ORACLES

School of Business Systems

Bus4580 and Bus4590

ORACLE DBA 1 & 2

Yu Ting Hu (Ilvy)(12237043)

Master of Business System

Semester 1, 2002

Supervisor: Dr. David Taniar

ORACLE ppa 1asks

Acknowledgement

| would like to thank Dr. David Taniar for his helpful and insightful comments during

the development of this project.

Yu Ting Hu

SQLand PL/SQL -1

ORACLE ppa 1asks

SQL and PL/SQL - 2

ORACLE ppa 1asks

CHAPTER 1 INTRODUCTION

Database management systems are changing and growing more complex with each
new version and release. As companies grow, the database also expands and more
problems tend to occur. It is the Database Administrator's (DBA) main duty to ensure
the database is operated in an optimal state.

The DBA can be responsible for many different components of the database
environment. The key responsibilities are performance tuning, database security, and
backup and recovery. This includes supporting and organizing the database engine,
its physical layout, and data security. Other tasks include installing the database
binaries (program files), preparing and testing a backup scenario, and performing
imports and exports of data. The DBA tasks may also include the installation of
Oracle’s networking and Web components, and installing Oracle front-end tools—
such as Oracle Developer Forms—on client machines.

This project was intended for a self-study documentation to simulate the tasks
performed by an ORACLE DBA. All the areas covered in the project were
experimented and simulated with examples. The modules covered in this
documentation include:

» CHAPTER 2: SQL and PL/SQL

In this module, most of the essential SQL statements and PL/SQL a DBA needs
for monitoring and maintaining an ORACLE database are explored. Areas
covered include:

Basic SQL statement

SQL functions

Multiple table queries

Subqueries

DML statement

Transaction control

Views

Sequences

PL/SQL

PL/SQL program units (procedures, functions, triggers, and packages)

VVVVVVVVVYY

= CHAPTER 3: Database Architecture and Administration

Software installation

Administrator Authentication Method
Managing an Oracle instance
Create a Database

Maintaining control files

Maintaining redo log files

Managing tablespaces and data files
Managing rollback segments
Managing tables

Managing indexs

Managing users

Managing privileges

Managing roles

Managing profiles

VVYVVVVVVVVVVVYYVYY

SQL and PL/SQL - 3

ORACLE ppa 1asks

» CHAPTER 4: Performance Tuning

SQL tuning

Tuning the share pool

Tuning the database buffer cache
Tuning the redo log buffer

Tuning sort operation

Tuning rollback segments

VVVVYY

Throughout this project, all the examples used are based on the following tables. All
the scripts to create the tables are included in the Appendix A. and Appendix B.

Customers Table

| CID | CNAME B CADD | CPCODE | CPHONE
50001 ColesMyer 123 Clayton road 3600 96782415
50002 Samsung 41 d enhuntly road 3112 95712800
50003 Hilton 38 Mcrmaster court 3897 97580322
50004 Evian 1 Flinder street 3112 96508016
50005 Monash 3500 Lancell road 5038 98133049

Employees Table

EID | EFNAVE | ELNAME | EDOB ~ EADD ' EPHONE | EPCODE | DI D |

520 [Jim Peterson | 02- NOV-78 | 13/ 78 King | 94037878 1352 101
Street

521 Clair Manson 30- MAR-74 | 2/ 8 Park | 97750322 2012 101
Street

522 Todd Smth 17- APR-76 | 11 Kew | 94219660 1352 103
Street

523 Rebecca | Gwnen 20-JAN-75 | 16/ 2 Melrose | 93315716 1032 102
pl ace

524 Mar een Joans 13- APR-79 | 133/ 6 97305643 1033 101
Geniris
r oad

525 MIler Chang 03-JUL-71 | 23/40 Water | 97784106 2012 Nul |
street

Orders Table
ORDERI D \7CRD_DATEJ7CI D J,l TEM D J}RD_QTY JiDELVER_DATEjiEI D

3331 13- APR-02 | 50005 90003 10 20- APR- 02 521
3332 14- APR-02 | 50001 90006 47 20- APR- 02 520
3333 15- APR-02 | 50003 90001 5 22- APR- 02 520
3334 16- APR-02 | 50002 90003 15 22- APR- 02 524
3335 16- APR-02 | 50004 90002 10 22- JUN- 02 524
Items Table

| TEM D | | TEMDESC | PRI CE | QOH |
90001 HI TACHI nonitor 17inch 900 50
90002 HI TACH nonitor 19i nch 1500 12
90003 Sony 56k nodem 90 68
90004 M crosoft keyboard 40 87
90005 Sony 52x CDROM drive 120 94
90006 TDK flopy disc x 12 8 112
Departments Table

101 Sal es

102 Account i ng

103 Mar ket i ng

SQL and PL/SQL - 4

ORACLE ppa 1asks

SQL and PL/SQL - 5

ORACLE ppa 1asks

CHAPTER2 SQL and PL/SQL

1. SELECT STATEMENT

The SELECT statement is the most commonly used statement in SQL. It is normally
used to retrieve information that is already stored in the database.

The basic syntax (Ault, 2001)

SELECT [DI STINCT] {*,colum [alias],....}
FROM t abl e;

1.1 Select all columns / all rows

Using asterisk (*) to indicate all columns and all rows in the SELECT statement.

SQL> SELECT * FROM CUSTOMERS

Cl D CNAME CADD CPCODE CPHONE
50001 Col esMyer 123 C ayton road 3600 96782415
50002 Samsung 41 d enhuntly road 3112 95712800
50003 Hil ton 38 Mcmaster court 3897 97580322
50004 Evi an 1 Flinder street 3112 96508016
50005 Mbnash 3500 Lancell road 5038 98133049

5 rows sel ected

1.2 Select specific columns

Specifying the particular columns of information for retrieval in the SELECT
statement.

SQ.> select cid, cnane
2 from custoners;

50001 Col eswyer
50002 Samsung
50003 Hilton
50004 Evi an
50005 Monash

5 rows sel ected

1.3 Limiting Rows

A WHERE clause is used to limit the number of rows processed. Condition(s) need to
be specified within the clause.

SQL and PL/SQL - 6

ORACLE ppa 1asks

For example, display order(s) that is processed by employee id 520.

SQL>s electo rderid,o rd_date,c id
2 fromorders
3 where eid = 520;

ORDERID O RD_DATE CI D
33321 4-APR-02 50001
3333 15- APR-02 50003

2r owss el ected.

The following operators can also be included in the WHERE clause to limit the
number of rows selected.

= BETWEEN operator

For example, display information of the order(s) that items will be delivered between
18-APR-02 and 21-APR-02.

SQL>s electo rderid,c id, itemd, ord_qty
2 fromorders
3 whered el ver _date BETWEEN ' 18- APR-02' and

4 '21-APR-02';

ORDERID CID | TEM D ORD_QTY
3331 50005 90003 10
3332 50001 90006 47

= [N operator

The following example uses IN operator to display employee information who belong
to the sales department (101).

SQL>s electe id, efnanme, elnane, eadd,e pcode,d id
2 from enpl oyees
3 whered id in (101);

Enpl oyee First Last POST Dept
I d Name Name Addr ess CODE I D

520 Jim Petersonl 3/78 KingStreet 1352 101

521 Clair Manson 2/8ParkS treet 2012 1 01

524 Mar een Joans 133/6 Gl eniris road 1033 1 01

= |IKE operator

The following example demonstrates using LIKE operator to retrieve customer
information that company name contains ‘am’.

SQL>s electc id, cnane
2 from customes
3 wherec nane LIKE '%ants ;

CID C NAME

50002 S amsung

SQL and PL/SQL - 7

ORACLE ppa 1asks

1.4 Sorting Rows

The SELECT statement may include the ORDER BY clause to sort the resulting rows
in a specific order based on data in the columns. The rows can be returned in the
ascending order of the columns specified or descending order.

For example, display the details of employees who belong to department 101, order
by the employee id.

SQL> sel ect eid, efname, elnane, eadd ephone, did
2 from enpl oyees
3 where did = 101
4 order by eid;

El D EFNAME ELNAME EPHONE DI D
520 Jim Pet er son 13/ 78 King Street 101
521 Clair Manson 2/8 Park Street 101
524 Mar een Joans 133/6 Aeniris road 101

3 rows sel ected.

1.5 Arithmetic Expressions

Arithmetic expressions are used to modify the data the way it is displayed, perform
calculations and to also look at the what-if scenarios. (Ault, 2001)

For example, use multiplication operator to display the total price for item 90003
when 12 of which is purchased.

SQL> select item d, itendesc, price * 12
2 fromitens
3 where itenm d = 90003;

| TEM D | TEMDESC PRI CE*12

90003 sony 56k nodem 1080

1 row sel ect ed.

1.6 Column Alias

When displaying the result of a query, SQL*PLUS normally uses the selected column
name as the heading. In some cases, it might occur to be meaningless or hard to
understand for the users. Column Alias is therefore used to change the column
headings to make the information more understandable. This is done by including the
AS key word before the alias name. If the alias contains space or special characters,
it is enclosed in double quotation mark (“ “). (Ault, 2001)

Example: use the above example and display the headings with proper names.

SQL and PL/SQL - 8

ORACLE ppa 1asks

SQL> select itemd as "Item|ld", itendesc as "ltem Description", price * 12
as "Total price"

2 fromitens

3 where item d = 90003;

Item|ld Item Description Total price

90003 sony 56k nodem 1080

1 row sel ect ed.

1.7 Concatenation Operator

The concatenation operator is used to join two character strings, which produces
another character string. Two vertical bars (||) are used as the concatenation
operator.

For example, display employee’s first name and last name together with the heading
‘Employee Name’.

SQL> sel ect efnane||elnane As "Enpl oyee Nanme"
2 from enpl oyees;

Enpl oyee Nane
Ji mPet er son
Cl ai r Manson
ToddSnith
RebeccaGwen
Mar eenJoans
M | | er Chang

6 rows sel ected.

1.8 Duplicate Rows

The DISTINCT keyword followed by the SELECT keyword eliminates duplicate rows.
This ensures that the resulting rows are unique.

Example: display all department id in the employees table.

SQL> select did from enpl oyees;

102

6 rows sel ected.

SQL and PL/SQL - 9

ORACLE ppa 1asks

In order to eliminate the duplicate rows in the result, using the DISTINCT keyword in
the SELECT statement.

SQL> select distinct did from enpl oyees;

3 rows sel ected.

As the result shown, only the unique department id is displayed.

SQL and PL/SQL - 10

ORACLE ppa 1asks

2. CREATING/FORMATING A REPORT

In order to produce a more presentable and readable report, various issues need to
be considered and defined; for example, the width of the columns, proper headings
and data formatting.

Example: produce an employee report. The following select statement is used to
retrieve all the employee information.

| SQL> select * from enpl oyees; |

El D EFNAMVE ELNAVE EDOB EADD
EPHONE EPCCDE DI D
520 Jim Pet er son 02- NOV-78 13/ 78 King Street
94037878 1352 101
521 Clair Manson 30-MAR-74 2/8 Park Street
97750322 2012 101
522 Todd Smth 17- APR-76 11 Kew Street
94219660 1352 103
El D EFNAMVE ELNAVE EDOB EADD
EPHONE EPCCDE DI D
523 Rebecca Gnen 20-JAN-75 16/ 2 Mel rose place
93315716 1032 102
524 Mareen Joans 13- APR-79 133/6 deniris road
97305643 1033 101
525 Ml ler Chang 03-JUL-71 23/40 Water street
97784106 2012 102
6 rows sel ected.

It is apparent that this report is not very appealing to its intended reader. This is
because it does not have any proper headings and settings to present all the
columns in the same row. The presentation of this report can be improved through
modification of the page size and column width.

2.1 Adjust page size

We need to adjust settings of page size and line size in order to place every column
in one single row.

To find out the values of current settings, use SHOW command.

SQ.> SHOW PACESI ZE LI NE;
pagesi ze 14
linesize 80

To change the values of current settings, use SET command.

SQL and PL/SQL - 11

ORACLE ppa 1asks

| SQL> SET PAGES 55 LI NES 90;

2.2 Column command

The COLUMN command is used to format the heading and data. The basic syntax is:
(Ault, 2001)

[cOL[UMN] [{col um]|alias} [option ...]] [

SQL> COLUWN ei d HEADI NG " Enpl oyee| | d* FORMAT 999

SQL> COLUMWMN ef name HEADI NG "Fi rst| Name" FORMAT A8

SQL> COLUWN el name HEADI NG "Last | Nane" FORMAT A8

SQ.> COLUWN edob HEADI NG " Date| of Birth"

SQL> COLUWMN eadd HEADI NG " Addr ess"

SQL> COLUWMN ephone HEADI NG " Phone| Nunber" FORMAT 99999999
SQL> COLUMN EPCODE HEADI NG " POST| CODE" FORMAT 9999

SQL> COLUWN di d HEADI NG "Dept| | D' FORMAT 999;

2.3 Title command

The TITLE command is used to display additional report heading.

SQL> TTI TLE CENTER "Enpl oyee I nformation" SKIP 2;

2.4 The Report

SQL> select * from enpl oyees;

Enpl oyee | nformation
Enpl oyee First Last Dat e Phone POST Dept
I'd Name Nane of Birth Address Number CODE ID
520 Jim Pet erson 02-NOv-78 13/78 King Street 94037878 1352 101
521 Cair Manson 30-MAR-74 2/8 Park Street 97750322 2012 101
522 Todd Smith 17-APR-76 11 Kew Street 94219660 1352 103
523 Rebecca Owen 20-JAN-75 16/ 2 Melrose place 93315716 1032 102
524 Mareen Joans 13-APR-79 133/6 G eniris road 97305643 1033 101
525 Ml ler Chang 03-JUL-71 23/40 Water street 97784106 2012 102
6 rows sel ected.

SQL and PL/SQL - 12

ORACLE ppa 1asks

3. ACCEPTING VALUES AT RUN TIME

3.1 Substitution Variable

An interactive SQL command allows the user to supply values at runtime. An
ampersand (&) is used in the statement to identify the variable. This function further
enhances the ability to reuse the SQL script.

Example:
The following statement is created to prompt the user for a department id at run time,

and to create a report that contains employee id, employee name, address and
phone number based on the department id entered.

SQL>s elect eid,e fnane,e In ame, e add, e phone
2 from enpl oyees
3 whered id= &Departnment_|Id;

Enterv aluef or department _id: 101
old 3: wheredi d=& Departnent_Id
new 3: wheredi d=1 01

EID E FNAME ELNAVE EADD EPHONE
5203 im Pete rson 13/ 78 King Str eet 94037878
521 Clair Mans on 2/8ParksSt reet 97750322
524 M ar een Joans 133/6 G leniri sr oad 97305643

The following statement prompts the user for a delivery date at run time in order to
create a report containing order details based on the delivery date specified.

SQL>Selecto rderid,i temid,o rd_qty
2 fromorders
3 whered elver_date= '&Deliver_date';

Enterv alu ef or deliver_date: 20-apr-02

old 3. wherede |lver_date="' &Deli ver_date'
new 3: wherede |ver_date="' 20-apr-02'
ORDERID ITEM D ORD_QTY
3331 90003 10
3332 90006 47

The substitution variables can also be used on the column names and expressions.
In the following example, display the order Id and any other column(s) with any run
time specified conditions.

SQL>s electo rderid, &colum_nane

2 fromorders
3 where &condition;

SQL and PL/SQL - 13

ORACLE ppa 1asks

In order to look for orders processed by employee ‘524’, the following values are
entered at run time.

Enter value for colum_nane: itemd, ord_qty
old 1: select orderid, &columm_nane

new 1: select orderid, itemd, ord_qty
Enter value for condition: eid = 524

old 3. where &condition

new 3. where eid = 524

ORDERI D | TEM D ORD_QTY
3334 90003 15
3335 90002 10

3.2 Define User Variables

Variables can be predefined using DEFINE and ACCEPT commands.

= DEFINE command

Example: Using the DEFINE command to provide a value to the variable
‘Department_id'.

SQL> DEFI NE Departrment_id = 101

This method allows the user to avoid the prompt for the value at run time. Wherever
the variable occurs, it will be substitute with the predefined value.

SQL> select eid, efnanme, elnanme, eadd, ephone
2 from enpl oyees
3 where did = &Departnment _Id;

old 3: where did = &Departnent _Id

new 3: where did = 101

El D EFNAME ELNAME EADD EPHONE
520 Jim Pet er son 13/ 78 King Street 94037878
521 Clair Manson 2/8 Park Street 97750322
524 Mar een Joans 133/6 Aeniris road 97305643

= UNDEFINE command

A variable remains defined until the user exits SQL*PLUS. However, it can be
cleared during the session using UNDEFINE command.

SQL> DEFI NE department_id
DEFI NE DEPARTMENT_I D = "101" (CHAR

SQL> UNDEFI NE departnent _id |

Use the DEFINE command to confirm the undefined variable.

SQL> DEFI NE department_id
SP2-0135: symbol department _id i s UNDEFI NED

SQL and PL/SQL - 14

ORACLE ppa 1asks

= ACCEPT and PROMPT command

ACCEPT command is used to create a customized prompt during run time when
accepting input from the user. PROMPT command is used to display text to the user.
In order to demonstrate the use of the commands, a sql script ‘accept.sql’ is created.

accept.sgl script

PROVMPT T hi sq ueryd isplayst heCust onerde tailsf or
PROVMPT t he c ustomery ousu pply
PROWT = ===========—=—=—=—=—=—=—=—=—==—=—=—=—=—=—=—===—==============

ACCEPT cu st omer PROVPT'P | easep rovidet he custonmer nane:'
selectc id,c name c add, cphone

fromcusto ners
where c name =' &custoner’;

To run the script, enter the following command.

SQL> @ accept. sql |

The screen then displays like the following and prompt the user to enter customer
name with the customized message.

Thisq ueryd isplayst heCustomerde tails for
thec ustomery ou supply

Pl easep rovideth ec ustomern anme: Hilton

Once the user inputs the customer name, SQL*PLUS will display the following
information.

old 3:w herec nane =' &custo ner'
new 3: wherecn ane="' Hilton'
CID C NAME CADD CPHONE
50003 Hilton 38 Mcrmaster court 97580322

3.3 Passing Values Into a Script File

When the substitution variables are used in a script file, the substitution variable
values can be submited when invoking the script. The values are assigned to the
variables according to its position.

For example, order.sql is created to produce order reports by item id and order date.

order.sql script

select* fromorders
wherei temd= &l
andord_date= "'&2';

Execute the file by passing values in the command line. The first value after the
script file name is substituted for &1 and the second value is substituted for &2.

SQL and PL/SQL - 15

ORACLE ppa 1asks

SQL>s tarto rder. sql 90003 13-apr-02

The SQL*PLUS then displays the following report without prompting the user to input

values.
old 2: whereit emd=&1
new 2: whereit emd=90 003
old 3: andord_date="& 2'
new 3:a ndord_date ="' 13-apr-02'
ORDERID O RD_DATE (@]b) | TEM D CRD_QTY DELVER_DA EID
33311 3-APR-02 50005 90003 10 20- APR-02 521

SQL and PL/SQL - 16

ORACLE ppa 1asks

4, SQL FUNCTIONS

4.1 Single Row Functions

= Single-Row Character Functions

CONCAT

This function concatenates two strings, which serves the same function as the
operator ||. For example, display employee’s first and last name together as
EmployeeName.

SQL> sel ect concat (ef name, el name) Enpl oyeeNane f r om enpl oyees;

EMPLOYEENAVE
Ji nPet erson
Cl ai r Manson
ToddSni t h
RebeccaGwen
Mar eenJoans
M | | er Chang

LENGTH

This function returns the numeric length of the character specified. For example,
display the length of the item description of item ‘90003’.

SQL>s el ect LENGTH(itendesc)
2 fromitens
3 wherei temd=' 90003';

LENGTH(| TEMDESC)

LOWER

This function returns character strings in lowercase. In the example, the LOWER
function returns the customer’s name in lower case even though they were stored in
the database with the first letter being capital.

SQL>s electc id, LOAER(cnane) Cu stoner
2 from customers;

CID C USTOMER
50001 c ol esmyer
50002 s amsung
50003 hilton
50004 e vi an
50005 monash

SUBSTR

This function returns certain portion of a character. The portion of the character is
specified using integers. In the example, the SUBSTR function returns a portion of

SQL and PL/SQL - 17

ORACLE ppa 1asks

the item description for item 90003, which is 4 characters long and begins at the first
position.

SQL>s el ect SUBSTR(itendesc, 1, 4)
2 fromitens
3 wherei temd="' 90003';

SUBS

sony

REPLACE

This function performs sub string search and replace it. For example, modify the
brand for item ‘90002’ from ‘Hitachi’ to ‘Mitsubishi’.

SQL>Select REPLACE(itendesc,' H TACH',' MT SUBI SHI ")
2 fromitens
3 wherei temd=' 90002';

REPLACE(IT EMDESC, ' H TACHI' ,' M TSUBI SHI ')

M TSUBI SHImonitor1 9i nch

UPPER

This function returns the character strings in upper case. In the example, the UPPER
function returns department name in the form of capital letters even though they are
stored in lower case within the database.

SQL>s electd id, UPPER(depart_nane)
2 from departments;

Dept
| D UPPER(DEPA
101 S ALES
102 A CCOWNTI NG
103 MARKETI NG

= Single-Row Numeric Functions

The single-row numeric functions are used to manipulate numeric data and return
numeric values.

ABS
This function returns the absolute value of the number specified. For example,

SQL>s el ect ABS(-456) F ROM dual ;

ABS(- 456)

SQL and PL/SQL - 18

ORACLE ppa 1asks

ROUND

SQL> SELECT ROUND(78.631, 2), ROUND(78.631, 0),
2 ROUND(78.631, -1)
3 FROM DUAL;

ROUND(78. 631, 2) ROUND(78. 631, 0) ROUND(78. 631, - 1)

TRUNC

SQL> SELECT TRUNC(78.631,2), TRUNC(78.631,0),
2 TRUNC(78. 631, -1)
3 FROM DUAL;

TRUNC(78. 631, 2) TRUNC(78.631,0) TRUNC(78.631, - 1)

POWER

SQL> sel ect POAER(3, 8) FROM DUAL;

POVNER(3, 8)

= Single-Row Date Functions

Single-row date functions are used to operate on date datatypes. It usually returns a
date value.

ADD_MONTHS

This function adds or minuses a number of months to / from a date.

SQL> select orderid, delver_date, Add_nonths(delver_date, 6) plus6énon,
add_nont hs(del ver _date, -3) m
nus3mon

2 from orders;

ORDERI D DELVER_DA PLUS6MON M NUS3MON

3331 20-APR-02 20-OCT-02 20-JAN-02
3332 20-APR-02 20-OCT-02 20-JAN-02
3333 22-APR-02 22-0OCT-02 22-JAN-02
3334 22-APR-02 22-0OCT-02 22-JAN-02

MONTHS_BETWEEN

This function returns the number of month(s) between two dates specified. For
example, display the number of months between the order date of order ‘3335’ and
the date it was delivered.

SQL and PL/SQL - 19

ORACLE ppa 1asks

SQL> S ELECT MONTHS_BETWEEN(del ver _date, o rd _dat e)
2 fromorders
3 whereo rderi d="' 3335';

MONTHS_BETWEEN(DELVER_DATE, ORD_DATE)

| 2.19354839

NEXT_ DAY

The function returns the next day following the date specified. For example, display
the date 2 weeks after the next Wednesday of the ordering date for order number
‘3331

SQL>s el ect NEXT_DAY(ord_date,' Wednesday')+14Delivery
2 fromorders
3 whereo rderi d="' 3331';

DELI VERY

01- MAY-02

LAST DAY

This function returns the last day of the month of the specified date. In the example,
the LAST_DAY function returns the last day of the month of the delivery date for
order ‘3333".

SQL>s electd elver_date, LAST_DAY(del ver_date)LastDayf rom orders
2 whereo rderi d=" 3333';

DELVER DA LASTDAY

22- APR- 02 3 0- APR-02

ROUND
This function is used to round date or time.

Example 1: Round the month of the date specified.

SQL>s electo rd_date, ROUND(ord_date,' MONTH)r ound_month
2 fromorders
3 whereo rderi d=" 3333';

ORD_DATE R OUND_MON

15- APR-02 01- APR-02

Example 2: Round the year of the date specified.

SQL>s electo rd_date, ROUND(ord_date,' YEAR)r ound_year
2 fromorders
3 whereo rderi d=" 3333';

ORD_DATE R OUND_YEA

15- APR-02 01-JAN-02

SQL and PL/SQL - 20

ORACLE ppa 1asks

TRUNC
This function truncates a given date/time.

Example 1: Truncate the month of the given date.

SQL>s electo rd_date, TRUNC(ord_date,' MONTH)r ound_month
2 fromorders
3 whereo rderi d=" 3333';

ORD_DATE R OUND_MON

15- APR-02 01- APR-02

Example 2: Truncate the year of the given date.

SQL>s electo rd_date, TRUNC(ord_date,' YEAR)r ound_year
2 fromorders
3 whereo rderi d="' 3333';

ORD_DATE R OUND_YEA

15- APR-02 01- JAN- 02

SYSDATE
This function returns the current date.

SQL.>s el ectS YSDATE f rom dual ;

SYSDATE

05- MAY- 02

= Single-Row Conversion Functions

TO_CHAR

This function converts and formats a date or numbers into character string.

> TO_CHAR FUNCTION WITH DATE

In the example, the TO_CHAR function converts the employees’ birthday from its
default format (‘dd/mm/yyyy’) to (‘dd Month yyyy’).

