Transaction Management in
Distributed Scheduling Environment for
High Performance Database Applications

Sushant Goel', Hema Sharda', and David Taniar’

" School of Electrical and Computer Systems Engineering
Royal Melbourne Institute of Technology, Australia
s2013070@student.rmit.edu.au
hema.sharda@rmit.edu.au
?School of Business Systems, Monash University, Australia
david.taniar@infotech.monash.edu.au

Abstract. Synchronising the access of data has always been an issue in
any data-centric application. The problem of synchronisation increases
many folds, as the nature of application becomes distributed or volume
of data approaches to terabyte sizes. Though high performance database
systems like distributed and parallel database systems distribute data to
different sites, most of the systems tend to nominate a single node to
manage all relevant information about a resource and its lock. Thus
transaction management becomes a daunting task for large databases in
centralized scheduler environment. In this paper we propose a
distributed scheduling strategy that uses a distributed lock table and
compares the performance with centralized scheduler strategy.
Performance evaluation clearly shows that multi-scheduler approach
outperforms global lock table concept under heavy workload
conditions.

1 Introduction

Continuously growing volume of data and expanding business needs have justified the
needs of high performance database systems like Distributed and Parallel Database
Systems (PDS) [2,8,10,11]. Distributed databases are the logically integrated systems
that make the distribution of the data transparent to the user [11]. When the volume of
data at a particular site grows large and the performance of the site becomes
unacceptable, parallel processing is needed for data servers. PDS supports automatic
fragmentation and replication of data over multiple nodes [2].

Single scheduler approach has been used as the correctness criterion for transaction
management. With the increase in volume of data, message and locking overhead also
increases in centralized locking approach. We will refer single scheduler transaction
management approach and centralized locking interchangeably throughout the paper.

S. R. Das, S. K. Das (Eds.): IWDC 2003, LNCS 2918, pp. 120-130, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Transaction Management in Distributed Scheduling Environment 121

Most database management systems use single-scheduler transaction management
approach [2,3,8,9,10,11]. But with increase in volume of data, managing transactions
with single scheduler may become difficult and computationally expensive. Single
scheduler strategy may not meet the requirements of high performance database
systems as the database scales to terabyte sizes. Distributed lock managers have been
proposed in the literature to distribute the load among multiple sites [9,10,11].
Unfortunately distributed lock manager nominates one node to manage all the
information about the resource and its locks. The distributed lock manager still has to
manage a global lock table [11], thus the architecture is not truly distributed and the
number of messages in the network is also high due to internode communications.
With increase in amount of the data stored, some of the single scheduler inherent
weaknesses become prominent, e.g. big lock table, increased number of messages in
the system, deciding the coordinator for the transaction etc.

This motivated us to distribute the scheduling responsibilities of the data items to
their parent nodes where the data is residing and consider distributed schedulers for
transaction management and to maintain the consistency of data items. Migrating
from single-scheduler transaction management approach to distributed scheduler
transaction management approach may pose a threat to the consistency of the data
items. The underlying problem in direct migration is discussed later in the paper. We
use multi-scheduler and distributed scheduler interchangeably in this paper.

We discuss the problem in migrating the single scheduler algorithms to multi-
scheduler environment in the following sections. We will discuss the case for
distributed memory also known as Shared-Nothing parallel database systems [2] in
this paper but this concept can be modified to meet the requirements of other high
performance data-centric applications.

We would like to highlight that mainly three types of transaction management
strategies are used for distributed memory architecture in the literature [10]: 1)
centralized locking 2) primary-copy locking 3) distributed locking. All three
strategies either manage the locking table centrally or manage a portion of the global
lock table. In this paper we focus to reduce the load of global lock table and remove
the requirement of centralized scheduling.

Rest of the paper is organized as follows: Section 2 discusses the related work
done in distributed database system and multidatabase systems, Section 3 explains our
working environment and elaborates the proposed algorithm, section 4 shows and the
performance comparison for single and multi-scheduler strategies. Finally, Section 5
concludes the paper and discusses the future extension of the work.

2 Related Work

In this section we discuss different high performance database systems like
multidatabase, distributed database and parallel database systems. We also very
briefly discuss the environment of transaction management required by these database
systems.

