

F. Galindo et al. (Eds.): DEXA 2004, LNCS 3180, pp. 465 - 474, 2004.
© Springer-Verlag Berlin Heidelberg 2004

A New Approach of Eliminating Redundant
Association Rules

Mafruz Zaman Ashrafi, David Taniar, and Kate Smith

School of Business Systems, Monash University, Clayton, Vic 3800, Australia
{Mafruz.Ashrafi,David.Taniar,Kate.Smith}@infotech.monash.edu.au

Abstract. Two important constraints of association rule mining algorithm are
support and confidence. However, such constraints-based algorithms generally
produce a large number of redundant rules. In many cases, if not all, number of
redundant rules is larger than number of essential rules, consequently the novel
intention behind association rule mining becomes vague. To retain the goal of
association rule mining, we present several methods to eliminate redundant
rules and to produce small number of rules from any given frequent or frequent
closed itemsets generated. The experimental evaluation shows that the proposed
methods eliminate significant number of redundant rules.

1 Introduction

Association rule mining is an iterative and interactive process that explores and
analyzes voluminous digital data to discover valid, novel and meaningful rules, using
computationally efficient techniques. It searches for interesting relationships among
items in a given dataset. The main advantage of association rule mining is that it has
ability to discover hidden associations with in the digital data.

Two important constraints of association rule mining are support and confidence
[1]. Those constraints are used to measure the interestingness of a rule. Therefore,
most of the current association rule mining algorithms use these constraints in
generating rules. However, choosing support and confidence threshold values is a real
dilemma for association rule mining algorithms. For example, discovering association
rules with high support threshold removes rare item rules without considering the
confidence value of these rules. On the other hand, when support threshold is low, it
generates large number of rules, and consequently it becomes very difficult, if not
impossible, for end user to utilize these rules.

It is widely recognized that number of association rules grows as number of
frequent itemsets increases. In addition, most of the traditional association rules
mining algorithms consider all subsets of frequent itemsets as antecedent of a rule [7].
Therefore, when resultant frequent itemsets is large, these algorithms produce large
number of rules. However, many of these rules have identical meaning or are
redundant. In fact, the number of redundant rules is much larger than the previously
expected. In most of the cases, number of redundant rules is significantly larger than
that of essential rules [4]. In many cases such enormous redundant rules often fades
away the intention of association rule mining in the first place.

Mafruz Zaman Ashrafi et al. 466

To reduce redundant rules, there are number of frameworks that have been
proposed [4-8]. Most of the proposed frameworks have several prior assumptions.
Based on these assumptions, the frameworks identify redundant rules and prune them
subsequently. However, these prior assumptions are not suitable in many situations,
and subsequently redundant rules may still exist in the resultant rule set. Furthermore,
some of the proposed frameworks [4, 8] mark rule r as redundant and eliminate it, in
the presence of another rule R (consider r, R∈ R’, where R’ is resultant ruleset)
without considering whether rule R characterizes the knowledge of rule r. For
example, an algorithm will mark rule AB⇒C as redundant in the presence of rule
A⇒C. However, it is apparent from this example that rule A⇒C is not fully
characterized the knowledge of rule AB⇒C.

In order to eliminate redundant rules, in this paper, we propose several methods
that remove redundant rules from the resultant ruleset without losing any important
knowledge. We are motivated by the fact that one can only utilize association rules
efficiently when resultant rule set is small in size. However, without an efficient
redundant rule reduction technique, one cannot achieve this goal. The proposed
methods mark a rule as redundant when it finds a set of rules that also convey the
same knowledge. For example, the proposed method will mark rule A⇒BC as
redundant, if and only if the rule such as A⇒B and A⇒C are present in that set. Our
experimental evaluation shows that the proposed method generates only small number
of rules. Therefore it becomes very convenient for end users to make use of this
knowledge.

