 0 0
DistrM sgs S ent 0 0
LocalM sgsR ecv' d 0 0
DistrMsgsRecv'd 0 0
10r owss el ect ed.

SQ@>s elect*f romcourse;

CIDCALLID CNAMVE CCREDI T
1MIS101 Intro.t ol nfo.S ystems 3
2MIS301 Systens A nal ysi s 3
3MIS441 Dat abase Managenent 3
4CS155 Programm ngi nC ++ 3
5MIS451 Client/ServerS—ystens 3
6B US5000 ReadingUnit F——

6 rowss el ected.

-114-



Parallel Execution in Oracle Peter Xu, 12288624

Insert example 2 — sequence - serial
In this example, we create a sequence, which allows ORACLE to increment the CID
to the next value when a new record is inserted.

To create a sequence:

SQ@>c reates equence c i d_sequence
2 startwith7;

Sequence c reat ed.

SQ@>i nserti ntoc ourse(cid,c allid,c nane, ccredit)
2 values( cid_sequence. nextval,' BUS4020', 'Tradings ystens',6 );

1 rowcreated.

SQ@>s elect*f romcourse;

CIDCALLID CNAMVE CCREDI T
1MIS101 Intro.t ol nfo.S ystems 3
2MIS301 Systens A nal ysi s 3
3MIS441 Dat abase Managenent 3
4CS155 Programm ngi nC ++ 3
5MIS451 Cient/ServerS ystens 3

dﬁ%uuu ReadingUnit :D
020 Tradi ngs yst ens

7 rowss el ected.

The above CID of 7 is automatically inserted as the next value.

Insert example 2 — sequence - parallel
In this example, we create a sequence, which allows ORACLE to increment the CID
to the next value when a new record is inserted.

To create a sequence:
SQ@>c reates equence c i d_sequence
2 startwith7;

Sequence c reat ed.

SQ@>i nsert/ *+parallel( course,2 )*
2 intocourse(cid,c allid,c name,c credit)
3 values( cid_sequence. nextval,' BUS4020', 'Tradings ystens',6 );

1 rowcreated.

SQ@>s electi d,o peration
2 fromplan_table;

| D OPERATI ON

0 U PDATE S TATEMENT
1 U PDATE
2T ABLE ACCESS

-115-



Parallel Execution in Oracle

Peter Xu, 12288624

SQ@>s elect*f romv$pg_sesstat;

STATI STI C LAST_QUERY SESSI ON_TOTAL
QueriesParallelized 0 1
DM. P arallelized 0 0
DFO Tr ees 0 0
Server T hreads 0 0
Al l ocati onH ei ght 0 0
Al l ocati on Wi dth 1 0
Local M sgs S ent 0 0
DistrM sgs S ent 0 0
LocalM sgsR ecv' d 0 0
DistrMsgsRecv'd 0 0
10r owss el ect ed.

SQ@>s elect*f romcourse;

CIDCALLID CNAMVE CCREDI T
1MIS101 Intro.t ol nfo.S ystems 3
2MIS301 Systens A nal ysi s 3
3MIS441 Dat abase Managenent 3
4CS155 Programm ngi nC ++ 3
5MIS451 Cient/ServerS ystens 3

0 ReadingUnit :2>
020 Tradi ngs yst ens
7 rowss el ected.

The above CID of 7 is automatically inserted as the next value.

Insert example 3 - serial
The following uses the column names to bound the inserts.

SQ@>i nserti ntoc ourse( cid,c allid,c nane, ccredit)
2 values(8,' DGS1111',' Digitals ystensl , 6);

1 rowcreated.

SQ@>s elect*f romcourse;

CIDCALLID CNAMVE CCREDI T
1MIS101 Intro.t ol nfo.S ystems 3
2MIS301 Systens A nal ysi s 3
3MIS441 Dat abase Managenent 3
4CS155 Programm ngi nC ++ 3
5MIS451 Cient/ServerS ystens 3
6 B US 5000 ReadingUni t 6

4620 Tradings ystens
8 D GS1111 Digitals ystensl 6
8 rowss el ected.

-116 -



Parallel Execution in Oracle Peter Xu, 12288624

Insert example 3 - parallel
The following uses the column names to bound the inserts.