SQL>SELECTefname||'" ||elnaneas "Enployees",
2 TO_CHAR(edob, 'fnDD MonthY YYY')B irthday
3 FROM enpl oyees;

Enpl oyees Bl RTHDAY

Ji m Pet ers on 2 November1l 978
Cl ai r M anson 30 March 1 974
Todd S mi th 17 Aprill 976
Rebecca Gwen 20J anuary 1 975
Mar een J oans 13 Aprill 979
M1l erC hang 3July 1971

SQL and PL/SQL - 21

ORACLE ppa 1asks

» TO_DATE FUNCTION WITH NUMBERS

In the example, the TO_CHAR function converts the item price and displays it with a
floating dollar sign $.

SQL>s electi temid, TO CHAR(price,' $99,999')P rice
2 fromitens;

| TEMD P RI CE
90001 $900
90002 $1,5 00
90003 $90
90004 $40
90005 $120
90006 $8

> TO_DATE

This function is used to convert a character string to a specified date format.

For example, display all the orders that will be delivered on April 22, 2002. Even
though this is not the default format, it can still be converted by specifying the format
style.

SQL>SELECTorderid,d elver_date
2 FROM orders
3 VWHERE del ver _date =
4 TO DATE(' April2 2,20 02','Monthdd, YYYY');

ORDERID D ELVER DA

33332 2-APR-02
33342 2- APR-02

4.2 Group Functions

Group functions operate on sets of rows, which might be the whole table, or the table
split into groups. The functions return a value based on a number of inputs. The
exact number of inputs is not determined until the query is executed and all rows are
fetched. This differs from single row functions, in which the number of inputs is
known at parse time before the query is executed. (Morison and Morison, 2000)

Types of Group Functions
The types of group functions include:

* AVG

e COUNT

* MAX

* MIN

« STDDEV

* SUM

* VARIANCE

In this example, the query retrieves information about the average, highest, lowest
and the sum of total amount for every order.

SQL and PL/SQL - 22

ORACLE ppa 1asks

SQL>s el ect AVGord_qty*price) AvgTotal, MAX(ord_qty*price) MaxTotal,
2 MN(ord_qty*price) MnTotal, SUMord_qty*price) Sunilotal
3 fromorders, itens

| 4 whereo rders.itenmid =i tens.it emd; |

AVGTOTAL MAXTOTAL MINTOTAL SUMTOT AL

MIN and MAX can also operate on the character datatype. In the following example,
MIN function returns employee’s last name that is the first in an alphabetised list of all
employees. MAX function returns employee’s last name that is the last in the
alphabetised list.

SQL>s el ect M N(el nane), MAX(el nane)
2 from enpl oyees;

M N(ELNAMB MAX(ELNAMB)

This example displays the number of orders processed by employee ‘524’ using the
COUNT function.
SQL>s el ect count (*)

2 from orders
3 wheree id= '524';

COUNT(*)

The following example using STDDEV function to return the statistical standard
deviation and VARIANCE function to return the statistical variance.

SQL>s el ect S TDDEV(cpcode), VARI ANCKH cpcode)
2 from customers;

STDDEV(CPCODE) VARI ANCE(CPCODE)

793. 272463 629281. 2

= GROUP BY Clause

Example 1: display the total number of the orders handled by the employees using
GROUP BY clause.
SQL>s electe id, count(*)

2 from orders
3 GROUP BY eid;

EID COUNT(*)

Example 2: This is an example of illegal query. Without the GROUP BY clause, an
error message would occur.

SQL and PL/SQL - 23

SQL> select eid, count(*)
2 from orders;
sel ect eid, count(*)
*

ERROR at line 1:
ORA- 00937: not a single-group group function

ORACLE ppa 1asks

Example 3: This is an example of groups within groups where it queries information
regarding the number of orders made for each customer handled by the employee.

SQL> select eid, cid, count(*)
2 fromorders
3 GROUP BY eid, cid;

EI D CID COUNT(*)
520 50001 1
520 50003 1
521 50005 1
524 50002 1
524 50004 1

= HAVING Clause

The main function of HAVING clause is to limit grouped data to be displayed. Itis
normally used when rows are restricted based on the result of a group function.

Example 1: display the employees’ id that handled more than $2000 worth of orders.

SQL> select eid

fromorders, itens

where orders.itemd = itens.itemd
group by eid

HAVI NG SUM ord_qty*price) > 2000;

abwnN

Example 2: The following is an illegal query. When using a group function to limit the
output without the having clause, an error message occurs.

SQL> select eid
2 fromorders, itens
3 where orders.itenmid = itens.item d and
4 SUMord_qty*price) > 2000
5 group by eid;
SUMord_qty*price) > 2000

ERROR at |ine 4:
ORA-00934: group function is not allowed here

SQL and PL/SQL - 24

ORACLE ppa 1asks

5. MULTIPLE TABLE QUERIES

5.1 Equality Joins

An equality join, also known as an inner join or an equijoin, uses an equality operator
(=) to link two different tables.

SQL>Selecto rderid,o rders.cid,cn ame AS "Custoners", (ord_qty*price) as
"Total "

2 fromorders,c ustomes,i tems

3 whereorders.itemd =i tens.i tem d and

4 orders.cid =c ustoners.cid;

ORDERID Cl D Cust oners Tot al
3331 50005 Monash 900
3332 50001 Cole sWyer 376
3333 50003 Hilt on 4500
3334 50002 S amsung 1350
3335 50004 Evia n 15000

5.2 Non-Equality Joins

The difference between Equality joins and non-equality joins is that the non-equality
joins are joining tables with no columns correspond to each other. The relationship
can be established using the BETWEEN key word.

For example, the following is performance table, which evaluates employees’ sales
performance. However, this table has no relationship with any other tables. In order
to evaluate the sales rating for employee ‘521’', BETWEEN keyword is used to link
the performance table with other tables. To evaluate the performance, the total sale
for employee ‘521’ must fall in one of the pair of the low and high sales range.

Performance Table

Rating | Lowsale | Highsale |
A 12001 20000
B 9001 12000
C 6001 9000
D 3001 6000
E 1001 3000
F 0 1000
SQL>SELECT o . EID,E FNAME ||' '|| ELNAME AS "EMPLOYEES', (ord_qty*price) as
"Total _Sal e",R ating
2 fromenployeese ,o rderso,it ensi , Perfornmance
3 wheree .eid =o.eid andi .itemd=o0. itemd
4 and (ord_qty *price) BETWEEN | owsal e AND hi ghsal e
5 and o.eid= '521';
EID E MPLOYEES Total _SaleR
521 Clair Manson 900 F

SQL and PL/SQL - 25

ORACLE ppa 1asks

5.3 Outer Joins

When a row does not satisfy a join condition, the row will not appear in the query
result. Outer joins operator (+) is therefore used in the join condition to return the
missing row(s). (Ault, 2001)

For example, display all the employees’ id, employee names, and department id and
department name they belong to.

If using normal equality joins, 5 results are returned. It does not return those
employees that have not been assigned a department id.

SQL> select eid, efnanme, elnane, e.did, depart_nanme
2 from enpl oyees e, departnents d
3 where e.did = d.did;

El D EFNAME ELNAME DI D DEPART_NAME
520 Jim Pet erson 101 Sales

521 Clair Manson 101 Sal es

522 Todd Smith 103 Marketing
523 Rebecca Gnen 102 Accounting
524 Mar een Joans 101 Sales

5 rows sel ected.

However, using outer joins return 6 results including employee ‘525’ who do not have
a department id.

SQL> select eid, efnanme, elnane, e.did, depart_nanme
2 from enpl oyees e, departnents d
3 where e.did = d.did (+);

El D EFNAME ELNAME DI D DEPART_NAME
520 Jim Pet erson 101 Sales

521 Clair Manson 101 Sales

522 Todd Smith 103 Marketing
523 Rebecca Gnen 102 Accounting
524 Mar een Joans 101 Sales

525 M ler Chang

6 rows sel ected.

5.4 Set Operators

Set operators can be used to select data from multiple tables. It combines the results
of two queries into one. (Ault, 2001) There are four set operators in Oracle:

* UNION

* UNION ALL

e INTERSECT

¢ MINUS

The following examples use 2 queries to illustrate the set operators. One of the
queries retrieves employees whose order(s) were delivered on 20-APR-02 and the
other returns employees whose order(s) were delivered on 22-APR-02.

SQL and PL/SQL - 26

ORACLE ppa 1asks

When using UNION operator to combine the two queries, only unique values are
returned. There are no repeating values.

SQL>s electO .eid ,e fnanme,e | name
2 fromorders o,e nployeese

3 whereo .eid =e.eid andd elver_date ="' 20- APR-02'
4 UNI ON
5 selectO .eid,e fnanme,e | nane
6 fromorders o,e nployeese
7 whereo .eid =e.eid andd el ver _date ="' 22- APR-02';
EID E FNAME ELNAVE
520J im Pet erson
521 Clair Manson
524 M ar een Joans

3r owss el ected.

When using UNION ALL operator to combine the two queries, all rows from both
queries are returned.

SQL>s electO .eid ,e fnanme,e | name
2 fromorders o,e nployeese

3 whereo.eid=e .eidanddelver_date =' 20-APR-02'
4 UNI ON ALL
5 selectO .eid,e fnane,e | nane
6 fromorders o,e nployeese
7 whereo .eid =e.eid andd elver_date ="' 22-APR-02';
EID E FNAME ELNAVE
521 Clair Manson
5203 im Pete rson
5203 im Pete rson
524 Mar een Joans

4r ows s el ected.

When INTERSECT operator is used, only values of employee(s) who have order(s)
delivered on 20-APR-02 and 22-APR-02 are returned.

SQL>s electO .eid ,e fnanme,e | name
2 fromorders o,e nployeese

3 whereo .eid =e.eid andd el ver_date ="' 20- APR-02'
4 | NTERSECT
5 selectO .eid,e fnanme,e | nanme
6 fromorders o,e nployeese
7 whereo .eid =e.eid andd el ver _date = '22- APR-02';
EID E FNAME ELNAVE
520J im Pete rson

1r owsele cted.

SQL and PL/SQL - 27

ORACLE ppa 1asks

When MINUS operator is used, only values of employee(s) whose order(s) were
delivered on 20-APR-02 but not on 22-APR-02 are returned.

SQL>s electO .eid ,e fnanme,e | name
2 fromorders o,e nployeese

3 whereo .eid =e.eid andd el ver_date ="' 20- APR-02'
4 M NUS
5 selectO .eid,e fnane,e | nane
6 fromorders o,e nployeese
7 whereo .eid =e.eid andd el ver _date ="' 22- APR-02';
EID E FNAME ELNAVE
521 Clair Manson

1r owsele cted.

SQL and PL/SQL - 28

ORACLE ppa 1asks

6. SUBQUERIES

6.1 Single — Row Subqueries

Single-row subquery only returns one row of result and uses the following single-row
operators. (Ault, 2001)

Operator | Meaning \

= Equal to

> Greater than

>= Greater than or equal to
< Less than

<= Less than or equal to
<> Not equal to

Example: display the order(s) that has the highest total and the employee ID who
processes that order. The subquery used in the example is to query the highest price
in total from all the orders. The parent query is then executed with the results
returned from the subquery.

SQ.>s electo rderid,e id
2 fromorders o,i tens i
3 whereo .itemd =i .itenmda nd
4 (ord_qty*pri ce)=(select MAX(ord_qty*price) from
5 orders o, items i where
6 o.itemd =i.itemd);
ORDERID ElI D
3335 524

If the query returns more than one row, an error message would occur.
Example: display order(s) that is delivered after '20/04/2002".

SQ.>s electo rderid,e id

2 fromorders

3 whered el ver _date>

4 (selectd elver_date fromorders

5 whered el ver_date= TO_DATE('2 0/ 04/2002',' DD/MV YYYY'));
(selectd elver_datef rom orders

ERROR at |line4:
ORA-01427:s in gl e-row s ubqueryr eturnsmore thano ne row

6.2 Multiple — Row Subqueries

Multiple — Row subqueries, on the contrary, return one or more rows of results from
the subqueries. The operator(s) can be used in a multiple — row subquery include:
« |IN

¢ ANY
* ALL
« EXIST

SQL and PL/SQL - 29

ORACLE ppa 1asks

From the previous example in single-row subqueries, if there is more than 1 order
delivered after '20/04/2002', the query will fail. But if convert the query into a multiple-
row subquery using IN operator, the results are returned.

SQ.>s electo rderid,e id
2 fromorders
3 whered elver_date IN
4 (selectd elver_date fromorders
5 whered el ver_date= TO_DATE('2 0/ 04/2002',' DD/MV YYYY'));

ORDERID El D
3331 521
3332 520

= ALL operator.

Example: Display all the order(s) that has a total price below the average sale of
every employee.

SQL>s electo rderid,o .itemd,o rd_qty,ei d

fromorders o,i tems i

whereo .itemd=i .it emd

and (ord_qty *price) < ALL (select AVGord_qty*price)
fromorders o, items i
where o.itemd = i.itemd
group by eid);

~NooabhwN

The results returned from the subquery.

SQL>s electA VGord_qty*price)

2 fr omorderso,i tensi
3 whereo .i temd= i.itemd
4 groupby eid;

The parent query compares all its returned values with the subquery values, and
returns the following result.

ORDERID ITEM D ORD_QTY ElID

= ANY operator .

Example: Display all the order(s) that have a total price less than that of the average
total price.

SQL and PL/SQL - 30

ORACLE ppa 1asks

SQL> select orderid, o.itemd, ord_qty

2 fromorders o, itens i
3 where o.itemd =i.itemd
4 and (ord_qty*price) < ANY (select AVG(ord_qty*price)
5 fromorders o, itens i
6 where o.itemd = i.itemd group by o.itemd);
ORDERI D | TEM D ORD_QTY
3331 90003 10
3332 90006 47
3333 90001 5
3334 90003 15

The difference between ANY operator and ALL operator is that the ANY operator is
used to compare values to every value returned by the subquery. As long as the
parent value (ie. Ord_qty*price) satisfies any of the subquery values, the result will
then be returned. On the contrary, the ALL operator is also used to compare every
value returned by the subquery. However, the parent value has to satisfy all the
subquery values. The following uses the previous query but with an ALL operator
instead, the result is different from using ANY operator. No row is returned.

SQL> select orderid, o.itemd, ord_qty
2 fromorders o, itens i
3 where o.itemd =i.itemd
4 and (ord_qgty*price) < ALL(select AVGQ ord_qty*price)
5 fromorders o, itens i
6 where o.itemd = i.itemd group by o.itemd);

no rows selected

SQL and PL/SQL - 31

ORACLE ppa 1asks

DATA MANIPULATION LANGUAGE (DML) STATEMENTS

7.1 INSERT statement

= Insert a New Row to a Table

For example, insert a new row to table orders.
SQL> | NSERT | NTO orders
2 VALUES ('3336,t o_date ('13/05/2002',' dd/ mmyyyy'),' 50002', '90003,
'12',to_date(' 20/05/2002',"' dd/ m
myyyy'), '521');

1r owcreated.

= |nserting Values by using Substitution Variables

Using substitution variables within the INSERT statement allows the user to add
values interactively.

SQL>1 NSERT | NTO orders VA LUES
2 ('3337',s ysdate,' &cid', '&temd', '&qty', &deliverydate', '&eid"');

Once the INSERT statementi s executed,S Q* PLUSwil Ip ronptth e userfo r the
values of the variables: c ustonmeri d,i temd, quantity,d elivery date,
enpl oyee id.

Enterv aluef or cid:5 0003

Enterv alue fori temid:9 0006

Enterv aluef or qty:3 8

Enterv alu ef or deliverydate:2 3-Muy-02

Enterv aluef or eid:5 24

old 2: ('3337', sysdate, '&cid', '&temd , '&qty','&deli verydate',
"&eid')

new 2: ('3337',s ysdate,' 50003,' 90006',' 38", 23-May-02',' 524")

1r owcreated.

Confirm the additional row in the table

SQ.>s elect*f romorders
2 whereo rderi d="' 3337';

ORDERID O RD_DATE ab | TEM D ORD QTY DELVER DA EID

3337 2 1- APR-02 50003 90006 38 23- MAY- 02 524

= Copying Rows from other Table
Rows can be added to a table based on the values in the existing tables. In this case,
the VALUE key word is omitted and a subquery is used.

Example: ORDERPRICE table is created to store prices for each order. It contains
the following columns.

| Name Type
ORDERI D NUVBER(4)
TTEM D NUVBER(5)
ORD_QTY NUVBER(5)
PRI CE NUVBER

SQL and PL/SQL - 32

ORACLE ppa 1asks

Copy the selected rows from the existing orders table and items table to the

ORDERPRICE table.

SQL> | NSERT I NTO orderprice
2 SELECT orderid, o.itemd, ord_qty, (ord_qty*price)
3 fromorders o, itens i
4 where o.itemd = i.itemd;

7 rows created.

Confirm the newly inserted rows in the SALES_DPART table.

SQL> select * from orderprice;

ORDERI D | TEM D ORD_QTY PRI CE
3331 90003 10 900
3332 90006 47 376
3333 90001 5 4500
3334 90003 15 1350
3335 90002 10 15000
3336 90004 12 480
3337 90006 38 304

7 rows sel ected.

7.2 UPDATE statement

= Updating Rows
Example: updating the itemid for order 3336 in orders table.

SQL> UPDATE orders
2 SET itemd = 90004
3 WHERE orderid = 3336;

1 row updated.

Confirm the changes to order 3336.

SQL> select * fromorders
2 where orderid = 3336;

ORDERI D ORD_DATE anb | TEM D ORD_QTY DELVER DA

3336 13- MAY-02 50002 90004 12 20- MAY-02

= Updating All Rows
Example: give a 5 % discount for every order.

SQL> UPDATE orderprice
2 SET price = price * 0.95;

7 rows updat ed.

Confirm the changes on the price.

SQL and PL/SQL - 33

ORACLE ppa 1asks

SQL> select * from orderprice;

ORDERI D | TEM D ORD_QTY PRI CE
3331 90003 10 855
3332 90006 47 357.2
3333 90001 5 4275
3334 90003 15 1282.5 |
3335 90002 10 14250
3336 90004 12 456
3337 90006 38 288.8

7 rows sel ected.

7.3 DELETE statement

= Deleting Rows
Example: delete order 3337 from ORDERPRICE table.

SQL> DELETE FROM orderprice
2 where orderid = 3337,

1 row del et ed.

= Deleting All Rows
Example: eliminate all rows in the ORDERPRICE table.

SQL> DELETE FROM ORDERPRI CE;

7 rows del eted.

Confirm the deletion.

SQL> SELECT * FROM ORDERPRI CE

no rows selected

= Integrity Constraint Error

The integrity constraint error occurs when the table the user tries to delete contains a
primary key that is used as a foreign key in the other table.

Example: delete all rows in the CUSTOMERS table.

SQL> DELETE FROM CUSTOMERS
DELETE FROM CUSTOMERS
ERROR at |ine 1:

ORA-02292: integrity constraint (IVY.ORDERS C D FK) violated - child record
f ound

Because cid in the CUSTOMERS table is referenced in the orders table, the rows
cannot be deleted. In order to delete rows from CUSTOMERS table, the child records
in ORDERS table need to be deleted first. However, if the referential integrity
constraint contains the ON DELETE CASCADE option, then the selected row and its
children are deleted from their respective tables.

SQL and PL/SQL - 34

ORACLE ppa 1asks

SQL and PL/SQL - 35

ORACLE ppa 1asks

8. TRANSACTION CONTROL

8.1 COMMIT command

Example: create a new employee.

SQL>i nserti nto ivy.enplo yeesv alu es

2 ('526',' Jessica','T aylor',t o_date('2 3/10/1972', 'dd/mmy yyy') ,' 8
Yorks treet',' 98070506',
'2012','1 02');

1r owcreated.

After the COMMIT command is issued, the changes are written to the database and
remain permanent.

SQL> COW T;

Commi tc onpl ete.

8.2 ROLLBACK command

Example: assume all rows are deleted from the orders table accidentally. Correct the
mistake and restore all the data.

SQL> DELETE F ROM or ders;

7r owsd el eted.

SQ.>s elect*f romorders;

nor ows se |lected

After ROLLBACK command is issued, the data deletion is undone. All rows remain in
orders table.

SQL> R OLLBACK,;

Rol | back conpl ete .

SQ.>s elect*f romorders;
ORDERID O RD_DATE CiD | TEM D CRD_QTY DELVER_DA EID
33311 3-APR-02 50005 90003 10 20- APR-02 521
33321 4-APR-02 50001 90006 47 20- APR-02 520
33331 5-APR-02 50003 90001 5 22- APR-02 520
3334 1 6- APR- 02 50002 90003 152 2- APR- 02 524
33351 6-APR-02 50004 90002 10 22-JUN-02 524
3336 1 3- MAY-02 50002 90004 12 20- MAY- 02 521
3337 2 1- MAY-02 50003 90006 38 23 - MAY- 02 524
7r owss el ected.

SQL and PL/SQL - 36

ORACLE ppa 1asks

8.3 SAVEPOINT command

Example: Create a savepoine named ‘before_update’.

SQL> SAVEPO NT before_update;

Savepoi nt created.

Update item price by increasing 10 %.

SQL> UPDATE itemns
2 SET price = price * 1.1,

6 rows updat ed.

Verify the changes on price.

SQL> select * fromitens;

| TEM D | TEMDESC PRI CE QOH
90001 HI TACH nonitor 17i nch 990 50
90002 HI TACHI nonitor 19i nch 1650 12
90003 sony 56k nodem 99 68
90004 M crosoft keyboard 44 87
90005 sony 52x CDROM drive 132 94
90006 TDK flopy disc x 12 9 112

6 rows sel ected.

Create another savepoint named ‘after_update’.

SQL> SAVEPO NT after_update;

Savepoi nt created.

Empty table ORDERS and verify the changes.

SQL> DELETE FROM or ders;

7 rows del eted.

SQ.> select * from orders;

no rows selected

Using ROLLBACK TO command to ‘after_update’ savepoint. By doing so, all the
changes made after the savepoint was created are undone. Therefore, all rows
remain in the ORDERS table.

SQL> ROLLBACK TO after_update;

Rol | back conpl ete.

SQL and PL/SQL - 37

ORACLE ppa 1asks

SQL> sel ect

ORDERI D

| TEM D

ORD_QTY

* from orders;
ORD_DATE anb
13- APR-02 50005
14- APR- 02 50001
15- APR- 02 50003
16- APR- 02 50002
16- APR- 02 50004
13- VAY- 02 50002
21- MAY- 02 50003

7 rows sel ected.

DELVER DA
20- APR- 02
20- APR- 02
22- APR- 02
22- APR- 02
22-JUN- 02
20- MAY- 02
23- MAY- 02

Using ROLLBACK TO command to ‘before_update’ savepoint. By doing so, all the
changes made after the savepoint was created are undone. Therefore, the 10%
increase on price is not effective.

SQL> ROLLBACK to before_update;

Rol | back conpl et e.

SQL> sel ect

* fromitens;

| TEMDESC

HI TACHI rmonitor 17inch
HI TACHI rmonitor 19i nch
sony 56k nodem

M crosoft keyboard
sony 52x CDROM drive
TDK fl opy disc x 12

6 rows sel ected.

SQL and PL/SQL - 38

ORACLE ppa 1asks

9. VIEWS

9.1 Creating a View

A View is created by using the CREATE VIEW command.

Example: create a view named ‘Invoice’ that contains company id whose total order
price is larger than $1000.

SQL> CREATE VI EW I nvoi ce (conpany_ld, Total)

AS SELECT o.cid, SUMord_qty*price)

FROM customers ¢, orders o, items i

where c.cid = o.cid and o.itemd =i.itemd
havi ng SUMord_qty*price) > 1000

group by o.cid;

OO WN

Vi ew cr eat ed.

Verify the ‘Invoice’ view with the select statement. The ‘cid’ and ‘SUM(ord_qty*price)’
columns are renamed in the view definition.

SQL.> select * frominvoice;

COVPANY_| D TOTAL
50002 1830
50003 4804
50004 15000

Error message: The message occurred when attempting to update one row within
the view. This is due to the reason that the invoice view definition contains a
GROUP BY clause and GROUP function. In this case, the view cannot be inserted
into, updated in, or deleted from the base tables using the view.

SQL> Update Invoice

2 set total = 500

3 where conpany_id = 50002;
Updat e | nvoi ce

ERROR at |ine 1:
ORA-01732: data nmni pul ation operation not legal on this view

9.2 With Check Option

When a view is created using the WITH CHECK OPTION, any DML statement
performed on that view should satisfy the condition in the WHERE clause of the view.

Example: create a view ‘Accounting_emp’ which only contains information of the
employees from the accounting department, using the WITH CHECK OPTION.

SQL> CREATE VI EW Accounti ng_EMP

AS SELECT eid, efnane, el nane, edob

FROM enpl oyees

WHERE did = 102

W TH CHECK OPTI ON CONSTRAI NT Acc_enp_check;

abwN

Vi ew cr eat ed.

SQL and PL/SQL - 39

ORACLE ppa 1asks

If attempting to insert an employee who belongs to Marketing Department into the
Accounting_emp view, the following message will be generated. This is because the
employee 528 does not satisfy the condition.

SQL> | NSERT | NTO Accounti ng_enp
2 SELECT eid, efnane, elnanme, edob
3 from enpl oyees
4 where eid = 528;

I NSERT | NTO Accounting_enp

ERROR at |ine 1:
ORA-01402: view W TH CHECK OPTI ON wher e-cl ause vi ol ation

9.3 With Read Option

When a view is created using the WITH READ ONLY option, any attempt to perform
a DML statement will result in an error message.

Example: recreate the above example using the WITH READ ONLY option.

SQL> CREATE OR REPLACE VI EW Accounti ng_EMP
AS SELECT eid, efnane, el nane, edob
FROM enpl oyees

WHERE did = 102

W TH READ ONLY;

GOrWOWN

Vi ew creat ed.

An error message is generated when attempting to delete one row from the
accounting_emp view.