The rest of paper is organized as follows: In Section 2 we describe the background
of association mining and summarize the reasons of rule redundancy. We describe
related work in section 3. In Section 4 we present our proposed algorithms. The
performance evaluation and comparison are described in section 5 and we conclude at
Section 6.

2 Redundant Rules: A Background

One of the key issues of association rule mining is redundant rule [4-8]. Before
further discussion on redundant rules is carried out, let us briefly discuss some of the
key tasks of association rule mining algorithms.

2.1 Association Rule Mining: A Brief Overview

Algorithms for association rule mining usually have two distinct phases (i) frequent
itemset and (ii) rule generation [2]. In order to find all frequent itemsets, we need to
enumerate the support of all itemsets of the database. The support of an itemset can be
defines as follows:
Definition: Let D be a transaction database has n number of items and Ι is a set of
items such that I = {a1, a2, a3, ……… an}, where ai⊂n. Consider N be the total number
of transactions and T = {t1, t2, t3, ……… tN} be the sequence of transaction, such that
ti⊂D. The support of each element of I is the number of transactions in D containing I
and for a given itemset A⊂I.

A New Approach of Eliminating Redundant Association Rules 467

Itemset A is frequent if and only if support(A) ≥ minsup where minsup is a user-
defined support threshold value. However, the enumeration of itemsets is
computationally and I/O intensive [1]. For example, if the database has m number of
distinct items, the search space for enumerating all frequent itemsets is 2m. If m is
large, then generating support for all itemsets requires long period of time and may
exhaust the main memory limit.

Since frequent itemset generation is considered as an expensive operation, an
approach known as Frequent Close Itemset (FCI) [7] was introduced. Itemset A is
closed if there exists no itemset A′ such that A′ is a proper superset of A and all
transactions containing A also contain A′. The total number of frequent closed
itemsets generated from a given dataset is smaller than the total number of frequent
itemsets, especially when the dataset is dense and have enough information so one
can generate association rules from it [7]. For example, if “B” and “B C” are two
frequent itemsets that have occurred in the same number of times in a given dataset,
then only the itemset “B C” will be considered as FCI.

In the frequent itemset approach, rule generation task is relatively straightforward.
Association rule mining algorithms use frequent itemsets in order to generate rules.
An association rule R is an implication of two frequent itemsets F1, F2 ∈ I; such that
F1 ∩ F2 = {} and can be expressed as F1 ⇒ F2.

Using the FCI approach, association rules are generated in the same manner as it
does for the frequent itemsets. However, when the rules are generated from FCI, there
is a chance that it will not consider some of the important rules. For example, in a
given dataset if itemsets such as “A”, “A B”,“A C” and “A B C” have the same
support, then the closed itemset will only consider itemset “A B C” as frequent.
Therefore one cannot generate A⇒B, A⇒C or A B⇒C, even though these rules have
very high confidence value.

2.2 Overview of Rule Redundancy

The frequent itemsets based association rule mining framework produces large a
number of rules, because it considers all subsets of frequent itemsets as antecedent of
a rule. Therefore, the total number of rules grows as the number of frequent itemsets
increases. Number of redundant rules is larger than the previously suspected and often
reaches in such extend that sometimes it is significantly larger than number of
essential rules.

Rule Support Confidence

 X YZ S(X U Y U Z) S(X U Y U Z)/S(X)
 XY Z S(X U Y U Z) S(X U Y U Z)/S(X U Y)
 XZ Y S(X U Y U Z) S(X U Y U Z)/S(X U Z)
 X Y S(X U Y) S(X U Y)/S(X)
 X Z S(X U Z) S(X U Z)/S(X)

Fig. 1. Redundant Rules

Consider five different rules generated from a frequent itemset ‘XYZ’ at a given
support and confidence threshold s and c as shown in the figure 1. However,
Aggarwal et al. [4] argue that if rule X⇒YZ meet s and c, then rules such as XY⇒Z,

Mafruz Zaman Ashrafi et al. 468

XZ⇒Y, X⇒Y, and X⇒Z are redundant. This is because the support and confidence
values X⇒YZ are less than the support and confidence values for the rules XY⇒Z,
XZ⇒Y, X⇒Y, and X⇒Z.