SQ@>i nserti ntoc ourse( cid,c allid,c nane, ccredit)
2 values(8,' DGS1111',' Digitals ystensl , 6);

1 rowcreated.

SQ@>s electi d,o peration
2 fromplan_table;

| D OPERATI ON
0 U PDATE S TATEMENT
1 U PDATE
2T ABLE A CCESS

SQ@>s elect*f romv$pg_sesstat;

STATI STI C LAST_QUERY SESSI ON_TOTAL
QueriesParallelized
DM P arallelized
DFO Tr ees

Server T hreads

Al l ocati onH ei ght

Al l ocati on Wi dth
Local M sgs S ent
DistrM sgs S ent
LocalM sgsRecv' d
DistrMsgsRecv'd

[ecNoNo) JeoloNeNoNeNe)
[eNoNeoloNoloNeNoNal

10r owss el ect ed.

SQ@>s elect*f romcourse;
CIDCALLID CNAMVE CCREDI T

1MIS101 Intro.t ol nfo.S ystems
2MIS301 Systens A nal ysi s
3MIS441 Dat abase Managenent
4CS155 Programm ngi nC ++
5MIS451 Cient/ServerS ystens
6 B US 5000 ReadingUni t

3
3
3
3
3
6
4620 Tradings ystens
ﬁ Digitals ystens1 D

8 rowss el ected.

-117 -



Parallel Execution in Oracle Peter Xu, 12288624

Insert example 4 — NULL inserts - serial
A NULL value is inserted to CNAME (course name).

SQ@>i nserti ntoc ourse( cid,c allid,c nane, ccredit)
2 wvalues( 9," BUS8000',N ULL,6 );

1 rowcreated.

SQ@>s elect*f romcourse;
CIDCALLID CNAMVE CCREDI T

1MIS101 Intro.t ol nfo.S ystems
2MIS301 Systens A nal ysi s
3MIS441 Dat abase Managenent
4CS155 Programm ngi nC ++
5MIS451 Cient/ServerS ystens
6 B US 5000 ReadingUni t

7 B Us4020 Tradi ngs ystens

Digitals ystens 1
US8000

9 rowss el ected.

vmmwwwww

Insert example 4 — NULL inserts - parallel
A NULL value is inserted to CNAME (course name).

SQ@>i nserti ntoc ourse( cid,c allid,c nane, ccredit)
2 wvalues( 9," BUS8000',N ULL,6 );

1 rowcreated.

SQ@>s electi d,o peration
2 fromplan_table;

| D OPERATI ON
0 U PDATE S TATEMENT
1 U PDATE
2T ABLE A CCESS

SQ@>s elect*f romv$pg_sesstat;

STATI STI C LAST_QUERY SESSI ON_TOTAL
QueriesParallelized
DM P arallelized
DFO Tr ees

Server T hreads

Al | ocati onH ei ght

Al l ocati on Wi dth
Local M sgs S ent
DistrM sgs S ent
LocalM sgsR ecv' d
DistrMsgsRecv' d

OORFrRPPFRPONNOOO
OORFRPPFRPONNOOR

10r owss el ect ed.

-118 -



Parallel Execution in Oracle

Peter Xu, 12288624

CIDCALLID
1MIS101
2MIS301
3MIS441
4CS155
5MIS451
6B US5 000
7 B US4020

SQ@>s elect*f romcourse;

Intro.t ol nfo.S ystems
Systens A nal ysi s

Dat abase Managenent
Programm ngi nC ++
Cdient/ServerS ystens
ReadingUni t

Tradi ngs ystens

Us8000

Dgitals ystens

Ummwwwww

9 rowss el ected.

Insert example 5 — Select into

- serial

A table of top students is created to store the top students that achieved high scores.

si d n unber,

cseci d n unber,
gradev ar char 2(2)

O WN

Tabl e ¢ r eat ed.

SQ@>createt ablet op_

st udent s(

sfnane v archar 2( 15),
sl nane v ar char 2( 15),

)

The table is filled with the selected students with grades A or B.

fromstudents ,e

e.grade=' A'OR
e.grade=" B;

O WN

33r owsc reated.

