
NEW SQL STANDARD FOR OBJECT-RELATIONAL DATABASE
APPLICATIONS

Eric Pardede and J. Wenny Rahayu
LATROBE UNIVERSITY, AUSTRALIA

David Taniar
MONASH UNIVERSITY, AUSTRALIA

In this paper we examine the impact of the newest generation of Structured Q u e y
Language (SQL), which is the standard language for Relational Model. The new
standard of SQL4 ad& powerJui object-oriented data structures to Object-Relational
Database (ORDB). which is designed and implemented on Relational Model, to be
used in diverse applications. This paper offers some opportunities of ORDB usage in
many emerging database technologies such as Statistical and Scientific Database,
Web Databare, Multimedia Database, etc. Its aim is to show how standardization's
impact an the model that can be useful far many real world applications.

rructured Q u q Language (SQL) is used for database definition and manipulation [15]. It was originally
developed for Relational Model, a data model that was very popular until the mid 90s. However, many S people believe that this model does not have enough capability to capture the real world problems and

needs to be enriched with 00 concepts [IZ]. It brings a new era of Object-Relational Database (ORDB), which
captures the semantic richness of 00 Conceptual Model (OOCM) and the simplicity of Relational Model
implementation.

In ORDB, the OOCM is transformed into Logical Model and is implemented into relations using
Object-Relational DBMS (ORDBMS) (see Fig.1). The design phase for ORDB still follows the conventional
relational model, which does not have the capability to model full OOCM. It is understandable since SQL as the
design language at that stage did not preserve full OOCM features. To answer the problem, ANSHSO has
introduced new SQL standards called SQL3 [7, 151. At present they have been working on the prototype of the
SQL4 that has even more extensions [16]. Now the ORDB transformation can be performed efficiently and
thoroughly, we have the challenge to make it applicable for new database problems.

G m q i u a l M o d e l

Figure 4. Object-Relational Database

0-7803-81 72-6/03/$17.00 622003 IEEE.

The aims ofthis paper are to provide the taxonomy of data structures brought by S Q U standard and to
show how they can be used in ORDB for emerging database applications. It i s important to emphasize that this
paper shows challenges and opportunities as the impacts of new standards.

After this introduction, we show some background on SQL and ORDB in the fust section. In the
second section we classify new SQL data we, which enrich data structures in ORDB. In the third section we
show bow some database problems can he answered by ORDB with the new SQL standard. Finally our paper
will be concluded in the founb section.

Background
In this section we provide SQL historical information, from the introduction of the language as a standard to the
development ofthe newest generation. It is followed by the background of the database model supported by new
SQL, the ORDB.

Structured Query Language (SQL)
SQL was introduced in 1970 and has emerged as the standard language for Relational Database (RDB) [IS].
The 1992 revision, SQL2, has been widely used by all RDBMS products. In 1993 an attempt to develop a new
standard was started since the DBMS vendors had enhanced their existing relational products with 00 features.
The existing standard had become somewhat obsolete because it provided no support for 00 features.

Many of the vendors created their own language extension of SQL to retrieve and manipulate data. For
example, POSTGRES [22] provides an extended SQL called POSTQLJEL query with the ability to capture the
concept of absbact data type, inheritance, and object identity. Another example is Starburst [14,21] that extends
the relational algebra and supports user-defined operations and complex types.

Extension to SQL by vendors can be used for their own products. However, there was no standard that
can be used by all ORDB users and was acceptable to all parties. Therefore, it is crucial to develop a new SQL
that can capture all 00 features in Relational Model. The new SQL is then developed and called SQL3 or SQL-
99 [7].

SQL3 has been characterized as “00 SQL” and it bas become the foundation for several ORDBMS
such as OracleS. Ironically, many believe that SQL2 will still be used in the future [5] , since many researchers
and practitioners still have unsettled arguments on many SQW issues. Therefore, the standardized body
ANSIilSO has starred to review SQL3 and aims to release a new SQL version, SQL4, in few more years. At the
time of writing, this version is still an ongoing work and no release date has been announced [16]. SQL4 has
added some features to SQL3 and it has also reviewed some of its previous versions.

Object-Relational Do fobare (Oh!DB)
The newest SQL version is aimed to facilitate a database model that was developed in the 90s, called Object-
Relational Model. This model is developed to answer the limitation of Relational Model. Even though relational
model can separate the logical and physical components of database model, it does not have the modelling
capability to capture the semantics of complex applications such as encapsulation, different ’ypes of
relationships, complex types, etc. Moreover, it gives little or no support for handling and manipulating the data
stored in the tables, since the dynamic aspects of the model were largely ignored and left to the application
programmer [4].

