
M. Li et al. (Eds.): GCC 2003, LNCS 3033, pp. 847–854, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Preserving Data Consistency in Grid Databases with
Multiple Transactions

Sushant Goel1, Hema Sharda1, and David Taniar2

1 School of Electrical and Computer Engineering, Royal Melbourne Institute of Technology,
Australia

s2013070@student.rmit.edu.au
hema.sharda@rmit.edu.au

2 School of Business Systems, Monash University, Australia
David.Taniar@infotech.monash.edu.au

Abstract. High performance Grid computing provides an infrastructure for
access and processing of large volume, terabyte or even petabytes, of
distributed data. Research in data grid has focused on security issues, resource
ownership, infrastructure development and replication issues assuming presence
of single transaction in the system. In this paper we highlight that grid
infrastructure comes with new set of problems in maintaining the consistency of
databases in presence of multiple transactions. Traditional distributed data
management techniques may not meet the requirements of databases in grid
environment. We first show the circumstances where grid infrastructure may
produce incorrect results and then propose a correctness condition – Grid
Serializability Criterion that preserves the consistency of data in data-grids.

1 Introduction

Grid computing can be defined as a type of parallel and distributed system that
enables the sharing, selection and aggregation of geographically distributed
autonomous resources dynamically at runtime depending on their availability,
performance, cost and users Quality of Service [9]. Following the grid infrastructure
the need for data grid [3] was realized. Intension behind developing data grid was to
access and process geographically distributed data in computationally effective way.
Handling distributed data has many research issues like scheduling of transactions,
query execution, maintaining consistency of data etc.

Recent research in data grid has focused mainly on file structures and read-only
transactions [2,5,8]. Various replication strategies [1,3,5,6] have also been proposed
to maintain the consistency of the data in these Network File System (NFS) and
Distributed File System (DFS). Many applications need to modify the distant data, but
with the replication strategy it may be difficult to maintain the correctness of the data
in the data repository.

Sometimes data consistency is referred as keeping the replicated data items
synchronized [5]. This definition of data consistency assumes a single transaction in
the system. We model the scenario where multiple transactions are in action and the
transactions can be any combinations of read/write operations. In this paper we

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.2
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [595 842] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Durchschnittliche Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: << /QFactor 0.5 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Durchschnittliche Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: << /QFactor 0.5 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Durchschnittliche Neuberechnung
 Downsample-Auflösung: 1800 dpi
 Downsampling für Bilder über: 2700 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Nein

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages false
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.2
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Average
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Average
 /DetectBlends true
 /GrayImageDownsampleType /Average
 /PreserveEPSInfo true
 /GrayACSImageDict << /QFactor 0.5 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ColorACSImageDict << /QFactor 0.5 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 1800
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

848 S. Goel, H. Sharda, and D. Taniar

always refer consistency as the correctness of data in the data repository, we also use
correctness and consistency interchangeably. Thus, we focus on interleaving of
multiple transactions; the concept of interleaving of transactions is known as
serializability [10] in database systems. Based on centralized serializability, we name
the correctness criterion in grid environment as Grid Serializability Criterion (GSC).
The motive behind modelling multiple transactions with any read/write combination
would be clear in the following sections where we use an example to demonstrate that
under this scenario the data grid may produce incorrect result.

Large-scale science and engineering problems need to access geographically
separated data. Weather forecast, astronomical predictions, earth observation and
applications that need collaborative analysis will have to retrieve data from different
data sources. Traditional file systems like NFS and DFS, or Database Management
Systems (DBMS) [11] have either of two strategies to manage transactions [9] (a)
Central scheduling scheme (b) Decentralized consensus-based scheme. The central
scheduler may become performance bottleneck due to central overloaded site by using
these two scheduling strategy.

