
Defining Scope of Query for Location-Dependent
Information Services

James Jayaputera and David Taniar

School of Business Systems
Monash University, Clayton

Vic 3800 Australia
{James.Jayaputera,David.Taniar}@infotech.monash.edu.au

Abstract. The demand of information services has fueled in recent
years. However, the requested of correct answer in a mobile environ-
ment needs to have more attentions. This is due to the scope of query
depends to the user location. In this paper, we propose an algorithm by
using a square as a query scope. The aim is to increase chances to find
rare targets. We assume that the client is at the corner boundary of the
square when it receives the answer. Our results show that using a square
is more efficient in finding the target if the target is rare instead of using
other shapes, especially circle.

1 Introduction

The appearance of mobile devices has became popular and fueled almost every
human life unrestrictly. This situation enable mobile user to use their devices
anywhere while imposing or maintaining network connection compare to tra-
ditional computing model. Therefore, a Base station needs to maintain their
movement by identifying mobile user devices. A Base station is a host that does
an address translation from a static network to wireless devices [1]. Low re-
sources (eg. processing speed, memory and power), frequent disconnections and
slow speed transmission [2,3], are the most common problems in a mobile envi-
ronment. The capability of mobile users to change their locations brings some
information services, called Location-Dependent Information Services (LDIS) [4].
This means that if a user sends a query and then changes his/her location, the
answer of that query has to be based on the location of the user issuing the
query [5,6,7].

In this paper, we propose a new approach to define a valid scope by using a
square in order to always provide with a valid query result. The valid scope is
defined as a user boundary taken from the distance of the user query. The aim
of this paper is to evaluate if the performance of square as a valid scope to find
objects inside the scope feasible.

To simplify our discussion, a geometric location is represented as two di-
mensional coordinate, the velocity of user is always constant towards x and y
coordinate, the velocity value of x and y is same. We assume that a user has not

L.T. Yang et al. (Eds.): EUC 2004, LNCS 3207, pp. 366–376, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



Defining Scope of Query for Location-Dependent Information Services 367

moved to a location of a given query upon receiving the answer and the user
always does not travel further than the the scope boundary.

The correct query result should be bounded in the current user location.
The query result may become invalid when a user changed their location. For
example, a user is located in the country side area at night. He/she thinks that
there will be a restaurant opened at night within 1 km. Therefore, He/she sends
a query to find a restaurant within 1 km from his/her mobile device. There is
only one restaurant which is opened at that time and located 1.1 km away from
the user location. If we use a circle, the user will get a message ”no restaurant
found” from a server. Therefore, the user needs to resubmit a new query again
to the server. On the other hand, if the square is used, then the user will get
a message ”there is one restaurant found within 1.1 km from your location”
without a query resubmission again.

To generate a correct query result for the query above, we need to define a
shape as a valid scope. Some works have been done to define a shape as a valid
scope [8,9,10]. They represent Polygonal Endpoints (PE) [9] and Approximate
Circle (AC) [8] to define a valid scope for cache invalidation [8,9]. The valid
scopes are represented with different levels of fidelity and liability. A rectangular
was used to find a nearer object, which is a static or moving object, to a given
query [10].

The rest of this paper is organized as follows. In next section, some related
works of this paper are presented. In section 3, our proposed algorithm will be
discussed. In section 4, we show the performance of our proposed algorithm.
Finally, the last section will summarize the contents of this paper.

2 Related Work

Defining a valid scope for a mobile client is important to generate a correct
answer to a given query since the mobile user has moved to a new location [10,
4]. In this section, we analyze previous studies on defining a valid scope. The
existing works focussed on defining a valid scope using polygon, rectangle and
circle. None of them are using square to define a valid scope. According to Zheng
et al [4], a valid scope can be defined by using Polygonal Endpoints(PE) and
Approximate Circle(AC). The PE scheme will be discussed first, followed by the
AC scheme.

A direct way to explain the valid scope of data value is using PE scheme.
All endpoints of the polygon were recorded to define a valid scope. However,
it is hard to define the boundary of polygon when there are a large number of
endpoints.

Another way to define a valid scope is using the AC scheme. The AC scheme
is one of the most convinient ways to generate a valid scope, if we know how
far the user would like to find an object. Otherwise stated, a valid scope can be
defined by the center of the circle and the radius of value. However, it has the
same problem as polygon to find the boundary of circle unless we calculate the
distance of the object to the user location. Another problem of using a circle, if



368 J. Jayaputera and D. Taniar

an object location is a bit further from the circle boundary, the server could not
categorize the object as a valid object, especially if the object is rare.