To answer the limitation of Relational Model, 00 Model has become an intense topic of interest in
computer science, due to the richness ofthe 00 concepts, such as extensibility, information hiding, reusability,
and inheritance [2, 4, 201. They provide an excellent basis for modelling, because the object structures permit
analysts and designers to focus on a problem at a high level of abstraction but with a resulting design that can be
easily implemented. Since the last decade, more software has been Written using the 00 paradigm. Many
Prototypes as well as commercial OODBMS such as 02, Versant, POET, ONTOS, Objectivity, GemStone, and
Objectstore have been developed by both industrial and research laboratories around the world. [3, 11,19,23].

Nevertheless, 00 Databases (OODB) are still not as widely used as RDB that rest on a firm formal
foundation. [24] reports that the OODBMS market is a factor of 100 smaller in comparison to the RDBMS
market, and it is expected that this figure will be maintained in the next decade. It i s B fact that RDB still largely
dominate the database community. RDBMS technology is considered mature, and has been the basis of a large
number of applications around the world. It is also hown that in reality about 95% of object-based development
systems are still using RDBMS engine as its persistence mechanism [I] . However, the relational approach,
when used to model real world problems, is not nearly strong enough to model all the different kinds of
relationships, both static and dynamic. This also includes the fact that the relational model has a lack of

192 SIIT2003 Conference Proceedings

semantic features, an inability to represent knowledge other than simple facts, and an inability to represent
complex structures and operations [12].

These reasons have stimulated the emergence of a new approach in the development of database
systems, namely the Object-Relational approach. In general this approach is a method of combining both 00
and relational approaches with the aim of incorporating the advantages and eliminating their drawbacks. It has
significant benefits in the areas of semantic data modelling, since it captures more extensive static aspects of the
domain and also the dynamic aspect. This rich semantics is lacking in the relational model. On the other hand, in
the implementation of the data model, there are major strengths of the existing RDBMS that OODBMS does not
have. These include the wide spread acceptance as well as the simplicity of the query processing.

ORDB transforms 00 model into Object-Relational logical model before it is implemented in
ORDBMS. The logical design and implementation are performed using conventional relational model design
supported by SQL. With the existence of new data structures in SQL4, the ORDB transfomation is now
becoming more complete and therefore it should become more useful for many database applications. In the
next section we will start classifying the new SQL4 data types for ORDB.

New SQL Extension Data Types
SQL4 classifies the data types into three main classes: predefined, constructed, and user-defined [l5]. It has few
extensions from SQL3, but there are a large number of additional data types from SQLZ, which is a pure
relational model language. Fig.2 illustrates the complete data types supported by cutrent SQL.

Figure 2. SQL4 Datu Types Classifcution

In this section we focus on those that clearly affect the data shuctures. Its aim is to show how the new data
structures can be useful in later section. In addition, we also show how ORDBMS products facilitate the
additional data types [9, IO, 181. It is crucial to include products, since the readiness of vendors is a big issue in
implementing software standard including SQL. Many features have been deemed immature since the vendors
were not able to have agreement on the semantic or syntax. On the other hand, different implementation of data
types in ORDBMS products has also increased the importance of new SQL standard. At this stage, we encounter
problems to transfer database from one ORDBMS to another because they have their own data type extension.
With the same design following SQL, we can resolve this problem.

To illustrate the data types we will use a running example (see Fig.3) thmughout the section. In each
sub-section we add attributes implemented using one new SQL data type. We will use CREATE TABLE and
CREATE TYPE as the basic SQL statements with the basic syntax as follows.

CREATE [OR REPLACEJ TYPE abject schema>
(attribute attribute type, ,
attribute attribute type);

New SQL Stundardfor Object-Relutionul Dufubase Applicafiom 193

CREATE TdBLE <table schema>
(attribute attribute type C O N 5 ' " T attribute PRIHARY KEY,,
attribute attribute type);

Figure 3. An Exompie - Book

Reference (REF) Type
REF type is a data type, whose value can be used to address a site holding another value. The site pointed to can
be another constructed data type or user-defmed type in a typed table. The value of this data type is called REF
value and it is a unique strongly typed value. It can only contain value that point to a specified type and it does
not have referential constraint attached to it.