SQ@>i nserti ntot op_students
sel ects .sid,s .sfname,s .slnane,e .csecid,e .grade

nrol |l ment e

wheree .sid=s .sidAND

-119-



Parallel Execution in Oracle

Peter Xu, 12288624

The students together with the course section ID is recorded

SQ@>s el ect*f

SI D SENAVE

100 S ar ah
100 S ar ah
100 S ar ah
101Brian
102 D ani el
103 A manda
104 R uben
105 Mi chael
100 S ar ah
101Brian
102 D ani el
103 A manda
104 R uben
105 Mi chael
100 S ar ah
101Brian
102 D ani el
103 A manda
104 R uben
105 Mi chael
101Brian
100 S ar ah
101Brian
102 D ani el
103 A manda
104 R uben
105 Mi chael
100 S ar ah
101Brian
102 D ani el
103 A manda
104 R uben
105 Mi chael

33r owss el ect ed.

romt op_students;

SLNAVE

CSEC D GR

MIler
MIler
MIler
Unat o
Bl ack
Mobl ey
Sanchez
Connol y
MIler
Unat o
Bl ack
Mobl ey
Sanchez
Connol y
MIler
Unat o
Bl ack
Mobl ey
Sanchez
Connol y
Unat o
MIler
Unat o
Bl ack
Mobl ey
Sanchez
Connol y
MIler
Unat o
Bl ack
Mobl ey
Sanchez
Connol y

1000
1003
1005
1005
1005
1005
1005
1005
1008
1008
1008
1008
1008
1008
1004
1004
1004
1004
1004
1004
1005
1008
1008
1008
1008
1008
1008
1000
1000
1000
1000
1000
1000

DWW OTT>POOTTOTTTOTOTTTOOODI®E®E > >

Insert example 5 — Select into - parallel
A table of top students is created to store the top students that achieved high scores.

O WN

Tabl e ¢ r eat ed.

SQ@>createt abl et op_students(
si d n unber,
sfnane v archar 2( 15),
sl nane v ar char 2( 15),
cseci d n unber,

gradev archar2(2));

The table is filled with the selected students with grades A or B.

2

3
4
5
6

SQ@>i nserti

33r owsc reated.

' B

ntot op_students
sel ects .sid,s .sfname,s .slnane,e .csecid,e .grade
fromstudents ,e nrollnent e
wheree .sid=s
e.grade='" A'OR
e. grade =

.SidAND




Parallel Execution in Oracle

Peter Xu, 12288624

SQ@>s elect*f romv$pg_sesstat;

STATI STI C LAST_QUERY SESSI ON_TOTAL
QueriesParallelized
DM. P arallelized
DFO Tr ees

Server T hreads

Al l ocati onH ei ght

Al l ocati on Wi dth
Local M sgs S ent
DistrM sgs S ent
LocalM sgsR ecv' d
DistrMsgsRecv'd

[N
N

H
OO OOFRLNNFROPR

i
ONONOOOWOW

10r owss el ect ed.

SQ@>s electi d,o peration
2 fromplan_table;

| D OPERATI ON
0 U PDATE S TATEMENT
1 U PDATE
2T ABLE A CCESS

The students together with the course section ID is recorded

SQ@>s elect*f romtop_students;

SI D SFNAMVE SLNAVE CSECQI D GR
100 S ar ah MIler 1000 A
100 S ar ah MIler 1003 A
100 S ar ah MIler 1005 B
101Brian Umat o 1005 B
102 D ani el Bl ack 1005 B
103 A nanda Mobl ey 1005 B
104 R uben Sanchez 1005 B
105 Mi chael Connol y 1005 B
100 S ar ah MIler 1008 B
101Brian Umat o 1008 B
102 D ani el Bl ack 1008 B
103 A nanda Mobl ey 1008 B
104 R uben Sanchez 1008 B
105 Mi chael Connol y 1008 B
100 S ar ah MIler 1004 B
101Brian Umat o 1004 B
102 D ani el Bl ack 1004 B
103 A nanda Mobl ey 1004 B
104 R uben Sanchez 1004 B
105 Mi chael Connol y 1004 B
101Brian Umat o 1005 A
100 S ar ah MIler 1008 B
101Brian Umat o 1008 B
102 D ani el Bl ack 1008 B
103 A nanda Mobl ey 1008 B
104 R uben Sanchez 1008 B
105 Mi chael Connol y 1008 B
100 S ar ah MIler 1000 B
101Brian Umat o 1000 B
102 D ani el Bl ack 1000 B
103 A nanda Mobl ey 1000 B
104 R uben Sanchez 1000 B
B