Furthermore, by observing at abovementioned scenario one may think that if the
FCI method is used instead of frequent itemset, then one can avoid those redundant
rules. However, the FCI will also consider those itemset as frequent if itemsets “X”
“XY” “XZ” and “XYZ” do not occur the same number of times in the dataset.
Therefore we cannot avoid these kinds of redundant rules, should we generate rules
by using FCI. Based on this rationale, we can define redundancy rules as follows:

Definition: In the context of association rule mining, a set of rules R which is
generated from a set of frequent itemsets F, such that each element r∈R satisfy both
support and confidence thresholds. A rule r in R is said to be redundant if and only if
a rule or a set of rules S where S∈R possess same intrinsic meaning of r.

For example, consider a rule set R has three rules such as milk⇒tea, sugar⇒tea,
and milk, sugar⇒tea. If we know the first two rules i.e. milk⇒tea and sugar⇒tea,
then the third rule milk, sugar⇒tea becomes redundant, because it is a simple
combination of the first two rules and as a result it does not covey any extra
information especially when the first two rules are present.

2.3 Why Does Redundancy Occur?

It is very important to have a clear idea how current support and confidence based
association mining algorithms work in order to identify the reasons that cause
redundancy. In the current approach, first we enumerates all frequent itemsets, and
then we find all candidate rules (i.e. rules those confidence value are not verified) by
combining subsets of every frequent itemset in all possible way.

The validity of association rules (i.e. rules that meet a given confidence value) is
verified simultaneously during the time of candidate rules generation. All traditional
association rule mining algorithms subsequently prune away candidate rules that do
not meet the confidence threshold. Due to the fact that the traditional algorithms
generate association rules in two phases based on support and confidence values, they
generate a large number of rules especially when the user-specified threshold values
of support and confidence are low. It is worth to mention that the total number of
subset elements grows proportionally as the length of frequent itemset increases.
Consequently the number of rules may increase unwieldy when the average length of
frequent itemset is long.

From the above discussions one may think that if user-specific support and
confidence threshold values are high, the rule redundancy problem should be solved.
Indeed such assumption reduces the ratio of redundant rules but is not able to
eliminate redundant rules completely. Because traditional algorithms find association
rules based on confidence value, they consider all candidate rules as valid rules when
these rules have confidence above the threshold value. Nevertheless from a frequent
itemset we can construct different rules. And many of these rules may meet the high
support and confidence values. However, when a frequent itemset generates many
valid rules then without a doubt we can say that many of those rules will fall under
redundant rules category. For example a simple rule (A⇒B) can be represent in two

A New Approach of Eliminating Redundant Association Rules 469

different ways (A⇒B, B⇒A), if we interchange the antecedent and confidence
itemset. Furthermore the confidence value is changed as we interchange the
antecedent and consequence itemset of a rule. The traditional approach only checks
whether the confidence is above the user-specified threshold or not. Swapping the
antecedent itemset with consequence itemset of a rule will not give us any extra
information or knowledge.

However, choosing the support and confidence threshold values is a real dilemma
for all association rules mining algorithms. If the support value is set too high, we will
not find rules from rare itemsets although there might be some rules with very high
confidence. On the other hand when the support and confidence threshold value is
low then one can find many rules that do not make any sense.

3 Related Work

One of the main drawbacks of association rule mining is redundant rule. To overcome
redundant rules a number of research works [4-7] had been found in the data mining
literature. In this section, we discuss some of the previously proposed redundant rule
reduction techniques.