The operator used for the data type is REF operator. It takes the REF value and retums the value held
by the site it identifies. If for some reasons the site has been destroyed, the REF operator will retum null value.
The data type can also be used to obtain a value referenced by a REF value using DEREF operator.
Furthermore, it can r e m a value acquired l?om invoking and SQL-invoked method.

The example below shows the use of REF type in tables. Notice that the bookqublisher is a
REF type that holds a value pointing to a user-defined type Pub1 i sher. Oracle and DB2 both implement the
data type with the same syntax. Informix on the other hand has not provided REF type among its extended type.
Therefore, we need to use a referential key or foreign key (FK). In this case bookgublisher of Book
table is the FK to Publisher table.

SQL:
CREATE TYPE Publisher

(publisher-name CHARACTER VARYING(50),
publisher-city CHARACTER VARYINGIZO),
publisher-contact NUMBER) ;

CREATE TABLE Book
(book-id CHARACTER VARYING(5) CONSTRAINT book-book-idqk PRIMARY KEY,
book-title CHARACTER VARYING(S0).
bookqublisher REFlPublisher));

Oracle and 082: .~~ ~~~~ ~~~

CREATE TABLE Book
(book-id vARcHAR(5) PRIMARY KEY,
book title VARCHRR(501,
bookqublisher REF(Pub1isher)) i

Informix:
CREATE TABLE Publisher

(publisher-name VARCHAR(50),
publisher-city VARCHAR(20).
publisher-contact NUMBER) ;

194 SIT2003 Conference Proceedings

CREATE TABLE Book
(book-id VARCHAR(5) PRIMARY KEY,
book-title VARCHAR(~O),
bookqublisher VARCHAR(50),
FOREIGN KEY bookqublisher REFERENCES Publisher);

Row Type
Row type is constructed data type that contains a sequence of attribute names and their data types. Since it is
defined like a flat table, a row type inside a table resembles a nested table. Furthermore, it is possible in current
SQL to have varying levels of nesting. It becomes a powerful means to capture real world problems since they
can rarely be represented by a simple flat table.

SQL provides named and unnamed row types. The named row type is quite similar to user-defined
type, where we create the type before using it in a relation. The only difference is that named row type has no
methods associated with it.

Values of different row types are assignable and comparable to each other if and only if both row types
have the same degree and the attributes of both row types in every ordinal is assignable and comparable to each
other.

The example of row type is shown by the following example. For SQL we show the named row type.
The attribute book-au thor is a row type, which in our example is included in a type attribute. It can only be
included as table attribute. Oracle has not provided row type, but we can use another type called nesting for
similar purpose. In the following example book-author is stored as nested table. Informix provides row
type exactly like it is standardized by SQL. DB2 has not implemented the type although we can use a user-
defined-type without methods to suit the purpose.

SQL:
CREATE ROW TYPE Author-Row-Type

(author-surname CHARACTER-VARYING (20)
author-initial CHAR(31,
author-city CHARACTER VARYING(l5)));

CREATE TABLE Book ~~ ~

(book-id CHARACTER VARYING(5) CONSTRAINT book-book-idqk PRIMARY KEY,
book-title CHARACTER VARYING(501,
bookqublisher REF(Publisher),
book-author AUTHOR-ROW-TYPE) :

Oracle:
CREATE TYPE Author-Table-Type AS OBJECT

(author-surname VARCHRR(ZO),
author-initial CHAR(l),
author-city VARCHAR(15)) ;

CREATE TABLE Book
(book-id VARCHAR(5) PRIMARY KEY,
bookItitle VARcHAR(50),
bookqublisher REF(Publisher),
book-author AUTHOR-TABLE-TYPE)
NESTED TABLE book-author AS Book-Author-Tab;

Infomix:
CRmTE TABLE Book

(book-id vARCHAR(5) PRIMARY KEY,
book-title VARCHAR(50),
bookqublisher vARcHAR(50).
book-author ROW (author-surname VARCHAR(20),

author-initial CHAR(3),
author-city VARCHAR(15)),

FOREIGN KEY bookqublisher REFERENCES Publisher));

082:
CREATE TYPE Author-Type

(author-surname VARCHAR(20) ,
author-initial CHAR(3),

New SQL Srandard for Object-Relationol Dalabme Applications 195

author-city VARCHAR(15)));

CREATE TABLE Book
(book-id VARCHAR(5) P R I M Y KEY,
book-title VARCHAR(50),
bookqublisher REF(Publisher),
book-author AUTHOR-TYPE);

Array Type
Array is a constructed data type that can hold composite elements of similar type. The number of elements in a
collection is called the cardinality. The element data type can he a predefined type, another constructed type, or
a user-defined type. A collection constructor is identified by the keyword that determines the type of the
collection and the element data type.

