
On Using Collection for Aggregation and Association
Relationships in XML Object-Relational Storage

Eric Pardede, J.Wenny Rahayu
Department of Computer Science and Computer Eng.

La Trobe University Bundoora VIC 3083 Australia

{ekparded, wenny}@cs.latrobe.edu.au

David Taniar
School of Business Systems

Monash University Clayton VIC 3800 Australia

David.Taniar@infotech.monash.edu.au

ABSTRACT
XML data can be stored in different databases including Object-
Relational Database (ORDB). Using ORDB, we get the benefit
of the relational maturity and the richness of OO modeling. One
modeling concept that can be captured is the collection.
Collection structures frequently occur in XML documents
especially in two relationship types: aggregation and association.
However, very often when the data is stored in a database
repository, the collection is flattened. We believe that preserving
the collection semantics in the logical and the implementation
level will create a better solution.

In this paper we propose methods to preserve the collection in
XML data into ORDB using the concept of collection types. We
use the Semantic Network diagram to represent the collection of
the aggregation and the association in XML data. Each of these
relationship types will then be transformed into storage in an
ORDB environment. For aggregation, we propose different
methods based on the hierarchy constraint. For association, our
method is differentiated based on the cardinality.

Categories and Subject Descriptors
H.2.1 [Database Management]: Logical Design – data models

General Terms
Management, Design, Theory

Keywords
XML, XML schema, ORDB, collection

1. INTRODUCTION
XML (eXtensible Markup Language) is a document description
metalanguage that is used to represent large-scale data and
documents in the World Wide Web [11]. For that reason alone,
XML requires efficient database storage to keep its data.

Object-Relational Database (ORDB) is increasingly popular as

the database storage for XML Data [6]. Its popularity relates to
its ability to capture the object-oriented modeling semantic and
the maturity of the relational implementation.

Many works have been proposed to map the Data Definition
Language (DTD) and the XML Schema into the Object-
Relational (OR) Schema [6, 7, 12, 13]. These works have tried to
capture different data structures and relationships that are exist
in XML Documents.

One of the structures frequently found in XML Data is the
collection structure. The existing works however, have mapped
the collections into flat implementation model. These practices
have diminished the conceptual level semantic. In addition, the
transformations have not utilized collection type in ORDB [8, 9].

These reasons have motivated us to propose different methods of
preserving collection in XML Data into the XML Schema and
the ORDB. We believe that preserving the conceptual semantic
in the logical and the implementation level will create a better
solution.

Collection in XML Data can appear in two different
relationships: association and aggregation. While association is
defined as a “ reference” relationship between one to another
object in a system, aggregation is a tightly coupled form of
association [10]. Aggregation can be defined as a relationship in
which a composite object (“whole”) consists of other component
objects (“parts”) [10].

It is the aim of this paper to propose models that can preserve
collection for aggregation and association relationships in XML
into ORDB. We perform two mapping steps. First is the mapping
from the conceptual model using Semantic Network Diagram to
the logical model using XML Schema. We extend the algorithm
in [3] by proposing different mapping methods for association
and aggregation hierarchy. Second, the logical model is mapped
into the physical implementation using SQL in ORDB. For this
purpose we use the collection data types [8, 9].

Step 1 Step 2 Conceptual
Model:

Semantic
Network Model

Logical
Model:
XML

Schema

Physical
Model:
ORDB

Figure. 1. Mapping Steps

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’04 March 14-17, 2004, Nicosia, Cyprus.
Copyright 2004 ACM 1-58113-8121/03/04…$5.00.

703

2004 ACM Symposium on Applied Computing

2. BACKGROUND
In this section we briefly show some existing works on the
implementation of collection for XML Data. We also provide a
brief knowledge foundation on the semantic network model
before we use it in our proposed methods.

2.1 Existing Implementation in XML
Some works have tried to preserve the design modeling and to
store the XML data into databases that are based on relational
model including the traditional relational database and the
ORDB. However, there is no work that utilizes collection data
types that was introduced by SQL 1999 [5, 9] and is enriched in
SQL4 [8, 9]. Very often when the XML data is stored in a
database repository, the collection is not preserved. The
collection in aggregation and association relationship is usually
flattened or split into an entirely separate table (see Fig.2).