SQL> Del ete from accounti ng_enp
2 where eid = 523;
Del ete from accounting_enp
*

ERROR at line 1:
ORA- 01752: cannot delete fromview wi thout exactly one key-preserved table

9.4 Dropping a View

View is dropped using DROP VIEW command.

Example: drop accounting_emp view.

SQL> DROP VI EW accounti ng_enp;

Vi ew dr opped.

SQL and PL/SQL - 40

ORACLE ppa 1asks

10. SEQUENCES

10.1 Creating a Sequence

Example: Create a sequence named ‘s_order_id’ to be used for the orderid column of
the ORDERS table. The sequence starts at 3338. Do not allow caching and do not
allow the sequence to cycle.

SQL> CREATE SEQUENCE s_order_id
| NCREMENT BY 1

START W TH 3338

MAXVALUE 999999

NOCACHE

NOCYCLE;

OUhrWN

Sequence creat ed.

Create a sequence named ‘s_cid’ to be used for the cid column of the CUSTOMERS
table.

SQL> CREATE SEQUENCE s_ci d
| NCREMENT BY 1

START W TH 50005
MAXVALUE 999999
NOCACHE

NOCYCLE;

oOUhrWN

Sequence creat ed.

Create a sequence named ‘s_item_id’ to be used for the itemid column of the ITEMS
table.

SQL> CREATE SEQUENCE s_item.id
| NCREMENT BY 1

START W TH 90007

MAXVALUE 999999

NOCACHE

NOCYCLE;

O WN

Sequence creat ed.

Create a sequence named ‘s_emp_id’ to be used for the eid column of the
EMPLOYEES table.

SQL> CREATE SEQUENCE s_enp_id
I NCREMENT BY 1

START W TH 527

MAXVALUE 999999

NOCACHE

NOCYCLE;

O WN

Sequence creat ed.

10.2 Confirming a Sequence

The sequences created can be verified in the USER_SEQUENCES data dictionary
table.

SQL and PL/SQL - 41

ORACLE ppa 1asks

SQL> S ELECT s equence_nane, m i n_valu e, m ax_val ue, in crement_by,
2 last_nunber

| 3 from USER_SEQUENCES;

SEQUENCE_NANE MN_VALUE MAX_VALUE | NCREMENT BY LAST NUMBR
S cD 1 999999 1 50005
S EMP_ID 1 999999 1 527
S I TEMID 1 999999 1 90007
S_ORDER | D 1 999999 1 3338

4 rows selec ted.

10.3 Using a Sequence

Example: insert a new employee with the next available eid sequence value using
NEXTVL.

SQL>i nserti nto enpl oyeesv al ues

2 (s_enp_id. NEXTVAL, ' Nancy', ' Spenser', t o_date('04/03/1970",
"dd/mmyyyy'),'l 03/2Queenstreet
',' 96603215','3 010',' 103');

1r owcreated.

View the current value for the s_emp_id sequence with CURRVAL.

SQL> sel ects _enp_i d.C URRVAL
2 from sys. dual;

CURRVAL

10.4 Modifying a Sequence

Sequences can be modified by using ALTER SEQUENCE command.

Example: modify sequence ‘'s_emp_id” to have maximum eid value of 8888.

SQL> ALTER SEQUENCE s _enp_i d
2 Maxval ue 8 888;

Sequence altered.

10.5 Removing a Sequence

Sequences are removed from the data dictionary by using DROP SEQUENCE
command.

Example: remove ‘s_item_id’ sequence

SQL> DROP SEQUENCE s _item_i d;

Sequence dropped.

SQL and PL/SQL - 42

ORACLE ppa 1asks

PL/SQL is a block — structured language. A PL/SQL program may contain one or
more blocks. Each block may be divided into three sections. (Ault, 2001)

Decl are
<decl arati ons section>
Begi n
<execut abl e conmands>
Excepti on
<exception handling>
End;

11.1 Declarations Section

All variables must be declared prior to use. This includes variables used in the
executable and exception part of the block. The basic syntax for declaring variables
and constants:

identifier [CONSTANT] datatype [NOT NULL]
[:=] DEFAULT expr];

Example:

Decl are
V_del ver _date DATE;
V_total _sale NUMBER,;
V_orderid NUMBER(4) ;
V_i temame VARCHAR2(20) ;
V_order_date v_del ver _dat e%lype

The above example declares a variable to store the delivery date of an order
(v_delver_date) with DATE datatype, v_total_sale variable to store the total sales
figure with NUMBER datatype, V_ordered variable to store the order id with
NUMBER data type and V_itemname variable to store item name() with VARCHAR2
datatype. The V_order_date stores the order date of an order and has the same
datatype as v_delver_date.

11.2 Executable Commands Section

= DML Statement in PL/SQL

INSERT statement

Example: Insert a new row in the ORDERS table with the next available sequential
orderid. The sequence ‘s_order_id’ created from the previous section is used.

SQL and PL/SQL - 43

ORACLE ppa 1asks

SQL> D ECLARE
v_orderid nunber (4);
BEGN
SELECT s_order_i d. NEXTVAL
I NTO v_orderid
FRQM dual ;

~No ok~ wWN

del ver _date,e id)

90004, 4 3,t o_date('30-May-2002',' dd-mmyyyy'),52 0);
| 9 END
10 /

PL/ SQL p ro cedure successfullyc onpl et ed.

I NSERT | NTO orders (orderi d, o rd_date, c id, i temd, o rd_qty,

8 VALUES(v_orderid,t o_date('23-May-2002',"' dd-mmyyyy'),5 0002,

Verify the new inserted row in the ORDERS table.

SQ.>s elect*f romorders;

ORDERID O RD_DATE ab | TEM D ORD QTY DELVER DA
33311 3-APR-02 50005 90003 10 20- APR-02
33321 4- APR-02 50001 90006 47 20- APR-02
33331 5- APR-02 50003 90001 5 22-APR-02
3334 1 6- APR-02 50002 90003 15 22- APR-02
33351 6- APR-02 50004 90002 10 22-JUN-02
3336 1 3- MAY-02 50002 90004 12 20- MAY-02
3337 2 1- MAY-02 50003 90006 38 23- MAY- 02
3338 2 3- MAY- 02 50002 90004 43 3 0- MAY- 02

8r owss el ected.

UPDATE statement
Example: Increase the price for item 90003 by 10%.

SQL> D ECLARE
v_percentage nunber: =0.1;
BEGN
UPDATE | te ns
SET price=p rice *(1+v_ percentage)
WHERE i temd=9 0003;
END;
/

O~NOOAWN

PL/ SQL p ro cedure successfullyc onpl et ed.

Verify the changes in the ITEMS table. The price has increased from 90 to 99.

SQL>s elect*f romitens
2 wherei temd=9 0003;

| TEMD | TEMDESC PRICE QOH

90003 s ony 56k modem 99 68

DELETE statement
Example: delete order 3338 from ORDERS table.

SQL and PL/SQL - 44

ORACLE ppa 1asks

SQL> D ECLARE
v_orderid orders. ord eri d%'YPE : =3 338;
BEGN
DELETE FROM orders
VWHERE orderid=v_ orderid;
END;
/

~No ok~ wWN

PL/ SQL p ro cedure successfullyc onpl et ed.

Verify the deletion in the ORDERS table.

SQ.>s elect*f romorders
2 whereo rderi d =3 338;

|nor ows se | ected

11.3 Conditional Logic

= |F statement

Example: find out if order 3335 has been delivered to the customer.

In this case, 2 variables are declared. ‘'v_delver_date’ holds the value of delve_date
of order 3335 from the orders table whilst ‘Today’ variable has been assigned
‘sysdate’ value. If the first condition which is ‘Today > v_delver_date is true, then the
screen displays ‘The order has been delivered'. If the second condition, which is
‘Today < v_delver_date’ is true, then the screen displays ‘' The order is not yet
delivered'. If none of the condition is true, then the output is ‘The order is delivered
today'.

SQL> D ECLARE
2 v_del ver _date DATE;
3 Today D ATE;
4 BEGN

5 Today : = sysdate;

6

7

8

9

sel ectd el ver_date
I NTO v_del ver _date
fromorders

10 whereorderid=3 335;

12 I f Today >v _del ver _date T HEN

13 DBMS OUTPUT. PUT_LINK"' Theorderh as beend eli vered."');
14 ELSI F

15 Today <v _del ver _date T HEN

16 DBMS OUTPUT. PUT_LINEK "' Theorderi s noty etde livered.);
17 ELSE

18 DBMS_OUIPUT. PUT_LI NE(' Theo rder isd eliveredt oday.');
19 END I F;

20 END;

21 |/

Theorder isn ot yetd eliv ered.

PL/ SQL p ro cedure successfullyc onpl et ed.

SQL and PL/SQL - 45

ORACLE ppa 1asks

11.4 Cursors

= Implicit Cursor
An implicit cursor is used when the query returns only one record.

Example: create an implicit cursor to return the total sale made figure made by
employee 524.

2 variables are declared. ‘v_eid’ variable holds the value of employee id 524 whilst
the ‘v_total’ variable holds the value of the total sales figure derived from the select
statement. When the query is executed, the output is displayed with the sales figure.

| SQL> S ET SERVEROUTPUT ON;
| SQL> D ECLARE

2 v_ei d NUMBER(3) ;

3 v_total nunber;

4 BEGN

5 v_eid: = 524;

6

7 SELECT SUM or d_qty *pri ce)

8 INTO v _total

9 FROM orderso ,i tensi

10 WHERE i .i temid= o.itemd

11 andeid =v _eid;

12

13 DBVMS_OUTPUT. PUT_LI NE(" The totals al emade byemplo yee'| |v_eid|][is

| |v_total] |'" || "dollars."');

14 END;

15 /
Thet otal salemadebye mpgoyee524i s16789dollars.
PL/ SQL p ro cedure successfullyc onpl et ed.

Error message:

If the query returns more than one record, the following error message is generated.
In the example, the select statement queries more than one record, as a result, the
error message occurrs.

SQL> D ECLARE

v_ei d NUMBER(3) ;

v_ef name VARCHAR(1 5) ;
v_el namre VARCHAR(1 5) ;

BEGN

SELECT ei d,e fname e | nane
INTOv_eid,v _efnanme,v _eln ame
10 FROM enpl oyees
11 WHERE did=1 03;
12
13 END;
14 |/
DECLARE

CoOo~NOUThWN

ERROR at line1l:
ORA-01422:e xactf etc hr eturnsmoret hanr equestedn umbero fr ows
ORA-06512:a t line8

SQL and PL/SQL - 46

ORACLE ppa 1asks

= Explicit cursors

Cursor FOR Loops

Example: process an explicit cursor using a cursor FOR loop that returns and
displays the employee name and the department they are working within.

SQL> D ECLARE

v_didn umber (2);

CURSOR e npcursorl S
SELECT eid, e fname,e | name e .did ,d epart_nane
FROM enpl oyees e,d epart nents d
WHERE e. did=d .did;

empr ow e mpcur sor ¥RONYPE;

BEGN
FOR enprow | N enpcursorL OOP

DBMS_OUTPUT. PUT_LI NE(' Enpl oyee'| |e nprow.efname||"' ||
emprow.elname || '" |[]|'is workingi nt he' || enprow.depart_nane
|| departnent."');

12 EXI T WHEN enpcur sor %NOTFOUND, |

13 END L OOP;

14 END;

15 /

RPOOVWoO~NOOWN

I

Enpl oyee JimPetersoni sworking int he Sal esd epartnent.

Enpl oyee ClairMansoni s workingint he Salesd epartnment.

Enpl oyee Todd Smithi sworkingi n theMark etingd epartment.

Enpl oyee Rebecca Gwneni s workingint heAc counting depart nent.
Enpl oyee Mareen Joansi s workingint he Sal esd epartnment.

Enpl oyee M| ler Changi s workingint heAc counting departnment.
Enpl oyee Jessica Taylorisw orking int he Accountin gd epartment.
Enpl oyee Nancy Sp enseri s working int he Marketing depart nment.

PL/ SQL p ro cedure successfullyc onpl et ed.

Cursors With Parameters

Example: process an explicit cursor using a cursor with a parameter to display output
of orders processed by the selected employee with the total amount of each order.

In the query, cursor ‘ordcursor’ is defined for the orders. A parameter ‘p_eid’ is
declared to pass employee id value to the cursor. The ‘ordcursor’ uses the ‘p_eid’
parameter to select only the orders processed by the specified parameter value. As
shown in the example, ‘524’ is placed in the parameter and therefore all the order id
and the total amount of each order handled by employee ‘524’ are displayed.

SQL and PL/SQL - 47

ORACLE ppa 1asks

SQL> D ECLARE

2 CURSOR ord cursor(p_eid NUMBER) | S
3 SELECT orderid, (ord_qty*price)

4 FROMorderso ,it ensi

5 WHERE 0. itemid= i.itemd

6 AND eid = p_eid;

7

8 v_oi dn umber (4);

9 v_Tot al nu nber;

10

11

12 BEGN

13 OPEN ordcursor (524);

14 LOP

15 FETCH ordcursorl NTOv_oid, v_total;
16 EXI T WHEN or dcur sor %NOTFOUND,

17

18 DBMS_OUTPUT. PUT_LINE (' Order:' ||v _oid] |
19

20 END L OOP;
21 CLOSE o rdcur sor;

22
23 END,
24 |/

Order:3 334Total :1 485
Order:3 335Total : 1 5000
Order:3 337 Total : 3 04

PL/ SQL p ro cedure successfullyc onpl et ed.

| |'T otal:| |v_total);

SQL and PL/SQL - 48

ORACLE ppa 1asks

11.5 Exception Handling Section

= Trapping Exceptions

Trapping Predefined Errors

In the following example, an invalid search condition is entered to select delivery date
from the orders table. This resulted a run time error, which is the Oracle error code
ORA-01403, and the associated error message ‘no data found'.

SQ.> D ECLARE
v_orderid BI NARY_IN TEGER;
v_del verdated at e;

v_orderid @ p Invalid orderid
SELECT d el ver _date
I NTO v_del verdat e
FRQM or der s
10 WHERE orderid=v _orderid;
11 DBMS OUTPUT. PUT_LI NE(" Thed eli veryd atef oror der ID'||v_orderi d|| '

2
3
4
5 BEGN
6
7
8
9

12 ison|]|" '"||to_date(v_delverdate,' dd-mmyyyy'));
13
14 END;
15 /
DECLARE

*

ERROR at linel:
ORA-01403:n o datafo und
ORA-06512:at line7

When an exception handler is included in the query, the error messages can be
customized to be more informative and user friendly.

SQ.> D ECLARE
v_orderid BI NARY_IN TEGER;
v_del verdated at e;

BEGN
v_orderid :=9 0020;
SELECT d el ver _date
I NTO v_del verdat e
FRQM or der s
10 WHERE orderid=v _orderid;
11 DBMS OUTPUT. PUT_LI NE(" Thed eli veryd atef oror der ID'||v_orderi d|| '
ison'||
12 " '"||to_date(v_del verdate, 'dd-mmyyyy'));

OCoO~NOOA~WN

14 EXCEPTI ON

15 WHEN NO_DATA_FOUND T HEN

16 DBMS_OUTPUT.P UT_LI NE(" Order! D specifi edi snotv alid." ;

17 DBMS_OUTPUT.P UT_LI NE(" Pl easeentera validOrderl Dvalue."');
18 END;

19 /
Order|l D specifiedi sn ot valid.
Pleaseenterava |lidOrderl Dvalue.

PL/ SQL p ro cedure s uccessful | yc onple t ed.

SQL and PL/SQL - 49

ORACLE ppa 1asks

Trapping Non-predefined Errors

In the following example, a NULL value is entered in a NOT NULL field. This resulted
a run time error to be displayed, which is the Oracle error code ORA-01400, and the
associated error message ‘cannot insert NULL into ("IVY"."ORDERS"."ORDERID")".

SQL> D ECLARE

2 v_itenm d binary_integer;

3 v_cid binary_integer;

4 v_ord_dated ate;

5 v_ord_qty binary_in teger;

6 v_del ver _dated ate;

7 v_eid bi nary_i nt eger;
8 BEG N

9

v_item d : =9 0003;

10 v_cid: = 50005;

11 v_ord_date: =t o_date('23-May-2002',' dd-mmyyyy');

12 v_ord_qty :=13;

13 v_del ver_date: =to _date('30-May-2002',"' dd-mmyyyy');
14 v_eid: = 521;

15 I NSERT | NTO orders VALUES(null,v_ ord_date,v _cid,v _itemd,
16 v_ord_qty, v_delv er _date, v_eid);
17 END;
18 /
DECLARE
*

ERROR at linel:
ORA-01400:c annoti nsertN ULL into("IVY"."ORDERS"." ORDERI D")
ORA-06512:a t line15

Unlike exception handler for defined exception, undefined exception needs to declare
an exception parameter. A specific Oracle error code is also included in the declare
section to associate the given exception name by using the PRAGMA
EXCEPTION_INIT command.

SQL> D ECLARE

v_itenm d binary_integer;

v_cid binary_integer;

v_ord_dated ate;

v_ord_qty binary_in teger;

v_del ver _dated ate;

v_eid bi nary_i nt eger;

e_null _id EXCEPTI ON,;

PRAGMA EXCEPTION_INIT (e_null _id, -1400);

©oo~NOoOOR~WN

10

11 BEGN

12 v_item d : =9 0003;

13 v_cid: = 50005;

14 v_ord_date: =t o_date('23-May-2002',' dd-mmyyyy');

15 v_ord_qty :=13;

16 v_del ver_date: =to _date('30-May-2002',"' dd-mmyyyy');
17 v_eid: = 521;

18 I NSERT | NTO orders VALUES(null,v _ord_date,v _cid, v_itemid,

19 v_ord_qty,v _delver_date,v_ eid);

20

21 EXCEPTION

22 WHEN e_null_idT HEN

23 DBMS OUTPUT. PUT_LI NK ' Ple ase nakes urenoN ULLv alue isen tered in a
24 NOT NULLf ield.");

25

26 END;

27 |

Pl ease makes uren oNULL value ise nteredi naN OTNULL field.

PL/ SQL p ro cedure successfullyc onpl et ed.

SQL and PL/SQL - 50

ORACLE ppa 1asks

= User-defined Exception

Example: use a user-defined exception to advice the user the current state of the

stock on hand for the specified item.

In the program, two exceptions are defined and declared. ‘e_enoughstock’ exception
is raised when the quantity on hand for the specified item is more than 20. It informs
the user that there is sufficient stock on hand. ‘e_reorder’ exception is raised when
the quantity on hand for the item is less than 20. It informs the user that there is

insufficient stock in the inventory.

SQL> DECLARE

2 v_itemd Bl NARY_| NTEGER,;
3 v_goh Bl NARY_| NTECGER,;
4 e_enoughstock EXCEPTI ON;
5 e_reorder EXCEPTI ON;
6
7 BEGQ N
8 v_itemd := 90002;
9
10 SELECT item d, qoh
11 INTO v_item d, v_qoh
12 FROM i t ems
13 WHERE itenmid = v_item d;
14
15 IFv_qoh> 20T HEN
16 RAI SE e _enoughst ock;
17 ELSE
18 RAI SE e_ reorder;
19 END | F;
20
21 EXCEPTION
22 WHEN e_enoughst ock TH EN
23 DBMS OUTPUT. PUT_LINK ' Thereissu ffici ents tocki n the inventory." ;
24 VWHEN e_reord er T HEN
25 DBMS_OQUTPUT. PUT_LI NE(' The inventory does not have suffi cient stock
26 forit emID"'|[|v_itemid||"'.");
27
28 END;
29 |/

The inventory does not have sufficient stock for
item | D 90002.

PL/ SQL procedure successfully conpl et ed.

SQL and PL/SQL - 51

ORACLE ppa 1asks

12. PL/SQL PROGRAM UNITS

Program units are named PL/SQL blocks. They fall into three main categories: (Ault,
2001)

*= Procedures to perform actions

= Functions to compute a value

» Packages to bundle logically related procedures and functions

They are created based on sophisticated business rules and application logic, and
are stored within the database. The user may also move code between the Oracle
Server and an application. By consolidating business rules with the database, they
no longer need to be written into each application, hence, saving time during
application creation and simplifying the maintenance process. (Ault, 2001) This
improves the performance dramatically.

12.1 Procedures

= Creating a Procedure

Example: create a procedure ‘change_itemprice’ to update item price for the
specified item to the specified amount.

SQL> CREATE OR REPLACE PROCEDURE change_ itenprice
2 (v_item.id I N NUMBER,
3 v_price N NUMBER) IS
4 BEG N
5 UPDATE itens
6 SET price = v_price
7 WHERE itemid = v_item.d;
8 COW T,
9 END change_itenprice;
10 /
Procedure created.

When this procedure is invoked, Oracle will take the parameters for the item ID and
the new item price, and update the price for that specified item.

= Invoking Procedures from SQL*Plus

Procedures are called as stand-alone executable statements. They are invoked using
EXECUTE command in the SQL* Plus environment.

Example: Update item price for item ‘90002’

Before the price is changed.

SQL> select price fromitens
2 where item d = 90002;

SQL and PL/SQL - 52

Invoke procedure ‘change_itemprice’.

SQL> EXECUTE change_i tenprice (90002, 1600);

PL/ SQL procedure successfully conpl et ed.

Verify the change in price for item ‘90002’

SQL> select price fromitens
2 where item d = 90002;

12.2 Functions

ORACLE ppa 1asks

= Create a Function

Example: create a function ‘Order_total’ to return the total price for the specified

order.

SQL> CREATE OR REPLACE FUNCTI ON Order _t ot al

2 (v_orderid IN NUMBER) RETURN NUMBER
3 IS

4 ordprice nunber;

5 ordquantity nunber;

6 ordertotal nunber;

7

8 BEGQ N

9 select ord_qty, price

10 Into ordquantity, ordprice

11 fromorders o, items i

12 where o.itemid = i.itemd and orderid
13 ordertotal := ordquantity*ordprice;
14

15 RETURN (ordertotal);

16 END;

17 |/

Function creat ed.

v_orderid;

= Invoking functions from SQL*Plus

Unlike procedures, functions are invoked as part of an expression. The user-defined
functions can be called just like the built-in function. They can be called from various

SQL clauses.

Example 1: use ‘order_total’ function to calculate the total price for order number

3333.

SOLUTION1.:

SQL> sel ect order_total (3333)
2 from dual;

ORDER_TOTAL(3333)

SQL and PL/SQL - 53

SOLUTION2

ORACLE ppa 1asks

SQL> select orderid, order_total (orderid)
2 fromorders
3 where orderid = 3333;

ORDERI D ORDER_TOTAL (ORDERI D)

Example 2: Return the totals for all the orders made by customer number 50003.

SQL> sel ect sum(order_total (orderid))
2 fromorders
3 where cid = 50003;

SUM ORDER_TOTAL (ORDERI D))

Example 3: Return the order ID that has a total more than $3000.

SQL> select orderid
2 fromorders
3 where order_total (orderid) > 3000;

ORDERI D

12.3 Packages

Packages are containers that bundle together procedures, functions, and data
structures. They consist of an externally visible package specification and a package

body.

= Creating Packages Specification

Package specification contains the function headers, procedure headers, and

externally visible data structures. It is created with CREATE PACKAGE command.

Example: create a package specification named ‘orderspackage’ that will contain the

aforementioned function and procedure.

SQL> CREATE OR REPLACE PACKAGE or derspackage AS
2 PROCEDURE change_itenprice (v_itemid IN NUMBER v_price I N NUMBER);

3 FUNCTION Order _total (v_orderid | N NUVBER) RETURN NUVBER;

4 END orderspackage;
5 |/

Package cr eat ed.

SQL and PL/SQL - 54

ORACLE ppa 1asks

= Creating Packages Body

Package body contains the declaration, executable, and exception sections of all the
bundled procedures and functions. It is created with CREATE PACKAGE BODY
command.

Example: create the package body for ‘orderspackage’.

All the codes for the body of the ‘change_itemprice’ procedure and ‘order_total’
function are included within the ‘orderspackage’ packages body.

SQL> CREATE OR REPLACE PACKAGE BODY or derspackage AS

2 PROCEDURE change_itenprice (v_item.id IN NUMBER, v_price | N NUMBER)
3 IS

4 BEG N

5 UPDATE itens

6 SET price = v_price

7 WHERE itenid = v_item.id;

8 END change_itenprice;

9 FUNCTION Order_total (v_orderid IN NUVBER) RETURN NUMBER
10 I'S

11 ordprice nunber;

12 ordquantity nunber;

13 ordertotal nunber;

14 BEG N

15 select ord_qty, price

16 Into ordquantity, ordprice

17 fromorders o, itenms i

18 where o.itemd = i.itemd and orderid = v_orderid;

19 ordertotal := ordquantity*ordprice;

20 RETURN (ordertotal);

21 END ORDER_TOTAL;
22 END ORDERSPACKAGE;
23 |/

Package body created.

= Referencing Package Contents

Example: execute the procedure ‘change_itemprice’ within the ‘orderspackage’.

SQL> execut e ORDERSPACKAGE. CHANGE_| TEMPRI CE(90006, 9);

PL/ SQL procedure successfully conpl et ed.

Verify the change on item 90006. The price has been modified from $8 to $9.

SQL> select price fromitens
2 where item d = 90006;

SQL and PL/SQL - 55

ORACLE ppa 1asks

12.4 Triggers

Triggers are programs that are executed automatically in response to a change in the
database.

= Creating a Trigger

Example: create a trigger to update the item’s QOH field in the ITEMS table in the
situation when a new order is created, or the existing order quantity (ord_qty) is being
updated or the existing order is being deleted.