105 Mi chael Connol y 1000

-121 -



Parallel Execution in Oracle

Peter Xu, 12288624

7.4 DELETE

Delete allows you to remove rows from a table, a partitioned table, a view's base

table.

Delete example 1 — all records - serial

The original top_students table content.

105 M chael
100 Sar ah
101 Bri an
102 Dani el
103 Amanda
104 Ruben
105 M chael
100 Sar ah
101 Bri an
102 Dani el
103 Amanda
104 Ruben
105 M chael
101 Bri an
100 Sar ah
101 Bri an
102 Dani el
103 Amanda
104 Ruben
105 M chael
100 Sar ah
101 Bri an
102 Dani el
103 Amanda
104 Ruben
105 M chael

33 rows selected

SQL> select * fromtop_students;

Mobl ey
Sanchez
Connol y
MIler
Unat o
Bl ack
Mobl ey
Sanchez
Connol y
MIler
Unat o
Bl ack
Mobl ey
Sanchez
Connol y
Unat o
MIler
Unat o
Bl ack
Mobl ey
Sanchez
Connol y
MIler
Unat o
Bl ack
Mobl ey
Sanchez
Connol y

s BlvslvsvellvsRveRiveioeRvelive e llvs iy JiveRveRvellvsRvellvsRveBveiiveRveive R veliveve s Rov s BB i 2

The following deletes all records in the top_student table.

33 rows del eted

SQL> del ete fromtop_students;

No more records are stored in the table anymore.

no rows sel ected

SQL> select * fromtop_students;

-122 -



Parallel Execution in Oracle Peter Xu, 12288624

Delete example 1 — all records - parallel
The original top_students table content.
SQL> select * fromtop_students;

103 Ananda Mobl ey 1000
104 Ruben Sanchez 1000
105 M chael Connol y 1000

SI D SFNAME SLNAME CSECI D &R
100 Sar ah MIler 1000 A
100 Sar ah MIler 1003 A
100 Sar ah MIler 1005 B
101 Bri an Unat o 1005 B
102 Dani el Bl ack 1005 B
103 Ananda Mobl ey 1005 B
104 Ruben Sanchez 1005 B
105 M chael Connol y 1005 B
100 Sar ah MIler 1008 B
101 Bri an Umat o 1008 B
102 Dani el Bl ack 1008 B
103 Ananda Mobl ey 1008 B
104 Ruben Sanchez 1008 B
105 M chael Connol y 1008 B
100 Sar ah MIler 1004 B
101 Bri an Umat o 1004 B
102 Dani el Bl ack 1004 B
103 Ananda Mobl ey 1004 B
104 Ruben Sanchez 1004 B
105 M chael Connol y 1004 B
101 Bri an Umat o 1005 A
100 Sar ah MIler 1008 B
101 Bri an Umat o 1008 B
102 Dani el Bl ack 1008 B
103 Ananda Mobl ey 1008 B
104 Ruben Sanchez 1008 B
105 M chael Connol y 1008 B
100 Sar ah MIler 1000 B
101 Bri an Umat o 1000 B
102 Dani el Bl ack 1000 B
B
B
B

33 rows sel ected.

The following deletes all records in the top_student table.
SQL> delete /*+ parallel (top_students, 2) */ fromtop_students;

33 rows del et ed.

SQL> select id, operation
2 fromplan_table;

I D OPERATI ON

UPDATE STATEMENT
UPDATE

TABLE ACCESS

| NSERT STATEMENT
DELETE STATEMENT
DELETE

TABLE ACCESS

NFR,OONMNRFO

7 rows sel ected.