[4] presents a simple mapping of XML data into the relational
tables. In this work, they treated XML documents as graphs with
edges and leaves. The edges represent the relationships while the
leaves represent the values. In this work, the collection appeared
in aggregation relationship is mapped into separate flat tables by
using composite keys. It has then diminished the collection
semantic.

[1] proposes comprehensive mapping from the DTD into the OO
Schema and the implementation of the results into tables. In the
implementation stage again the aggregation type is flattened. The
association relationship is mapped using IDREF. This is usually
done when it is not possible to form collection or nesting.

[11] also works in the mapping of the DTD into the relational
tables. They develop an algorithm and a prototype that convert
the XML documents to tuples, translate the semi structured XML
queries to SQL queries, and then convert the results to XML
data. This work enlists the limitations of the relational database
usage for the XML documents. One of those highlights the
limitations of implementing collection semantic in the relational
table since this database is unable to have set-valued attributes.

[6] proposes mapping from the XML Schema into the OO/OR
Schema. The work compares how the mapping into relational
schema can be changed into the OR schema. Thus, it does not
cover the unique properties of an OR model such as different
types of relationships including aggregation. Regarding
association relationship, this work has mentioned the usage of
collection to store the reference. Nevertheless, it does not show
the step-by step mapping from conceptual level down to the
implementation.

[7] proposes mapping from the DTD into the OR Schema. The
main contribution of the work is the usage of a hybrid database
where the users can select certain attributes to be stored in
ORDB and others to be stored as they are (as XML data). It does
not show the mapping for different kinds of relationship and data
structures.

[15] proposes the mapping of the OO Conceptual Model into the
XML Schema. This work has included collection for aggregation
relationship. However, the usage of UML for XML Data is not
complete [3]. In addition, this work does not discuss the usage of
collection in association relationship.

Customer
PK

CustomerID CustomerName
MR2 Mark Roberts

Order
PK PK FK

OrderNo OrderDate CustomerID
1 25/08/2003 MR2
2 26/08/2003 MR2
3 27/08/2003 MR2

<xsd: el ement name = “ BOOK” t ype = “ BookType” / >
<xsd: compl exType name = “ BookType” >. . .

<xsd: el ement name = “ EDI TI ON” mi nOccur s =
?0? maxOccur s= ?unbounded?/ >. . .

</ xsd: compl exType>
</ xsd: el ement >

Book
PK

book_id book_title
EN1 Fundamentals of Database

System

Book-Edition
PK, FK PK
book_id ed-no ed-year

EN1 1 1989
EN1 2 1997
EN1 3 2000

<xs: el ement name = “ CUSTOMER” t ype = “ Cust omer Type” / >
<xs: compl exType name = “ Cust omer Type” >

<xs: el ement name = “ ORDER” t ype= “ Or der Type” max
Occur s = “ unbounded” / >. . .
</ xs: compl exType>

<xs: compl exType name = “ Or der Type” >. . .
</ xs: compl exType>

BOOK

EDI TI ON EDI TI ON EDI TI ON

XML DOCUMENTS
AGGREGATION

ORDER

ORDER

CUSTOMER ORDER

XML DOCUMENTS
ASSOCIATION

Figure. 2. Collection Flattened in Existing Method

704

Finally [12, 13] propose the mapping of association and
aggregation relationship of XML Schema to ORDB. In [12], the
collection in XML Schema is disappeared in the tables since they
store the reference in the “many” side or in the separate table. In
[13], the collection is preserved in the XML Schema, but again
the data is stored separately in cluster tables or nested tables.

We find that the existing works either have not preserved the
collection or have preserved one mapping step only. Therefore, in
this work we are going to propose the complete mapping to
preserve the collection in aggregation and association
relationships, from the conceptual level to the implementation.

2.2 Semantic Network: An Overview
In this paper we use the Semantic Network Method [3] to model
the conceptual level of the XML Documents structures. The
diagram can be viewed as a richer alternative of W3C XML Data
Model [14]. The Semantic Network Method is divided into the
semantic level and the schema level. The former develops a
specific diagram from the XML document structures while the
latter maps the diagram into syntax and structure formalism such
as DTD and XML Schema.