In addition, the maximum size of circle [11] can be defined as the current
velocity of the user. The advantage is to predict the valid scope at the current
speed in a time interval. However, if the user moves to a new BS boundary in
two seconds, this prediction will be invalid for the old BS after two seconds.
Unless the user resubmit a new query.

On the other hand, Stanoi et al [12] addressed a solution to answer Reverse
Nearest Neighbor queries in two-dimensional space. They divide a space around
the client location into six equal regions by a straightline intersecting the client
location.

The TPR-tree [10] uses a rectangle to enclose moving objects at all times in
the future. In this scheme, the size of rectangle is extended based on the velocity
and time. Therefore, the number of targets remained inside the rectangle will
increase as the size of rectangle is increased.

3 Proposed Algorithm

In this section, we propose an approach for location-dependent query that a valid
scope of user to get a correct answer from a server is presented by a square. The
scope is generated by a server based on the requesters’s location. There are a
number of shapes to represent to define a scope of user query, such as rectangles,
triangle, polygon, circle and so on. In early section, we discuss why we choose
to use a square instead of other scopes. Followed by our proposed algorithms
and some examples to support our algorithm. We choose a square, because it is
more accurate and easy to find a target closest to the user compared to other
shapes and it has same length and width. Targets are defined as objects probed
by a user. The dimension of a square will be represented by the distance of
the user query to the left, right, top and bottom. If an input is an area, then,
the dimension of the square can be found by taking a square root of the area
(
√

area). Therefore, a distance from a user as center point can be found and
then, a square can be formed.

Other shapes can be used to define a valid scope, however, it is hard to know
whether a target is valid in a situation. Let us consider to use a triangle to
represent a valid scope. Assume that the distances from the center to left, right
and top are same. These distances tell us that base is twice than its height. If
we calculate the area of triangle, then, the area of triangle is same as the area
of square. However, it is hard to decide whether a target is inside the boundary.
On the other hand, if we consider to use a circle as a valid scope, then, the circle
area is still smaller than the square. We will not consider to use a rectangle,
since the horizontal and the vertical distance is not the same.

Figure 1 shows all locations of vending machines, a restaurant and a user
within the BS boundary. Assuming a user would like to find the nearest restau-
rant within n kilometres or m square kilometres, where n and m is a number
which represent a distance or area where the target will be probed. The BS will



Defining Scope of Query for Location-Dependent Information Services 369

Fig. 1. Init Situation

give all locations requested within the boundary of Base Station (BS) which is
presented by an outer shape. In order to get a valid answer, the BS need to keep
track the current location of a user. Otherwise, the answer will be invalid when
the user has moved, even though, its movement is still in the same boundary of
the BS.

Fig. 2. The proposed approach

Let us consider if a user would like to find a restaurant within a distance of
2 km. The query result will be null when we define a circle as a scope of query,
unless the user resubmit a new query again to the server. On the other hand, the
restaurant will be found if we use a square as a valid scope, because the square
has a greater scope compared to a circle. Hence, the user only needs to submit a
query once. Figure 2 shows our proposed approach. The inner circle shows if we
define a circle as a valid scope. The possibility to find the restaurant is smaller
than using a square.

Figure 3 shows our proposed algorithm. We explain our algorithm by using
the example above. The user sends a request which contains the current position,



370 J. Jayaputera and D. Taniar

Fig. 3. The Proposed Algorithm

speed and movement direction to the server. The server gets the client request
and set initial value. The current location parameter is set to the current position
of user. Then, the server generates a square as a scope to search the targets.
Since a square has same height and width, therefore, dimension of the square
is presented by the length parameter. The length parameter is the searching
distance from the client request and multiply the distance by two. We multiply
by two, because the length is a distance from the user to the left and the right
sides.

After we defined a scope, we divide the scope four equal areas which is shown
in figure 2. The aim of this division is to speed up the searching process on server
side. Then, the server will check if the user is moving or stopping. If the user
is stopping, the server will search all regions. Then, the server will forward the
query result to the user. The user receives the query without changing his/her
location and the server set the value of forwarded parameter to be true.

If the user is moving, the server will search targets within certain regions
based on the movement direction of the source. If the user is moving down, the
server will only check region 1 and 2 of the generated scope. If the user is moving
diagonally to North East direction, the region 1 will be searched. We assume that
the user will only move to the middle or the corner of the scope boundary for
present time. When the server got the result, it will forward the query result the
user. If the result is not received at time tstart, the server will generate a new
query result for next location at tstart+1. Otherwise, the server will set the value
of forwarded parameter to be true.