-123 -



Parallel Execution in Oracle Peter Xu, 12288624

SQ@>s elect*f romv$pg_sesstat;

STATI STI C LAST_QUERY SESSI ON_TOTAL
QueriesParallelized
DM. P arallelized
DFO Tr ees

Server T hreads

Al l ocati onH ei ght

Al l ocati on Wi dth
Local M sgs S ent
DistrM sgs S ent
LocalM sgsR ecv' d
DistrMsgsRecv'd

a1

a1
ONONOOOPMONS

[eNoNeoloNooNeNoNe o)

10r owss el ect ed.

No more records are stored in the table anymore.
SQ@> select*f romtop_students;

nor owss el ected

Delete example 2 - serial
The top_student table is filled with data once more.

SQ@>i nserti ntot op_students
2 selects .sid,s .sfnanme,s .slnane,e .csecid,e .grade
3 fromstudents ,e nrollnent e
4 wheree .sid=s .sidAND
5
6

e.grade=' A'OR
e.grade=" B;

33r owsc reated.

-124-



Parallel Execution in Oracle Peter Xu, 12288624

SQ@>s elect*f romtop_students;

104 R uben Sanchez 1000
105 Mi chael Connol y 1000

SI D SFNAMVE SLNAVE CSECQI D GR
100 S ar ah MIler 1000 A
100 S ar ah MIler 1003 A
100 S ar ah MIler 1005 B
101Brian Umat o 1005 B
102 D ani el Bl ack 1005 B
103 A nanda Mobl ey 1005 B
104 R uben Sanchez 1005 B
105 Mi chael Connol y 1005 B
100 S ar ah MIler 1008 B
101Brian Umat o 1008 B
102 D ani el Bl ack 1008 B
103 A nanda Mobl ey 1008 B
104 R uben Sanchez 1008 B
105 Mi chael Connol y 1008 B
100 S ar ah MIler 1004 B
101Brian Umat o 1004 B
102 D ani el Bl ack 1004 B
103 A nanda Mobl ey 1004 B
104 R uben Sanchez 1004 B
105 Mi chael Connol y 1004 B
101Brian Umat o 1005 A
100 S ar ah MIler 1008 B
101Brian Umat o 1008 B
102 D ani el Bl ack 1008 B
103 A nanda Mobl ey 1008 B
104 R uben Sanchez 1008 B
105 Mi chael Connol y 1008 B
100 S ar ah MIler 1000 B
101Brian Umat o 1000 B
102 D ani el Bl ack 1000 B
103 A nanda Mobl ey 1000 B
B
B

33r owss el ect ed.

SQ@>deletef romt op_students
2 wheres fnane=' Mchael 'O R
3 slnanme=' Sanchez';

10r owsd el et ed.

-125 -



Parallel Execution in Oracle

Peter Xu, 12288624

Delete example 2 -

parallel

The top_student table is filled with data once more.

SQ@>i nserti

wheree

OO WN

ntot op_students

.sid=s .sidAND

e.grade=' A'OR
e.grade=" B;

33r owsc reated.

sel ects .sid,s .sfname,s .slnane,e .csecid,e .grade
fromstudents ,e nrollnent e

SQ@>s elect*f romtop_students;

CSEC D GR

33r owss el ect ed.

SI D SFNAMVE SLNAVE
100 S ar ah MIler
100 S ar ah MIler
100 S ar ah MIler
101Brian Umat o
102 D ani el Bl ack
103 A nanda Mobl ey
104 R uben Sanchez
105 Mi chael Connol y
100 S ar ah MIler
101Brian Umat o
102 D ani el Bl ack
103 A nanda Mobl ey
104 R uben Sanchez
105 Mi chael Connol y
100 S ar ah MIler
101Brian Umat o
102 D ani el Bl ack
103 A nanda Mobl ey
104 R uben Sanchez
105 Mi chael Connol y
101Brian Umat o
100 S ar ah MIler
101Brian Umat o
102 D ani el Bl ack
103 A nanda Mobl ey
104 R uben Sanchez
105 Mi chael Connol y
100 S ar ah MIler
101Brian Umat o
102 D ani el Bl ack
103 A nanda Mobl ey
104 R uben Sanchez
105 Mi chael Connol y

1000
1003
1005
1005
1005
1005
1005
1005
1008
1008
1008
1008
1008
1008
1004
1004
1004
1004
1004
1004
1005
1008
1008
1008
1008
1008
1008
1000
1000
1000
1000
1000
1000

DWW WO >IOOTOTOTTTOTTTTOOITDET® > >

3

10r owsd el et ed.