The semantic network diagram is divided into four major
components: nodes, directed edges, labels, and constraints. In
Figure 3, there are 5 nodes: A, B, X, Y, and Z. The first two are
complex nodes while the rest are basic nodes. There are four
directed edges representing the semantic relationships between
the objects. We have different labels corresponding to each edge.
For example “p” indicates in-property relationship and “a”
represents aggregation relationship. Finally, there are constraints
added in nodes or edges such as uniqueness, cardinality,
adhesion, ordering, etc. This diagram can show the conceptual
design of the XML documents more completely than XML data
model or UML [2].

a[0..n]

a

Z X
{unique}

a p
A B

Y

Figure. 3. Semantic Network Diagram

In the schema level the Semantic Network Method maps the four
components of the diagram into XML Schema, which is mainly
concerned with element/attribute declarations and simple/
complex type definitions [4].

In the next section we show how we extend the schema level
mapping to capture the collection semantic then we follow
through to the implementation of the XML Schema in ORDB.

3. PROPOSED METHODS FOR
AGGREGATION RELATIONSHIP
In this section we propose the mapping methods for aggregation
relationships in the XML Data into the ORDB. The
implementation will be different based on the aggregation
constraints.

In the first step we map both the “whole” and the “part”
components as complex types. The location of the complex types
will be determined by the aggregation constraints. For the second
step, we directly map the “whole” complex type as the table and
the “part” complex types as the collection type attributes.

Until the time of writing, SQL4 [8, 9] have standardized two
collection types, array and multiset. An array is a dynamically
sized ordered collection that allows duplicates. A multiset or a
bag is an unordered collection that allows duplicates. The
collection itself can be of simple data type (such as INTEGER),
constructed data type (such as ROW), or user-defined type.

3.1 Implementation of Shareable and
Existence-Independent Aggregation
In the first type of aggregation, the “part” components are
shareable and their existence is independent from the “whole”
component. Therefore, we enable access to the “part” component
without firstly accessing the “whole” component. The mapping
rules are shown below.

Rule 1:
Step 1: For two types namely T1 and T2 with elements/attributes

(A,B) and (M,N) respectively, if T1 can be composed by
collection of shareable and existence-independent T2,
implement T1 as a complex type and T2 as another
complex type accessed as an element in T1 with
maxoccurs constraint = unbound.

Step 2: For two complex types namely T1 (A,B) and T2 (M,N), if
T1 can be composed by more than one shareable and
existence-independent T2, implement T2 as a collection of
UDT attribute of table T1. Transformation result is Table

T1 (A, B,
n

UDT
0

 T2 (M, N))

Step 2

Step 1

El. M
El. N

El. A
El. B

a
TYPE T1

a [0..n]

TABLE T1
At t A At t B Col l . T2
Val A Val B At t M At t N

Val M1 Val N1
Val M2 Val N2

Gener al Synt ax
CREATE TYPE <T2 t ype schema>
(at t i dat a_t ype, . . . ,
at t i +m dat a_t ype) ;

CREATE TABLE <T1 t abl e schema>
(at t j dat a_t ype, ,
 at t j +n MULTI SET| ARRAY (<T2 t ype schema>)) ;

XML Schema

a
TYPE T2

Figure 4. Aggregation Type 1 Transformation

Example 1:
Type STAFF is the aggregation of type DEPENDENT (see Fig.5).
The latter type can still exist outside type STAFF, probably in

705

type STUDENT, etc. The aggregation type will be mapped into
collections of UDT in ORDB table. Note that the horizontal line
determines the ordering semantic.

StaffName

DepName

StaffId

order a a

a
a [0..n]

p
STAFF

DEPENDENT

DepAge

Figure 5. STAFF Aggregation Example

Tr ansf or mat i on i nt o XML Schema (St ep 1) :

<xsd: compl exType name =

�

DEPENDENT_Type
�

>
<xsd: sequence>

<xsd: el ement name = “ DepName” t ype =
“ xsd: st r i ng/ >

<xsd: el ement name = “ DepAge” t ype =
“ xsd: i nt eger ” / >

</ xsd: sequence>
</ xsd: compl exType>

<xsd: compl exType name =

�

STAFF_Type
�

>
<xsd: at t r i but e name = “ St af f I D” t ype = “ xsd: I D”

use = “ r equi r ed” / >
<xsd: el ement name = “ St af f Name” t ype =

“ xsd: st r i ng/ >
<xsd: el ement name = “ DEPENDENT” t ype =

“ xsd: DEPENDENT_Type” maxOccur s=
�

unbounded
�

/ >
</ xsd: compl exType>

Tr ansf or mat i on i nt o ORDB (St ep 2) :