Motivation behind this research of decentralized processing of data is that the
enormous amount of data that today’s application has to handle, it is difficult to ship
the data between sites and at the same time it is computationally very expensive to
have a centralized scheduler. Secondly, centralized scheme and decentralized
consensus based scheme may be suitable for read-only transactions. But, if transaction
of any application has to modify any data source in the distributed data repository
then the central scheduler can become a performance bottleneck.

We show that new set of problems come into existence with introduction of
distributed schedulers in grid environment. One of the major issues in decentralizing
the scheduling responsibilities is the threat to maintain the consistency of the data.
This paper looks at the future data-intensive grid applications from data correctness
point of view. Section 2 gives an overview of data-grids. Section 3 discusses the new
dimension of problem that grid infrastructure introduces in multi-transaction
environment. Section 4 explains Grid Serializability Criterion, section 5 shows the
correctness of the algorithm. Section 6 concludes the work with future directions.

2 Database on Grid: An Overview

Most of the work done in data grid infrastructure assumes the existence of file
systems like NFS and DFS for data storage, they also assume the execution of single
transaction at a given time [6,7,5,8]. NFS and DFS are not designed to meet the
stringent requirements of high performance data intensive applications [7].

2.1 Data-Grid

With increasing diversity of scientific disciplines, amount of data collected is
increasing. In domains as diverse as global climate change, high-energy physics and
computational genomics the volume of data is already being measured in terabytes
and will soon be measured in petabytes [3]. It becomes increasingly difficult to handle

Preserving Data Consistency in Grid Databases with Multiple Transactions 849

this volume of data if the data itself is geographically distributed. Grids will enable
ubiquitous access to data and data-collection systems spread across the globe.

Two major challenges for data-intensive applications would be to adapt the
distributed data-scheduling environment and to keep the number of messages in the
system to minimum while maintaining the correctness of data. Under these
circumstances we need to integrate end systems in a more effective manner using new
hardware and software infrastructure.

Several design questions have been identified to meet the requirements for this
architecture like, How to provide metadata information that describes data set’s
location? What is the effect of caching of data in performance of the application?
How replication affects the performance? What happens if the total amount of data is
larger than the transmission capacity of the grid? How to synchronise the remote
copies of data? What are the interfacing techniques between different databases?

Past research [1,4,5,6,8] has focused on these issues. These issues assume only
single transaction is executing in the system which is read-only and the data is stored
in file structure. Our main concern in this paper is to deal with transactions that tend
to modify the data items in data repository with multiple transaction execution.

2.2 Data-Grid Architecture

Fig. 1. shows a general architecture of data intensive application where data is
collected and stored at multiple remote sites. Initial research in grid computing was
focused on management of computational resources. Most of the research was limited
to file I/O operations, management of file caches, security and replication issues
[4,12,6]. Lately researchers realized the importance of integrating data sites with grid
infrastructure [3]. Replication and cache management issue assumes the read-only
environment in the data intensive systems [3], which is not always true.

Grid Infrastructure

Interface to Grid Infrastructure Interface to Grid Infrastructure

Interface to Grid Infrastructure Interface to Grid Infrastructure

DB Site 1

DB Site 3 DB Site n

DB Site 2

Fig. 1. Geographically separate databases using grid infrastructure

Traditional NFS provides access to remote data with uniform data namespace but
because of lack of replication and batch I/O cannot have good performance. Parallel
database systems like bubba, gamma [11] can provide collective I / O but are not
designed to meet the distributed nature of grid computing [7]. Present database
systems need central (or, consensus based decentralized) coordinator to achieve
correctness of data, widely known and accepted as database serializability [10]. The

850 S. Goel, H. Sharda, and D. Taniar

centralized serializability criterion has to be extended and should evolve to such an
extent that it could be implemented in grid infrastructure. With the database
applications we are expecting to evolve in near future and the amount of data that will
be generated, petabytes of data per year, it is impossible to use any of the present
serializability criterions that could maintain the correctness of data in grid database
systems environment.