M chael 'O R
Sanchez' ;

SQ@>delete/ *+parallel( top_students)* /fr
2 wheres fnane =
sl nane =

omt op_students

- 126 -



Parallel Execution in Oracle

Peter Xu, 12288624

SQ@>s elect*f romv$pg_sesstat;

STATI STI C LAST_QUERY SESSION TOTAL
QueriesParallelized 1 5
DM.Parallelized 0 0
DFO Trees 1 5
Server T hreads 2 0
Al l ocati onH ei ght 2 0
Al l ocati on Wi dth 1 0
Local M sgs S ent 10 62
DistrM sgs S ent 0 0
LocalM sgsR ecv' d 10 62
DistrMsgsRecv'd 0 0
10r owss el ect ed.
The result of this delete:
SQ@>s elect*f romtop_students;
SI D SFNAMVE SLNAVE CSECQ D GR
100 S ar ah MIler 1000 A
100 S ar ah MIler 1003 A
100 S ar ah MIler 1005 B
101Brian Umat o 1005 B
102 D ani el Bl ack 1005 B
103 A nanda Mobl ey 1005 B
100 S ar ah MIler 1008 B
101Brian Umat o 1008 B
102 D ani el Bl ack 1008 B
103 A nanda Mobl ey 1008 B
100 S ar ah MIler 1004 B
101Brian Umat o 1004 B
102 D ani el Bl ack 1004 B
103 A nanda Mobl ey 1004 B
101Brian Umat o 1005 A
100 S ar ah MIler 1008 B
101Brian Umat o 1008 B
102 D ani el Bl ack 1008 B
103 A nanda Mobl ey 1008 B
100 S ar ah MIler 1000 B
101Brian Umat o 1000 B
102 D ani el Bl ack 1000 B
103 A nanda Mobl ey 1000 B
23r owss el ect ed.

-127 -



Parallel Execution in Oracle

Peter Xu, 12288624

Delete example 3 - serial

The following deletes all the SID (student id) that is lower than 103 and with grades

other than A.

SQ@>deletef romt op_students
2 wheresid<l1l 03AND
3 grade<>' A';

15r owsd el et ed.

The result of the delete:

SQ@>s elect*f romtop_students;
S| D SFNAVE SLNAVE CSECI D GR
100 S ar ah MIler 1000 A
100 S ar ah MIler 1003 A
103 A nanda Mobl ey 1005 B
103 A nanda Mobl ey 1008 B
103 A nanda Mobl ey 1004 B
101Brian Umat o 1005 A
103 A nanda Mobl ey 1008 B
103 A nanda Mobl ey 1000 B

8 rowss el ected.

Delete example 3 - parallel

The following deletes all the SID (student id) that is lower than 103 and with grades

other than A.

2 wheresid<1l 03AND
3 grade<>' A';

15r owsd el et ed.

SQ@>delete/ *+parallel( top_student,2 )* / fr omtop_students

SQ@>s elect*f romv$pg_sesstat

STATI STI C
QueriesParallelized
DM P arallelized
DFO Tr ees

Server T hreads

Al l ocati onH ei ght
Al l ocati on Wi dth
Local M sgs S ent
DistrM sgs S ent
LocalM sgsR ecv' d
DistrMsgsRecv'd

10r owss el ect ed.

LAST_QUERY SESSI ON_TOTAL

]

]
ONONOOOUIO U

[cNeoojeolojoNoNoNeNo)

SQ@>s electi d,o peration
2 fromplan_table;

| D OPERATI ON

0 U PDATE S TATEMENT
1 U PDATE
2T ABLE A CCESS

3 rowss el ected.