Aggarwal et al. [4] classify the redundant rule in two groups, such as: simple
redundant and strict redundant. The authors proposed different methods to remove
redundant rules. They proposed that a rule bears simple redundancy in the presence of
other rules if and only if those rules are generated from same frequent itemset and the
support values for the those rules are the same but the confidence value for one of
them is higher than the others. For example, the rule AB⇒C bears simple redundancy
with respect to rule A⇒BC. But this approach recognizes rule BC⇒A as non-
redundant with respect to AB⇒C because item BC⊄AB. Notice that both rules are
generated from same itemset ABC. Furthermore, rule BC⇒A does not convey any
extra information, if rule A⇒BC is present, because it only swaps the antecedent and
consequent itemset.

The authors considered rules as strict redundancies that are generated from two
different frequent itemsets but one is the subset of another. For example, this
approach consider rule C⇒D as redundant with respect to A⇒B if A∪B=Xi and
C∪D=Xj and C⊇A, where Xi⊃Xj. But we argue that this property is not true in all
situations. Consider two rules such as R1: AC⇒BDE; R2: ACD⇒B (where
Xi=ABCDE; Xj=ABCD so Xj⊃Xi and ACD⊇AC), and if we say rule R2 is redundant
with respect to R1 and remove it, we then might lose a important rule because rule R2
does not fully characterize the knowledge of rule R1.

Jaki et al. [7] present a framework based on FCI (Frequent Close Itemset) that
reduces number of redundant rules. The authors used FCI to form a set of rules and
inferred all other association rules from that. Since FCI is used for choosing a set of
rules based on the confidence value, the number of rules grows as the number of FCI
increases. Therefore, it becomes difficult for end-users to infer other rules when there
is a large number of FCI. Additionally, since this approach uses FCI, it may prune
some important rules without considering the confidence and support value of those
rules.

Mafruz Zaman Ashrafi et al. 470

Liu et al. [5] present a technique to summarize the discovered association rules. It
selects a subset of rules called direction-setting rules, in order to summarize the
discovered rules. For example, we have rules such as R1: A⇒C, R2: B⇒C and R3: A,
B⇒C. Rule R3 intuitively follows R1 and R2 and for this reason rule R3 is non-
essential. The main drawback of this algorithm is that it focuses only on those
association rules that have a single item in the consequence. Therefore, it is not able
to remove redundant rules that have multiple items in the consequence. This
algorithm also selects the target attributes (i.e. consequence) before the algorithm
starts the rule mining task. Consequently it fails to find rules that have different
consequence itemset. Since association rule mining is an unsupervised learning
approach, if we choose the target attributes earlier, we may unable to generate some
useful rules that do not belong to the target groups. Liu et al [6] also propose another
algorithm known as multilevel organization and summarization of discovered rules. In
this algorithm, rules are summarized in a hierarchical order, so that end users can
browse all rules at different levels of details. However, this algorithm only
summarizes the rules and redundant rules may still exist in the final model.

Similar to all of the abovementioned redundant rule reduction algorithms, our main
objective of this paper is to eliminate redundant rules. However, our proposed
methods have two distinct features that distinguish it from all other existing
algorithms.
− The proposed methods are not based on any bias assumptions. In addition it verify

each rule with set of rules in order to find redundant rule. Hence it eliminates
redundant rules without losing any important knowledge from the resultant rule set.

− The proposed methods are case independent. It verifies all rules that have one or
more items in the consequence. Therefore, it has the ability to eliminate redundant
rules that contain single or multiple items in the consequence.

4 Proposed Methods

One can classify association rules in two different types based on the number of items
in the consequence: rules having single items in the consequence and rules having
multiple items in the consequence. Depending on the application requirements,
association rule mining algorithms produce ruleset, which may contains rules of both
types. However, it is worth to mention that redundant rules exist in both types. To
eliminate redundant rules of these two types, we propose two methods: removing
redundant rules with fixed antecedent rules, and with fixed consequent rules. The
proposed methods not only remove redundant rules that are generated from frequent
itemset but also have the ability to remove redundant rules when rules are being
generated from the frequent closed itemset.