122 Sushant Goel et al.

2.1 Multidatabase Systems

Multidatabase system is an interconnected collection of autonomous databases. A
multidatabase management system is the software that manages a collection of
autonomous databases and provides transparent access to it [9]. Multidatabase
management system provides Database Management System (DBMS) at two different
levels — i) local ii) global. Transaction manager at local sites can guarantee correct
schedules for local transactions only. A global transaction manager spanning all sites
has to be designed to meet specific requirement. For detailed discussion please refer
[9]. Multidatabase system (MDS) is a good option when individual databases have to
be combined logically. If large volume of data has to be managed and data
distribution is an important factor in performance statistics, then MDS may not be the
preferred design option. MDS is best suited when autonomy is the key but certain
transactions may span more than one database.

2.2 Distributed Database Systems

Data can be manually partitioned over geographically separated databases but can still
appear as one unit to the user. The data is transparently distributed over nodes of
distributed database. Distributed DBMS manages transactions by global transaction
manager and global lock manager [10,11]. Distributed databases have high locking
and message overhead due to the distributed nature of application. Lock table may
become a performance bottleneck despite the distribution of data over multiple sites
due to its global nature. Global lock table maintains the locking information about all
data items in the distributed database thus the scheduling strategy act as a centralized
scheduling scheme. Thus, despite most of the applications distribute data to multiple
sites they still use a centralized scheduling scheme and maintain a global lock table.

2.3 Parallel Database Systems

The enormous amount and complexity of data and knowledge to be processed by the
systems imposes the need for increased performance from the database system. The
problems associated with the large volumes of data are mainly due to: 1) Sequential
data processing and 2) The inevitable input/output bottleneck. Parallel database
systems have emerged in order to avoid these bottlenecks. Different strategies are
used for data and memory management in multiprocessor environment to meet
specific requirements. In shared memory architecture [2], processors have direct
access to the disks and have a global memory. In shared disk architecture [2],
processors have direct access to all disks but have private memory per processor.
Shared-nothing architecture [4] has individual memory and disk for each processor,
called processing element (PE). The main advantage of shared-nothing multi-
processors is that they can be scaled up to hundreds and probably thousands of PEs
that do not interfere with one another, refer [1, 2, 4, 5, 6] for detailed discussion.
Though shared-nothing database systems have individual data partitions, to achieve
correctness of schedule and consistency of data these database systems also rely on
central transaction management schemes. Looking at the drawbacks of centralized

Transaction Management in Distributed Scheduling Environment 123

transaction management schemes we distribute the transaction management
responsibilities to individual PEs.

2.4 Basic Definitions and Problem Identification

We would like to briefly define the transaction and properties of transactions before
we discuss the problem in direct migration from single scheduler to distributed
scheduler environment. From the user's viewpoint, a transaction is the execution of
operations that accesses shared data in the database; formally, a transaction T; is a set
of read (r;), write (w;), abort (a;) and commit (c;). T; is a partial order with ordering
relation <;[7].

A history or schedule indicates the order in which the operations of the transactions
were executed relative to each other. Formally, let T = {7}, T>, . . . T,} be a set of
transactions. A complete history (or schedule) H over T is a partial order with
ordering relation < 4 [7].

A history H is Serializable (SR) if its committed projection, C(H), is equivalent to a
serial execution H;. A database history H, is serial iff

(dpe 1, g€ T; such that p <y g then(Vre T, Vse T;, r <y S).

For detailed description of the definitions refer [7]. A history (H) is serializable iff
serialization graph is acyclic. A transaction must possess ACID properties [7] and
these properties must be enforced by the concurrency control and recovery
management techniques implemented in the DBMS.

Problem identification: The algorithms developed for single scheduler might
produce contradictory serialization order at different nodes in multi-scheduler
environment, if two transactions access more than one processing elements
simultanecously. We have already discussed the inherent weaknesses of single
scheduler algorithms applied to high performance database systems [13]. We propose
a new serializability, Parallel Database Quasi-serializability, and compare the
performance of this distributed scheduling strategy with the centralized scheduling
strategy in this paper.

3 Proposed Algorithm

Before discussing the algorithm we first present the working environment for our
model in subsection 3.1, we then briefly discuss the correctness criterion for the multi-
scheduler concurrency control algorithm namely Parallel Database Quasi-
serializability (PDQ-serializability) in subsection 3.2. Finally, subsection 3.3 explains
the proposed Timestamp based Multi-scheduler Concurrency Control (TMCC)
algorithm. We have already proposed the algorithm in [13]. Here we give an overview
of the algorithm, and we focus on the performance comparison between the two
strategies.