Array provides an ordering semantic of the elements. It specifies the maximum cardinality, although it
can contain elements less than that number. It is more flexible than array in many programming languages,
which forces the users to have elements as many as the maximum cardinality. However, it is less flexible than a
list, another type of collection type in OOCM, which enables users to have an unlimited number of elements. As
array captures ordering semantic, it requires the ordinal position information of each element. This position is
called an index. Index enables users to perform an operation in a specific element of an array.

The following example shows the array in a table. Attribute book-edi tion is an array since it has
to be implemented in order without duplication. The element data type is INTEGER, although we can also have
an array of extended data type. Oracle provides array type, while Informix implements list. On the other hand
DB2 does not include list nor array type for its extended data type.

SQL:
CREATE TABLE Book

(book-id CHAFlACTER VARYING(5) CONSTFlAIm book-book-idqk PRIMARY KEY,
book title CHARACTER VARYINGl501. . .
bookqublisher REF (publisher) ,
book-author AUTHOR-ROW-TYPE,
book-edition INTEGER ARRAY1101) ;

Oracle:
CREATE TABLE Book

(book-id VARCHAR(5) PRIMARY KEY,
book-title VARCHAR(50),
bookgublisher REF(Pub1isher).
book-author AUTHOR-TABLE-TYPE,
book-editionVARRAY OF INTEGER(l0))
NESTED TABLE book-author AS Book-Author-Tab;

Infomix:
CREATE TABLE Book

(book-id VRRCHAR(5) PRIMARY KEY,
book-title VARCHAR(50),
bookqublisher VARCHAR(50).
book-author ROW (author-surname VARcHaR(20) ,

author-initial CHAR(1).
author-city VARCHAR(l5)).

book-edition LIST(INTEGER1,
FOREIGN KEY bookqublisher REFERENCES Publisher));

Muitisel Type
Multiset is the newest collection type added to SQL. It is an opposite of a list, because it contains elements that
can be duplicated and do not need an ordering semantic. In OOCM this collection type is h o w as bag. Since a
multiset does not require ordering, it does not have ordinal position or index. Nevertheless, the cardinality of
multiset is still important in case users perform an assignment or a comparison between multiset.

The following example shows multiset in SQL table. Attribute book-rating is implemented as
multiset because it is assumed that a hook can have same rating several times. In addition, we do not really
concem about the order of the rating giver. Since this data type is a fairly new addition in SQL, not many
ORDBMS provide multiset type. Among OUT sample, Informix is the only product that has provided multiset
type. The syntax is similar to the syntax of list.

196 SIIT2003 Conference Proceedings

SQL:
CREATE TABLE Book ~~~~ ~~~~~

(book-id CHARACTER VARYING(5) CONSTRAINT book-hook-idqk PRIMARY KEY,
hook-t i t le CHPJ(ACTER VARYING(SO),
h o o k q u b l i s h e r REF(Pub1isher).
book-author AUTHOR-ROW-TYPE,
book-edition TNTEGER ARRAY[lOl,
book-rating INTEGER MULTISET) i

Informix!
CREATE TABLE Book

(book-id VARCHAR(5) PRIMARY KEY,
book-t i t le VARCHAR(50),
book p u b l i s h e r VARCHAR(50),
bookIauthor ROW (author-surname VARCHAR(20) ,

a u t h o r - i n i t i a l CHARLl),
author-ci ty VRRCHAR(lS)),

book-edition LIST(INTEGER),
book-rating MULTISET (INTEGER),
FOREIGN KEY b o o k q u b l i s h e r REFERENCES P u b l i s h e r)) ;

Structured User-Defined Type (clor)
UDT comprises a number of attributes and routines (see Fig.4). It enables users to define and to suppolt the
storage and manipulation of complex structure. The intemal structure is encapsulated, so they are not accessible
directly to the users. Access to instances or amibute is done through their routines.