Defining Scope of Query for Location-Dependent Information Services 371

3.1 Examples

There are some situations where the mobile client is not moving, moved to
close destination or moved to a far destination from its original location when
it receives an answer from the server. This will result some target in the answer
invalid, therefore the server needs to regenerate a new answer based on the
current location. The examples below illustrate the situations mentioned above.

1. The mobile user stopped
Consider a mobile user is located at point (5,5) and sends a query to a
server. The query is Find a closest restaurant within 2 km. This user will
stay at same location when the answer is given from server which is shown
in Figure 1.

Fig. 4. The mobile user stopped

The server will generate a valid scope by adding and substracting the
distance towards the mobile user position. Therefore, we have a square that
is formed by the following coordinate: Top Right: (7,7), Bottom Right:
(7,3), Top Left : (3,7), Bottom Left: (3,3), shown in Figure 4.

After, the valid scope is produced, it will search a restaurant within range,
3 < x < 7 and 3 < y < 7. In other words, all regions will be searched. Once,
the server find a restaurant within that range, then the server will generate
an answer for that query. The answer will match the description of the
target, the position of the target and the position of the query requested.
Once the answer is ready, the server will check about the current position
of the mobile user.

2. The mobile user is moving down
Let consider, ”Find all vending machines within distance 2 km” and the
user is moving down as shown in figure 5. The server will generate a new
scope for the location at tstart. The server will search targets within region



372 J. Jayaputera and D. Taniar

Fig. 5. The User is moving down

3 and 4 instead of all regions, because we assume the user will receive the
query result at tstart+1. We assume that the user will arrive at point (5,3)
at time tstart+1. If the server produces the query result by searching all
regions, it will waste the server resources. Because the vending machines;
(v6, v8, v9, v11 and v13), will become invalid answer and only vending
machines; (v2, v7, v9, v10), will only become a valid answer.

3. The mobile user is moving to the corner of scope boundary
Let consider, ”Find all vending machines within distance 2 km” and the
user is moving to the corner of scope boundary as shown in figure 6. In the
beginning of process, the server will generate a new scope for the location at
t start. The server will search targets within region 1 instead of all regions,
because we assume the user will receive the query result at tstart+1. We
assume that the user will arrive at point (7,7) at time tstart+1. The only
valid vending machines will be vending machines (v9, v11, v13). Therefore,
the server will save the resources by only search one region instead of all
regions.

Fig. 6. The user is moving to the corner of scope boundary



Defining Scope of Query for Location-Dependent Information Services 373

4 Performance Evaluation

In this section, we will examine the performance of our proposed algorithm.
Our simulator is implemented in Java, running under Linux Fedora Operating
System. The simulation database contains various number records of the random
number of x,y. The number of records in database are varied from 250,000 up
to more than 1 million records. The experiments presented are designed for two
objectives. First, we examine the performance differences between square and
circle. Second, we evaluate the performance of our algorithm to find a various
number of objects in various size of scopes.

Figure 7a shows the number of targets found within scope 1000 x 1000, 2000
x 2000, 3000 x 3000, 4000 x 4000 and 5000 x 5000. From the figure we can see
the number of targets found within area in different databases. The numbers are
getting bigger as the area is getting bigger. It shows a exponential number as
the database and scope is getting bigger.

(a) (b)

Fig. 7. Number of Targets Found in (a) Square, (b) Circle

Figure 7b shows the number of targets found within radius 500, 1000, 1500,
2000 and 2500 metres. The number of targets found within a circle from various
size of database is about same as the square. It shows an exponential number as
well. However, if we notice carefully, the number of targets found in the circle is
a bit smaller compared to the one in the square.

Figure 8 shows the differences of the total targets found between square and
circle. The figure shows that all targets can be found in a square, but, there are
only around 21 to 22 percents of targets cannot be found by using a circle. This
percentage does not depend on the number of records in database. Therefore,
a square will have more chance to find the target around 21 to 22 percents
compared to a circle to find a number of rare places.

After we examined the efficiency of using square as a valid scope, the efficiency
of our proposed algorithm will be discussed next. In our proposed algorithm, we
will search the region based on the client’s direction. We assume that distance
of client request is always same as the direction of the client. For example, the
user sends a request to find a place within 500 metres. Assume that user will be



374 J. Jayaputera and D. Taniar

Fig. 8. Comparison Number of Targets Found in Circle and Square

Fig. 9. Comparison Number of Targets Found In Each Region.