124 Sushant Goel et al.

T, i sz

SPLITTER

T22
Tll
Ty, T,

Scheduler 1 Scheduler 2

PE 1 PE 2

Fig. 1. Conceptual model of multi-scheduler concurrency control

3.1 Working Environment

The model presented in this paper has additional scheduling responsibility of
transactions per processing element. The traditional model shown has centralized
scheduling responsibility and a global lock table. We try to distribute the scheduling
responsibility to respective PEs, where data is located, (see fig. 1) in order to take
maximum advantage of the abundant computing power available.

We have already said that single scheduling strategy may produce incorrect
serialization order in multi-scheduling environment [13]. For the sake of simplicity we
consider only two processing elements to demonstrate our algorithm. We assume that
local schedulers are capable of producing serializable schedule.

3.2 PDQ-Serializability

Scheduling responsibilities in PDS is distributed to respective PE according to the
partitioned data. Problem in migrating from single-scheduler to multi-scheduler have
been discussed in [13]. Thus, we conclude that operation level concurrency control
cannot ensure a correct schedule to be produced in multi-scheduler environment.
Even, subtransaction level granularity in itself is not sufficient to produce correct
schedule. Some additional criterion has to be enforced to ensure multi-scheduler
concurrency control in addition to subtransaction level granularity.

A new serializability criterion is proposed that separates two types of transactions —
transactions having only one subtransaction and transactions having more than one
subtransaction. The following definition states the correctness criterion for PDS.

Definition 1: A Multi-Scheduler Serial (MS-Serial) history is considered correct in
parallel database system.

Definition 2: A history in multi-scheduler environment is PDQ-serializable iff it is
equivalent to a MS-Serial history (definition of equivalence (=) from [7], page 30).

Transaction Management in Distributed Scheduling Environment 125

The PDQ-serializability of the history is determined by analysing Parallel
Database Quasi-Serializability (PDQ-serializabilty) graphs. Only the committed
projection [7] of the history C(H) is considered in the definition. The following
definition describes the PDQ-serializability graph.

Definition 3: At any given instance, histories of all the schedulers at each PE can be

represented using a directed graph defined with the ordered three: (T', T", 4). The
graph would be referred as Multi-scheduler Serializability Graph (MSG).

T'andT" are the set of labeled vertices representing transactions with one
subtransaction and more than one subtransaction respectively. A is the set of arcs
representing the ordering of transaction in each PE. In rest of the paper we would only
consider transaction having more than one subtransaction and denote that as 7,
without the superscript. Transactions with single subtransaction are taken care by the
individual PE and do not pose any threat to the concerned problem.

Based on the definition of MSG we next formalize the following theorem:

Theorem 4: A history in multi-scheduler environment is PDQ-Serializable iff MSG is
acyclic.

Proof: Please refer [13] for proof.

Our earlier work [13] discusses the above definitions and theorem in detail. In this
paper we focus on the performance evaluation of the proposed algorithm and
comparison with global lock table (single scheduler) approach.

3.3 Timestamp Based Multi-scheduler Concurrency Control Algorithm

In this section we propose a Timestamp based Multi-scheduler Concurrency Control
(TMCC) algorithm that enforce fotal order in the schedule to ensure PDQ-
serializability. Total order is required only for those conflicting transactions that
accesses more than one PE being accessed by other active transactions. Functions that
the algorithm wuses are Split trans(T;), PE accessed(T,), Active trans(PE),
Cardinality(), Append TS(Subtransaction). Function names are self-explanatory,
definitions of the functions can be found in [13].
Working of the TMCC algorithm is explained below:

1. When transaction arrives at the splitter, split trans(T;) splits the transaction
into multiple subtransactions, depending on allocation of data.

2. Ifthere is only one subtransaction required by the transaction, the transaction
can be submitted to the PE immediately without any delay.

3. All the transactions having more than one subtransaction are added to the
Active_Trans set.

4. If multiple subtransactions are required by the transaction, the splitter
appends a timestamp with every subtransaction.

5. If there are active transactions that access one or less than one PEs accessed
by the transaction being scheduled then the subtransactions can be scheduled
immediately. This condition does not pose any threat to the serializability.