UDT

Figure 4. Encapsulation ofAttributes andRoutinec

A UDT can be instantiated into instances. Instances are generated by the system-provided constructor. The
manipulation of UDT attributes or methods is done through the instance. In SQL, we can have a UDT that
cannot be instantiated indicated by NOT INNSTANTIABLE keyword, For such type we usually do instantiation
through the sub type.

Sub-type is the result of UDT inheritance structure. Inheritance enables users to create a type under an
existing type. The lower type inherits the attributes and behaviours of all 'ypes above its hierarchies. The
inheritance however, can be limited by overriding some properties of the super types.

SQL4 supports type and table inheritance. Type inheritance is the declaration of a UDT under another
type. This type will be called the sub type and it will inherit all the fields of its super type. The type hierarchy
has pushed the complexity into the data type definitions, and made the table structure simple and easy to use.
Type inheritance creates relationships among the structure of the tables, but the tables remain independent in
terms of the data they contain. Table inheritance on the other hand provides a different way of linking the tahle
contents. It tums the table much closer to like object classes since the tables themselves have a parallel
hierarchy. In this inheritance, when a table is declared under its super table, it inherits more than just column
structure. They include the keys, the integrity constraints, triggers, indexes, etc. Io table inheritance, the sub
tables will be treated like a nested collection of rows and a query on a tahle applies to all rows included in the
set.

The following example shows how UDT is provided by SQL. We use the same example as before,
however we now work on the type instead of the table. To create sub types, we have to declare the higher type
as NOT FINAL such as in book-type. If we decide it to be at the end of an inheritance structure, we can
declareitFMAL,asin f i c t i o n - t y p e .

SQL:

New SQL Standard for Object-Relational Database Applications 197

CREATE TYPE Book-Type
(book-id CHARACTER VARYING(51,
book-t i t le CHARACTER VARYING(50) .
b o o k q u b l i s h e r R E F (P u b 1 i s h e r) .
book-author AUTHOR-ROW-TYPE,
book-edition INTEGER ARRAYE101,
book-rating INTEGER MLTLTISET,

PROCEDURE I n s e r t B o o k (
new-book-id I N VARCHARZ,
new-book-title I N VARCHAR2);

BEGIN
INSERT INTO Book (book-id. book- t i t l e)
VALUEs(new-book-id. new-book-title);

END;

)INSTANTIABLE NOT FINAL/

CREATE TYPE Fiction-Type UNDER Book-Type
book-genre CHARACTFR V A R Y I N G 1 2 0 ,
book-LargeL CHARACTER V A R Y I N G 1 2 0 1 .
bookIsynopsis CHARACTER VARYING (200)

OVERRIDING PROCEDURE Insert_Book(
new-book-id I N VARCHARZ,
new-book-title I N VARCHARZI ;

BEGIN

END;

IINSTANTIABLE FINAL /

Oracle implements UDT the same as the SQL standard. It can take form as value UDT or object UDT. The
former means that the type is bound to a table as column object, like book-author attribute in the following
example. The latter on the other hand is appeared in object table as special kind of table, like it is shown by table
Book of book-type. For object UDT, Oracle provides every row object a unique object identifier. DB2
supports structured type almost the same as Oracle. However, in DB2 we cannot have value UDT, where the
type is implemented as a column of a table or a view.

Shvchrred type in lnformix can be associated with opaque data type. This data type stores a single
value, which is the memory contents of the data shvchxe, implemented as C structure and C routines. Since the
content of the data type is the memory, we need to specify the memory allocated to the data type. To interact
with the internal struchxe, the database sewer uses the routines. This data t p e practices encapsulation of
structured type in SQL, however, the implementation of using a structure outside the database is very different
with other DBMS.

Oracle:
CREATE TYPE Author T m e AS OBJECT

CREATE TYPE Book m e
(hook-id VARC-&-(5) ,
book-title VARCHAR(50),
b o o k q u b l i s h e r REP(Pub1isher).
book-author AUTHOR-TYPE,
book-edition VARRAY OF INTEGER(101,

MEMBER PROCEDURE Insert-Book(
new-book-id I N VARCHAR2.
new-book-title I N VARCHARZll/

CREATE OR REPLACE TYPE BODY Book-Type AS

198 SIIT2003 Conference Proceedings

MEMBER PROCEDGXE Insert-BOok(
new-book-id I N VARCHARZ,
new-book-title I N VARCHARZ) IS

BEGIN
INSERT I N T O Book (book-id, book- t i t l e)
VALUES (new-book-id. new-book-title) ;