4.1 Finding Redundant Rules with Fixed Antecedent Rules

To remove redundant rules with fixed antecedent, we propose following theorem:
Theorem 1: Consider rule A⇒B satisfying the minimum confidence threshold such
that antecedent A has i items and consequent B has j items where i ≥1 and j >1. The

A New Approach of Eliminating Redundant Association Rules 471

rule A⇒B is said to be redundant if and only if n number of rules such as A⇒ e1, A⇒
e2,… A⇒en satisfy minimum confidence threshold where ∀e⊂B and n=j.
Proof: Since ∀e⊂B

Then, Support(A∪e) ≥ Support(A∪B)

∴
)(

)(
)(

)(
ASuppport

BASuppport
ASuppport

eASuppport UU ≥

∴Confidence(A⇒e) ≥ Confidence(A⇒B)
Hence, if the rule A⇒B is true in a certain level of support and confidence, then
same must be true for all rules A⇒e where ∀e⊂B. 

Example: Let us apply this theorem to a ruleset R that has three rules such as
{AB⇒X, AB⇒Y and AB⇒XY}. Consider the rule AB⇒XY has s% support and c%
confidence. Then, the rules such as AB⇒X and AB⇒Y will also have at least s%
support and c% confidence because X⊂XY and Y⊂XY. Since AB⇒X and AB⇒Y
dominate AB⇒XY both in support and confidence, for this reason AB⇒XY is
redundant.

4.2 Finding Redundant Rules with Fixed Consequence Rules

The traditional association rule mining algorithms produce many rules that have the
same consequence but have different antecedents. To remove this kind of redundant
rules, we propose following theorem:
Theorem 2: Consider rule A⇒B that satisfies minimum confidence threshold such
that antecedent A has i items and consequent B has j items where i > 1 and j ≥1. The
rule A⇒B is said to be redundant if and only if n number of rules such as e1⇒B,
e2⇒B,… en⇒B satisfy minimum confidence threshold where ∀e⊂A, n=i and each e
has (i-1) items.
Proof: Since, ∀e⊂A and e1 ∪ e2 ∪…∪ en = A

So, support (e)≥ support (A)
∴Support(e∪B) ≥ Support(A∪B)
Thus if rules such as e1⇒B, e2⇒B,… en⇒B have a certain confidence threshold,
then rule A⇒B is redundant because A = e1 ∪ e2 ∪…∪ en. 

Example: Let us apply this theorem to a rule set R that has three rules such as
{XY⇒Z, X⇒Z and Y⇒Z}. Suppose rule XY⇒Z has s% support and c% confidence. If
n (i.e. number of items in the antecedent) number of rules such as X⇒Z and Y⇒Z also
satisfy s and c then, the rule XY⇒Z is redundant because it does not convey any extra
information if rule X⇒Z and Y⇒Z are present.

4.3 Proposed Algorithms

Based on the abovementioned theorems, we propose two algorithms to discover
redundant rules. The pseudocode of these algorithms is shown in figures 2 (a) and (b).
The first algorithm finds those redundant rules that have multiple items in the
consequence but have the same antecedent itemset in the antecedent. It first iterates

Mafruz Zaman Ashrafi et al. 472

through the whole rule set and finds those rule that have multiple itemsets in the
consequence. Once it comes across such a rule, checking is carried out to see whether
n number of (n-1)-itemset of the consequence are in the rule set with the same
antecedent. If it finds n number of rules in the rule set then we delete that rule from
the rule set otherwise that rule remains in the rule set.

The second algorithm finds those redundant rules that have multiple items in the
antecedent but have the same antecedent itemset in the consequence. It is similar to
first algorithm except that it finds antecedent that have multiple itemset. Once it
comes across such rule a check is made to see whether n number of (n-1)-itemset of
the antecedent are in the rule set with the same consequence. If it finds n number of
rules in the rule set then we delete that rule from the rule set otherwise that rule
remains in the rule set.