3 Data Consistency in Multi-transaction Environment

Major research interest in grid computing has been towards developing fast-
interconnected networks, high throughput applications, moving data efficiently
between sites, developing fast and scalable applications [1,3,5,6,8,]. Accepting the
importance of these infrastructural developments, in this section we show the
importance of maintaining the consistency of the database under multi-transaction
environment that intend to modify the data.

Correctness criterion for read-only transactions is different than transactions that
modify the data. With application size spanning to global level it becomes difficult to
manage central coordinator and possibilities of mutually independent scheduling
techniques have to be explored. Distributing the scheduling responsibilities to local
database sites may pose a threat to the consistency of data. We explain the problem by
following example.

Transaction 2

Transaction 2

Transaction 1

Sub-transaction 1
Site 2

Sub-transaction 1
Site 3

Transaction 1

Sub-transaction 2
Site 2

Sub-transaction 2
Site 3

Data
Site 3

Data
Site 1

Middleware
Grid Technology

Data
Site 2

Fig. 2. Consistency of data in distributed data set

Without loss of generality we assume a scenario where an application has to
access data from three different data sites – data-site 1, data-site 2 and data-site 3 (see
fig 2). These three sites are connected by the state-of-the-art grid technology
middleware and can communicate between themselves by high bandwidth network
connections.

Let us assume that two transactions, transaction 1 and transaction 2, are
submitted to data-site 1 which needs to access data from other two data-sites as well,
data-site 2 and data-site 3. By using the metadata information the database system at
site 1 can form two subtransactions for each of the transaction i.e. Sub-transaction 1
Site 2, Sub-transaction 1 Site 3 and Sub-transaction 2 Site 2, Sub-transaction 2 Site 3.

Preserving Data Consistency in Grid Databases with Multiple Transactions 851

And then submit the subtransactions to the respective data-sites. If the transaction is
read-only transaction it does not pose any threat to consistency but if the transaction
intend to modify any data item it must synchronize the access to the data items by
using semaphores or locks. By synchronization we mean, if Sub-transaction 1 Site 2
precedes its execution to Sub-transaction 2 Site 2 at site 2 then Sub-transaction 1 Site
3 must also precede its execution to Sub-transaction 2 Site 3 at site 3.

Under these circumstances, delegating scheduling responsibilities to individual
data-sites may produce incorrect interleaving. Thus we see that there is a genuine
problem of scheduling that may be menace to correctness and consistency of the data.

4 Proposed Grid Serializability Criterion

In this section we propose a Grid Serializability Criterion (GSC) that enforces a total-
order in the schedule to ensure correctness of data in multi-transaction environment.
We name the correctness criteria with the word serializability in between to correlate
with the correctness criteria already existing in single DBMSs, conflict serializability
[10]. Total-order is required only for those transactions (Ti) that accesses more than
one data-site simultaneously and is implemented by using a unique timestamp value.

4.1 GSC Algorithms

Following functions are used to demonstrate the algorithm: Split_trans(Ti) returns set
of subtransactions that accesses different data-sites, Site_accessed(Ti) returns the set
of data-sites where the subtransactions for Ti are to be executed. Cardinality() returns
the number of elements in the set. Append_TS(Subtransaction) appends timestamp to
the subtransaction.

We assume that architecture is capable of producing unique timestamp values.

Phase I: The transaction starts execution (algorithm 1).
1. As soon as the transaction arrives at the local database, split_trans(Ti) splits the

transaction into multiple subtransactions according to the allocation of data.
2. If there is only one subtransaction required by the transaction, the transaction

can be submitted to the data-site immediately without any delay. The
transaction with one subtransaction will not conflict with other transactions.

3. If multiple subtransactions are required by the transaction, the grid
infrastructure appends a timestamp with every subtransaction before submitting
it to the corresponding data-site.

4. If there is a transaction that access more than one data-site then the
subtransactions are submitted to the data-site’s local scheduler. The
subtransactions from the scheduler are executed strictly according to the ts.