SQL> C REATE OR REPLACE T RIGGER | TEMQOHTRIG GER

2 BEFOREi nserto ru pdateord eleteof ord_qty on ORDERS
3 For eachr ow
4 BEGN
5 I F | NSERTI NG THEN
6 UPDATE | TEMS SET qoh=q oh - :NEWord_qty;
7 ELSI F UPDATI NG THEN
8 UPDATE | TEMS SET qoh=q oh+: OLD.ord_qty - :NEWord_qty;
9 ELSI F D ELETI NG THEN
10 UPDATE | TEMS SET qoh=q oh+: OLD.ord_qty;
11 END I F;
12 END;
13 /

Tri ggercr eated.

Verify the effect of ‘itemgohtrigger’ on QOH filed in the ITEMS table.

The current QOH state for item 90004.

SQL>SELECT *F RQM I TEMS;

| TEMD | TEMDESC PRIC E QOH
90001 HITACH m onitorl 7inch 900 50
90002 HI TACH m oni tor1 9i nch 1600 12
90003 s ony 56k modem 99 68
90004 Microsoftk eyboard 40 87
90005 s ony 52x C DROM drive 120 94
90006 T DK fl opydisc x1 2 9 112

Actionl: insert a new order for item ‘50004’ with order quantity of 15 in the ORDERS
table.

SQL>i nserti nto ordersva |ues
2 (S_order_id. NEXTVAL, t o_date (' 25/05/2 002',"' dd/ mm/yyyy'),"' 50004",
'90004', '15',to_date('03/06/2002','d d/myyyy'),' 524');

1r owcreated.

When querying item ‘90004’ from ITEMS table, the QOH has decreased from 87 to
72 due to the new order.

SQL> SELECT*FR OM | TEMS
2 WHERE | TEMID =9 0004;

| TEMD I TEMDESC PRICE QOH

90004 Microsoftk eyboard 40 72

SQL and PL/SQL - 56

ORACLE ppa 1asks

Action 2: Update the new order by increasing the order quantity for item ‘90004’ to
20.

SQL> UPDATE orders
2 SET ORD_QTY = 20
3 VWHERE orderid = 3340;

1 row updated.

The updating on the order quantity has also taken effect on the QOH of item ‘90004'.

SQL> SELECT * FROM | TEMS
2 WHERE | TEM D = 90004;

| TEM D | TEMDESC PRI CE QOH

90004 M crosoft keyboard 40 67

Action 3: delete the new order.

SQL> DELETE FROM ORDERS
2 WHERE ORDERI D = 3340;

1 row del et ed.

The deletion of the new order has brought the QOH of item ‘90004’ back to its
original state.

SQL> SELECT * FROM | TEMS
2 WHERE | TEM D = 90004;

| TEM D | TEMDESC PRI CE QOH

90004 M crosoft keyboard 40 87

= Enabling and disabling Triggers

Triggers can be enabled or disabled by using ALTER TRIGGER command or ALTER
TABLE command.

ALTER TRIGGER command

The user may enable / disable specific triggers with this command. In order to use
this command, the user must have ALTER ANY TRIGGER system privilege.

Example 1: enable the ‘itemqohtrigger’

SQL> ALTER TRI GGER it enqohtrigger ENABLE;

Trigger altered.

Example 2: disable the ‘itemqohtrigger’

SQL> ALTER TRI GGER it emgohtri gger DI SABLE;

Trigger altered.

SQL and PL/SQL - 57

ORACLE ppa 1asks

ALTER TABLE command

The user may enable / disable all triggers associated with the specified table with this
command. In order to use this command, the user must have ALTER ANY TABLE
system privilege.

Example 1: enable all triggers associated with table ORDERS.

SQL> ALTER TABLE orders enable all triggers;

Tabl e altered.

Example 2: disable all triggers associated with table ORDERS.

SQL> ALTER TABLE orders disable all triggers;

Tabl e altered.

SQL and PL/SQL - 58

ORACLE ppa 1asks

CHAPTER 3 Database Architecture and Administration

13. SOFTWARE INSTALLATION

This section is the documentation of installing Oracle 8i Enterprise Edition and Oracle
9i Application Server on the windows platform.

13.1 Oracle 8i release 8.1.7 Enterprise Edition

Installation Failure

Problem description:

After selecting install from the CD, the hourglass appears then disappears and the
Universal Installer never runs. If you looked in the Task Manager, you would see a
process called JREW.EXE for a brief moment then it would go away (as if
terminated) immediately after executing the Oracle Client Setup.EXE.

Possible causes for the problem:

Setup.exe does nothing on the machine maybe because of a problem with the Java
Runtime Environment (JRE) and Pentium 4 processor. The version of JRE using in
the Oracle 8i release 8.1.7 Enterprise Edition is not compatible with the one used in
the P4 processor.

Resolution/Workaround

1. Copy the entire CD down to the hard drive in a temporary folder.

2. Download JRE release 1.1.8-009 from java.sun.com and install it. The Java
code URL is: http://java.sun.com/products/jdk/1.1/jre/download-jre-
windows.html .Then go to C:\Program Files\JavaSoft\JRE\1.1\bin and copy
the file ‘'symcjit.dll’ over the one in the Oracle 8.1.7 client installation area
here:
stage\Components\oracle.swd.jre\1.1.7.30\1\DataFiles\Expanded\jre\win32
\bin

3. Once the step 2 is done, the setup.exe will install the oracle 8.1.7 enterprise
edition.

Installation Summary

Gl obal database nane: project.world

Dat abase systemidentifier (sid): project
SYS account password: change_on_install
SYSTEM account password: manager

Error message
An error message has occurred at the end of the installation.

|Java. exe has generated errors and will be closed by w ndows.

Apart from this, the installation was successful.

SQL and PL/SQL - 59

ORACLE ppa 1asks

13.2 Oracle 9i Application Server release 1 (version 1.0.2.2) installation

Pre-installation steps:
The following steps need to be completed before installing Oracle 9i Application
server according to the Oracle9i AS installation guide by Oracle cooperation.
1. Create the password file required by Oracle 9i AS Database Cache. Enter the
following in DOS prompt.

c:\oracle\ora81\bin\orapwd file=pwdproject.ora
password=change_on_install entries=10

2. Increase the size of the users tablespace. Enter the following SQL command
in the SQL/plus.

alter database datafile ‘c:\oracle\oradata\project\users01.dbf’ resize
250M;

3. Modify TNS files located at c:\oracle\ora81\network\admin

listener.ora => change port 1521 to 1526, port 2481 to 2486
sqglnet.ora => no change
tnsnames.ora => change port 1521 to 1526

4. Service startup

Go to start => settings => control panel => Administrative tools => services
Change startup type of oracleorahome81 http server to manual.

Installation Failure

Problem description:

The same installation problem occurred. After selecting install from the CD, the
hourglass appears then disappears and the Universal Installer never runs.

Possible causes for the problem:

Setup.exe does nothing on the machine. This maybe because of a problem with the
Java Runtime Environment (JRE) and Pentium 4 processor. The version of JRE
using in the Oracle 9i As releasel v(1.0.2.2) is not compatible with the one used in
the P4 processor.

Resolution/Workaround

1. Copy the disc 1 down to the hard drive in a temporary folder.

2. Go to C:\Program Files\dJavaSoft\JRE\1.1\bin and copy the file ‘symcjit.dI’
over the one in the Oracle 9iAS installation area here:

install/ Stage/Components\oracle.swd.jre\1.1.7.30\1\DataFiles\Expanded);
re\win32 \bin

and
stage\Components\oracle.swd.jre\1.1.7.30\1\DataFiles\Expanded\jre\win3
2 \bin

3. Once the step 2 is done, the setup.exe will install the oracle 9i As disc 1. The
remaining follow the instruction through.

SQL and PL/SQL - 60

ORACLE ppa 1asks

An error message has occurred during the installation:

vbj .exe — entryp oi nt N ot Found.
The p rocedureentryp ointVB JRuntime could notb el ocatedi n thed ynamc
I'ink l'ibrary vbjr untimd I 1.

Apart from this, the installation was successful

SQL and PL/SQL - 61

ORACLE ppa 1asks

14. ADMINISTRATOR AUTHENTICATION METHOD

14.1 Using Password File Authentication

1. Create the password file using the password utility ORAPWD. Enter the
following command in DOS prompt.

c:\>orapwd file=ora8l/database/ pwdproject password=adnin
entries=10

2. Set the REMOTE_LOGIN_PASSWORDFILE parameter to EXCLUSIVE.
The REMOTE_LOGIN_PASSWORDFILE is located in the file init.ora which is
located at oracle/admin/project/pfile

3. Connect to the database as follows:
SQL> connect /as sysdba

or
SQL>connect internal/oracle

SQL and PL/SQL - 62

ORACLE ppa 1asks

15. MANAGING AN ORACLE INSTANCE

The instance in Oracle 8i release 3 (v 8.1.7) can be managed from the Oracle
Enterprise Manager Console and DBA studio

Starting and shutdown the Instance using the following command in SQL/Plus

15.1 Start Up a Database

In order to start or stop an Oracle instance, the user must have the SYSDBA or
SYSOPER privilege. Otherwise, the following error message will be generated.

SQL> startup pfile=project.world.ora
ORA- 01031: insufficient privileges

The STARTUP command is used to start the instance, mount a database, and open
the database for normal operation.

Sql > connect /as sysdba
Sql > startup pfil e=project.world.ora

Total System G obal Area 142039068 bytes

Fi xed Size 75804 bytes
Variable Size 58081280 bhytes
Dat abase Buffers 83804160 bhytes
Redo Buffers 77824 bytes

Dat abase nount ed.
Dat abase opened.

Where ‘project.world.ora’ is the parameter file for database ‘ Project’.

15.2 Manage Sessions

Once when a database connection is made, Oracle starts a session. Information in
relation to a session is contained in the V$SESSION view.

Example: query the VSSESSION view to find out who is connected to the database
and what program they are running now.

SQL> sel ect usernanme, program
2 from V$SESSI ON,

USERNAME PROGRAM

"""""""""""""" ORACLE. EXE
SYS SQLPLUSW EXE

DBSNVP dbsnnp. exe

I VY jre.exe

I VY jre.exe

I VY jre.exe

SQL and PL/SQL - 63

ORACLE ppa 1asks

I VY jre.exe
[AYA% jre.exe
I VY jre.exe
I VY jre.exe
I VY jre.exe
I VY jre.exe
MARY SQLPLUSW EXE

13r ows se | ected.

A user session can be terminated by using the ALTER SYSTEM command. In order
to do this, the SID and SERIAL# are required from the V$SESSION view.

Example: terminate user MARY’s session.

Firstly, query the SID and SERIAL# of user MARY'’s session from VESESSION view.

SQL>s electu sername,s id,s erial# s tatus
2 from V$SESSI ON
3 VWHERE usernane ="' MARY';

USERNAME SID SERI AL# S TATUS

MARY 22 855 | NACTI VE

Then issue the ALTER SYSTEM command with the SID and SERIAL# to kill that
particular session.

SQL>ALTER SYSTEMKILL SESSION ' 22,8 55';

System alt ered.

Verify that the session has been terminated.

SQL>s electu sername,s id,s erial# s tatus
2 from V$SESSI ON
3 VWHERE usernane ="' MARY';

USERNAME SID SERI AL# S TATUS

MARY 22 855 KI LLED

15.3 Shutdown a Database

The SHUTDOWN command is used to shut down the current instance.

SQL> SHUTDOWN i nmedi at e
Dat abase cl osed.

Dat abase di snount ed.
ORACLE i nstance shutd own.

SQL and PL/SQL - 64

ORACLE ppa 1asks

16. CREATE A DATABASE

16.1 Creating a Database

The database is a collection of physical files that work together with an area of
allocated memory and background processes. It requires careful planning and is
done in multiple steps.

Example: Create Database db01

1. Declare the variable ORACLE_SID in operating system prompt with the following
command:

c:\>setO racl e_SI D=db01

2. Create the database service and the password file with ORADIM

c:\>ORADI M —NEW —=SI D d b01 —I NTPWD 000 —-STARTMODE auto
-PFI LE ora81\ dat abase\i nitdbOl.ora

3. Set up the path for the new database.

- oracle\oradata\db01
- oracle\admin\db01

4. Modify an existing init.ora file to reflect the parameters for the new database.
Save the modified parameter file as ‘initdbO1.ora’.

| db_name = "DBO1"
db_donai n = wor | d
i nst ance_nane = DBO1
servi ce_nanes = D BOl.world

control _fi les= ("C:\oracl e\oradata\DB0O1\control O1. ctl",

"C:\oracl e\ oradata\ DBO1\ control 02. ctl",

"C:\oracl e\ oradata\ DBO1\ control 03. ctl")

background_dunp_dest = C:\oracl e\ adm n\ DBO1\ bdunp
user _dunp_dest= C:\oracl e\ adm n\ DBO1\ udunp

5. Connect to the database via SQL*PLUS as sysdba

[SQL>c onnect/ as sysdba |

6. Issue the following command to start up the database in NOMOUNT mode

SQL>startup nomount pfile="c:\oracl e\ora81\ database\ini tdb0l. ora”
ORACLE i nstance started.
Total S yst em Gl obal A rea 1 42039068 b ytes

Fixed Si ze 75804 b ytes
Variable Size 58081280 b ytes
Dat abase Buffers 83804160 b ytes
Redo B uffers 77824 b ytes

SQL and PL/SQL - 65

ORACLE ppa 1asks

7. Once the database has been started, use the following database creation script
to create the database ‘DBO1’.

created at abase db0O1
Maxi nsta nces 1
mex| oghi story 5
max| ogfi 1 es5
max| ogmenbers 5
| nmexdatafiles10 0
datafile 'c:\oracl e\ oradata\db01\ systenD1.d bf"'
size32 5mreuseautoextendonn extl 0240k maxsiz eu nli mt ed
charact ers et we8i so8859p1
nati onalc haracters et we8i so8859pl
| ogfile
group 1('c:\oracl e\oradata\db01\redo0Ol.l0g')s izel O0OM
group 2 ('c:\oracl e\oradata\db01\redo02.10g')s izel O0OM
group 3 ('c:\oracl e\oradata\db01\redo03.10g')s izel OOM

However, the following error message s displayed and the database creation is
failed.

ERROR at linel:
ORA- 01501: C REATE DATABASE f ai | ed
ORA-01991:i nvalidpa ssword fi e 'C\oracle \ ora81\ DATABASE\ P\Dpro j ect. ORA

After setting the Remote_login_passwordfile parameter in the ‘initdbOl.ora’ file to
shared, the database is created successfully.

16.2 Creating the Data Dictionary

After a database is created, it can be functional only when the data dictionary is
created. (Sarin, 2000)

In order to generate the data dictionary, run the scripts, catalog.sql and catproc.sql in
SQL/PLUS after connecting to the instance and open the database db01.

SQL: >Start* c:\oracl e\ora81\rdbns\ adm n\ cat al og. sql ' ;
SQL: >Start* c:\oracl e\ora81\rdbns\ adm n\cat proc.sql’;

SQL and PL/SQL - 66

ORACLE ppa 1asks

17. MAINTAINING CONTROL FILES

17.1 Create New Control Files

The control file names and locations are listed in the CONTROL_FILES parameter in
the initial parameter file. When creating a database, Oracle creates as many control
files as are specified in the initial parameter file.

If more control files are required in the database, the subsequent steps need to be
followed. The creation of this additional control file is based on the existing one.

Example: create an additional control file for database ‘DB01’.

1. Shut down the database.

SQL>s hutd owni mnedi at e;
Dat abase cl osed.

Dat abase di snount ed.
ORACLE i nstance shutd own.

2. Make a copy of the existing control file to a different device using
operating system commands.

The new control file ‘controlO4.ctl’ is created based on ‘controlO1.ctl’.

|C: \oracl e\ oradat a\ db0O1\ copyc ontr ol 01.ctlc ontrol 04.ct | |

3. Edit or add the CONTROL_FILES parameter and specify names for all
the control files.

Adding the additional file ‘controlO4.ctl’ in the initial parameter file of
database ‘DBO1’

control _fi les=

("C:\oracl e\ oradata\ DBO1\ control O1. ctl",
"C:\oracl e\oradata\ DBO1\control 02. ctl",
"C:\oracl e\oradata\ DBO1\control 03. ctl",
"C:\oracl e\oradata\ DBO1\control 04.ctl ")

4, Start up the database.

SQ> startup pfil e='c:\oracle \ ora81\data base\i nit db0l.0ora'
ORACLE i nstance started.

Total S yst em Gl obal A rea 1 42039068 b ytes

Fixed Si ze 75804 b ytes
Variable Size 58081280 b ytes
Dat abase Buffers 83804160 b ytes
Redo B uffers 77824 b ytes

Dat abase nount ed.
Dat abase opened.

SQL and PL/SQL - 67

ORACLE ppa 1asks

Verify the additional control file by querying from the VECONTROLFILE view.

SQ> SELECT * FROM V$CONTROLFI LE;

STATUS

C: \ ORACLE\ ORADATA\ DBO1\ CONTRCLO1. CTL

C: \ ORACLE\ ORADATA\ DBO1\ CONTRCOLO2. CTL

C: \ ORACLE\ ORADATA\ DBO1\ CONTROL03. CTL

C: \ ORACLE\ ORADATA\ DBO1\ CONTROLO04. CTL

SQL and PL/SQL - 68

ORACLE ppa 1asks

18. MAINTAINING REDO LOG FILES

18.1 Obtaining Log and Archive Information

To find out if the database is configured to run in ARCHIVELOG mode, the following
SQL commands can be used to obtain archive information.

1. Enter the following command in SQL prompt.
[SQL>archivel og Iist

This command derives the following information, which specify the current setting of:
- Database log mode
- Automatic archival
- Archive destination
- Oldest online log sequence
- Current log sequence

Dat abase | og mode No Archi ve Mde

Aut omat i ¢ archival Di sabl ed

Archi ve de stinati on C:\oracl e\ ora81\ RDBMS
O desto nlinel ogs equence 1476

Currentlo gs equence 1478

2. The other way to obtain archive information is to query the dynamic performance
views VSDATABASE.

SQ.>s electn ane,| og_node
2 from v$dat abase;

PROJECT NOARCHIV ELOG

This command retrieves the database log mode of current database from the
dynamic performance views V$DATABASE.

3. Another way is to query the dynamic performance views VSINSTANCE and look at

its archiving mode.
SQ.>s el ecta rchiver
2 fromv$inst ance;

ARCHI VE

STOPPED

4. Use Oracle Enterprise Manager Console or DBA studio to obtain Archive
information.

- Launch Console and enter login information
Start - Prograns - Oracle — Orahonme81 - Enterprise Manager -
Consol e

- Expand the working database, Project, and then expand Instance
- Right click on database, and select Edit
- Click on Archive tab to obtain archive information

SQL and PL/SQL - 69

ORACLE ppa 1asks

18.2 Obtaining Log Group Information

To obtain information regarding log group, it can be accessed through query from the
dynamic performance view VSTHREAD, VLOG, VLOGFILE.

1. By querying from the dynamic performance view V$THREAD, information about
the number of online redo log groups, the current log group, and the sequence
number can be returned.

SQL> sel ect groups, current_group#, sequence#
2 from v$thread,;

GROUPS CURRENT GROUP# SEQUENCE#

2. By querying from the dynamic performance view V$LOG, information about the
online redo log files from the control file can be returned.

SQL> sel ect group#, sequence#, bytes, nenbers, status
2 from v$log;

GROUP# SEQUENCE# BYTES MEMBERS STATUS
1 1477 1048576 1 I NACTI VE
2 1478 1048576 1 CURRENT
3 1476 1048576 1 I NACTI VE

The returned information indicates that group# 2 is the current online redo log group
and is active. Whereas the group# 1 and 3 are no longer needed for instance
recovery. It may or may not be archived.

3. The following query returns the names of all the members of a group by querying
the dynamic performance view V$LOGFILE.

SQL> select * fromv$logfile;

GROUP# STATUS

1 STALE
C: \ ORACLE\ ORADATA\ PRQJECT\ REDQ03. LOG

2
C: \ ORACLE\ ORADATA\ PRQJECT\ REDQ02. LOG

3
C: \ ORACLE\ ORADATA\ PRQJECT\ REDOO1. LOG

The returned information indicates that contents of group#1 are incomplete whereas
group#2 and #3 are in use.

SQL and PL/SQL - 70

ORACLE ppa 1asks

18.3 Controlling Log Switches

= Forcing Log Switches

The following SQL command can force a log switch.

SQL>alters ystemswi tch |ogfile;

System alt ered.

If querying again from the previously mentioned dynamic performance view, we can
see the log has switched now.

SQL> sele ctg roups,c urrent_group#,s equence#
2 fromv$t hre ad;

GROUPS CURRENT_GROUP# SEQUENCE#

SQL> sele ctg roup#,s equence#, b ytes, menbers,s tatus
2 fromv$l og;

GROUP# SEQUENCE# BYTES MEMBERS S TATUS
1 1480 1048576 1 C URRENT
2 1478 1048576 11 NACTIVE
3 1479 1048576 1 ACTI VE

SQL>s elect*f romV$logfi |e;

GROUP# S TATUS

C: \ ORACLE\ ORADATA\ PROJECT\ REDCQ03. LOG

2
C: \ ORACLE\ ORADATA\ PRQJECT\ REDO02. LOG

3
C: \ ORACLE\ ORADATA\ PRQJECT\ REDO01. LOG

18.4 Adding Online Redo Log Groups

Example: create additional redo log group# 4 for database Project.

SQL>AlterD at abase p roject
2 add| ogfile('/ oracle/oradatal/project/REDO04.LOG")s ize lM;

Dat abase altered.

18.5 Adding Redo Log Members

Example: create new members to existing redo log file group#1 and group#2.

SQL and PL/SQL - 71

ORACLE ppa 1asks

SQL>Alterd atabasep roject

2 add | ogfil e menber

3 '/oraclel/oradatal/project/ REDOO1b. LOG't ogroupl,
'/ oracl e/o radat a/ proj ect/REDO02b. LOGt o0 group?2;

Dat abase altered.

18.6 Dropping a Redo Log Group

Example: drop redo log group# 4.

SQL>Alterd atabasep roject
2 drop logfileg roup4;

Dat abase altered.

18.7 Dropping a Redo log Member

Example: drops the redo log member ‘redo01b.log’ of group# 1.

Al terd ata base pr oj ect
drop | ogfi lemember' /oracl e/oradat a/ proje ct/ REDOLB. | og';

SQL and PL/SQL - 72

ORACLE ppa 1asks

19. MANAGING TABLESPACES AND DATA FILES

19.1 Creating Tablespace

= Dictionary_Managed Tablespace

In dictionary_managed tablespaces, all extent information is stored in the data
dictionary. (Enterprise DBA Part 1A Volume 1)

Example:

SQL>Createt able spacepro_data
2 datafile' /oracl el oradatal/project/pro_data_01. dbf's izel O0M
3 ‘'/oraclel/oradatalproje ct/pro_data_02.dbf's ize 100M
4 M nimum exte nt5 00k
5 defaults torage(init ial5 00k
6 Next 5 00k
7 Maxextents 5 00
8 Pct i ncrease0)

Tabl espace c reate d.

The SQL statement creates a tablespace named ‘pro_data’. The datafile specified
are created with a size of 100MB each.

= Locally Managed Tablespace

Compare to Dictionary_Managed tablespace, Locally managed tablespaces manage
space more efficiently, provide better methods to reduce fragmentation, and increase
reliability. The table space is created by include ‘EXTENT MANAGEMENT LOCAL’
clause. (Enterprise DBA Part 1A Volume 1)

Following is an example of creating a locally managed tablespace with Oracle
managing the extent allocation.

SQL> C REATE T ABLESPACE my_dat afil e
2 DATAFILE' /oracl e/ oradatal/project/ny_datafile_01.dbf' SIZE 100M
3 EXTENT MANAGEMENT LOCAL AUTOALLOCGCATE;

Tabl espace c reate d.

19.2 Creating Tablesapce with DBA studio

1. Launch DBA studio and connect to the database ‘project’ directly

Start -> Prograns -> O acle_orahonme8l -> Database Adm nistration ->
DBA s t udi o

2. Expand database ‘project’ and then expand storage.

3. Right click on tablespace and select create.

4. Enter the name for the tablespace, ‘pdata_auto’ and set all other settings as
default.

SQL and PL/SQL - 73

ORACLE ppa 1asks

ﬁ Create Tablespace - SYS@project.world

General

File Mame File Directory
PDATA_AUTO.Ora CADRACLEWORAD...

B |

® Online = Read nly,
" Offline [Normal]

- Status ‘

Type
® Parmanent O Terporary

5. Click the Create bottom and a message box will display to inform you the
tablespace has been created successfully.

19.3 Changing the Storage Settings

The settings for tablespaces can be changed by using the ALTER TABLESPACE
command.

Following is an example of changing the settings for tablespace ‘pro_data’.

SQ.> Alter Tabl espace pro_data
2 mnimmextent 1M

Tabl espace al tered.

SQ.> Alter Tabl espace pro_data
2 Default storage (
3 initial 1m
4 next 1m
5 maxext ents 700);

Tabl espace altered.

The storage settings can also be changed through DBA studio or Enterprise
Management Console.

= Read Only Tablespace

When no changes are allowed to make on any data, the tablespace can be made
read only.

| SQL> ALTER TABLESPACE ny_datafile READ ONLY;

SQL and PL/SQL - 74

ORACLE ppa 1asks

When the command is issued, the tablespace goes into a transitional read-only mode
in which no further DML statements are allowed. (Sarin, 2000)

19.4 Dropping Tablespaces

A tablespace from the database can be removed using the following command. In
the following example, the tablespace ‘pro_data’ is removed from database ‘project’.

SQL>Drop tabl espacepro_datai nclu dingco ntents;

Tabl espace d ropped.

The tablespace can also be dropped wusing Oracle DBA studio.
1. Launch DBA studio and connect to the database ‘project’ directly

Start > Prograns > O acle_orahome8l -> Database Admi nistration -
DBA s t udi o

2. Expand database ‘project’ and then expand storage.

3. Right click on tablespace and select remove.
4. Click yes to confirm.

19.5 Resizing of Data Files Automatically

The size of tablespaces can be increased automatically by enabling the
AUTOEXTEND function.