Rrrulesallfor ∈

forend

{ }

Cesubsetsnallfor ∈−−)1(

CAr ,U=
()Clengthn =

{ }()eArif i ,U=
;. ++ie

forend
()niif ==

rRR −=

()1fnif

ifend

Rrrulesallfor ∈

forend

Aesubsetsnallfor ∈−−)1(

{ }CAr ,U=
()Alengthn =

{ }()Cerif i ,U=
;. ++ie

forend
()niif ==

rRR −=

()1fnif

ifend

(a) (b)
Fig. 2. Pseudo Code for finding redundant rules that have (a) same antecedent but
different consequence (b) same consequence but different antecedent

5 Performance Study

We have done performance study on our proposed methods to conform our analysis
of its effectiveness in eliminating redundant rules. We have chosen four datasets for
this performance study. Table 1 shows the characteristics of those datasets. It shows
the total number of items, average size of transaction and the total number of
transactions of each dataset. It is worth to mention that many association rule mining
algorithms had used all of these datasets as a benchmark.

Table 1. Dataset Characteristics

Name Avg. Transaction
Length

No. of
Items

No. of
Transactions

pumsb* 74 7117 49046
Connect-4 43 130 67557
T40I10D100K 20 1000 100000
BMS-WEB-View- 1 2 497 59602

The pumsb* and Connect-4 [9] datasets are very dense (there are large number of

items very frequently occurred in the transaction) and are able to produce very large
itemsets when the support threshold is high. Therefore, we use very high support
threshold for generating rules from those datasets. The T40I10D100K and BMS-Web-

A New Approach of Eliminating Redundant Association Rules 473

View-1 [10] datasets are relatively sparse (total number of items are large but only
few of them are occurred frequently in the transaction) and due to this we generate
rules from those datasets using low support threshold value.

In following experiments we examine the level of redundancy (i.e. redundant rules)
present in the resultant rule set. The benchmark for measuring the level of redundancy
is referred to the redundancy ratio [4] and is defined as follows:

(E) Rules Essential
(T) Generated Rules Total)(Ratio Redundancy =∂ … … … (1)

R -T (E) Rules Essential = … … …(2)
where R is the total number of redundant rules present in the resultant rule set.
To find redundancy ratio in the traditional approach, at first we used those datasets

to generate frequent itemsets using the Apriori [11] association rule-mining algorithm.
Since we use different support threshold values, the total number of frequent itemsets
varies for different support values. After generating frequent itemsets we use those
itemsets for the rule generation purpose. To generate association rules in traditional
approaches, we choose a publicly available a third party rule generation program
developed by Bart Goethals [11]. We have implemented our proposed methods and
compare them with the traditional approaches as shown in the Figure 3.

100

1000

10000

100000

1e+06

1e+07

100 99 98 97 96 95 90 85 80 75

Proposed-90% Traditional-90%
Proposed-97% Traditional-97%

Connect-4

Confidence (%)

N
um

be
r o

f R
ul

es

100

1000

10000

100000

1e+06

1e+07

100 99 98 97 96 95 90 85 80 75

Proposed-0.1% Traditional-0.1%
Proposed-0.06% Traditional-0.06%

BMS-WebView-1

Confidence (%)

N
um

be
r o

f R
ul

es

10

100

1000

10000

100000

1e+06

1e+07

100 99 98 97 96 95 90 85 80 75

Proposed-40% Traditional-40%
Proposed-60% Traditional-60%

Pumsb*

Confidence (%)

N
um

be
r o

f R
ul

es

100

1000

10000

100000

1e+06

1e+07

99 98 97 96 95 90 85 80 75

Traditional-1%
Traditional-1.5%

Proposed-1%
Proposed-1.5%

T40I10D100K

Confidence (%)