5. Subtransactions from step-2 can be assumed to have lowest timestamp value
e.g. 0 and can be scheduled immediately.

6. When all subtransactions of any transaction Ti, complete the execution at all the
sites, only then Ti commits (algorithm 2).

Working of the algorithm is explained below:

852 S. Goel, H. Sharda, and D. Taniar

Phase II: Termination condition for transaction.

1. When any subtransaction finishes execution, it reports to the originating site.
2. The originating site checks whether the subtransaction is the last

subtransaction to terminate.
2a. If the subtransaction is not the last to terminate, then that site is removed from

the site_accessed() set.
2b. If the subtransaction is the last subtransaction of the transaction to terminate,

then that transaction is removed from the Active_Trans() set.

We intend to achieve two major advantages by using the Global Serializability
Criterion that uses a decentralized scheduling approach:

Reducing the load from the originating site: Cental scheduling scheme and
decentralized consensus bases policies intend to delegate the originating site of the
transaction as the coordinator. The proposed criterion delegates the scheduling
responsibility to the respective sites where the data resides and thus avoids the
originating site becoming the bottleneck.

Reducing the number of messages in the inter-network: Centralized and consensus
based decentralized scheduling schemes need to communicate with the coordinator to
achieve correct schedules. The communication increases number of messages in the
system. Messages are one of the most expensive things to handle in any distributed
infrastructure. The algorithm intends to reduce the number of messages in the system.

Preserving Data Consistency in Grid Databases with Multiple Transactions 853

5 Correctness of the Algorithm

We assume that the local databases are capable of guarantying correctness of data,
stated in proposition 1, but as discussed earlier there is a need for additional strictness
in grid infrastructure to maintain the correctness of data. We achieve this additional
strictness by applying the concept of total-order, which in turn is achieved by using
timestamps. In this section we show that GSC preserves the correctness and
consistency of data in the grid.

Proposition 1: All local database sites always schedule all transactions in correct
order. ■

To prove the correctness of the proposed algorithm we show that the additional
criterion enforced by the total-order will guarantee GSC in grid systems. The total-
order enforced only determines the way subtransactions are submitted to the sites. If
any transaction accesses more than one geographically separated database then the
subtransactions cannot be scheduled immediately and thus have to be submitted to
wait_queue (Proposition-2). Each site’s queue schedules the subtransactions
according to their timestamp and thus guarantying the total-order of the transaction
from global perspective.

Proposition 2: The originator site submits the subtransactions to the wait_queue of
site’s being accessed by that transaction, if transactions access more than one
mutually exclusive database. ■

Transactions that access more than one local databases can produce incorrect
scheduling of subtransactions, Proposition-2 ensures that subtransactions are executed
according to total-order and thus guarantee correctness of data in data-grids.

Lemma 1: For any two transactions Ti, Tj that follows the Grid Serializability
Criterion, either all of Ti’s subtransactions are executed before Tj at all the sites where
the subtransactions execute or vice versa.
Proof: Following two cases are to be considered:

Case 1) A transaction Ti requires only single subtransaction: This situation is
shown by if condition of the algorithm. The subtransaction is submitted immediately
as shown in the algorithm flow chart. From Poposition-1 it follows that any other
subtransaction ∈ Tj either precedes or follows the subtransaction of Ti. As we have
seen earlier that the transaction with only one subtransaction cannot produce incorrect
interleaving.

Case 2) A transaction Ti splits into multiple subtransactions: This situation is
shown by else condition of the algorithm. Under this condition schedulers at sites may
schedule the transactions that can produce incorrect interleaving. Hence, transactions
in the sites are submitted in the wait_queue instead of scheduling it immediately
(Proposition-2), which executes transactions strictly according to the timestamp order.

Say, transaction Ti has two subtransactions Ti1 and Ti2 already executing at site1

and site2. When Tj arrives and it also has Tj1 and Tj2. Then, if condition of the
algorithm fails and the subtransactions are submitted to the wait_queue at each PE.