= Enabling AUTOEXTEND for a New Data File

Example: create a new data file ‘pdata_auto 01.dbf with automatic extension
enabled.

SQL> Alter Tabl espace pdata_auto

add datafile' /oracle/oradata/project/pdata_auto_01. dbf'
size 100M

aut oext end on

next 10m

Maxsi ze 5 00m;

OB WN

Tabl espacea | tered.

= Enabling AUTOEXTEND for an Existing Data File

Example: enable the AUTOEXTEND for the previously created data file
‘my_datafile_01.dbf".

SQL and PL/SQL - 75

ORACLE" ppa 1asks

SQ.>Alterd atabase
2 datafile' /oracl el oradatal/project/ny_datafile_01. dbf’'
3 AUTOEXTEND ON;

Dat abase altered.

= Use Oracle Enterprise Manager to Enable Automatic Resizing

1. Launch DBA studio and connect to the database ‘project’ directly as
SYSDBA

Start = Progranms > Oracl e_orahone81 - Dat abase Adm nistration
> DBAstudio
2. Expand database ‘project’ and then expand storage.

3. Expand datafiles and right click on datafile ‘pdata_auto_01.dbf’ and select edit
then the following window appears.
it Datafi Y ORACLE\ORADATA\PROJECTY

General | Storage

[Autamatically extend datafile when full (AUTOEXTEND)
Increment; | K Biytes -
Maximum Size
® Unlimited
T value | I Bytes

4. In the Auto Extend tab, select the Enable Auto Extend check box.

5. Click ok to confirm.

The DBA studio can be also used to add a data file in the existing tablespaces.

1. Launch DBA studio follow the steps as described earlier.

2. Expand the Tablespaces folder.

3. Select the Tablespace that you wish to add a new datafile. Right click on the
selected tablespace (ie. Pdata_auto) and select add Datafile.... The following

window will appear.

SQL and PL/SQL - 76

ORACLE ppa 1asks

£} Create Datafile - system@PROJECT

General
Marne: |C:IORACLEIORADATAIPROJECWBSHlu:ura

Tablespace: | PDATA_AUTO

Size:
File Size: |5 [MBytes -~

[Reuse Existing File

4. Specify the datafile name (ie. Testl.ora) and file size in general tab and
AUTOEXTEND in storage tab.
5. Click on create bottom.

19.6 Resizing of Data Files Manually

The alternative way to increase the tablespace size is using RESIZE command.

Example: resize datafile ‘pdata_auto_01.dbf’ to 200 M.

SQ.>AlterD atabasep roject
2 datafile' /oracl el oradatal/project/pdata_auto_01. dbf’
3 RESI ZE 200M

Dat abase altered.

SQL and PL/SQL - 77

ORACLE" ppa 1asks

20. MANAGING ROLLBACK SEGMENTS

20.1 Create Rollback Segments

Example: create a rollback segment ‘rbstest01’ in the tablespace ‘RBS’.

SQ.> create roll back segnent rbstestOl
tabl espace RBS

3 storage (

4 initial 120k
5 next 120k
6
7
8

N

m nextents 20
maxext ents 100
opti mal 2400K);

Rol | back segment creat ed.

The DBA studio can be also used to create rollback segment.
1. Launch DBA studio follow the steps as described earlier.

2. Expand the storage.
3. Right click on the Rollback segment and select create. The following window will

appear.
‘E;, Create Rollback Segment - system@PRDJEﬁ T ‘E,’, Create Rollback Segment - system@PROJ ﬂ
General | Storage General | Storage
Lig Marne: | Extents
- Tahlespace: |DRSYS v| Initial Size: || I Bytes -
I Public MNesxt Size: | Kbyes ~
Szl Optimal Size: | KBytes -

® Online T Offline

Minimum Mumber:

Maximum Mumber:
T Unlimited

® Yalue

Create Cancel Show SQL Help Create Cancel Show SQL

4. Enter the information required in both general tab and storage tab.

5. Click on Create.

After the Rollback segment is created, DBA studio can also be used to change the
settings, shrink a rollback segment, taking a rollback segment online or offline or drop
a rollback segment.

SQL and PL/SQL - 78

ORACLE ppa 1asks

20.2 Dictionary Views about Rollback Segments

Verify which rollback segments in the system are available for use by transactions.

SQL> sel ect segnment _nane, status
2 from dba_rol |l back_segs;

SEGNMENT_NAME STATUS
SYSTEM ONLI NE
RBSO ONLI NE
RBS1 ONLI NE
RBS2 ONLI NE
RBS3 ONLI NE
RBS4 ONLI NE
RBS5 ONLI NE
RBS6 ONLI NE
RBSTESTO1 OFFLI NE

9 rows sel ected.

SQL and PL/SQL - 79

ORACLE ppa 1asks

21. MANAGING TABLES

21.1 Creating a Table

= Creating atable using create table clause
Tables are created using CREATE TABLE clause.

Example: create EMPLOYEES table

SQL>Createt ablee nployees

(eid nunber(3)c onstr ai nte npl oyees_eid_pkp ri maryk ey,
ef name v archar 2(10),

el name v archar 2(15),

edob date,

eadd varchar 2(25),

ephone n unber (8),

epcode n unber (4),

Di d nunber (3))

table space new_t abl espace;

QUOWO~NOUTRAWN

[

Tabl e ¢ reat ed.

= Creating atable from a query

Example: create a new table from the EMPLOYEES table for employees belong to
sales department ‘101",

SQL> C REATE T ABLE s al es_depart nment

(eid,e fnanme,e | name, e add, e phone)
TABLESPACE new_t abl espace

PCTFREE 0

STORAGE (I NITI AL 1 28K NEXT 1 28K P CTIN CREASE 0)
AS

SELECT e i d, efnanme, elnane,ea dd,e phone

FROM enpl oyees

WHERE did= '101';

©CoO~NOOUTA~ WN

Tabl e ¢ reat ed.

= Partitioning

Range-Partitioned Table

Example: create a range-partitioned table named ORDERS.

SQ.>Createt ableo rders
2 (orderidnunber(4)co nstraint orders_orderid_pkprimryk ey,
3 ord_dated ate,
4 cid number(5)c onstrainto rders_cid_fkr eferencesc ustoners(cid),
5 itemdn umber(5)co nstrainto rders_itemid_fk references items(itemd),
6 ord_gtyn umber(5),
7 delver_date date,
8 eid nunmber(3)c onstrainto rders_eid fkr eferencese nplo yees(ei d))
9 PARTI TI ON BY RANGE (ORD_DATE)
10 (PARTITI ON ORD1 VALUES LE SS T HAN

11 (TO_DATE(' 31-03-2002',' DD MM YYYY'))
12 TABLESPACE ORD_DATA,

13 PARTI TION ORD2 VALUES LE SS T HAN (MAXVALUE)
14 TABLESPACE ORD_DATA2)

15 STORAGE (I NITI AL 1 28K NEXT 1 28K P CTIN CREASE 0)
16 NOLOGH NG; I

Tabl e c reat ed.

SQL and PL/SQL - 80

ORACLE ppa 1asks

PARTITION BY RANGE specifies that the table should be range partitioned
according to the ‘'ORD_DATE’. Records with ‘ORD_DATE’ prior to 31-03-2002 will
be stored in partition ORD1. The MAXVALUE parameter specifies that the partition
bound is infinite.

The main reason for partitioning is to better manage a table. If a table is created
spread across many data files, and one disk fails, the entire table will need to be
recovered. However, if the table is partitioned, only that partition needs to be
recovered. In addition, SQL statements can access the required partition(s) rather
than reading the entire table. This improves the performance of speed.

= Creating a Table using DBA studio ~ Schema Manager

1. Launch DBA studio and connect to the database ‘project’ directly as sysdba.

2. Select object -> create from the menu bar.

3. Choose Table from the list of objects, check the use Wizard option, and click
Create.

4. A table wizard will appear on the screen and require the user to enter
information needed for the new table throughout the steps. The information
required are the schema, tablespace, columns information, define the primary
key for the table if uses, define other constraints if applicable, and storage

information.

ﬁTahle Wizard, step 1 of 13: Introduction x|

Introduction

YWhat do you want the Mame ofthe new table to be?
|CLUSTOMER

Which Scherna do you want the table to be part of?
| SYSTEM -

Which Tablespace do you want to create the table in?
|ToOLS -]

Cancel)] Help j] Back

5. At the last step of the Table Wizard, a SQL statement is generated in relation
to the new table.
CREATE TABLE " SYSTEM'. " CUSTOMER'
("CI' D' NUMBER(10, 3) NOT NULL,
" CNAME" VARCHAR2(15) NOT NULL,
| " CADD" VARCHAR2(50) NOT NULL,
" CPHONE" NUMBER(15, 8) NOT NULL,
CONSTRAI NT " CUSTOMER_CI D_PK" PRI MARY KEY("CID'),
UNI QUE("CI D"))
TABLESPACE " TOOLS"

SQL and PL/SQL - 81

ORACLE ppa 1asks

In the above SQL statement, a table CUSTOMER has been created. It
contains columns of CID, CFNAME, CLNAME, CADD and CPHONE in which
the CID is defined as the primary key. This CUSTOMER table is part of the
‘system* schema and is created in the ‘tools’ tablespace.

6. After the table is created, any change that needs to be made can be done in
the schema management or using ALTER TABLE clause.

21.2 Analysing Tables

= Validating Structure

Action: Create a table named INVALID_ROWS based on the script utlvalid.sql
supplied from Oracle, located in the rdbms/admin directory of the software
installation.

SQL> @:\oracl elora81\rdbns\adm n\utl valid. sql

Tabl e created.

This table holds information of corrupted blocks

Example: To verify the integrity of each data block of the ORDERS table.

SQL> ANALYZE TABLE ORDERS VALI DATE STRUCTURE;

Tabl e anal yzed.

If Oracle encounters bad rows, they are inserted into the | NVALI D_ROWS table.

No bad rows are generated from ORDERS table.

SQL> select * frominvalid_rows;

no rows selected

= Finding Migrated Rows

The LIST CHAINED ROWS clause of the ANALYZE command can be used to find
the chained and migrated rows of a table. When chained rows are encountered,
ORACLE writes the ROWID of such rows to the CHAINED ROWS table.

Create a table named CHAINED_ROWS based on the script utlchain.sqgl supplied
from Oracle, located in the rdbms/admin directory of the software installation.

SQL> @:\oracl e\ora81\rdbns\adn n\utl chai n. sql

Tabl e created.

Example: analyse EMPLOYEES table to find migrated rows.

SQL> ANALYZE TABLE enpl oyees LI ST CHAI NED ROWS;

Tabl e anal yzed.

Find the number of migrated rows of EMPLOYEES table from the CHAINED_ROWS
table. As the result indicates, there is no chain rows occurred in the EMPLOYEES
table.

SQL and PL/SQL - 82

ORACLE ppa 1asks

SQL> S ELECT COUNT(*)
2 FROM CHAI NED_ROWS
3 WHERE OWNER_NAME ='s ysteni
4 AND TABLE_NAMVE =' EMPAOYEES' ;

= Collecting Statistics

Example: gather statistics on system’'s EMPLOYEES table.

SQL> ANALYZE T ABLE E MPLOYEES C OVMPUTE S TATI STI CS;

Tabl e a nal yzed.

The statistics generated is stored in the data dictionary, ie. DBA_TABLES. The
following query retrieves statistics of average row length, the number of empty
blocks, number of rows and number of chained rows in EMPLOYEES table.

SQL>s el ect A VG_ROW LEN, EMPTY_BLOWKS, n um rows,ch ain_cnt
2 from dba_tables
3 wheret able_name='E MPLOYEES';

AVG_ROW LEN EMPTY_BLOCKS NUM_ROWS CHAIN _CNT

21.3 Obtain ROWID information

The DBMS_ROWID package provides several functions that can be used to convert
between ROWID formats and to translate between ROWID and its individual
components.

Example: find out which files and blocks contain the orders from customer cid
‘50001".

SQL>s electd isti nctd bnms_rowid.rowid_relative_fno(rowid)as" file",
2 dbms_row d.r owi d_bl ock_nunber(rowi d) as" Bl ock"
3 from customers
4 wherec id='50001"

21.4 Retrieve Extent Information

Using the following clause enables us to verify the current extent information of a
particular table.

SQL and PL/SQL - 83

ORACLE ppa 1asks

[SQL>s electc ount (*)
| 2 from dba_extents
3 wheres egment_nanme= ' ORDERS'

4 and owner= ' SYSTEM,;
COUNT(*)
7

21.5 Allocate extents manually

Allocating extents manually might be required in order to control the distribution of
extents of a table across files. In addition, the dynamic extension of tables can be
prevented if we allocate extents manually before loading data in bulk.

The extents can be allocated manually using ALTER TABLE...... ALLOCATE
EXTENT... command. For example:

SQL>altert able systemorders
2 allocate extent(siz e2 00k) ;

Tabl e a | te red.
SQL>s el ectc ount (*)

2 from dba_ext ents
3 wheres egnent_nane= ' ORDERS'

4 and owner= ' SYSTEM,;
COUNT(*)
10

In the above example, the table syste.orders has been assigned additional 200k
sizes of extents. When retrieving the extent information again using the clause
mentioned earlier, we can find that the number of extents has increased from 7 to 10.

21.6 Dropping a Table

When a table is no longer needed, it can be dropped using DROP TABLE clause.

However, when trying to drop table ORDERS, the following error message is
generated, and the drop table failed.

ERROR at line1l:
ORA-04098:t ri gger'S YS.JIS$RAE TRIGGER$'i s invalid andf ailedr e-
val i dation

The cause of the error message is that a trigger was attempted to be retrieved for
execution and was found to be invalid. This also means that
compilation/authorization failed for the trigger. The action | took was to resolve the
compilation/authorization errors.

SQL and PL/SQL - 84

ORACLE ppa 1asks

1. Log in SQL*PLUS as SYS
2. Issue the following statement

SQL> alter trigger SYS.JI S$ROLE_TRI GGER$ conpi |l e;

Trigger altered.

3. Drop the table again using the DROP TABLE statement. The table then is
dropped successfully.

SQL> drop tabl e orders;

Tabl e dropped.

SQL and PL/SQL - 85

ORACLE ppa 1asks

22. MANAGING INDEXES

22.1 Creating Indexes

= B-Tree indexes

B-Tree index is organized in a structure like a tree, with nodes and leaves, and it
restructures itself automatically whenever a new row is inserted in the table. (Sarin,
2000) It is most useful on columns with a significant amount of variety in their data.
For example, a customer name column, which contains many distinct values, would
be a good candidate.

SQL> Create index custonernanme_i dx
2 on custoners (cnane)
3 tabl espace index_tbs;

| ndex created.

= Reverse-Key Indexes
Reverse-key indexes can be used to avoid unbalanced indexes in certain situations,
such as when ascending values are being inserted into a table, while lower values
are deleted. (Sarin, 2000)

Create UNI QUE index enployee_eid_idx
on enpl oyees(eid)

t abl espace i ndex_tbs

REVERSE;

= Bitmap indexes

Unlike B-Tree indexes, Bitmap indexes are appropriate for columns with only a few
distinct values. In addition, they should only be used if the data is infrequently
updated, as they add to the cost of all data manipulation transactions against the
tables they index. (Sarin, 2000) For example, employees’ postcode column would
be appropriate for Bitmap index.

SQL> Create BI TMAP i ndex epcode_i dx
2 on enpl oyees(epcode)
3 tabl espace index_tbs;

I ndex creat ed.

= Function-Based Indexes
Function-based index is one of the new types of indexes introduced in Oracle 8i. ltis
index that stores pre-computed values of functions or expressions. (Oracle8i
Administrator’s guide, 1999) A function-based index can be created with either a B-
tree or bitmap index structure:

Example: create a function-based index base on the delivery date (DELVER_DATE)
in the ORDERS table.

SQL> CREATE | NDEX del i ver dat e_i dx
2 ON orders(delver_date);

| ndex created.

SQL and PL/SQL - 86

ORACLE ppa 1asks

When DELVER_DATE is referenced in the SELECT or DELETE statement, the
function-based index ‘deliverdate_idx’ will be used by the optimiser to retrieve the
data. For example, when querying the following select statement, the
‘deliverdate_idx’ index will be used. Without the function-based index, the ORDERS
table would need to perform a full table scanned.

SELECTorderid, itemd
FROM or der s
WHERE d elv er _date=t o_date(' 22- APR-2002’,‘ DD MM\ YYYY');

22.2 Reorganising Indexes

= Changing Storage Parameter for Indexes

The storage parameters and block utilisation parameters can be modified by using
the ALTER INDEX command. In the following example, the storage parameter of
CUSTOMERNAME_IDX index has been changed to use a next extent size of 400k
and a maximum extent size of 100.

SQL> ALTER IN DEX c ust oner name_i dx
2 storage(next4 00k
3 nmaxextents 100);

I ndex a | te red.

= Rebuilding Indexes

The rebuild capability allows users to recreate an index without having to drop the
existing index. The currently available index is used as the data source for the index
instead of using the table as the data source.

In the following example, the customername_idx index is rebuilt in the index_tbs02
tablespace.

SQL>ALTER | NDEX cust onern ame_i dx Rebuild
2 table space index_tbs02;

I ndex a | te red.

22.3 Dropping indexes

When an index is corrupt, invalid or no longer needed, it may need to be dropped.
DROP INDEX is the command used to drop an index. In the following example, the
index ‘customername_idx’ is dropped.

SQL> D ROP | NDEX CUSTOMERNAVE_| DX;

I ndex d ropped.

SQL and PL/SQL - 87

ORACLE ppa 1asks

23. MANAGING USERS

23.1 Creating a new user

In order to create a new user, the CREATE USER system privilege needs to be
granted. Since all DBA users accounts have this privilege, firstly log in SQL*PLUS as
sysdba. Then enter the CREATE USER command.

The following shows a sample of CREATE USER statement.

SQL> connect/ as sysdba
Connect ed.
SQ.> CREATE USER Mary
2 | DENTI FI ED BY usermary
3 DEFAULT TABLESPACE users
4 TEMPORARY TABLESPACE tenp;

User creat ed.

In the above example, a new user MARY has been created with password usermary.
Objects created by this user will be stored by user tablespace. The temporary
tablespace is temp in which the user to sort operations and also to store temporary
LOBS and temporary tables.

At this point, MARY is not yet allowed to perform any tasks in the database. As
shown in the following example, the attempt to connect MARY to the database was
failed. The error message indicates that Mary lacks privileges to log in to the
database.

SQL> connect mary/usernary;
ERROR:
ORA-01045: user MARY | acks CREATE SESSI ON privil ege; | ogon denied

Therefore, after creating a new account, we need to grant system privilege to the
new user, which gives the right to perform certain type of action in the database.

SQL and PL/SQL - 88

ORACLE ppa 1asks

23.2 Granting System Privileges / Roles

Oracle provides three standard roles granted to new users. They are: (Oracle8i
Administrator’s Guide,1999)

The Connect Role

This role is usually given to occasional users. It gives the user the CREATE
SESSION and ALTER SESSION privileges, and the ability to create tables, views,
sequences, clusters, synonyms, and links to other databases.

The Resource Role

This role is usually granted to more sophisticated and regular users of the database
and permits them to perform many of the same actions allowed with the CONNECT
role. In addition, the user also has the privilege to create their own tables,
sequences, procedures, triggers, indexes, and clusters.

The DBA Role

The DBA role includes all system privileges, as well as the ability to grant all
privileges to other users.

Privilege is given to the user by using GRANT command. In the following example,
the new user is granted with connect and resource privilege / role.

SQL> Grant create session to Mary;
Grant succeeded.

SQL> connect mary/usermary
Connect ed.

After being granted the CREATE SESSION privilege, user MARY is now able to log
on to the database.

Enter the following CREATE TABLE command to create a table in Mary’s account.

SQL> CREATE TABLE nt abl e
2 (id INTEGER constraint ntable_pk primary key,
3 nane varchar2(10));

CREATE TABLE nt abl e

ERROR at line 1:

ORA- 01031: insufficient privileges

However, the table creation failed and the error message indicates that Mary does
not have sufficient privileges to create table in the database. This is because
CREATE SESSION privilege merely allow users to log on to Oracle.

Connect to the database as SYSTEM, and grant CONNECT role to Mary.

SQL> connect system manager
Connect ed.

SQ.> grant connect to mary;

Grant succeeded.

SQL and PL/SQL - 89

ORACLE ppa 1asks

Enter the CREATE TABLE statement again after log on to MARY’s account.

SQL>c onnectm ary / user mary

Connect ed.

SQL> CREATE T ABLE mt abl e
2 (id INTEGER constraintmtable_pkp rimaryk ey,
3 nane varchar 2(10));

CREATE T ABLE mt abl e

ERROR at line1l:
ORA-01950:n o privile geso nta bl espace ' USERS'

However, this time appears another error message, which indicates that User Mary
must be given a resource quota on the USERS tablespace to be able to create and
store objects within it. In the following command, using ALTER USER...QUOTA
command to give the user 15M of space to store objects owned by user Mary in the
tablespace USERS.

SQL> C ONNECT S YSTEM MANAGER;
Connect ed.
SQ.>ALTER USER Mary Q UOTA 1 5M ON USERS;

Usera | tered.

After the quota space has been specified, user MARY is able to create objects using
CREATE TABLE command.

SQL> C ONNECT MARY/ USERMARY

Connect ed.

SQL> C REATE T ABLE mt abl e
2 (id INTEGER constraintmtable_pkp rimaryk ey,
3 nanme varchar 2(10));

Tabl e ¢ reat ed.

23.3 Dropping a User

Users can be dropped using DROP USER command.

SQ.> DROP USER mary;
DROP USER mary

ERROR at linel:
ORA- 01922: C ASCADE mustb es pecifiedtod rop ' MARY

This response means that the MARY account cannot be dropped with the

DROP USER mary; statement because there are objects exist within the user
MARY’s schema. As the error message indicats, CASCADE needs to be included in
the statement in order to drop the user and also the objects owned by the user.

SQ.> DROP USER mary CASCADE;

Userd ropped.

SQL and PL/SQL - 90

ORACLE ppa 1asks

24. MANAGING PRIVILEGES

There are two types of Oracle privileges: system privileges and object privileges.
System privileges include rights to perform system-wide database actions; the
following are examples of system privileges: (Oracle8i Administrator's guide, 1999)
« GRANT ANY PRIVILEGE

« CREATE ROLE

« CREATE USER

* ALTER ANY INDEX

« DROP ANY TRIGGER

« SELECT ANY TABLE

Object privileges consist of rights to perform specific actions on specific schema
objects. Examples of object privileges include:

* SELECT « EXECUTE

* UPDATE ¢ INSERT

* ALTER * INDEX

* DELETE * REFERENCES

24.1 Granting Privileges

A user can grant privileges on any objects he or she owns whilst the DBA can grant
any system privileges.

= Granting System Privileges

To grant a system privilege, the user must have either the GRANT ANY PRIVILEGE
system privilege, or the system privilege that you are attempting to grant must have
been granted to the user with the ADMIN OPTION.

For example, connect as SYSTEM, create two users, ROBERT and MARY with the
following privileges.

SQL> grant create session, create table to mary;
Grant succeeded.
SQL> Grant create session to Robert;

Grant succeeded.

The above commands gives both MARY and ROBERT the ability to connect to
ORACLE, and gives MARY extra capability to create tables. The privileges are
granted by SYSTEM since SYSTEM has GRANT ANY PRIVILEGE and GRANT ANY
ROLE privileges.

Now, grant CREATE USER system privilege to user Mary with admin option.

SQL and PL/SQL - 91

ORACLE ppa 1asks

SQL> CGRANT CREATE USER to Mary with ADM N OPTI ON;

Grant succeeded.

SQL> connect mary/usermary
Connect ed.

SQL> CREATE USER Kate identified by cat;
User created.

SQL> connect system manager

Connect ed.

SQL> grant create session to kate;

Grant succeeded.

SQL> connect mary/usermary
Connect ed.
SQ.> grant create user to Kate;

Grant succeeded.

SQL> connect kate/cat;

Connect ed.

SQL> CREATE USER Vi ncent identified by sky;

User creat ed.

The with admin option clause permits the grantee to give the SYSTEM privilege on
other users. In this case, user MARY is able to grant other user (KATE) with
CREATE USER system privilege. Therefore, Kate is able to create user VINCENT
successfully.

= Granting Object Privileges
The object privilege can usually be granted by the owner of the object or by other
user who has been given the object privilege with the WITH GRANT OPTION clause.

Grant Object Privileges by the Object Owner
For example, user MARY owns the CUSTOMERS table. In order for Robert to
access the CUSTOMER table, the SELECT object privilege needs to be granted.

In the following, connect as SYSTEM, and grant ROBERT the SELECT privilege
using GRANT command.

SQL> connect system manager
Connect ed.
SQL> GRANT SELECT ON Mary.custoners to Robert;
GRANT SELECT ON Mary. custonmers to Robert
*

ERROR at line 1:
ORA- 01031: insufficient privileges

However, the above error message is generated. This is because that the object
privilege can only be granted by the owner of the object or any other user who
received the privilege from the owner with GRANT OPTION.

SQL and PL/SQL - 92

ORACLE ppa 1asks

When reconnecting to the system as MARY and give ROBERT the SELECT
privilege, the GRANT was succeed.

SQL> connect mary/usermary

Connect ed.

SQL>

SQL> GRANT SELECT ON Mary.custoners to Robert;

Grant succeeded.

When connect as ROBERT and try to query the CUSTOMERS table, user ROBERT
is able to select data from that table.