N
um

be
r o

f R
ul

es

}2.258.1{%5.1 −=∂

}5.92.1{%1 −=∂

}9.97.1{%60 −=∂

}32.1{%1.0 −=∂

}8.545{%40 −=∂

}4.142.4{%06.0 −=∂

}117.1{%97 −=∂

}417.2{%90 −=∂

Fig. 3. Number of rule Proposed vs. Traditional

Figure 3 compares the total number of rules generated by the traditional methods
with our proposed methods. It also depicts the redundancy ratio. From the above
graph it is clear that the proposed methods reduce the total number of rules
drastically. It generates 1.2 to 55 times less number of rules in compare with
traditional approach. Since the traditional approach considers all possible subsets of a
frequent itemsets as antecedent of a rule, it produces a large number of rules in all

Mafruz Zaman Ashrafi et al. 474

datasets regardless of the support threshold. However, our proposed methods check
every rule with a set of rules in order to find redundant rule. Therefore it only
generates only few rules from each frequent itemset. In addition, the total number of
rules grows as the support threshold decreases therefore the proposed methods reduce
more number of redundant rules when support thresholds are low.

6 Conclusion

In this paper we examine various reasons that cause the redundancy problem in
association rule mining. We also proposed several methods to eliminate redundant
rules. The proposed methods rigorously verify every single rule and eliminate
redundant rules. Consequently it generates a small number of rules from any given
frequent itemsets in compare to all traditional approaches. The experimental
evaluation also suggests that the proposed methods not only theoretically eliminate
redundant rules but also reduce redundant rules from real datasets.

References

1. Rakesh Agrawal, Tomasz Imielinski and Ramakrishnan Srikant “Mining Association Rules
between Sets of Items in Large Databases”, ACM SIGMOD, pp 207-216, May 1993.

2. Mohammed Javeed Zaki, “Parallel and Distributed Association Mining: A Survey”, IEEE
Concurrency, pp. 14-25, October-December 1999.

3. Mohammed Javeed Zaki, “Scalable Algorithms for Association Mining” IEEE Transactions
on Knowledge and Data Engineering, Vol. 12 No.2 pp. 372-390 (2000).

4. Charu C. Aggarwal and Philip S. Yu, “A new Approach to Online Generation of
Association Rules”. IEEE TKDE, Vol. 13, No. 4 pages 527- 540.

5. Bing Liu, Minqing Hu and Wynne Hsu “Multi-Level Organization and Summarization of
the Discovered Rules”. In the proc. KDD, pp. 208-217, 2000.

6. Bing Liu, Wynne Hsu and Yiming Ma, “Pruning and Summarize the Discovered
Associations”. In the proc. of ACM SIGMOD pp.125 134, San Diego, CA, August 1999.

7. Mohammed Javed Zaki, “Generating non-redundant association rules” In Proceeding of the
ACM SIGKDD, pp.34-43, 2000.

8. Bing Liu, Wynne Hsu and Yiming Ma, “Mining Association Rules with Multiple Minimum
Supports”. In the proc. KDD, pp. 337-341, 1999.

9. C.L. Blake and C.J. Merz. UCI Repository of Machine Learning Databases, University of
California, Irvine, Dept. of Information and Computer Science, 1998,

 http://www.ics.uci.edu/~mlearn/MLRepository.html.
10. Ron Kohavi and Carla Brodley and Brian Frasca and Llew Mason and Zijian Zheng “KDD-

Cup 2000 organizers report: Peeling the onion” , SIGKDD Explorations, Vol. 2 No.2 pp.86-
98, 2000, http://www.ecn.purdue.edu/KDDCUP/ .

11. Bart Goethals, Frequent Pattern Mining Implementations, University of Helsinki-
Department of Computer Science, http://www.cs.helsinki.fi/u/goethals/software/.

	1 Introduction
	2 Redundant Rules: A Background
	2.1 Association Rule Mining: A Brief Overview
	2.2 Overview of Rule Redundancy
	2.3 Why Does Redundancy Occur?

	3 Related Work
	4 Proposed Method
	4.1 Finding Redundant Rules with Fixed Antecedent Rules
	4.2 Finding Redundant Rules with Fixed Consequence Rules
	4.3 Proposed Algorithms

	5 Performance Study
	6 Conclusion
	References