CREATE TYPE Dependent Type
(DepName CHARACTER VARYI NG(40) ,
 DepAge I NTEGER) /

CREATE TABLE St af f
(St af f I D CHARACTER VARYI NG(5)
 CONSTRAI NT St af f I D_pk PRI MARY KEY,
 St af f Name CHARACTER VARYI NG(40) ,
 Dependent MULTI SET (Dependent Type)) ;

The first contribution of our method is the transformation of
semantic network to XML Schema. We come up with XML
Schema where both the “whole” and the “part” components are
defined as complex types. Inside the “whole” complex type, we
will have an element of the “part” complex type. Having done
this, the “part” type can actually be used inside another “whole”
complex type (shareable). To preserve the collection, we use the
XML Schema syntax maxOccur s=

�

unbounded
�

.

<xsd: compl exType name =
�

PART_Type
�

>
. . .

</ xsd: compl exType>

<xsd: compl exType name =

�

WHOLE_Type
�

>
<xsd: el ement name = “ PART_Name” t ype =
“ xsd: PART_Type” maxOccur s=

�

unbounded
�

/ >. . .
</ xsd: compl exType>

The second contribution is the transformation of the XML
Schema to the ORDB in the form of UDT collection attribute.
The mapping is straightforward. The “part” complex type is
mapped as a UDT and the “whole” complex type is mapped as a
table with one collection attribute formed by the “part” type. We
use the SQL syntax TABLE(…MULTI SET<ARRAY[] >
(UDT_TYPE)) .

3.2 Implementation of Non-Shareable and
Existence-Dependent Aggregation
For the next aggregation type, the “part” components are non-
shareable and their existence depends on the “whole”
component. This type is usually called composition. We need to
exclusively define the “part” component inside the “whole”
component.

Rule 2:
Step 1: For two types namely T1 and T2 with elements/attributes

(A,B) and (M,N) respectively, if T1 can be composed by
collection of non-shareable and existence-dependent T2,
implement T1 as a complex type and T2 as an inner
complex type with maxoccurs constraint = unbound.

Step 2: For two complex types namely T1 (A,B) and T2 (M, N), if
T1 can be composed by collection of shareable and
existence-dependent T2, implement T2 as a collection of
ROW attribute of table T1. Transformation result is Table

T1 (A, B,
n

Row
0

 T2 (M, N))

El. M
El. N

El. A
El. B

a

a [0..n]

TYPE T1

Step 2

Step 1
XML Schema

TABLE T1
At t A At t B Col l . T2
Val A Val B At t M At t N

Val M1 Val N1
Val M2 Val N2

Gener al Synt ax
CREATE TABLE <T1 t abl e schema>
(at t i dat a_t ype, ,
 at t i +m MULTI SET| ARRAY ROW (at t (i +m) (j) dat a_t ype, )) ;

a
TYPE T2

Figure 6. Aggregation Type 2 Transformation

Example 2:
COURSE is the composition of two multiple types ASSI GNMENT
and EXAM (see Fig.7). The composition type will be mapped into
collections of row attribute in ORDB table.

706

order order a a

ExamDate ExamPercent

a a

a[1..n]

a

a[1..n]

COURSE

ASSIGNMENT EXAM

CourseID
p

CourseName

AssignTitle AssignType

Figure 7. COURSE Composition Example

Tr ansf or mat i on i nt o XML Schema (St ep 1) :