SQL> connect robert/userrob
Connect ed.
SQL> select * from Mary. cust oners;

Cl D CFNAME CLNAME

CADD CPHONE
101 Paul W | son

123 Clayton road 96782415
102 Lucas Roy

41 d enhuntly road 95712800
103 John Smith

38 Mcmaster court 97580322
Cl D CFNAME CLNAME

CADD CPHONE
104 Lisa Morri son

1 Flinder street 96508016
105 M chael Chen

3500 Lancell road 98133049

Grant Object Privileges with Grant Option

In the following example, user MARY, the CUSTOMERS table owner, grants
SELECT privilege on her table to the user KATE with grant option.

SQL> CONNECT MARY/ USERMARY
Connect ed.

SQL> GRANT SELECT ON custoners to Kate W TH GRANT OPTI ON;
Grant succeeded.

SQL> CONNECT KATE/ CAT
Connect ed.

SQL> GRANT SELECT ON MARY. CUSTOMERS TO VI NCENT;

Grant succeeded.

The WITH GRANT OPTION clause allows the recipient of that grant to pass along
the privileges he or she has received to other users. In this case, KATE is able to
grant the SELECT privilege on MARY’s CUSTOMERS table to user VINCENT even

SQL and PL/SQL - 93

ORACLE ppa 1asks

though she is not the owner of the object. Therefore, VINCENT is allowed to query
MARY'’S CUSTOMERS table from his account.

SQL> CONNECT VI NCENT/ SKY

Connect ed.

SQ.> SELECT * FROM MARY. CUSTOVERS
2 WHERE CI D = 103;

Cl D CFNAME CLNAME

CADD CPHONE
103 John Smith

38 Mcmaster court 97580322

24.2 Revoking Privileges

Privileges granted can be taken away by using REVOKE command.

= Revoke System Privileges

In order to revoke a system privilege from a user, It needs to be performed by users
have that privilege with THE ADMIN OPTION. However, it is not necessary to be the
user whom you granted the privilege from.

SQL> CONNECT MARY/ USERMARY
Connect ed.

SQL> REVOKE CREATE USER FROM KATE;

Revoke succeeded.

SQL> CONNECT KATE/ CAT
Connect ed.
SQL> CREATE USER | AN | DENTI FI ED BY SW M
CREATE USER | AN | DENTI FI ED BY SW M
*

ERROR at line 1:
ORA- 01031: insufficient privileges

Since user MARY has revoked the CREATE USER system privilege from user
KATE, any attempt by user KATE to create a new user will result in the error
message above.

= Revoke Object Privileges
Unlike revoking system privileges, revoking object privileges can only be done by the
user who granted you with that object privilege at the first place.

SQL> connect systenf nanager;

Connect ed.

SQL> revoke select on nmary.custonmers fromrobert;
revoke sel ect on nmary.custoners fromrobert

*

ERROR at |ine 1:

ORA- 01927: cannot REVOKE privil eges you did not grant

The above error message indicates that SYSTEM does not have the right to revoke
ROBERT's SELECT privilege since SYSTEM was not the one who granted ROBERT
that privilege.

SQL and PL/SQL - 94

ORACLE ppa 1asks

SQL> connect mary/usermary
Connect ed.
SQL> REVOKE SELECT ON customners fromrobert;

Revoke succeeded.

Once reconnecting as user MARY, the SELECT privilege is taken away successfully
from ROBERT. This can be proved by connecting as ROBERT and querying the
CUSTOMERS table from MARY’s schema. An error message indicates that the table
is no longer available to ROBERT.

SQL> connect robert/userrob;
Connect ed.
SQL> select * from mary. custoners;
select * fromnnary. custoners

*

ERROR at |ine 1:
ORA- 00942: table or view does not exist

However, revoking object privileges has a cascading effect. The example further
demonstrates that the user VINCENT’s SELECT privilege on MARY’s CUSTOMERS
table is taken away when revoking the privilege from user KATE. This is because
VINCENT'’s SELECT privilege is granted from KATE.

SQL> connect mary/usermary

Connect ed.

SQL>

SQL> REVOKE sel ect ON mary.custoners from Kate;

Revoke succeeded.

SQL> connect vincent/sky
Connect ed.
SQL> sel ect
2
SQL> SELECT * FROM MARY. CUSTOVERS;
SELECT * FROM MARY. CUSTOVERS

ERROR at |ine 1:
ORA-00942: table or view does not exist

SQL and PL/SQL - 95

ORACLE ppa 1asks

25. MANAGING ROLES
Arole is a named set of privileges that can be given to users and other roles. (Sarin,

2000) Using roles makes the task of managing security easier than granting
privileges to individual users.

25.1 Creating a Role

A role is created with CREATE ROLE statement. In the following example, a role
‘staff’ is created.

SQL> CREATE ROLE st aff;

Rol e creat ed.

The DBA can also create a role with a password to prevent unauthorized use of the
privileges granted to the role.

SQL> CREATE ROLE Supervisor
2 identified by busy;

Rol e creat ed.

25.2 Granting Privileges to a Role

After the role is created, we need to assign privileges to it. The privileges are
assigned using GRANT statement.

The following example shows ‘STAFF has been assigned CREATE TABLE and
CREATE SESSION system privileges.

SQL> GRANT create table, create session to staff;

Grant succeeded.

In the next example, the ‘STAFF’ role has also been granted the SELECT, INSERT,
UPDATE and DELETE object privileges on user MARY’'s CUSTOMERS table.

SQL> connect mary/usermary

Connect ed.

SQL> GRANT SELECT, | NSERT, UPDATE, DELETE
2 ON mary.customers TO staff;

Grant succeeded.

25.3 Assign Roles

Roles can be granted to other roles or to users.

= Granting arole to another role

SQL> GRANT STAFF to SUPERVI SOR;

Grant succeeded.

In this example, the STAFF role is granted to the SUPERVISOR role. Even though
no privileges are granted directly to the SUPERVISOR role, it will now inherit any
privileges that have been granted to the STAFF role.

SQL and PL/SQL - 96

ORACLE ppa 1asks

= Granting arole to users

Instead of granting each privilege to each user, we can grant privileges to the role
and then grant the role to each user. This greatly simplifies the administrative tasks
involved in managing privileges.

SQL> CREATE USER ZOY | DENTI FI ED BY FLY;
User creat ed.
SQL> GRANT STAFF to zoy;

Grant succeeded.

In this example, STAFF role is granted to user ZOY. Therefore, ZOY is now inheriting
all the privileges that have been granted to the STAFF role. As shown following,
ZOY is now able to query from Mary's CUSTOMERS table.

SQL> connect zoy/fly

Connect ed.

SQL> select * frommary.custoners
2 where cid = 101;

Cl D CFNAME CLNAME

CADD CPHONE
101 Paul W | son

123 Clayton road 96782415

25.4 Revoking Privileges from a role

ROVOKE command is used to revoke a privilege from a role.

SQL> REVOKE del ete ON enpl oyees from staff;

Revoke succeeded.

In the example, users of STAFF role will be unable to perform delete command on
the EMPLOYEES table.

25.5 Dropping a Role

DROP ROLE command is used to drop a role. As shown in the following example:

SQL> connect systenf nanager;
Connect ed.
SQL> DROP ROLE supervisor;

Rol e dropped.

The SUPERVISOR role and its associated privileges are removed from the database
entirely.

SQL and PL/SQL - 97

ORACLE ppa 1asks

26. MANAGING PROFILES

A profile is a set of limits on the use of database resources. Profiles are used to limit
users’ system and database resources and to maintain password restrictions.
(Oracle8i Administrator’s Guide, 1999)

The following are the steps to enforce resource limit using profiles

26.1 STEP 1: Create profiles

A profile is created using CREATE PROFILE command. In the example, profile
‘staff _profile’ is created to limit the number of failed login attempts, the number of
session allow for each user, etc.

SQL> CREATE PROCFILE staff_profile LIMT
FAI LED LOG N_ATTEMPTS 2

SESSI ONS_PER_USER 1

CPU_PER_SESSI ON 10000

| DLE_TI ME 30

CONNECT_TI ME 360;

O WN

Profile created.

26.2 STEP 2: Assign profiles to the user.

= For new user:

Example: create new user JOHN and assign the ‘staff profile’ profile to the user.

SQL> CREATE USER John | DENTI FI ED BY userj ohn
2 DEFAULT TABLESPACE new_t abl espace
3 TEMPORARY TABLESPACE tenp
4 PROFI LE staff_profile;

User creat ed.

When the profile is not specified during the user creation, the Oracle Server will
assign its default profile, called DEFAULT,to users. This profile specifies unlimited
resources for each of its parameters.

= For existing user:

ALTER USER command is used to change existing user’s profile setting.

SQL> ALTER USER Mary
2 PROFILE staff_profile;

User altered.

SQL and PL/SQL - 98

ORACLE ppa 1asks

26.3 STEP 3: Enabling Resource Limits

In order to make the Oracle Server enforce resource limits, the value of the
initialization parameter RESOURCE_LIMIT in the init.ora file must be set to TRUE.
This can be done through:

Setting the initialization parameter RESOURCE_LIMIT to TRUE in the parameter file
‘init.ora’. Then restart the databse.

or

Enforce the resource limits by enabling the parameter with the ALTER SYSTEM
command so that there is no need to restart the database.

SQL> ALTER SYSTEM SET RESOURCE_LI M T=TRUE;

System al t er ed.

SQL and PL/SQL - 99

ORACLE ppa 1asks

CHAPTER 4 Performance Tuning

27. SQL TUNING

MEASURE THE PERFORMANCE OF SQL QUERIES

Problems with poorly performing applications can frequently be traced to poorly
written SQL statements. The following are commonly used tools for measuring the
performance of SQL statements, SQL TRACE and TKPROF, Explain Plans and
AUTOTRACE. Gathering and analysing application information in the form of trace
files and execution plans is the first step to understanding how the application is
performing.

27.1 SQL TRACE and TKPROF

Oracle trace files contain session information for the process that created them. The
information is useful for performance tuning and system troubleshooting.

In order to examine a SQL statement, the DBA should obtain the trace output for the
statement and use the TKPROF utility to convert the trace file into a form that can be
more easily understood. The steps for setting up and running TRACE utility and
TKPROF utility are as follows:

EXAMPLE: USER-SELF TRACE for user IVY

= STEP 1: Set Initialization Parameters

When tracing application code to gather performance statistics, the initialisation
parameter timed_statistics should be set to true. The initialisation parameters
max_dump_file_size and user_dump_dest should also be specified.

Action: setting the timed_statistics parameter via an ALTER SESSION command.

SQL> ALTER SESSI ON set TI MED_STATI STI CS= TRUE;

Sessi on al tered.

Using the default value for the following parameters.

max_dunmp_fil e_size = 10240
user _dunp_dest = C:\oracl e\ adm n\ project\udunp

= STEP 2: Activate the Tracing Process

Action: enable tracing process within the user’s session by using ALTER SESSION
command.

SQL> ALTER SESSI ON SET sql _trace= TRUE;

Sessi on al tered.

SQL and PL/SQL - 100

ORACLE ppa 1asks

= STEP 3: Run the SQL statement

Action: execute the following SQL statement

sel ect eid, efnanme, elname, eadd ephone, did
from enpl oyees

where did = 101

order by eid;

sel ect eid, efname, elnane, eadd, epcode, did
from enpl oyees
where did in (101);

sel ect orderid, ord_date, cid
fromorders
where eid = 520;

The output trace file is created in the directory specified for the user_dump_dest
parameter.

= STEP 4: Disable the TRACE utility

Action: disable tracing process with the following command.

SQL> ALTER SESSI ON SET SQL_TRACE = FALSE

Sessi on al tered.

= STEP 5: Format the TRACE file with TKPROF

Action 1: Identify the generated trace file for user IVY.

SQL> SELECT s. usernane, p.spid
2 FROM v$session s, v$process p
3 WHERE s.paddr = p.addr
4 AND p. background is null;

USERNAME SPI D
1376
1324
1380
1384
SYS 1200
DBSNVP 1312
I VY 1056

The result indicates that a trace file ‘'ora01056.trc’ has been generated for user IVY’s
session.

Action 2: run TKPROF to convert the ‘ora01056.trc’ into a readable format. Execute
the following command in command prompt.

C: >TKPRCOF c:\oracl e\ adm n\ proj ect\udunp\ ora01056.trc
d:\project\oracl e\trace.txt explain=ivy/000 sys=no

The TKPROF translates the TRACE file to a readable format ‘trace.txt’.

SQL and PL/SQL - 101

ORACLE ppa 1asks

= STEP 6: Interpret the Output

An example of the output is shown below. For the complete list of the TKPROF
output (trace.txt), please refer to the Appendix D.

select order id,o rd_date,c id
fr om or ders
wheree id= 520

call count cpu ela psed disk query c¢ urre nt r ows
Par se 1 0. 30 0. 49 1 0 1 0
Execute 1 0. 00 0.00 0 0 0 0
Fetch 2 0. 00 0.00 1 2 4 3
to tal 4 0. 30 0.49 2 2 5 3

Misses inli brarycach e duringp arse:1
Optimiz ergo al: C HOOSE

Par sing user id: 48 (1 1VY)

Rows Row Sour ce Operati on

3 TABLE ACCESS FULL ORDERS

Rows Executio n Plan
0 SELECT STATEMENT GOAL CHGDSE
3 TABLE A CCESS (FULL) OF 'ORDERS'

The example output shows 2 disk reads and 7 memory reads (query plus current).
The disk column indicates the physical reads usually when no index is used. The
execution path indicates a full table scan confirms that there might be a potential
problem.

27.2 EXPLAIN PLAN

Oracle’s Explain Plan facility is used to determine how a particular SQL statement is
processing. It does not actually execute the SQL statement but only shows what will
happen if the statement is executed. (Niemiec, 1999) With this information, it is
possible to improve the statement’s performance by rewriting the SQL code to
eliminate unwanted behaviour.

The steps to evaluate the performance of SQL statement using EXPLAIN PLAN tool
are as following:

= STEP 1: Create the PLAN_TABLE

The plan table is used to insert the query execution plan in the form of records. This
step only needs to be performed once.

Action: create the plan table with the ORACLE ‘utlxplan.sql’ script.

SQL> @c: \ oracl e\ ora81\rdbns\ adm n\ utl xpl an.s gl

Tabl e ¢ reat ed.

SQL and PL/SQL - 102

ORACLE ppa 1asks

= STEP 2: Run EXPLAIN PLAN for the Query to be Optimized

Action: Populate the PLAN_TABLE with the SQL statement’s execution plan using
the EXPLAIN PLAN FOR command:

SQL> EXPLAIN PLAN FOR

2 selecto rderid,e id

3 fromorders o,i tens i

4 whereo .itemd=i .it emidand

5 (ord_qty*pri ce)=(selectM AX(ord_qty *price) from

6 orderso, itensiwh ereo.i temid= i.itemd);
Expl ai ned.

= STEP 3: Query the Plan Table
Action 1: query the PLAN_TABLE in order to see how the explained statement would
be executed:

SQL>s electi d, operation,o ptions,o bject_nane
2 from pl an_ta bl e;

| D OPERATION OPTI ONS OBJECT_NAME

0 S ELECT STATEMENT

1FILTER

2 N ESTED L OOPS

3T ABLE ACCESS FULL ORDERS

4 T ABLE ACCESS BY | NDEX ROW D | TEMS

51 NEEX UNI QUE SCAN | TEMS_| TEM D_PK
6 S ORT AGCREGATE

7 N ESTED L OOPS

8 T ABLE ACCESS FULL ORDERS
9 T ABLE ACCESS BY | NDEX ROW DI TEMS
101 NLEX UNI QUE SCAN | TEMS_| TEM D_PK

11r ows se | ect ed.

Action 2: Retrieving a more readable output by using the following command.

SQL>s electl pad('' ,4 *(I evel-2))| |LEVEL|]|".'] |nvl(position,0)]| "'
2 ||operation||'" ||options||' '||object_nane
3 "Execution Plan"
4 from plan_table
5 startw ith id=0
6 connectb y priori d =parent_id;

SQL and PL/SQL - 103

ORACLE ppa 1asks

Execution Pl an
0 SELECT STATEMENT
1 FILTER
3.1 NESTED LOOPS
4.1 TABLE ACCESS FULL ORDERS
4.2 TABLE ACCESS BY I NDEX ROW D | TEMS
5.1 I NDEX UNI QUE SCAN | TEMS_I TEM D_PK
3.2 SORT AGGREGATE
4.1 NESTED LOOPS
5.1 TABLE ACCESS FULL ORDERS
5.2 TABLE ACCESS BY | NDEX ROW D | TEMS
6.1 | NDEX UNI QUE SCAN | TEMS_| TEM D_PK

11 rows sel ected.

= STEP 4: Interpret the EXPLAIN PLAN Output
Action: interpret the EXPLAIN PLAN output derived from last step.

The Explain Plan output is interpreted by starting at the innermost operation in the
Explain Plan.

6.1 This step is executed first. The ITEMS_ITEMID_PK index is scanned to
produce the list of ROWIDs to the following step.

5.2 For each ROWID returned, this operation will access the ITEMS table by
ROWID, get the requested data, and return the data to the following step.

5.1 Oracle takes the resulting rows from the FTS of ORDERS and then
compares the results of that operation to each row in the previous operation
(5.2) via the ITEMS_ITEMID_PK index.

The TABLE ACCESS FULL operation in the Explain Plan indicates that a
Full Table Scan (FTS) occurred for table ORDERS. These operations cause
every row in a table to be accessed. This can be a costly operation. The
appropriate use of indexing may help to minimize performance problems
associated with FTS.

4.1 The NESTED LOOPS operation indicates that the ORDERS table is jointed
to the ITEMS table via the ITEMS_ITEMID_PK index. This NESTED LOOPS
produces the result of the subquery.

3.2 The rows returned from the last operation will be analysed via the SORT
AGGREGATE operation, which will return the maximum (ord_qgty*price)
value to the user.

5.1 For each row of data received from 3.2, this operation will use the item ID to
perform a unique scan to get the ROWID.

4.2 Access the ITEMS table by ROWID and retrieve the data.
4.1 The Oracle optimiser takes the resulting rows from the FTS of ORDERS and

then compares the results of that operation to each row in the previous
operation (4.2) via the ITEMS_ITEMID_PK index.

SQL and PL/SQL - 104

ORACLE ppa 1asks

3.1 The NESTED LOOPS operation indicates that the ORDERS table is jointed
to the ITEMS table via the ITEMS_ITEMID_PK index.

2.1 The FILTER operation indicates that the rest of the conditions of the
WHERE clause are applied.

1.0 This indicates it is a SELECT statement.

27.3 AUTOTRACE Utility

EXPLAIN PLAN and statistics about the performance of a query can also be
generated via AUTOTRACE.

The steps to evaluate the performance of SQL statement using EXPLAIN PLAN tool
are as following:
= STEP 1: Create the PLAN_TABLE

The PLAN_TABLE need to exist for the user to insert the EXPLAIN PLAN output
record. As it has already been created earlier, this step does not need to be
performed again for the example.

= STEP 2: Grant the Trace Role to The User

The PLUSTRACE role needs to be granted to the users in order for them to perform
the AUTOTRACE utility.

Action 1: create a database role, ‘PLUSTRACE’ role, by running the ORACLE script
‘plustrce.sql'.

SQL> @:\oracl e\ora81\sql pl us\ adm n\ plustrce. sql

Action 2: grant the ‘PLUSTRACE’ role to user VY.

SQL> GRANT plustrace TO I vy;

Grant succeeded.

The following error message will be generated if the PLUSTRACE role is not granted
to the user to perform the AUTOTRACE.

SQL> SET AUTOTRACE ON

SP2-0613: Unable to verify PLAN _TABLE format or existence

SP2-0611: Error enabling EXPLAIN report

SP2-0618: Cannot find the Session Identifier. Check PLUSTRACE role is
enabl ed

SP2-0611: Error enabling STATI STICS report

= STEP 3: Enable AUTOTRACE Utility

Action: issue the following command to activate AUTOTRACE
| SET AUTOTRACE ON |

SQL and PL/SQL - 105

ORACLE ppa 1asks

= STEP 4: Run the Query to be Optimized

Action: issue the following SELECT statement

SQL>S ELECT orderi d,d el ver _date
2 FROM orders
3 WHERE del ver _date =
4 TO DATE(' April2 2,20 02','Monthdd, YYYY');

Output:

ORDERID D ELVER DA
33332 2-APR-02
33342 2- APR-02

Execution Pl an
0 SELECT STATEMENT Opt i m zer =CHOOSE
1 0 TABLE A CCESS (FULL) O F ' ORDERS

Statistics
260 recursivecalls
5 db blockg ets
54 consistentge ts
2 physicalr eads
0 redosize
474 bytess entvi aSQL*Nett ocli ent
425 bytesr eceivedviaSQL*Netfr omclient
2 SQ*Netr oundtripst o/fromcl ient
4 sort s(nmenory)
0 sorts (disk)
2 rowsprocessed

OPTIMISE SQL STATEMENTS

There are varies methods available to improve SQL statements efficiency. Methods,
include hints, indexes and parallel operations, are most commonly used to tune the
problem queries. The approach is to experiment with optimiser hints and try
alternate forms of the statement.

27.4 Hints

The use of hints in a given query may achieve better performance. Hints provide a
mechanism to direct the optimiser to choose a certain query execution plan based on
the type of operation required. (Oracle8i Designing and Tuning for Performance, 1999)

SQL and PL/SQL - 106

ORACLE ppa 1asks

= Hint for Execution Path

These hints modify the execution path and use the specified optimisation approach,
either cost-based or rule-based or both. They will override what is specified in the
initialisation parameter. This type of hints includes:

ALL_ROWS
CHOOSE
FIRST_ROWS
RULE

Example 1: optimise the following query with a hint that can give the best response
time.

The elapsed time is derived from the TKPROF output. For the complete list of the
result for each experiment, pleas refer to Appendix E.

Sel ect * from orders; |

Elapsed time: 0.42

» TUNING ACTION1: SPECIFY A FULL HINT

SELECT /*+ FULL(ORDERS) */ *
FROM ORDERS;

Elapsed time: 0.20

» TUNING ACTION 2: SPECIFY AN INDEX HINT

SELECT /*+ I NDEX (ORDERS CRDERS CRDERI D_PK) */ *
FROM ORDERS;

Elapsed time: 0.11

» TUNING ACTION 3: SPECIFY AN RULE HINT

SELECT /*+ RULL */*
FROM ORDERS;

Elapsed time: 0.02

The FULL hint and INDEX hint belong to access methods hint category. Those hints
allow the user to vary the way the actual query is accessed. However, they use
higher memory and CPU to perform the query. As a result, the response time is
longer. In the example, out of the three hints, RULE hint achieves the best response
time.

SQL and PL/SQL - 107

ORACLE ppa 1asks

= Hints for Join Orders

Example: Optimise the performance of the following join table query, which returns all
the orderid, customer ID, customer name and total amount for each order. The goal
of this optimisation is to find the best response time. The AUTOTRACE and TKPROF
utilities are activated to generate the EXPLAIN PLAN outputs.

SQL>Selecto rderid,o rders.cid,cn ame AS "Custoners", (ord_qty*price) as
"Total "

2 fromorders,c ustoners,i tens

3 whereo rders.itemd=i tens.itemd and

4 orders.cid =c ustoners. cid;

The AUTOTRACE output

Execution Pl an
0 SELECT STATEMENT Opt i m zer =CHOOSE
1 0 NESTED L OOPS
2 1 NESTED L OOPS
3 2 TABLE ACCESS (FULL) O F' ORDERS'
4 2 TABLE ACCESS (BY IN DEX ROWD) O F'l TEMS'
5 4 I NDEX (U NlQUE SCAN) O F ' I TEMS_I TEM D_PK' (UNI QUE)
6 1 TABLE ACCESS (BY | NDEXROWD) O F' CUSTOMERS'
7 6 I NDEX (UNIQUE SCAN) O F' CUSTOMERS_CI D_PK' (UNI QUE)

0 recursivecalls
4 db blockg ets
34 consistentge ts

3 physicalr eads

0 redosize
1025 bytess entv iaSQL*Nett o client
425 bytesr eceivedviaSQL*Netfr omclient

2 SQ*Netr oundtripst o/fromcl ient

0 sort s(menory)

0 sort s(disk)

8 rowsprocessed

TKPROF output

call count cpu ela psed disk query c¢ urre nt r ows
Par se 1 0. 04 0.09 0 0 0 0
Execute 1 0. 00 0.00 0 0 0 0
Fet ch 2 0. 00 0.02 3 34 4 8
to tal 4 0. 04 0.11 3 34 4 8

> TUNING ACTION 1: SPECIFY ORDERED HINT IN THE QUERY
Action: include an ORDERED hint in the query.

SQ.> Select /*+ ORDERED */ orderid, orders.cid, cname AS " Custoners",
(ord_qty*price) as" Total"

2 fromorders,c ustoners,i tens

3 whereo rders.itemd =i tens.it emidand

4 orders.cid =c ustoners. cid;

SQL and PL/SQL - 108

ORACLE ppa 1asks

Execution Pl an

0 SELECT STATEMENT Opt i m zer =CHOOSE (Cost =5 C ar d=55 Byt es=5390)

1 0 HASH JOI N (Cost=5 Card=55 Bytes=5390)
2 1 HASH J O N (C ost =3 Car d=67 By t es=4824)
3 2 TABLE ACCESS (FULL) OF ' ORDERS (C ost =1 Card=82By t es=4264)

4 2 TABLE ACCESS (FULL) OF 'C USTOMER (Cost =1 Card=82 Byt es=1640)

5 1 TABLE ACCESS (FULL) OF' I TEMS'(Cost=1 Card=82B ytes=2132)

Statistics
82 recursivecalls
12 db blockg ets
8 consistentge ts
0 physicalr eads
0 redosize
1001 bytess entvi aSQ*Nett ocli ent
425 bytesr eceivedviaSQL*Netfr omclient
2 SQ@*Netr oundtripst o/fromcl ient
3 sort s(menory)
0 sort s(disk)
8 rowsprocessed

TKPROF output

call count cpu elap sed disk query curren t r ows
Par se 1 0. 09 0.14 0 0 0 0
Execute 1 0.00 0.02 0 0 0 0
Fetch 2 0. 00 0.03 0 4 12 8
to tal 4 0. 09 0. 19 0 4 12 8

The ORDERED hint forces the ORDERS, CUSTOMERS and ITEMS tables to be
accessed in a particular order, based on their orders in the FROM clause of the
query. The ORDERS table is the driving table and is accessed first. As the execution
plan shows, a HASH join is performed. It indicates that a hash table is created by
ORACLE to store the result sets derived from scanning the ORDERS table. Then it
scans the second table ‘CUSTOMERS’ to retrieve corresponding records and
following the result would be joined with the ITEMS table, which is accessed last.