-128 -



Parallel Execution in Oracle Peter Xu, 12288624

The result of the delete:

SQL> select * fromtop_students;
SI D SFNAVE SLNAVE CSECI D &R
100 Sar ah MIler 1000 A
100 Sar ah MIler 1003 A
103 Ananda Mobl ey 1005 B
103 Ananda Mobl ey 1008 B
103 Ananda Mobl ey 1004 B
101 Bri an Umat o 1005 A
103 Ananda Mobl ey 1008 B
103 Ananda Mobl ey 1000 B

8 rows selected.

-129 -



Parallel Execution in Oracle Peter Xu, 12288624

CHAPTER 8 — EXTENDED UTILITIES

8.1 PARALLEL DATA LOADING
Parallel Data Loading

Oracle’'s SQL*Loader utility loads data into Oracle tables from external files. The
loading of data can be parallel performed with some restrictions. SQL*Loader’s
parallel support can dramatically reduce the elapsed time needed to perform that
load if there is a large amount of data to load into the tables.

SQL*Loader can:

o Load data from multiple input data files of different file types

o Handle fixed-format, delimited-format, and variable-length records

0 Manipulate data fields with SQL functions before inserting the data into
database columns

O Support a wide range of data types, including DATE, BINARY, PACKED
DECIMAL, and ZONED DECIMAL

o Load multiple tables during the same run, loading selected rows into each
table

o Handle a single physical record as multiple logical records

0 Generate unigue, sequential key values in specified columns

o Thoroughly report errors so you can easily adjust and load all records

8.2 SQL*LOADER
SQL*Loader Control File

The control file, written in SQL*Loader data definition language (DDL), specifies how
to interpret the data, what tables and columns to insert the data into, and may also
include input data file management information.

The data for SQL*Loader to load into an Oracle database must be in files accessible
to SQL*Loader. SQL*Loader requires information about the data to be loaded which
provides instructions for mapping the input data to columns of a table. These
instructions are written in SQL*Loader DDL.

The following are some of the items that are specified in the SQL*Loader control file:
o Specifications for loading logical records into tables

Field condition specifications

Column and field specifications

Data-field position specifications

Data type specifications

Bind array size specifications

Specifications for setting columns to null or zero

Specifications for loading all-blank fields

Specifications for trimming blanks and tabs

Specifications to preserve white space

Specifications for applying SQL operators to fields

000000000 O

A single DDL statement comprises one or more keywords and the arguments and
options that modify that keyword' s functionality. The following example from a control
file contains several statements specifying how SQL*Loader is to load the data from
an input data file into a table in an Oracle database:

-130 -



Parallel Execution in Oracle Peter Xu, 12288624

LOAD DATA
INFI LE' exanpl e. dat"’
INTO TABLE e np

(e mpno POSI TI ON(01: 04) | NTEGER EXTERNAL,
enane POSI TI ON(06: 15)  CHAR,
job POSI TI ON(17: 25)  CHAR,
myr POSI TI ON(27: 30) | NTEGER EXTERNAL,
sal POSI TI ON(32: 39)  DECI MAL E XTERNAL,

comm POSI TI ON(41: 48) DECI MAL E XTERNAL,

This example shows the keywords LOAD DATA, INFILE, INTO TABLE, and
POSITION.

Due to the limitations of utilities available to students, this SQL*Loader was
unavailable for this experiment.

8.3 PARALLEL RECOVERY
Parallel recovery

Parallel recovery can speed up both instance recovery and media recovery. Multiple
parallel dslave processes are used to perform recovery operations in parallel
recovery. The SMON background process reds the redo logfiles, and the parallel
slave processes apply the changes to the data files. Parallel recovery is most useful
when several data files on different disks are being recovered.

Recovery requires that the changes be applied to the data files in exactly the same
order in which they occurred.

The RECOVERY_PARALLELISM initialisation parameter controls the degree of
parallelism to use for recovery.

The parallel clause can be used with the RECOVER command to parallelise media
recovery. It is used to specify the degree or the number of parallel slave processes
that will be used. The parallel clause can be used with the recover database, recover
tablespace and recover data file commands.