<xsd: compl exType name =

�

COURSE_Type
�

>
<xsd: at t r i but e name = “ Cour seI D” t ype = “ xsd: I D”

use = “ r equi r ed” / >
<xsd: el ement name = “ Cour seName” t ype =

“ xsd: st r i ng/ >
<xsd: el ement name = “ ASSI GNMENT” t ype =

maxOccur s=
�

unbounded
�

/ >
<xsd: compl exType>

<xsd: sequence>
<xsd: el ement name = “ Assi gnTi t l e” t ype =

“ xsd: st r i ng/ >
<xsd: el ement name = “ Assi gnType” t ype =

“ xsd: st r i ng” / >
</ xsd: sequence>

</ xsd: compl exType>
<xsd: el ement name = “ EXAM” maxOccur s=

�

unbounded
�

/ >
<xsd: compl exType>

<xsd: sequence>
<xsd: el ement name = “ ExamDat e” t ype =

“ xsd: dat e/ >
<xsd: el ement name = “ ExamPer cent ” t ype =

“ xsd: i nt eger ” / >
</ xsd: sequence>

</ xsd: compl exType>
</ xsd: compl exType>

Tr ansf or mat i on i nt o ORDB (St ep 2) :

CREATE TABLE Cour se
(Cour seI D CHARACTER VARYI NG(5)
 CONSTRAI NT Cour seI D_pk PRI MARY KEY,
 Cour seName CHARACTER VARYI NG(40) ,
 Assi gnment MULTI SET
(ROW (Assi gnTi t l e CHARACTER VARYI NG(40) ,

Assi gnType CHARACTER VARYI NG (20))) ,
 Exam MULTI SET (ROW (ExamDat e DATE,

ExamPer cent I NTEGER))) ;

The proposed method from the conceptual to the implementation
level has captured the real semantic of the composition hierarchy.
In the first transformation, we come up with the XML Schema
where the “part” component is defined as a complex type inside
the “whole” type element. By doing this we avoid other element
type to share the particular “part” component (non-shareable
constraint). We also ensure that on removal of the “whole” type,
we remove all “part” components that are defined inside it
(existence-dependent constraint). To preserve the collection, we
use the XML Schema syntax maxOccur s=

�

unbounded
�

.

<xsd: compl exType name =
�

WHOLE_Type
�

>. . .
<xsd: el ement name =

�

PART_Name
�

maxOccur s=” unbounded” / >>
<xsd: compl exType>. . .
</ xsd: compl exType>

</ xsd: compl exType>

In the second step, we map the outer complex type as the table in
the ORDB and the inner complex type as the ROW attribute. To
preserve the collection we implement the ROW as a collection
with this syntax TABLE(…MULTI SET<ARRAY[] >(ROW()) .

4. PROPOSED METHODS FOR
ASSOCIATION RELATIONSHIPS
In this section we propose the mapping methods of the
association relationship in the XML structures into the ORDB
using the collection types. As we want to accommodate the
collection, we only cover the association with “many” cardinality:
1:N and N:N.

Like the previous section, the proposed method is divided into
two steps. In the first step we map the conceptual model in the
semantic network into the XML Schema. The associating types
will become the complex types. In the second step we map the
complex types as the tables and the “ referential” object as the
collection type attribute.

4.1 Implementation of 1:N Association
For the 1:N association relationship, the reference can be stored
as a collection inside the type that has “one” side. In usual
practice, the XML Schema mapping to ORDB is not
straightforward because the location of reference key in both
schemas is different. Our method proposes a more
straightforward mapping since the reference type is always
located in the type that has “one” side.

Rule 3:
Step 1: For two types namely T1 (A,B) and T2 (M,N), if T1 and T2

has 1:N association relationship, implement both as
complex types with T1 has a collection of reference to T2

Step 2: For two complex types namely T1 (A,B) and T2 (M,N), if
T1 holds collection of reference to T2, implement both as
tables with T1 has a collection attribute refer to T2.

Transformation result is Table T1 (A, B,
n
KeyT

1
2 _) and

Table T2 (M, N)

707

TABLE T2

At t M At t N
Val M1 Val N1

Val M2 Val N2

Step 2

Step 1
El. A
El. B

TABLE T1

At t A At t B Col l . T2

Val A Val B Val M1

Val M2

XML Schemas [1..n]

a
TYPE T1

TYPE T2

El. M
El. N

Gener al Synt ax

CREATE TABLE <T2 t abl e schema>
(at t i dat a_t ype, ,
 at t i +m dat a_t ype) ;

CREATE TABLE <T1 t abl e schema>
(at t j dat a_t ype, ,
 at t j +n MULTI SET| ARRAY (T2 Key dat a_t ype)) ;

a

Figure 8. 1:N Association Transformation

Example 3:
Type FACULTY has an association relationship with type
BUI LDI NG (see Fig.9). The reference element/attribute from
“one” to “many” side type will be mapped as collections attribute
in ORDB table.