END Insert-Book;
END:/

CREATE TABLE Book OF Book-Type
(book-id NOT NULL PRIMARY K E Y) ;

Informix:
CREATE OPAQUE TYPE Book-Opaque-Type
(INTERNALLENGTH=VARIABLE, MFZLEN=4096) ;

New SQL for Emerging Applications
New problem domains in database usage have emerged along with the introduction of any real world problem.
Nowadays the real world problems become more complex and to represent them we need sophisticated data
model. Many database designers do not see ORDB as a data model that can be used for new problem domains.
The main reason is a bad presumption on the capability of Relational Model as its predecessor.

In this section we show some emerging dabbase applications. We also give direction on how ORDB
with new SQL standard can he used to model these new applications. ORDB will not be able to answer all
requirements for all applications, but at least the new standard bas provided more capabilities to answer the
requirements that could not be captured before.

Slatislical and Scient@c Database (SSDB)
SSDB emerged as one big research area in the 1980s. The applications are complex because they involve
complex data and procedures. The data usually contains large, static, and a lot of null values. In addition the
queries often include aggregation and sampling.

Traditional DBMS will impose some difficulties, if used for SSDB application. For SSDB statistical
aspect there are two reasons. First, the data redundancy is profound and therefore the organization of data into
tuples might be inefficient. Second, traditional DBMS has a lack of functionality. They only have simple
aggregate functions such as SUM, AVERAGE, etc.

As an example, we use a statistical problem in an agricultural department. The department wants to
store the data of production and consumption of different types of dairy product from different regions in
different months. Using traditional DBMS we need composite keys of different categories and we might end up
with lots of redundancy. SSDB usually implements this problem type in matrix. Now with new SQL standard in
ORDB we can also develop matrix in nested row (see fig. 5) . In addition, the methods of UDT can be used to
answer the lack functionality of traditional DBMS.

Figure ! 5, . Nested Rows for SSDB applications

Web Database
Web database has become a major research area, especially since the introduction of Exfenrible Marhp
Language (XML) as the standard language for web and a tool for exchanging semi-structured data between

New SQL Standardfor Object-Relational Databose Appiicalions 199

various systems and databases on the Intemet. It is a very versatile language, since it can be extended easily
using user-defmed tags to capture complex data structure and relationship such as inheritance and association.
XML now has provided its own database. However, many users still question the performance and simplicity of
the database. That is why users still favor using existing database such as RDB and ORDB. For the second
option, we then need further work to integrate the database into XML documents.

New SQL standard data types now have captured more complex data structures and relationships.
Therefore, more integration between ORDB data structure and XML is required. For example, REF type in new
SQL can be represented easily in XML so that we can reduce or even eliminate the old and expensive join
process. In fig 6, we show a very simple association relationship between a type Customer and Order, and
how we intermingle new SQL and XML.

I XML Schema:

txs:caaplexType name = -orderType*>
<xs:atiribUte name -"OrderlD"

<xa:attrib"te name - "OrderDaLe" type=
iype="xs:integer"/>

-xs:date"/>
</xs:complexType>

New SQL;
CREATE TYPE ORDER
(order-id YarChar2 (10).
order-date date.
OrdeI-Customer R E F customer_type)

Figure 6. Association Relationship in XML andSQL

Despite further work brought by SQL4 toward XML transformation, the standard has also given a significant
benefit. The nested structure in SQIA such as row and collection type allow user to map XML documents in
more natural way. The element hierarchy of Document Type Definition (DTD) on XML can be directly mapped
onto nested attributes in ORDB [8, 13, 261. It is more direct than the transformation to relational database [6,

At present, ANSJiISO has a special committee working on SQL-XML integration [17]. The work that
is planned to be released with SQL4, is called SQL/XML. It includes how to map hetween SQL data types and
XML, bow to query XML documents using SQL-based syntax, and related issues.

Mullimedia Database
Multimedia Database involves accessing and manipulating stored information of different media such as text,
graphic, animation, audio, image, video, and mixed data. Due to its large size, real-time and raw nature, we
cannot treat multimedia database like traditional database. The diverse characteristic of various media objects
has created the complexity. This area is one of the most progressive research areas in database since it affects
many disciplines including education, marketing, retailing, entertainment, travel, etc.