Some examples are:

Recover database parallel (degree d instances default);

Recover tablespace tablespace _name parallel (degree d instances 1)
Recover datafile ‘datafile_name’ parallel (degree d);

Recover database parallel (degree default);

The default for degree takes a value equal to twice the number of datafiles being
recovered. The default for instances takes the instance-level default vaule specified
by the initialisation parameter PARALLEL_DEFAULT_MAX_INSTANCES.

If this was to be done in serial, this command can be used:

Recover database noparallel;

During time of experiment, it was unable to execute the recover command thus it was
unable to proceed with this experiement.

-131-



Parallel Execution in Oracle Peter Xu, 12288624

8.4 PARALLEL REPLICATION

Parallel Replication

Replication of data is for the purpose of keeping an extra copy of data somewhere
just in case there is a need say for security reasons. Oracle provides replication
mechanisms allowing the user to maintain copies of the database objects in multiple
databases. If there were changes to these tables, the changes would be propagated
among these databases over database links. The snapshot (SNP backgroup
processes perform the replication process. Parallel propagation can be used to
enhance throughput for large volumes of replicated data.

Oracle propagates replicated transactions one at a time in the order in which they are
committed in the source database if was performed serially. When parallel
propagation for a database link is enabled, Oracle uses multiple parallel slave
processes to replicate to the corresponding destination.

The built-in package DBMS_DEFER_SYS is used if parallel replication propagation
from the SQL*Plus command line is to be used. The
DBMS_DEGER_SYS.SCHEDULE_PUSH is then required to be executed. This is the
procedure for the destination database link. The desired degree of parallelism is
passed as the value for the parallelism argument.

Below is an example of setting the degree of parallelism for replication propagation
using the dBMS_DEFER_SYS. SCHEDULE_PUSH procedure.

SQ@>e xecuted brs_def er_sys. schedul e_push ( -
> destination=>" finprod.world, -

> interval= >' SYSDATE+1l/24'-

> NEXT_DATE =>' SYSDATE +1/24', -

PARALLELI SM=>6);

Due to Oracle access, the doms_defer_sys.schedule_push was not available thus it
was not possible to experiment with this feature.

-132 -



Parallel Execution in Oracle Peter Xu, 12288624

CHAPTER 9 — CONCLUSION

Although the project was undertaken with some difficulties, it was seen that the
majority of the tasks were completed. It was somewhat disappointing not be able to
see the timing of each query so that each of the serial and parallel versions can be
compared. However, it was possible to see how they differ using the explain plan and
the v$pqg_tgstat table stored by ORACLE. Through the explain plan feature, it was
possible to see how many operations were undertaken and in which order by each of
the queries while the v$pq_tgstat table allows the viewing of the number of
processes used in the parallel execution.

Many different methods of performing the same task was learnt thus this project,
although was trial and error; it gave me a hands on feeling of ORACLE.

It was more to do with familiarisation and learning about ORACLE’s implementation
of parallelism and how it works. Through the seeming less experiments, it was
gathered that parallelism should be used for larger sized databases where using
serial execution is not feasible because of the time taken to run one query. Using
parallelism usually improves the speed but at times will reduce the response time
because it is using more than one process and it can be the fact that the tables are
far too small for parallelism to perform.

Some parts of the experiments were unable to complete to the end because of the
availability of the utilities for ORACLE such as the loader utilities. It runs separate
from SQL*plus and because of this, it was impossible to complete that part. Other
parts such as getting the timing to work and getting the parallel loading or recovery
was also unsuccessful because the service was not available for experimentation.

Most work was put into the experimentation of ways in which parallelism can be used
in SQL. Both DML and DDL can be executed in parallel and thus it proves to be a
very useful tool when known how to use it.

-133 -



Parallel Execution in Oracle Peter Xu, 12288624

REFERENCES

P 0N PR

Oracle Manual via Internet
BUS5071 — Database Systems and Data Management Lecture notes
BUS4410 — Advanced Programming for Database Applications Lecture notes

Niemiec, Richard J., Oracle performance tuning tips & techniques / Rich

Niemiec., Berkeley : Osborne/McGraw-Hill, c1999.

Michael J. Corey ... [et al.]., Oracle8 tuning, Berkeley : Osbourne McGraw-
Hill, c1998.

-134-