BuildingID FacultyID

p p

FacultyName

s [1..n]

a

FACULTY

BuildingName

BUILDING

a

Figure 9. FACULTY-BUILDING Association Example

Tr ansf or mat i on i nt o XML Schema (St ep 1) :

<xsd: compl exType name =

�

BUI LDI NG_Type
�

>
<xsd: at t r i but e name = “ Bui l di ngI D” t ype =

“ xsd: I D” use = “ r equi r ed” / >
<xsd: el ement name = “ Bui l di ngName” t ype =

“ xsd: st r i ng/ >
</ xsd: compl exType>

<xsd: compl exType name =

�

FACULTY_Type
�

>
<xsd: at t r i but e name = “ Facul t y I D” t ype = “ xsd: I D

use = “ r equi r ed” / >
<xsd: el ement name = “ Facul t yName” t ype =

“ xsd: st r i ng/ >
<xsd: at t r i but e name = “ Bui l di ngI D” t ype =

“ xsd: st r i ng” maxOccur s=
�

unbounded
�

/ >
</ xsd: compl exType>

<keyr ef name=’ BUI LDI NG_Bui l di ngI D_Ref ”

r ef er =” BUI LDI NG_Bui l di ngI D” >
<sel ect or xpat h = “ FACULTY” >
<f i el d xpat h=” @Bui l di ngI D” / ></ keyr ef >

<key name=’ FACULTY_Facul t y I D” >

<sel ect or xpat h = “ FACULTY” >
<f i el d xpat h=” @Facul t y I D” / ></ key>

Tr ansf or mat i on i nt o ORDB (St ep 2) :

CREATE TABLE Bui l di ng
(Bui l di ngI D CHARACTER VARYI NG(5)
 CONSTRAI NT Bui l di ngI D_pk PRI MARY KEY,
 Bui l di ngName CHARACTER VARYI NG(40)) ;

CREATE TABLE Facul t y
(Facul t y I D CHARACTER VARYI NG(5)
 CONSTRAI NT Facul t y I D_pk PRI MARY KEY,
 Facul t yName CHARACTER VARYI NG(50) ,
 Bui l di ngI D MULTI SET(CHARACTER VARYI NG(5))) ;

In our method, we utilize the collection to store the relationship
between two types. For the first transformation we come up with
two complex types. In the “one” complex type we will have
collection of element of the “many” complex type. To preserve
the collection, we use XML Schema syntax maxOccur s=

�

unbounded
�

. And to maintain the relationship, we use key
and keyr ef instead of I D and I DREF. Using the formers we
enable one to specify scope within which uniqueness applies.

<xsd: compl exType name =
�

ONE_Type
�

>
. . .

</ xsd: compl exType>

<xsd: compl exType name =

�

MANY_Type
�

>
<xsd: at t r i but e name = “ ONE_Key” . . . maxOccur s=

�

unbounded
�

/ >. . .
</ xsd: compl exType>

<key name=” ONE_Key” >

<sel ect or xpat h = “ ONE_Type” >. . . </ key>

<keyr ef name=” ONE_Key_Ref ” r ef er =” ONE_Key” >

<sel ect or xpat h = “ MANY_Type” >. . . </ keyr ef >

In the second step, we map the complex types as the tables in the
ORDB. In the “many” type we have collection attribute consist of
attribute key from the “one” type. If we have a single key we will
use a collection of simple data type. Otherwise, we will have a
collection of ROW type. To preserve the collection the
implementation syntax is TABLE(…MULTI SET<ARRAY[] >
(SI MPLE_TYPE| ROW()) .

We have one shortcoming of using collection in the second step
of association relationship. At present, we cannot use current
SQL to embed integrity constraint checking in ORDB. As we
know, in traditional methods we can include the foreign key or
REF and then define the integrity constraint checking such as ON
DELETE CASCADE, ON UPDATE NULLIFY, etc. We still
cannot apply this for collection attribute. Nevertheless, it does
not mean we cannot have integrity constraint checking for our
methods. Triggers and embedded routines are available in ORDB
to enforce this task.

4.2 Implementation of N:N Association
In the N:N association, the reference can be stored as collection
inside one of the associated type (see Fig.10). Our method
proposes different way of implementing N:N association because
we do not require to store the relationship in a separate table.