As the EXECUTION PLAN indicates, the consistent gets and the physical read are
improved. However, the use of HASH joins increases the use of memory resource.
The elapsed time is end up increase to 0.19 second.

> TUNING ACTION 2: USE THE ORDERED HINT AND VARY THE ORDER OF THE TABLES
Action: change the order of ITEMS table and CUSTOMERS table in the clause.

SQ.> Select /*+ ORDERED */ orderid, orders.cid, cnane AS "Customers",
(ord_qty*price) as~—Tota
2 from orderd custoneps
3 whereo rders™ emid =i tetrs.it emidan d
4 orders.cid =c ustoners. cid;

SQL and PL/SQL - 109

ORACLE ppa 1asks

Execution Pl an

0 SELECT STATEMENT Opti m zer =CHOOSE (Cost =5 Car d=55 Byt es=5390)
1 0 HASH JOI N (Cost =5 C ar d=55 B yte s=5390)

2 1 HASH J O N (C ost =3 Car d=67 By t es=5226)

3 2 TABLE ACCESS (FULL) OF ' ORDERS (C ost =1 Card=82By t es=4264)
4 2 TABLE ACCESS (FULL) OF 'I TEMS' (Cost =1 Card=82By tes=2132)
5 1 TABLE ACCESS (FULL) OF ' CUSTOMERS (C ost=1C ard=82 Byt es=1640)

0 recursivecalls

12 db blockg ets

4 consistentg ets

0 physicalr eads

0 redosize
990 bytess entvi aSQ.*Nett ocli ent
425 bytesr eceivedviaSQL*Netfr omclient
SQL*Netr oundtripst o/ fromcl ient
sort s (menory)
sort s (disk)
rows p rocessed

COoOWN

TKPROF output

call count cpu elap sed disk query curren t r ows
Par se 1 0. 05 0.05 0 0 0 0
Execute 1 0. 00 0.00 0 0 0 0
Fetch 2 0. 00 0.00 0 4 12 8
to tal 4 0. 05 0. 05 0 4 12 8

The order of the tables in the FROM clause has alter the order in which Oracle
perform the HASH join. The elapsed time of this query is down to only 0.05 second.
The query performance is much improved.

27.5 Indexes

It is possible to improve SQL queries by forcing the optimiser to scan all the entries
from the index instead of the table.

If the index is physically smaller than the table, it will take less time to scan the entire
index than to scan the entire table.

Example: use a function index to optimise the following query.

SQL>SELECTorderid,i temid
2 FROM orders
3 WHERE del ver _date<= to_date ('22-APR-2002',' DD MM YYYY');

ORDERID ITEMD
3331 90003
3332 90006
3333 90001
3334 90003

SQL and PL/SQL - 110

ORACLE ppa 1asks

Execution Pl an
0 SELECT STATEMENT Opt i m zer =CHOOSE
1 0 TABLE ACCESS (FULL) O F' ORDERS'

Statistics
181 recursivecalls
5 db blockg ets
42 consistentge ts
0 physicalr eads
0 redosize
573 bytess entv iaSQ*Nett ocl ient
425 bytesr eceivedviaSQL*Netfr omclient
2 SQ@*Netr oundtripst o/fromcl ient
4 sort s(nmenory)
0 sort s(disk)
4 rowsprocessed

TKPROF output

call count cpu el apsed dis k query curr ent rows
Par se 3 0. 38 0.78 0 0 2 0
Execute 3 0. 00 0. 00 0 0 0 0
Fetch 6 0. 00 0.02 0 8 8 12
to tal 12 0. 38 0.80 0 8 10 12

M ssesi n libraryc acheduringp arse:3
Optim zer goal: CHOCSE
Parsingus eri d: 48 (1VY)

The execution plan indicates that Oracle performed a full table scan on the ORDERS
table. Not only does the query run slowly, it also exploits higher amount of memory
and CPU to perform the query. .

» ACTION: CREATE FUNCTION INDEX FOR ‘DELVER_DATE’

SQL> CREATE | NDEX del very_date_i dx
2 ONIV Y.orders(delver_date);

| ndex c reated.

» ACTION: EXECUTE THE QUERY AGAIN.

SQL> S ELECT orderid, itemd
2 FROM orders
3 WHERE del ver _date<= to_date ('22-APR-2002',' DD MM\ YYYY');

ORDERID ITEMD
3331 90003
3332 90006
3333 90001
3334 90003

SQL and PL/SQL - 111

ORACLE ppa 1asks

Execution Pl an

0 SELECT STATEMENT Opt i m zer =CHOOSE
1 0 TABLE A CCESS (BY | NDEX ROW D) OF ' ORDERS'
2 1 I NCEX (RANGE SCAN) OF ' DELVERY_DATE_| DX' (NON- UNI QUE)

0 recursivecalls
0 db blockg ets
4 consistentge ts
0 physicalr eads
0 redosize
573 bytess entvi aSQ.*Nett ocli ent
425 Dbytesr eceivedviaSQL*Netf romcl ient
2 SQ@*Netr oundtripst o/fromcl ient
0 sort s(menory)
0 sort s(disk)
4 rowsprocessed

TKPROF output

call count cpu elap sed disk query curren t r ows
Par se 2 0. 15 0. 43 0 0 1 0
Execute 2 0. 00 0.00 0 0 0 0
Fet ch 4 0. 00 0.02 0 6 4 8
to tal 8 0.15 0.45 0 6 5 8

M ssesi n libraryc acheduringp arse:?2
Optim zer goal: CHOCSE
Parsingus eri d: 48 (1VY)

The query is now faster with the added index. Since the ‘delver_date’ column has
been properly indexed, Oracle does not need to perform a full table scan. The
number of memory reads is lower and subsequently reduce the physical reads.

SQL and PL/SQL - 112

ORACLE ppa 1asks

28. TUNING THE SHARE POOL

The Shared Pool is the portion of the System Global Area (SGA) that caches the
SQL and PL/SQL statements that have been recently issued by application users.
The Shared Pool is made up of three components: the Library Cache, the Data
Dictionary Cache, and the User Global Area.

MEASURE THE PERFORMANCE OF THE SHARE POOL

The performance of the Shared Pool is measured by calculating the hit ratios for both
library cache and data dictionary cache.

28.1 Library Cache

The tuning goals for tuning library cache include: (Oracle8i Designing and Tuning for
Performance Release 2 (8.1.6), 1999)

» Reduce misses
= Avoid fragmentation

The performance of the Library Cache is measured by calculating the reload ratio, hit

ratio, pinhit ratio, etc. The hit ratio information can be located in the
V$LIBRARYCACHE dynamic performance view.

= Monitor the library cache RELOAD ratio

SQL> sel ect sum(pins) Executions, sum(rel oads) "CACHE M SSES WH LE
EXECUTI NG', sum(rel oads)/sum pi ns) "RELOAD RATI O'
2 from v$librarycache;

EXECUTI ONS CACHE M SSES WHI LE EXECUTI NG RELOAD RATI O

289546 56 . 000193406

The sum of the EXECUTI ONS column indicates that SQL statements, PL/SQL
blocks, and object definitions were accessed for execution a total of 289,546 times.

The sum of the CACHE M SSES WHI LE EXECUTI NG column indicates that 56 of
those executions resulted in library cache misses causing Oracle to implicitly re-
parse a statement or block or reload an object definition because it aged out of the
library cache.

The ratio of the total misses to total executions is about 0.19%. This value means
that only 0.19% of executions resulted in re-parsing. The state of current system is
considered well tuned since the reload ratio is below 1 percent.

SQL and PL/SQL - 113

ORACLE ppa 1asks

= Monitor the library cache HIT ratio

SQL> select SUMPINS) / (SUMPINS) + SUM RELOADS)) "HI T RATIO'
2 FROM V$LI BRARYCACHE;

H T RATIO

. 999824564

A library cache hit ratio of over 99.98 percent is achieved. There is no need to
increase the SHARE_POOL_SIZE parameter. Consideration should be given to tune
the SHARE_POOL_SIZE parameter if the ratio is below 95 percent.

= Monitor the PIN HIT ratio

SQL> select (sum(pinhits) / sum(pins)) "PIN H T RATIO
2 FROM V$LI BRARYCACHE;

PIN H T RATIO

. 993081998

The ratio indicates that every time an item is executed in the system, 99.3 percent of
the time that it is already allocated and valid in cache. This ratio should always be
maintained to close to 1.

28.2 Data Dictionary Cache

The main tuning goal for tuning data dictionary cache is to avoid dictionary cache
misses. The hit ratio information is located in the V$ROWCACHE dynamic
performance view.

= Monitoring the Dictionary Cache HIT ratio

SQL> select sum(gets) "Gets", sum getm sses) "M sses",
2 (1 - (sum(getm sses) / (sun(gets) +
3 sum(getm sses))))*100 "Hit Rate"
4 from v$rowcache;

Gets M sses Hit Rat e

12557 820 93.8700755

The result of this query shows that the application is finding the data dictionary
information it needs, already in memory, 93.87 percent of the time. Consideration
should be given to tuning the Shared Pool if the Data Dictionary hit ratio is less than
85 percent.

28.3 Monitor SHARE_POOL_SIZE memory

Monitoring the size of free memory available in SHARE_POOL_SIZE also helps to
determine if the SHARE_POOL_SIZE parameter needs to be increased.

SQL and PL/SQL - 114

ORACLE ppa 1asks

Action: run the following query to find out how fast memory in the Shared Pool is
being depleted and also what percentage of memory is unused.

SQL>c ol valuefo r9 99,999, 999,999 heading' Shared PoolS ize'
SQL>c ol bytesfo r9 99, 999,999,999 heading' FreeBytes'
SQL>s el ect to _nunber (v $par anete r. val ue) v al ue, v$sgastat . bytes,
2 (v$sgastat.b ytes/v$paraneter.v alue)*100" Percent_Free"
3 from v$sgastat,v $paraneter

4 wherev $sgastat.name = 'freemenory’
5 and v$parameter.nane =' shared_pool _size';
Shared P ool S i ze Fre e Bytes Percent_ Free
31,4 57, 280 25, 613,512 81. 4231618
31,4 57, 280 614, 400 1.953125
31, 457,2 80 16, 105, 472 51. 1979167

This query was run after starting the database and running other queries for about 2
hours. The result indicates that there is plenty of free memory after the system is run
for some time. Therefore, there is no need to increase the SHARE_POOL_SIZE
parameter.

OPTIMISE THE SHARE PooL

If the share pool hit ratio is low, the DBA might need to consider to improve the
performance of Shared Pool. The technique for optimising the Shared Pool
performance is as following:

28.4 Increase Share Pool Size

This is achieved by increasing the value of initialisation parameter,
SHARED POQ._SI ZE.

To estimate the adequate size for the Share Pool, run the following query after
starting up the database, the instance and running for a period of time.

SQL>s elects uma.spspv) "Packages/Views", sum(a.spssql) "SQ Statements",

2 sum@a.spsusr)" SQ Users",r ound((sum(a.spspv)+s um a.spssql)+
3 sum@a.spsusr))*2 .5,-6)" Estimaeds hared_pool_ size"
4 from (selects umisharable_nems pspv,0sp ssql,0 spsusr
5 from v$db_object_cache
6 wunionall
7 selectO ,su m(sharable_men), Of romv$sql area
8 wheree xecutions>5
9 wunionall
10 selectO ,0,s um(250 *u sers_opening)f romv$sqgl area) a;

Packages/Views SQL Statements SQL UsersEs ti mated shared_pool _si ze

12954529 1236777 4250 35000000

(Query sourc e: http:// www.uaex.e du/sr ea/sh ared_ pool_ size. sql)

SQL and PL/SQL - 115

ORACLE ppa 1asks

28.5 Pin (Cache) PL/SQL Object Statements Into Memory

= Step 1: Build DBMS_SHARED_POOL
Action: create the package with the ORACLE ‘dbmspool.sql’ script.

SQL> @c: \ oracl e\ ora81\ rdbns\ adnm n\ dbnspool .s gl

Package cr eat ed.

Grants ucceeded.

Vi ew cr eat ed.

Package bo dy c reated.

= Step 2: Pinthe selected PL/SQL object statements

Action: pin ‘orderspackage’ package, created in the SQL and PL/SQL module, in
memory using the DBMS_SHARED_POOL.KEEP procedure.

SQL> E XECUTE DBMS SHARED_POOL. KEEP (' or der spackage');

SQL and PL/SQL - 116

ORACLE ppa 1asks

29. TUNING THE DATABASE BUFFER CACHE

MEASURE THE PERFORMANCE OF THE DATABASE BUFFER CACHE

29.1 Monitor the Data Buffer Hit Ratio For the Entire Instance

Action: run the following query to determine if the data block buffer is set high enough

SQL>SELECT1 - (physical.value /(blockgets.value+consis tent.value))
"Buff erC acheHitR atio"

FROM v$sysst atp hysic al ,

vésysstatbl ockgets,

vésysstatco nsistent

VWHERE p hysic al . name ="' physicalr eads'

AND bl ockgets. name= "'dbblockgets'

AND consi ste nt.name =' consistentg ets';

O~NO T WN

Buf ferC acheHit Ratio

. 981596242

According to Sarin (2000), a data base buffer hit ratio of 1 is ideal. The closer the
data buffer hit ration is to 1, the better the performance. The result of this query
indicates that around 98 percent of time, Oracle found the data blocks it needed in
memory, instead of having to read them from disk. No modification is needed for the
buffer cache.

29.2 Monitor the Data Buffer Hit Ratio For an Individual Session

Action: run the following query to calculate a per-session Database Buffer Cache hit
ratio. In this example, the V$SESS_| O and V$SESSI ON views are used.

SQL> SELECT u sern ame, o suser,

2 1 - (io.physical_reads/(io.block_gets+io.consistent_gets))

3 "Hit Ratio"

4 FROM v$sess_ioi 0,v$ session sess

5 WHEREi o.sid=s ess.sid

6 AND (io.block_gets+ io0.consistent_gets)!= 0

7 AND username | SNOT NULL;
USERNAME OSUSER HtR atio
John | VY- B2HSLL1HHGI\ | vy .9 91962175
[AYA% SYSTEM . 697812892
MARY | VY- B2HSLL1HHGI\ | vy 1

The result of this query shows the database buffer cache hit ratio for user IVY, JOHN
and MARY. While the overall database performance is acceptable, user IVY might
be experiencing performance issues.

SQL and PL/SQL - 117

ORACLE ppa 1asks

OPTIMISE THE DATABASE BUFFER CACHE

If the database buffer hit ratio is low, the DBA might need to consider improving the
performance of the data buffer. The techniques for increasing the database buffer hit
ratio are as following:

29.3 Increase Buffer Cache Size

The easiest way to improve the performance of the Database Buffer Cache is to
increase its size. The size of the Database Buffer Cache is determined by the
DB_BLO® _SI ZE and DB_BLOMK_BUFFERS in the ‘i nit . ora’ parameters.

29.4 Cache Tables in Memory

Cache tables can be implemented in three ways:

> EXAMPLE 1: MODIFY THE EXISTING TABLE EMPLOYEES INTO A CACHE TABLE

SQL> ALTER TABLE enpl oyees CACHE;

Table a l te red.

The EMPLOYEES table is cached in memory. This prevents its data from being aged
out of the data buffers.

> EXAMPLE 2: CREATE A NEW CACHE TABLE SALARY.

SQL> CREATE TABLE s al ary

(e mp oyee_i d n unber,

wor kmode v ar char 2(11),

pay_per _hr nunber,

total _hrn umber,

bankdet ai | varchar2(30))

TABLESPACE n ew_t abl espace

STORAGE (I NITI AL5 OK NEXT 5 OK PCTI NCREASE 0)
CACHE;

©Co~NOUR~WN

Tabl e ¢ reat ed.

» EXAMPLE 3: USE HINTS TO CACHE

SQ.>s elect/ *+CACHE*/E ID, E LNAME, E FNAME
2 FROM EMPLOYEES;

EID E LNAME EFNAME
520 P et ers on Jim

521 Manson Clair
522S mth Todd
523 Gwen Rebecca
524 J oans Mar een
525 C hang Ml ler
526 T ayl or Jessi ca
528 S penser Nancy

8r owss el ected.

SQL and PL/SQL - 118

ORACLE ppa 1asks

» EXAMPLE 4: DISPLAY CACHE TABLE INFORMATION

SQL> S ELECT o wner,t abl e_nane
2 FROM dba_t abl es

3 WHERE LTRI M(cache)= 'Y';
OVWNER TABLE_NANME
I VY EMPLOYEES
SYSTEM SALARY

SQL and PL/SQL - 119

ORACLE ppa 1asks

30. TUNING THE REDO LOG BUFFER

The main purpose to tune the Redo Log Buffer is to ensure there is adequate space
so that log space requests from server processes and transactions can be satisfied.

MEASURE THE PERFORMANCE OF THE REDO LOG BUFFER

30.1 Using V$SYSSTAT Performance View

SQL>SELECTr etri es.val ue/ entries.value"R edoL og Buffer
2 RetryR atio"
3 FROM v$sysst atr etrie s,v $sysstate ntries
4 WHEREr etrie s.name= 'redobuffer allocationr etri es'
5 AND entries.nane='r edoentri es';

Redo L og Buffer
Retry R ati o

The result shows, for every entry that is placed in to the Redo Log Buffer by the user
server processes since the instance start up, 0.12 % of the time user server
processes has to wait and then retry placing the entry in the Redo Log Buffer
because LGWR had not yet written the current entries to the online redo log.

Oracle recommends that this Redo Log Buffer Retry Ratio should be less than 1
percent. (Oracle8i Designing and Tuning for Performance Release 2 (8.1.6) 1999)
The result returned by the query indicates that the redo log buffer is in the good
condition.

30.2 Using V$SESSION_WAIT Performance View

SQL> SELECT u sernanme, w ait _tine,se conds_i n_wait
2 FROM v$sessi on_wait, v$session
3 WHERE v$session_wait. sid=v $session.sid
4 AND eventLl KE' |og buffers pace';

nor ows se |l ected

The SECONDS_IN_WAIT value of the “log buffer space” event indicates the time
spent waiting for space in the redo log buffer because the log switch does not occur.
This is an indication that the buffers are being filled up faster than LGWR is writing.
This may also indicate disk I/O contention on the redo log files.

As no rows are returned form the above query, no tuning action is needed for the
redo log buffer.

SQL and PL/SQL - 120

ORACLE ppa 1asks

30.3 Using V8SYSTEM_EVENT Performance View

SQL>s electe vent,t otal_waits,t ime_waited,a verage_wait
2 from v$syste m event
3 wheree vent like' logf iles witchc onple tion%;

nor ows se |l ected

This dynamic performance view reports the number of waits that have occurred since
instance startup for a variety of events.

As no rows are returned, it indicates that no waits have occurred.

OPTIMISE THE REDO LOG BUFFER

30.4 Increase Redo Log Buffer Size

The size of the Redo Log Buffer is determined by the LOG_BUFFER in the
‘i nit .ora’ parameters. The way to improve the performance of the Redo Log
Buffer is to increase the value of this initialisation parameter.

30.5 Reduce Redo Generation

The alternative way to improve the performance of the Redo Log Buffer is to reduce
the amount of redo information generated by certain DML statement. This is
achieved by using UNRECOVERABLE or NOLOGGING keyword.
= UNRECOVERABLE keyword
It is used when creating a table using the CREATE T ABLE AS SELECT... SQL
command:

> EXAMPLE : CREATE A TABLE ORDER_HISTORY WITH THE UNRECOVERABLE

KEYWORD

SQL> CREATE T ABLE o rder _hi story
AS

SELECT *

FROM or ders

UNRECOVERABLE;

abwN

Tabl e ¢ r eat ed.

Tables created in this manner do not generate any redo information for the inserts
generated by the CREATE statement’s sub-query.

SQL and PL/SQL - 121

ORACLE ppa 1asks

= NOLOGGING keyword

» EXAMPLE 1: MODIFY THE EXISTING TABLE ORDER_HISTORY INTO A NOLOGGING

MODE

SQL> ALTER TABLE order _hi story NOLOGGAN G

Tablea ltered.

» EXAMPLE 2: CREATE A NEW NOLOGGING TABLE

SQL> C REATE T ABLE B ACKORDER

(backorderid n umber,

dat e_expecte dd at e,

date_receivedd ate,

gty_r ecei ved n unber,

orderidn umber(5))

TABLESPACE new_t abl espace

STORAGE (I NITI AL5 00k N EXT 5 00k P CTIN CREASE 0)
NOLOGG NG,

OCoO~NOOPA~WN

Tabl e ¢ reat ed.

In both examples, redo entry generation will be suppressed for all subsequent
DML on the ORDER_HISTORY and BACKORDER tables if that DML is of the
following types: (Sarin, 2000)

» Direct Path loads using SQL*Loader

» Direct load inserts using the /*+ DIRECT */ hint

» EXAMPLE 3: DISPLAY TABLES WITH NOLOGGING ATTRIBUTE

SQL> S ELECT o wner,t abl e_nane
2 FROM dba_t abl es
3 WHERE I oggin g=" NO;

OWNER TABLE_NAME
SYs ATEMPTABS

SYSTEM DEF$_TEMP$L OB
PORTAL30_DEMO RUPDS_EMP

SCOTT RUPD$_EMP

SYSTEM BACKCORDER

I VY ORDER_HI STORY

6r owss el ected.

SQL and PL/SQL - 122

ORACLE ppa 1asks

31. TUNING SORT OPERATION

MEASURE THE PERFORMANCE OF THE SORT OPERATION

SQL>s el ectd isk. value" Disk", m em.val ue "Menory",
2 (disk.value/ nemvalue)" Ratio"
3 fromv$sysstatmem v$sysstatd isk
4 wherememnanme=" sorts(menory)’
5 and disk.name =" sort s(disk) ;
Di sk Menor y Rati o
3 3788 . 000791975

There are currently 3788 sorts occurring in memory and 3 sorts occurring on disk.
The ratio of disk sorts to memory sorts is 0.07%. In general, the disk sort Ratio
should not be more than 5 percent. (Sarin, 2000) It should be kept as low as
possible. Therefore, the result indicates that there is sufficient memory for users to
perform the sort operations.

OPTIMISE PERFORMANCE OF THE SORT OPERATION

31.1 Increase SORT_AREA_SIZE

One way to improve the performance of sort operation is to increase the value of this
initialisation parameter SORT_AREA_SIZE.

Example: change the SORT_AREA_SIZE value using ALTER SESSION command.

| Alters essionsets ort_area_si ze=100000000; |

31.2 Optimising Sort Performance with Temporary Tablespaces

The overhead of any disk sorts can be minimised by performing all disk sorts in the
TEMPORARY tablespace.

Action : issue the following query to check the type of tablespace specified for each
user in the database.

SQL and PL/SQL - 123

ORACLE ppa 1asks

SQL>s electu sername,t emporary_tabl espace,b .contents
2 fromdba_usersa ,d ba_tablespaceshb

3 wherea .temporary_tabl espace =

b.tabl espace_nane;

USERNAME TEMPORARY_TABLESPACE CONTENTS

SYS TEMP TEMPCORARY
SYSTEM TEMP TEMPORARY
Z0Y SYSTEM PERMANENT
VI NCENT MY_DATAFI LE PERMANENT
KATE SYSTEM PERMANENT
ROBERT SYSTEM PERMANENT
I VY TEMP TEMPCORARY
MARY TEMP TEMPCORARY
JOHN TEMP TEMPORARY

Example 1: create a new TEMPORARY tablespace TEMPA

SQL>Createt able space T enpA
datafile' /oracl e/ oradatal/proj ect/ TenpA_01. dbf's ize 10 OM
"/ oracl el oradatalproj ect/ TenpA_02.dbf"' sizel O0OM
M nimum exte nt 5 00k
defaults torage(init ial5 00k
Next 5 00k
Maxext ent s 5 00
Pctincrease0)
TEMPORARY;

OCoO~NOOA~WN

Tabl espace c reate d.

Example 2: change the contents of a tablespace to temporary for user KATE.

SQL> ALTER USER KATE
2 TEMPORARY TABLESPACE TEMPA,

Usera | tered.

Verify the change on the tablespace.

SQL>s electu sername,t emporary_tabl espace,b .contents
2 fromdba_usersa ,d ba_tablespaceshb
3 wherea .temporary_tabl espace =b .tabl espace_nane

4 and USERNAME ="' KATE';
USERNAME TEMPORARY_TABLESPACE CONTENTS
KATE TEMPA TEMPORARY

Example 3: change the contents of tablespace ‘my_datafile’ to temporary.

This can only be done when there are no permanent objects such as tables or
indexes contained in the tablespace.

SQL> ALTER TABLESPACE MY_DATAFI LE TEMPORARY,

Tabl espacea | tered.

SQL and PL/SQL - 124

ORACLE ppa 1asks

Verify the change on the tablespace.