With the support of new SQL, we can accommodate multimedia in ORDB. Not only storing them as
Large Object, but even use constructed data type. For example we can store an image as a multiset of pixel and
include it as an amibute of a UDT like it is shown in the data definition language below. Now we will he able to
query, for example, the detail of a person who has certain eye color by searching the pixel color of the attribute
Photo. Of come, M h e r research has to be conducted on how to implement this idea efficiently.

251.

CREATE TYPE Face-Type AS MULTISET(B1T);

CREATE TYPE Person-Type AS OBJECT
[Surname CHARACTER VARYING 120)
FirstrJame CARACTER VARYING (Z O) ,
Age INTEGER,

200 SIIT2003 Conference Proceedings

Photo FACE-TYPE);

Beside the one explained in this section, SQL also has a special section on multimedia developed hy a
special committee. SQL/MM is aimed to develop a special set of multimedia l i h r q contained with all multi
media data types. It is more powerful than using LIDT like the previous example. Standard multimedia data type
integrates cleanly and completely with the datahase, whereas UDT data type for multimedia may not he as
seamlessly integrated and reusable [15]. At present, the SQL/MM only deals with full text media. Nevertheless,
works for other media are still ongoing and hopefully can he included in SQL4 release [I 51.

Genome Data Management
Genome is a total complex genetic information that can he obtained ahont an entity. For example in a human
being there are up to 300,000 genes with an estimated up to 4 billions nucleotides [5]. Identieng and
sequencing this information are very important since it can bring answer to questions regarding genetics,
medicine, anthropology, agriculture, etc.

Managing this data is however very challenging. The data is more complex, compared to other
applications, since the amount and the range of variability are massive. Another problem is the rapid change of
datahase schema in this area and the subjective representation nature of the data. It is even worse since the
queries made by users, in this case biologists, can be very complex. So far there are several major genome-
related datahases such as GenBank, GDB, OMIM, EcoCyc, etc. Each of them has different content and also
different technology.

GDB for example, has been developed using relational model. It associates a piece of information with
a particular location of human genome. The mapping is a complicated task, not only because of the Variability of
the data source, hut also it is not possible to map the data into nucleotide level. It creates a problem, since we do
not h o w whether a particular information has been associated to a previous gen or similar problem.

ORDB with new data structures can improve the mapping process. We h o w that new SQL has
provided array or list data type. It will he possible to store genome as multi level list. A genome will have suh-
genome as its sub-list based on the proximity analysis. It can he done repetitiously down to nucleotide level (see
Fig. 7). Now, if we have a new piece of information we do not have to map it to all genome, hut only to groups
that have similar information associated with them.

Figure 7. Multilevel List for Genome Database

Geographic Information &stem
CIS is used to collect, model, store, and analyse information describing physical properties of the geographical
world [5]. It has two types of data: spatial and non-spatial data. Spatial data includes maps, digital images,
regions, roads, and other physical data, while non-spatial data includes economic data, sales information, counts,
etc. Using CIS we can retrieve information such as the air quality in a geographical area in different time span,
etc..

New SQL Standard for Object-Relational Database Applications 201

CIS can be classified into different applications. We use one of them to illustrate the potential use of
ORDB with new SQL standard. Geographical Object Application is one CIS application that has physical
domain as an object of interest. For example we have physical domain Power Plant to determine the power
consumption in different regions. With rich semantics of new SQL, a physical domain of CIS can be
implemented as a structured type. In this type we separate the spatial data from the non-spatial data and handle
the latter purely in ORDB. Fig.8 shows that Power P l a n t type has non-spatial attributes that might include
year, month, consumption, etc. It also has methods for operations applicable only to that domain. Of course
further research bas to be done in this application to benefit from existing advances in ORDB technology. The
further research includes new client-server architecture, new modeling and also integration technique hetween
spatial and non-spatial data.

Integrated
i
i

i
i

\......- ..-__,I.,

-.-.-._ ._.-.
Non Spatial Data Attniute \

i ...-.. I ” .l_._..l. I
i
i Methods:
i ; Interpretation

,j InterpoFtion
Pmxunity Analysis, etc.

Figure 8. Separated Data and Methods in GIs

Conclusion and Future Works
A standard can impact upon a formal model and furthermore provides opportunities for practical applications. In
this paper, we have shown how SQL4 standard has enriched Object-Relational Model with many new data
structures. SQL4 also mes to reunite different design and implementation of vendor specific ORDB into one
common standard. We foresee that many emerging database domains and applications can now derive benefit
from ORDB supported by new SQLA.