Rule 4:
Step 1: For two types T1 (A,B) and T2 (M,N) have N:N

association relationship in T3 (X), implement both as

708

complex types with T1 has a collection of T3 and
reference to T2.

Step 2: For two complex types namely T1 (A,B) and T2 (M,N)
have N:N relationship, if T1 has the collection of the
relationship and the reference to T2, implement both as
tables with T1 has collection ROW attribute.

Transformation results are Table T1 (A, B,
n

Row
1

 (T2 Key,

T3(X))) and Table T2 (M, N)

Gener al Synt ax
CREATE TABLE <T2 t abl e schema>
(at t i dat a_t ype, ,
 at t i +m dat a_t ype) ;

CREATE TABLE <T1 t abl e schema>
(at t j dat a_t ype, ,
 at t j +n MULTI SET| ARRAY ROW

(at t i dat a t ype, ,
 at t h dat a t ype, ,
 at t h+1 dat a t ype) ;

El. X

a

s [1..n]

TABLE T2
At t M At t N

Val M1 Val N1
Val M2 Val N2

Step 2

Step 1

El. A
El. B

TABLE T1
At t A At t B Col l . T2 Key and T3
Val A Val B T2 Key T3 At t X

Val M1 Val X1
Val M2 Val X2

XML Schema s [1..n]

a

TYPE T1 TYPE T3

El. M
El. N

a

TYPE T2

Figure 10. N:N Association Transformation

Example 4:
STUDENT and SUBJECT have N:N association relationship (see
Fig.11). The reference of one type together with the relationships
attributes will be mapped as collection in another type table.

StudentID

p

s [1..n]

s [1..n]

SubjectName

StudentName

a

STUDENT ENROLMENT

a

SubjectCode

p
SUBJECT

a

Marks

Figure 11. STUDENT-SUBJECT Association Example

Tr ansf or mat i on i nt o XML Schema (St ep 1) :

<xsd: compl exType name =

�

SUBJECT_Type
�

>
<xsd: at t r i but e name = “ Subj ect Code” t ype =

“ xsd: I D” use = “ r equi r ed” / >
<xsd: el ement name = “ Subj ect Name” t ype =

“ xsd: st r i ng/ >
</ xsd: compl exType>

<xsd: compl exType name =

�

STUDENT_Type
�

>
<xsd: at t r i but e name = “ St udent I D” t ype = “ xsd: I D

use = “ r equi r ed” / >

<xsd: el ement name = “ St udent Name” t ype =
“ xsd: st r i ng/ >

<xsd: el ement name = “ ENROLMENT_Type” maxOccur s=
�

unbounded
�

/ >
<xsd: compl exType>

<xsd: sequence>
<xsd: at t r i but e name = “ Subj ect Code” t ype =

“ xsd: st r i ng/ >
<xsd: el ement name = “ Mar ks” t ype =

“ xsd: i nt eger / >
</ xsd: sequence>

</ xsd: compl exType>
</ xsd: compl exType>

<keyr ef name=’ SUBJECT_Subj ect Code_Ref ”

r ef er =” SUBJECT_Subj ect Code” >
<sel ect or xpat h = “ STUDENT/ ENROLMENT” >

<f i el d xpat h=” @Subj ect Code” / ></ keyr ef >

<key name=’ STUDENT_St udent I D” >

<sel ect or xpat h = “ STUDENT” >
<f i el d xpat h=” @St udent I D” / ></ key>

Tr ansf or mat i on i nt o ORDB (St ep 2) :

CREATE TABLE Subj ect
(Subj ect Code CHARACTER VARYI NG(5)
 CONSTRAI NT Subj ect Code_pk PRI MARY KEY,
 Subj ect Name CHARACTER VARYI NG(20)) ;

CREATE TABLE St udent
(St udent I D CHARACTER VARYI NG(5)
 CONSTRAI NT St udent I D_pk PRI MARY KEY,
 St udent Name CHARACTER VARYI NG(20) ,
 Subj ect Taken MULTI SET (ROW

(Subj ect Code CHARACTER VARYI NG(5) ,
 Mar ks NUMBER(3))) ;

In the first step we map the associated types into two separate
complex types. In one of the complex type we include the key to
the other complex type as well as the relationship elements/
attributes. Same as 1:N association, we use maxOccur s=

�

unbounded
�

 with key and keyr ef to preserve the
collection and the referential constraint. The difference is now
we have additional elements/attributes that come up with the
relationship.