Fig. 10. Comparison Number of Targets Found In Circle at time t1 and t2.

at location (500,500) when he/she received the request. The server just needs to
find the target in a specific region based on the direction to the new location.

Figure 9 shows the comparison of number of targets found in every region.
If the server explore the whole regions, it will waste the resources of the server.
This is because some targets found in the answer from the server will become
invalid due to the current location of the server. We suggest that the server
only chase after the region based on the direction of the client by assuming that



Defining Scope of Query for Location-Dependent Information Services 375

client always go to the corner of scope square boundary. Searching in one or
two regions is very efficient, because there will have no invalid answer when the
client received the answer. It is about 25-50 percents faster than explorer the
whole regions.

If we use a circle as the valid scope for the condition above, there will be
some invalid targets that need to be evicted when the client reached the corner
of scope square boundary. This is not efficient since the server needs to chase
after the new targets in the new locations. A larger database will give more new
data and evict more invalid number of data, shown in figure 10.

5 Conclusion and Future Work

In this paper we propose an approach to use a square to define a valid scope in
order to find objects within the square for Location-Dependent. To simplify our
explanation, we assume the geometric location is specified as two-dimensional
coordinate. Dimension of a square is defined by the distance of a given query to
the left, right, top and bottom from the client. In our algorithm, we divide the
square into 4 regions in order to speed up the searching process. When a user
move diagonally to the one of corner of square, the server needs to evaluate only
first region. If the user move horizontally or vertically, the server only needs to
find 2 vertical or horizontal regions respectively. We assumed that the user will
be at the corner or the midlle of the square upon receiving the answer. We have
evaluated the effective of using square compared to other shapes, such as circle,
polygon and rectangles. Using a square is effective to find rare objects that can
not be reached by a circle. Based on our evaluation, it give more chances to find
the rare objects and invalidate less objects compared to a circle.

In the future, we would like to evaluate if the user has vary movement and
speeds towards the two dimensional coordinate.

References

1. Goodman, D.J.: Wireless Personal Communications Systems. Addison-Wesley
Wireless Communications Series (1998)

2. Barbara, D., Imielinski, T.: Sleepers and workaholics: Caching strategies for mo-
bile environments. In: Proceedings of the 1994 ACM SIGMOD international
conference on Management of data, ACM Press, New York, USA (1994) 1–12
http://www.acm.org/pubs/.

3. Baihua, Z.e.a.: Data management in location-dependent information services.
IEEE Pervasive Computing 1 (2002) 65–72

4. Zheng, B., Xu, J., Lee, D.: Cache invalidation and replacement strategies for
location-dependent data in mobile environments. IEEE Transactions on Computers
51 (2002) 1141–1153

5. Cheverst, K., Davies, N., Mitchell, K., A., F.: Experiences of developing and de-
ploying a context-aware tourist guide. Proceedings of the sixth annual International
Conference on Mobile Computing and Networking (2000) 20–31



376 J. Jayaputera and D. Taniar

6. Dunham, M., Kumar, V.: Location dependent data and its management in mobile
databases. Proceedings Ninth annual Int’l Workshop Database and Expert Systems
Applications (1998) 414–419

7. Dunham, M., Kumar, V.: Using semantic caching to manage location dependent
data in mobile computing. Proceedings of the sixth annual International Confer-
ence on Mobile Computing and Networking (2000) 210–221

8. Tang, X., Xu, J., Lee, D.: Performance analysis of location dependent cache inval-
idation schemes for mobile environments. IEEE transactions on Knowledge and
Data Engineering 15 (2003) 474–488

9. Tang, X., Xu, J., Lee, D., Hu, Q.: Cache coherency in location-dependent informa-
tion services for mobile environments. Proceedings First International Conference
Mobile Data Access 1748 (1999) 182–193

10. Benetis, R., C.S, J., Karciauskas, G., Åaltenis, S.: Nearest neighbor and reverse
nearest neighbor queries for moving objects. International Database Engineering
and Applications Symposium (2002) 44–53

11. Zheng, B., Lee, D.: Processing location-dependent queries in a multi-cell wireless
enviroment. Proceedings of the ACM international workshop on Data engineering
for wireless and mobile access (2001) 54–65

12. Stanoi, I., Agrawal, D., Abbadi, A.: Reverse nearest neighbor queries for dynamic
databases. ACM SIGMOD Workshop on Research Issues in Data Mining and
Knowledge Discovery (DMKD 2000) (2000) 44–53


	Introduction
	Related Work
	Proposed Algorithm
	Examples

	Performance Evaluation
	Conclusion and Future Work