This paper classifies SQL4 data types and gives suggestions on how they can be used for some
database problems. As we only provide ideas, the paper challenges futtber research on the design and
implementation of the new data types in general ORDB and also in the specific aforementioned database
problems.

Beside the usage of ORDB in new application, a further research can be done to new SQL support on
XML and Multimedia. In addition, research to improve the existing SQL for further existence is also open.

References
S.W. Ambler, “Mapping Objects to Relational Databases”, Building Object Applications That Work,
SICS Books, 1997
G. Booch, Object-OrientedAna/ysis and Design with Applications, 2” Ed, B e n j a ” i n g s , 1994
0. Deux, “The Story of O Y , TKDE ?.(I), IEEE Computer Society, 1990, pp. 91-108
T.S. Dillon and P.L. Tan, Object-Oriented Concephral Model, Prentice Hall, 1993
R. Elmasri and S.B. Navathe, Fundamentals of Database Systems, 3“ Ed., Addison Wesley, 2000
D. Florescu and D. Kossmann, “Storing and Querying XML Data using an RDMBS”, IEEE Data
Engineering Bulletin 22(3), 1999, pp.27-34 (1999)
P. Fortier, SQL3 Implementing the SQL Foundation Standnrd, McGraw Hill, 1999
W-S. Han, K-H. Lee, and B S. Lee, “An XML Storage System for Object-OrientedObject-Relational
DBMSs”,Joumalof Object Technologv 2(1), pp.113-126 (2003)
IBM DB2, hnp://www.software.ibm.com/cgi-bin/db2~~ibr~/, 2003
Informix, h t tp : / /w-3 .ibm.comiso!bare/data/informix/, 2003
W. Kim, Infroduction to Object-Oriented Databases, The MIT Press, 1990
W. Kim, Modem DatabaFe Systems, Addison-Wesley, I995
M. Klettke and H. Meyer, “XML and Object-Relational Database Systems - Enhancing Stluctural
Mappings Based on Statistics”, WebDB, Springer-Verlag, 2000, pp.151-170

SIIT2003 Conference Proceedings

http://w-3

B.G. Lindsay and L.M. Haas, “Extensibility in the Starburst Experimental Database System”, IBM
Symposium: Database System ofthe 90s, Springer-Verlag, 1990, pp. 2 17-248
J. Melton, A.R. Simon and J. Gray, SQL: 1999 - Understanding Relutional Language Components,
Morgan K a u h , 2001
J. Melton, (ed.), Database Language SQL -Par% 2 Foundaiion, ISO-ANSI WD 9075-2, ISO, Working
Group WG3, August 2002
J. Melton, (ed.), Database Language SQL - Pari 14 XML-Related Specifications (SQLLXML). ISO-
ANSI WD 9075-14, ISO, Working Gmup WG3, August 2002
Oracle, www.oracle.com, 2003
J. Robie, I. Lapp and D. Achacb, “XML Query Language (XQL)”, The Query Languages Workshop,
1998
J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy and W. Lorensen, Object-Oriented Modeling and
Design, Prentice Hall, 1991
P.M. Schwarz, W. Chang, J.C. FreyTag, G.M. Lohman, J. McPherson, C. Mohan, and H. Pirahesh,
“Extensibility in the Starburst Database System”, OODBS 1986, IEEE Computer Society, 1986, pp. 85-
92
M. Stonebraker, “Object Management in Postgres Using hcedures”, OODBS 1986, IEEE Computer
Society, 1986, pp. 66-72
M. Stonebraker, “The Postgres DBMS”, SIGMOD 1990, ACM Press, 1990, pp. 394
M. Stonebraker and D. Moore, Object-Relational DBM3s The next great wave, Morgan K a u h a n n ,
1996
J. Shanmugasundaram, K. Tuile, C. Zhang, G. He, D.I. DeWitt, and I.F. Naughton. “Relational
Databases for Ouervinr XML Documents: Limitations and Ouuorhmities”. VLDB 1999. Morean- .. . -
Kauffman, pp.30z-3i4 -
T. Sbimura. M. Yoshikawa. and S. Uemura. “Storaee and Rebieval of XML Documents Usine Obiect-

I .

Relational Databases”, D E h 1999, SpringckVerla;, 1999, pp. 206-217

New SQL Standard for Object-Relational Database Applications 203

http://www.oracle.com