In the second step we will likely to have a collection of ROW
attribute inside one of the “many” side table. It is because we
need to include the key to the other “many” side table and the
additional relationship attributes. To preserve the collection we
implement the collection with this syntax TABLE(…MULTI SET
<ARRAY[] > (ROW()) .

5. CONCLUSION
By nature, the XML documents contain a lot of collection
structures. Many works have shared the same solution in
implementing the collection in database storage by mapping
them into flat tables. This practice has diminished the conceptual
model semantic. With the existence of collection types in ORDB,
we aim to propose different implementation of collection
structure in XML.

In this paper we show how the collection in the aggregation and
the association relationship of XML data using semantic-network
based conceptual model can be preserved in the implementation
using the Object Relational Database (ORDB). We propose the

709

usage of collection type both for aggregation and association
relationship. In the aggregation we differentiate the method
based on the hierarchy constraints, while in the association we
differentiate based on the cardinality.

Unlike other works in transformation, our proposed methods
cover two straightforward mapping steps, spanned from the
conceptual model to the implementation into tables. By doing
this, the results maintain the semantic stated in the conceptual
level. In addition, using collection type, we have utilized the rich
facility in ORDB.

6. REFERENCES
[1] Bourret,R. “Mapping DTDs to Databases” , in

http://www.xml.com/pub/a/2001/05/09/dtdtodbs.html, 2001

[2] Conrad, S., Scheffner, D. and Freytag, J. “XML Conceptual
Modeling using UML” , ER 2000, Springer-Verlag, 2000,
558-571

[3] Feng, L., Chang, E. and T. Dillon, “A Semantic Network-
Based Design Methodology for XML Documents” , ACM
TOIS 20(4), 2002, 390-421

[4] Florescu, D. and Kossmann, D. “Storing and Querying
XML Data using an RDMBS”, IEEE Data Engineering
Bulletin 22(3), 1999, 27-34

[5] Fortier, P. SQL3 Implementing the SQL Foundation
Standard, McGraw Hill, 1999

[6] Han, W-S., Lee, K-H. and Lee, B.S.“An XML Storage
System for Object-Oriented/Object-Relational DBMSs” ,
Journal of Object Technology 2(1), 2003, 113-126

[7] Klettke, M. and Meyer, H. “XML and Object-Relational
Database Systems - Enhancing Structural Mappings Based
on Statistics” , WebDB 2000, Springer-Verlag, 2000, 151-
170

[8] Melton, J. (ed.), Database Language SQL – Part 2
Foundation. ISO-ANSI WD 9072-2, International
Organization for Standardization, Working Group WG3
(August 2002)

[9] Pardede, E., Rahayu, J.W. and Taniar, D. “New SQL
Standard for Object-Relational Database Applications” , SIIT
2003, Delft TU, 2003, 191-203

[10] Rumbaugh, J. et al, Object-Oriented Modelling and
Design, Prentice Hall, 1991

[11] Shanmugasundaram, J., Tufte, K., Zhang, C. He, Ge.
DeWitt, D.J. and Naughton, J.F. “Relational Databases for
Querying XML Documents: Limitations and Opportunities” ,
VLDB 1999, Morgan-Kauffman, 1999, 302-314

[12] Widjaya, N.D., Taniar, D., Rahayu, J.W. and Pardede, E.
“Association Relationship Transformation of XML Schemas
to Object-Relational Databases” , i iWAS 2002, SCS
Publishing House, 2002, 135-142

[13] Widjaya, N.D., Taniar, D. and Rahayu, J.W. "Aggregation
Transformation of XML Schemas to Object-Relational
Databases", IICS 2003, Springer-Verlag, 2003

[14] W.W.W, “The XML data model” , available at
http://www.w3.org/XML/Data-model.html/, 2000

[15] Xiou, R., Dillon, T.S., Chang, E., and, Feng, L. “Modeling
and Transformation of Object-Oriented Conceptual Models
into XML Schema” , DEXA 2001, Springer-Verlag, 2001,
795-804

710