SQL>s el ectu sername,t emporary_tabl espace,b .contents
2 fromdba_usersa ,d ba_tablespaceshb
3 wherea .temporary_tabl espace =b .tabl espace_nane
4 and USERNAME ="' VI NCENT' ;

USERNAME TEMPORARY_TABLESPACE CONTENTS

VI NCENT MY_DATAFI LE TEMPORARY

SQL and PL/SQL - 125

ORACLE ppa 1asks

32. TUNING ROLLBACK SEGMENTS

MEASURE THE PERFORMANCE OF ROLLBACK SEGMENTS

32.1 Using VSROLLSTAT Performance View

SQL>s elects umwaits)*10 0/ sum(gets)" Ratio",
2 sumwaits) "Waits", sum(gets) "GCets"
3 fromv$rolls tat;

This query is used to find out the chances of wait for a user’s Server Process to gain
a successful access to a rollback segment. The ratio of the sum of WAITS to the sum
of GETS should be less than 5%. (Sarin, 2000) The ratio result is 0%, which
indicates no wait has occurred for access to rollback segments. No tuning is needed.

32.2 Using VSWAITSTAT Performance View

SQ.>SELECTa.class" Class",a .count" Count",
2 SUMb .value)" Total Requests",
3 ROUND(((a.count/S UMb.value))*1 00),3)
4 "PercentWaits"
5 FROM v$wai tstata ,v $sysstatb
6 WHERE a.class| N ('systemundoh eader',
7 ‘'systemundob | ock', 'undoh eader’',
8 ‘'undob I ock'
9
10 AND b.name IN('dbbl ockgets',' consistentge ts')
11 GROUPBY a.class,a .count;
Cl ass Count TotalR equestsPercentWaits
systemundo b | ock 0 170729 0
systemundo h eader 0 170729 0
undo b | ock 0 170729 0
undo h eader 0 170729 0

This query is used to find out the number of requests from the Database Buffer
Cache and the Rollback Buffer Cache that result in any amount of time spent waiting
to gain access to a rollback segment. The result for “Percent Waits” is 0%. If it had
been greater than 1%, the DBA would have had to create additional rollback
segments to reduce the level of contention.

SQL and PL/SQL - 126

ORACLE ppa 1asks

32.3 Monitor the Status of the Rollback Segments

SQL> SELECT

2 SUBSTR(DS. SEGVENT_NAME, 1, 22) R_SEGVENT,
SUBSTR(DS. TABLESPACE_NAME, 1, 20) TABLESPACE,

4 DS. BLOCKS,
5 DS. EXTENTS,
6 DRS. STATUS
7 FROM DBA SEGVENTS DS, DBA ROLLBACK_SEGS DRS
8 WHERE DS. SEGVENT NAMVE = DRS. SEGVENT NAVE

9

ORDER BY 1;
R_SEGVENT TABLESPACE BLOCKS EXTENTS STATUS
RBSO RBS 512 8 ONLI NE
RBS1 RBS 512 8 ONLI NE
RBS2 RBS 512 8 ONLI NE
RBS3 RBS 512 8 ONLI NE
RBS4 RBS 512 8 ONLI NE
RBS5 RBS 512 8 ONLI NE
RBS6 RBS 512 8 ONLI NE
RBSTESTO1 RBS 1280 20 OFFLI NE
SYSTEM SYSTEM 50 5 ONLI NE

9 rows sel ected.

OPTIMISE PERFORMANCE OF THE ROLLBACK SEGMENTS

32.4 Increase Rollback Segments

If the demand for rollback segments is high, additional rollback segments can be
created by using CREATE ROLLBACK SEGMENT command as was mentioned in
the previous module.

32.5 Monitor Rollback Area used by Transaction

Any transaction's rollback areas can be measured by monitoring the changes in the
system statistics tables during its run.

Example: monitor the rollback area used by the following transaction.

= STEP 1: Determine current Rollback Area values

Action: issues the following query.

SQL> SELECT SUM WRI TES) FROM V$SROLLSTAT;

SUM WRI TES)

SQL and PL/SQL - 127

ORACLE ppa 1asks

= STEP 2: Run the transaction

Action: issue the following query to insert a new order in the ORDERS table.

SQL>i nserti nto ivy.ordersv al ues

2 ('3339', t o_date('30/05/2002', ' dd/mnmyyyy'), '50003 , "' 90004,
'13',to_date(' 22/ 06/2002',' dd/
miyyyy')," 5207 ;

1r owcreated.

= STEP 3: Determine the Rollback area values after the transaction is

completed.

SQL> S ELECT SUMWRI TES) FR OM V$ROLL STAT;

= STEP 4: Calculate the size of the rollback information

When the transaction has completed, the size of the rollback information generated
can be calculated by using

ENDING_WRITES - BEGINNING_WRITES - 54 = ROLLBACK INFO GENERATED.
(source: www.oracle.com)

24628 — 23934 — 54 = 640

This tells how much rollback space is needed to handle this transaction. By knowing

how many transactions will be running at once will give an idea of how much space
will be needed in the ROLLBACKS tablespace.

32.6 Isolating Large Transactions

When dealing with large transactions, it is better to dedicate them to larger rollback
segments. This is achieved through the following steps:

= Put the rollback segment on line

SQL>c onnect/ as sysdba
Connect ed.
SQL> ALTER ROLLBACK SEGMVENT r bst est 01 O NLI NE;

Rol | back segment altered.

The rollback segment ‘rbstest01’ was created in the previous module.

SQL and PL/SQL - 128

ORACLE ppa 1asks

= Assign the transaction to the rollback segment
This is done by using SET TRANSACTION command.

SQL> SET TRANSACTI ON USE ROLLBACK SEGMVENT rbstest01;

Transacti on set.

SQL and PL/SQL - 129

ORACLE ppa 1asks

33. CONCLUSION

Throughout the project, SQL and PL/SQL knowledge was the fundamental element
required to perform most major DBA tasks. Various SQL statements and PL/SQL
statements have been put into practice to manage and optimise the performance of
the database. In the Architecture and Administration module, various simulations
were conducted to manage the physical database structures and memory structures.
Some of which included database creation, data security and managing parameter
files. Inthe Performance Tuning module, various simulations were also conducted to
monitor and measure the performance of the database structures and memory
structures. Different methods were explored to overcome the different tuning
problems that occurred.

However, the amount of data stored in the database in practice was insufficient. The
database in practice was also very new for any potential problems to arise. Thus, a
few of the tuning measurements and turning method experiments were unable to
show the effect of what it is capable of doing.

In conclusion, the tasks performed by a DBA can be very complex and difficult to
manage. Care should be practiced at all times. Combined with experience and the
right tools ensure optimal performance of the database.

SQL and PL/SQL - 130

ORACLE ppa 1asks

34. REFERENCES

Ault, M. R., ‘Oracle 8i DBA: SQL and PL/SQL’, 2001, Coriolis, Arizona.
Morrison, J., Morrison, M. ‘A Guide to Oracle8’, 2000, Course Technology, Canada

Niemiec, R. J., ‘ORACLE Performance Tuning Tips & Techniques’, 1999, McGraw-
Hill, USA

Oracle8i Administrator’'s Guide Release 2 (8.1.6) December 1999 Part No. A76956-
01
http://otn.oracle.com/docs/products/oracle8i/doc_library/817 doc

Oracle8i Documentation Addendum Release 3 (8.1.7) September 2000 Part No.
A85455-01

http://otn.oracle.com/docs/products/oracle8i/doc_library/817 doc/addendum.817/inde
x.htm

Oracle8i Designing and Tunning for Performance Release 2 (8.1.6), December 1999
http://otn.oracle.com/docs/products/oracle8i/doc_library/817 doc/server.817/a76992.

pdf

Sarin, S. ‘'ORACLE DBA Tips & Techniques’, 2000, McGraw-Hill, USA

Oracle 8i (8.1.7) Enterprise Edition installation guide
Oracle 9i Application Server release 1 (version 1.0.2.2)

Shared_Pool Script:
http://mww.uaex.edu/srea/shared_pool_size.sql

SQL and PL/SQL - 131

ORACLE ppa 1asks

Appendix

A. Table Creation

B. Data Insertion

C. Additional Tablespace

D. The trace output file ‘trace.txt’
E. TKPROF output for using

different hints

SQL and PL/SQL - 132

ORACLE ppa 1asks

A. TABLE CREATION

> CUSTOMERS TABLE

CREATE T ABLE c ust omrer s

(ci d NUMBER(5) co nstraint customers _cid_pkp rinary key,
cnane V ARCHAR2(10),

cadd V ARCHAR2(20) ,

cpcode n unber (4),

cphone N UMBER(8)) ;

> ORDERS TABLE

Createt ableorders

(orderid number(4)c onstrainto rders_orderid_pkpri maryk ey,

ord_dat e date,

cidnunber (5)c onstraint orders_cid _fkr ef erences custoners(cid),
item dnumber(5) constrainto rders_itemd_fkr eferencesi tens(i tem d),
ord_qty nu nber(5),

del ver _dat e d ate,

eidn unber (3)c onstraint orders_eid fkr ef erences enpl oyees(eid));

> EMPLOYEES TABLE

Createt abl e e npl oyees

(eidnunber(3)co nstraint enployees_eid_pkp rimry key,
ef name v ar char 2(1 0),

el name v ar char 2(15),

edob d ate,

eadd v archar 2(25),

ephone n unber (8),

epcode n unber (4),

Di d n unmber (3));

> ITEMS TABLE

Createt ablei tens

(item dnu nber(5)c onstrainti tenms_item d_pkp rimryk ey,
i temdesc var char(30),

pri cen umber(5),

goh n unber (4));

> DEPARTMENTS TABLE

Createt abl ed epartnments
(didnunber(3)co nstraint departnments_did_pkp rimryk ey,
depart _name v archar 2(10));

> PERFORMANCE TABLE

Createt abl e P erf ornmance

(Ratingch ar(1) constraintP erformance_rating_cc

check((Rating= '"A')o r (Rating= 'B')or(Rating ='C)or
(Rating= 'D')or(Rating ="' E')or(Rating=' F')),

| owsal e nu nber,

hi ghsal e nunber);

SQL and PL/SQL - 133

ORACLE ppa 1asks

> ORDERPRICE TABLE

Create table orderprice

(orderid nunber(4),

item d nunber(5) constraint price_item d_fk references itens(itemd),
ord_qty nunber(5),

Price number);

SQL and PL/SQL - 134

ORACLE ppa 1asks

B. DATA INSERTION

> CUSTOMERS TABLE

inserti ntoc ustonmersv alues
(50001,'C olesMer' ,' 123Clayton road', '3600', '96782415');

inserti ntoc ustonmersv alu es
(50002,'s ansung',' 41Gle nhuntly road', '3112','9 5712800" ;

inserti ntoc ustonmersv alu es
(50003,'H ilton'," 38Mcmasterc ourt',' 3897',' 97580322');

inserti ntoc ustonmersv alu es
(50004,'E vian', '"1Flinders treet ,' 3112',' 96508016');

inserti ntoc ustonmersv alues
(50005,'M onash'," 3500La ncellr oad',' 5038',' 98133049');

> ORDERS TABLE

inserti nto orders val ues
('3331', t o_date('13/04/2002, dd/mm yyyy'), '50005', ' 90003',
"10',to_date(' 20/ 04/2002', 'dd/ mmyyyy'), '521');

inserti ntoordersv al ues
('3332', to_date('14/04/2002', 'dd/mmyyyy'), '50001, ' 90006', '4 7',
to_date('2 0/ 04/2002',"'dd/ mm' yyyy'),' 520");

inserti ntoordersv al ues
('3333", t o_date('15/04/2002, "dd/mm yyyy'), '50003', ' 90001',
'5',to_date('22/04/2002', '"dd/mmyyyy'), '520');

inserti ntoordersv al ues
('3334', t o_date(' 16/04/2002, dd/mm yyyy'), '50002', ' 90003’
'15' ,to_date('22/04/2002','d d/mmyyyy'),' 524");

inserti ntoordersv al ues
('3335', t o_date('16/04/2002, dd/mm yyyy'), '50004', ' 90002,
"10',to_date(' 22/ 06/2002'," dd/mmy yyy'), '524');

> EMPLOYEES TABLE

inserti ntoe nployeesv alu es
('520', 'Jim, 'Peterson', to_date('02/11/1978','d d/nm/yyyy'), '13/78 King
Street', '94037878',' 1352',' 101" ;

inserti ntoe nployeesv alu es

('521','C lair', 'Manson' , to_date('30/03/1974,'d d/ mm/yyyy'), '2/8 Park
Street', '97750322',' 2012',' 101 ;

inserti ntoe nployees val ues

('522', 'Todd','S mth', to_date('17/04/1976', 'dd/ mmyyyy') , '11 Kew
Street', '94219660',' 1352',' 103" ;

inserti ntoe nployeesv alu es
('523'", 'Rebecca', ' Gwen', to _date('20/01/1975", ' dd/miyyyy'), 'l 6/2
Mel rose pl ace', '93315716',' 1032',' 102');

inserti ntoe nployeesv alu es
('524', 'Maeen', 'Joans', to_date('13/04/1979', 'dd/mmyyyy'), '133/6
Geniris road', '97305643',' 1033,' 101" ;

SQL and PL/SQL - 135

ORACLE ppa 1asks

inserti ntoe nplo yeesv alu es
('525', "Mller'," Chang' ,t o_date('03/07/1971','d d/ mm/yyyy") , '23/40 Water
street','9 7784106',' 2012',' ');
> ITEMS TABLE
inserti ntoi temsvalues
('90001', "HITACHmonitorl 7inch',' 900,' 50');
inserti ntoi temsvalues
('90002', "HITACHmonitorl 9inch'," 1500',"' 12');
inserti ntoi temsvalues
('90003', 'sony 56kmodem'," 90',' 68');
inserti ntoi temsvalues
('90004', 'Mcrosoftk eyboard',' 40',' 87');
inserti ntoi temsvalues
('90005', 'sony 52x C DROM drive', '120', '94');
inserti ntoi temsvalues
('90006', 'TDKfl opydisc x12','8 ',' 112');
» DEPARTMENTS TABLE
inserti ntod epartmentsva |l ues
(101, sales');
inserti ntodepartnentsva | ues
(102," Accounting');
inserti ntodepartnentsva | ues
(103," Marketing');
» PERFORMANCE TABLE
inserti ntop erformnceva | ues
("A,' 12001','2 0000');
inserti ntop erformnceva | ues
("B, '9001', '12000" ;
inserti ntop erformnceva | ues
('c,' 6001'," 9000');
inserti ntop erformnceva | ues
('D,' 3001'," 6000');
inserti ntop erformnceva | ues
('"E'," 1001',"' 3000');
inserti ntop erformnceva | ues
("F," 0, 1000);

SQL and PL/SQL - 136

ORACLE ppa 1asks

C. ADDITIONAL TABLESPACE

CREATE T ABLESPACE or d_data

DATAFI LE '/ oracle /oradatal/ proj ect/ord_data _01. dbf' SIZE 100M
EXTENT MANAGEMENT L OCAL AU TOALLOCATE;

CREATE T ABLESPACE ord_data 2

DATAFI LE '/ oracle / oradatal/ proj ect/ord_data _02. dbf' SIZE 1 00M

EXTENT MANAGEMENT L OCAL AU TOALLOCATE;

SQL and PL/SQL - 137

ORACLE ppa 1asks

D. THE TRACE OUTPUT FILE ‘TRACE.TXT’

TKPROF: Rele ase8 .1.7. 0.0 - Production onFr i Junl 02:12:4 1 2002
(c) Copyrigh t 2000 Oracle C orpor ation . All rig htsr eserv ed.

Tracef ile: c:\oracle \admn \ project \ udump or a0105 6.trc
Sortop tions : def ault

dk ok okkkk kk ok okkkk Kk kkkk ok okkkk ok okkkk ok okkkk ok kkkk ok kR ok okkkk kR kkkk ok kkkk ok okkkk ok kkkk ok kkkk ok kR %

count =n umberof times OClp rocedurew asex ecute d

cpu =cputi mein secondse xecuting

el apsed =elapsed tim e in secondsex ecuti ng

di sk =n umberof physic alre adso f buff ersf romdisk

query =n umberof buffer s gottenf orco nsist entr ead

current =n umberof buffer s gotteni n current node (usuallyf orup date)
rows =numberof rowsprocessedby thefetc h or executecall

dk kokkkk ok okkkk ok okkkk ok kkkk ok okkkk ok okkkk ok okkkk ok kkkk ok kkk kk ok kkkk ok kkkk ok kkkk R okkkk ok kkkk ok okkkk ok ok

ALTER SESSION SET sql_ trace = TRUWE

call count cpu elap sed disk query curren t r ows
Par se 0 0. 00 000 0 0 0 0
Execute 1 0. 05 0.07 0 0 0 0
Fetch 0 0. 00 0.00 0 0 0 0
to tal 1 0. 05 0.07 0 0 0 0

Misses inli brarycach e duringp arse:0
Misses inli brarycach e duringe xecut e:1
Optimiz ergo al: C HOOSE

Par sing user id: 48 (1VY)

dk kokkkk kokkkk ok okkkk Kk kkkk ok okkkk ok okkkk ok okkkk R kkkk ok kkkk ok okkkk kR kkkk ok kkkk ok okkkk ok okkkk ok kkkk ok ok

select eid, efname, el name,eaddepho ne,d id
fr om employe es
whered id= 101

orderb y eid

call count cpu elap sed disk query curren t r ows
Par se 1 0. 34 0. 49 0 0 0 0
Execute 1 0. 00 0.00 0 0 0 0
Fet ch 2 0.00 0.06 2 4 0 3
total 4 0. 34 0.55 2 4 0 3

Misses inli brarycach e during parse: 1
Optimiz ergo al: C HOOSE
Par sing user id: 48 (1 1VY)

Rows Row Sour ce Operati on

3 TABLE ACCESS BY IN DEX ROWID EMPLOYEES
9 INDEXFULL S CAN (objec t id 29359)

Rows Executi on Pl an
0 SELECT STATEMENT
3 TABLE ACCESS GOAL: A NALYZED (B Y INDEX ROWD) OF'E MPLOYEES'
9 I NDEX GOA.: AN ALYZED (FULL SCAN) O F 'EMPLOYEES_EI D_PK'
(UNIQUE)

dk kokkkk ok okkkk ok okkkk Kk kkkk ok kkkk ok okkkk ok okkkk ok kkkk ok kkkk R okkkk kR kkkk ok okkkk ok okkkk ok okkkk ok kkkk ok ok

select eid, efname, el name,eadd,epco de,d id
fr om employe es
whered idin (101)

call count cpu elap sed disk query current row s

Par se 1 0. 06 0.08 0 0 0 0

SQL and PL/SQL - 138

ORACLE ppa 1asks

Execute 1 0. 00 0. 00 0 0 0 0
Fet ch 2 0. 00 0. 00 1 2 4 3
total 4 0. 06 0.08 1 2 4 3

Misses in lib rary cacheduri ngparse: 1
Optimiz ergo al: C HOOSE
Par sing user id: 48 (1VY)

Rows Row Sour ce Operati on

3 TABLE ACCESS FULL EMPLOYEES

Rows Executio n Plan

0 SELECT STATEMENT
3 TABLE ACCESS GOAL: A NALYZED (F ULL) OF 'E MPLOYEES'

dk kokkkk kokkkk ok okkkk Kk kkkk ok kkkk ok okkkk Rk okkkk R kkkk ok kkkk ok okkkk kR kkkk ok okkkk ok okkkk ok okkkk ok kkkk ok ok

select order id,o rd_date, cid
fr om or ders
wheree id= 520

call count cpu elap sed disk query curren t r ows
Par se 1 0. 30 0. 49 1 0 1 0
Execute 1 0. 00 0.00 0 0 0 0
Fetch 2 0. 00 0.00 1 2 4 3
to tal 4 0. 30 0.49 2 2 5 3

Misses inli brarycach e duringp arse:1
Optimiz ergo al: C HOOSE
Par sing user id: 48 (1 1VY)

Rows Row Sour ce Operati on

3 TABLE ACCESS FULL ORDERS

Rows Executio n Plan

0 SELECT STATEMENT GOAL CH@MSE
3 TABLE A CCESS (FULL) OF 'ORDERS'

dk kokkkk kokkkk kokkkk Kk kkkk ok okkkk ok okkkk Rk kk ok kkkk ok okkkk Rk kkkk ok kkkk ok okkkk R kkkk Kk kkkk ok Rk ok kkk

ALTER SESSION SET SQL_TRACE = FALSE

call count cpu elap sed disk query curren t r ows
Par se 1 0.01 0.02 0 0 0 0
Execute 1 0. 00 0.00 0 0 0 0
Fetch 0 0. 00 0.00 0 0 0 0
total 2 0.01 0.02 0 0 0 0

Misses inli brarycach e duringp arse:1
Optimiz ergo al: C HOOSE
Par sing user id: 48 (1 1VY)

dk kokkkk kokkkk ok okkkk ok kkk kk ok okkkk ok okkkk ok kkkk ok okkkk ok okkkk ok okkkk ok kkkk ok okkkk R okkkk ok kkkk ok okkkk ok ok

OMVERALL TOTALS FOR ALL NON- RECURSIVE ST ATEMENTS

call count cpu elap sed disk query curren t r ows
Par se 4 0.71 1.08 1 0 1 0
Execute 5 0. 05 0.07 0 0 0 0
Fet ch 6 0. 00 0. 06 4 8 8 9
total 15 0. 76 1.21 5 8 9 9

SQL and PL/SQL - 139

ORACLE ppa 1asks

M sses in library cache during parse: 4
M sses in library cache during execute: 1

OVERALL TOTALS FOR ALL RECURSI VE STATEMENTS

call count cpu el apsed di sk query current r ows
Parse 24 0. 40 0.60 0 0 0 0
Execut e 31 0.01 0.04 0 0 0 0
Fetch 61 0.00 0.01 1 103 0 46
total 116 0.41 0.65 1 103 0 46

M sses in library cache during parse: 10

5 wuser SQ@Q statements in session.
24 internal SQ statements in session.
29 SQ. statements in session.
3 statenments EXPLAINed in this session.
EEEE R R EE SRS SRS EEREEEEEEREREEREEEEREEEREEERREEEREEREREEREEEREEEEEEREEEEEESERERSEESEESSES]
Trace file: c:\oracl e\adm n\project\udunp\ora0l056.trc
Trace file conpatibility: 8.00.04
Sort options: default

2 sessions in tracefile.
5 wuser SQ@ statements in trace file.
24 internal SQL statements in trace file.
29 SQ statenents in trace file.
16 unique SQ statenents in trace file.
3 SQ statements EXPLAI Ned using schena:
I VY. prof $pl an_t abl e
Defaul t table was used.
Tabl e was created.
Tabl e was dropped.
310 lines in trace file.

SQL and PL/SQL - 140

ORACLE ppa 1asks

E. TKPROF OUTPUT FOR USING DIFFERENT HINTS

sel ect*
from
orders

call count cpu elap sed dis k query curr ent rows
Par se 1 0. 25 0. 40 1 0 1 0
Execute 1 0. 00 0.00 0 0 0 0
Fet ch 2 0. 00 0. 02 1 2 4 8
total 4 0. 25 0.42 2 2 5 8
M ssesi n libraryc acheduringparse:1
Optim zer goal: CHOCSE
Parsingus eri d: 48 (1VY)
Rows Row Sour ce Operation

8 TABLE ACCESS F ULL O RDERS
Rows ExecutionP | an

0 SELECT STATEMENT GOAL: CHOGCSE

8 TABLE ACCESS (FULL) O F'O RDERS'

» THE FULL HINT

SELECT/ *+ F ULL(ORDERS) */ *
fromorders
call count cpu elap sed disk query current rows
Par se 1 0.11 0.20 0 0 0 0
Execute 1 0. 00 0.00 0 0 0 0
Fet ch 2 0. 00 0.00 0 2 4 8
total 4 0.11 0.20 0 2 4 8

M ssesi n libraryc acheduringparse:1
Optim zer goal: CHOCSE
Parsingus eri d: 48 (1VY)

Rows Row Sour ce Operation

0 SELECT STATEMENT GOAL: CHOOSE
8 TABLE ACCESS (FULL) O F'O RDERS'

SQL and PL/SQL - 141

> THE INDEX HINT

ORACLE ppa 1asks

SELECT / *+1 NDEX (ORDERS ORDERS_ORLERI D_PK) * /*
fromorders
call count cpu elap sed di sk query cur rent row s
Par se 1 0. 07 0. 09 0 0 0 0
Execute 1 0. 00 0.00 0 0 0 0
Fet ch 2 0. 00 0.02 1 4 0 8
to tal 4 0. 07 0.11 1 4 0 8
M ssesi n libraryc acheduringparse:1
Optim zer goal: CHOCSE
Parsingus eri d: 48 (1VY)
Rows Row Sour ce Operation
8 TABLE ACCESS BY | NDEX ROWID ORDERS
9 INDEXFULL S CAN (objectid2 9398)
Rows Executio nP | an
0 SELECT STATEMENT GOAL: CHOGCSE
8 TABLE ACCESS (BY | NDEX ROW D) OF ' ORDERS'
9 | NDEX (FULL SCAN) O F' ORDERS_ORDERI D_PK' (UNI QUE)
» THE RULE HINT
SELECT/ *+ R ULE */*
FROM ORDERS
call count cpu elap sed disk query curren t r ows
Par se 1 0. 02 0. 02 0 0 0 0
Execute 1 0. 00 0.00 0 0 0 0
Fet ch 2 0. 00 0. 00 0 2 4 8
to tal 4 0. 02 0.02 0 2 4 8
M ssesi n libraryc acheduringparse:1
Optimzer goal: RULE
Parsingus eri d: 48 (1VY)
Rows Row Sour ce Operation
8 TABLE ACCESS F ULL O RDERS
Rows Executio nP | an
0 SELECT STATEMENT GOAL: HINT: RU LE

8 TABLE ACCESS (FULL) O F'O RDERS'

SQL and PL/SQL - 142