Assume that the timestamp of Ti, TS(Ti) ≺ TS(Tj). A unique timestamp is
appended to the subtransactions of Ti and Tj. Then Ti will precede Tj at both the sites
because the transactions are scheduled strictly according to the timestamp value

854 S. Goel, H. Sharda, and D. Taniar

avoiding execution of incorrect schedules and thus ensuring the total-order of
transactions. Thus GSC avoids any incorrect interleaving of subtransactions. ■

6 Conclusion

We have seen that despite a lot of infrastructural development for deploying grid
computing and making it a reality, data-intensive applications and maintaining
correctness of data in such applications have been neglected. In this paper we first
show that high performance grid infrastructure may pose threat to the consistency of
data in data-intensive applications that implement existing correctness criterions. We
then propose a correctness criterion based on total-order of subtransactions that
ensures the correctness of data. Finally, we demonstrate the correctness of the
proposed criterion. Present work does not take failure of sites into consideration.
Future work would focus in extending the algorithm to encounter local site failures.

References

[1] W. Hoschek, J. J., Martinez, A. S. Samar, H. Stockinger, and K. Stockinger. “Data
management in an international data grid project.” ACM Workshop on Grid Computing
(GRID-00), 17-20 Dec., pp 77-90, India, ‘00

[2] B. Allcock, I. Foster, V. Nefedova, A. Chervenak, E. Deelman, C. Kesselman, J. Leigh,
A. Sim, A. Shoshani, B. Drach, D. Williams, “High-Performance Remote Access to Cli-
mate Simulation Data: A Challenge Problem for Data Grid Technologies.” Proc. of SC,
‘01.

[3] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, S. Tuecke, “The Data Grid:
Towards an architecture for the Distributed Management and Analysis of Large Scien-
tific Datasets”, Journal of Network and Computer Applications, vol. 23, pp 187-200, ‘01

[4] C. Baru, R. Moore, A. Rajasekar, M. Wan, “The SDSC storage Resource broker”, in
Proceedings of CASCON ’98 Conference, ‘98.

[5] D. Dullmann, W. Hosckek, J. Jaen-Martinez, and B. Segal, A.Samar, H. Stockinger, K.
Stockinger, “Models for Replica Synchronization and Consistency in a Data Grid,” Proc.
IEEE Symposium. on High Performance on Distr. Computing, ‘01.

[6] I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt, A. Roy, “A Distributed
Resource Management Architecture that Supports Advance Reservations and Co-
allocation”, in Proceedings of the International Workshop on Quality of Service, pp 27-
36, ‘99.

[7] I. Foster and C. Kesselman, “Globus: A Metacomputing Infrastructure Toolkit”,
International Journal of Supercomputer Applications, vol 11(2), pp 115-128, ‘97.

[8] H. Stockinger, “Distributed Database Management Systems and the Data Grid”, 18th

IEEE Symposium on Mass Storage Systems ‘01.
[9] R. Buyya, “Economic-based Distributed Resource Management and Scheduling for Grid

Computing”, PhD thesis, Monash University, Australia, ‘02.
[10] P. A. Bernstein, V. Hadzilacos, N. Goodman, Concurrency Control and Recovery in

Database Systems, Addision-Wesley, ‘87.
[11] T,Ozsu, P.Valduriez, "Distributed and Parallel Database Systems", ACM Computing

Surveys, vol.28, no.1, pp 125-128, March ‘96.
[12] I. Foster, C.Kesselman, G.Tsudik, S.Tuecke, “A Security Architecture for Computational

Grids”, ACM Conf. on Computers and Security, pp 83-91, ACM Press, ‘98.

	1 Introduction
	2 Database on Grid: An Overview
	2.1 Data-Grid
	2.2 Data-Grid Architecture

	3 Data Consistency in Multi-transaction Environment
	4 Proposed Grid Serializability Criterion
	4.1 GSC Algorithms

	5 Correctness of the Algorithm
	6 Conclusion