126 Sushant Goel et al.

6. If there is active transactions that access more than one of the PEs accessed
by the transaction being scheduled then the subtransactions are submitted to
the PE's wait _queue.

7. When all subtransactions of any transaction complete the execution at all the
sites, the transaction commits and is removed from Active trans(PE).
(Active_trans(PE) takes the processing element as an argument and returns
the set of transactions running at that PE)

4 Performance Evaluation

In this section, we discuss the results obtained by simulation for the two scheduling
strategies namely single scheduler and multi-scheduler. We run our simulation for
various sizes of the system, under various loading conditions (heavy and light) and
also at different write probability of the transaction. We used CSIM [12], a process-
oriented, discrete-event simulation package to obtain our results. The simulation code
was written in C++. We discuss the performance metrics and parameter settings next,
before the performance experiments and results.

4.1 Performance Metrics and Parameter Settings

Performance metrics for most of the high performance database systems are response
time and throughput. But our perspective of this research is different and hence the
performance metrics are also different. In this paper our focus is to evaluate the
performance of single and multi-scheduler.

Table 1. Parameter settings for simulation

Description Value
Number of Processors 2-8
Write probability 15%-60%
Minimum number of data items accessed 4
Maximum number of data items accessed 12

CPU access time for data (cpu_accesstime)
Disk access time for data

Lock factor (lock_factor)

Read time for a data object

1.5 millisecond

35 millisecond

10 % of disk access time

((cpu_access_time) + (lock factor *
lock_table_size))

Write time for a data object

25 % more than read time.

Maximum wait before the transaction aborts 4 second
Number of pages per node (Num_pages) 125, 185
Data partitioning strategy Range partitioning

Inter-arrival time between transactions
(exponential distribution with mean m)

1 — 3.5 seconds.

Transaction Management in Distributed Scheduling Environment 127

Our first performance metric is the abort-ratio. Abort ratio is calculated by
dividing the number of aborting transactions by the number of submitted transactions.
We measure the abort ratio against different loading conditions (light and heavy).
Depending on type of transaction, transactions can have different write-probability.
We consider different write-probability to measure the blocking of transactions.
Write-probability of the transaction can be thought as: how much percentage of read
data item is being written. Finally, we increase the number of processors and measure
the utilization of the processors for both scheduling strategies.

L—T

Abort ratio (%)
L—

L

1 1.5 2 2.5 35
Mean inter-arrival time

——Single Scheduler =—O=——Multi-scheduler

=)

o

Abort ratio (%)

I

Mean inter-arrival time

—— Single scheduler ==O——Multi-scheduler

Fig. 2. Num_page = 125

Fig. 3. Num_pages = 188

0.2

0.18 f—
Z0.16
=}

Fo0.14

go.lz /
£ /
£ ol

o8 /

-5 0.06 //
2
m 0.04
0.02 z
0 4

15% 30% 45% 60%

Write Probability
—— Single scheduler ==O——Multi-scheduler

0.35
03
025 1
5
502 O
<
N
15
=
D \
0.1
0.05
0 ‘ ‘
2 4 8

No. of Processors
——Single Scheduler =——O—— Multi-scheduler

Fig. 4. Blocking Transactions

Fig. 5. Utilization

Table 1 shows the parameter settings for the experiments. Specific parameter
setting values are again mentioned in the concerned experiment. OLTP (On-Line

128 Sushant Goel et al.

Transaction Processing) workload is assumed for the system. We assume the 80-20
rule for data access. 80-20 rule states that 80% of the transactions access 20% of the
data items and they are known as hotspots. Inter-arrival time for the transaction is
assumed to be exponential distribution with mean m. Data is partitioned across all the
PE's using range partitioning with equal number of data objects in each node.

4.2 Results and Discussions

Fig. 2 and 3 shows the performance results for 2-node case. Fig. 2 shows the variation
of abort ratio with different loading condition for database size of 125 pages. We
note that as the mean of inter-arrival time approaches to the maximum waiting time,
abort ratio for both the strategies coincides. Under heavy loading conditions (i.e. with
less inter-arrival time) data contention increases, thus the locking overhead also
increases and consequently the abort ratio increases for single scheduler as well as for
multi-scheduler strategy. We note that the rate of increase of abort ratio is much
higher for single scheduler. The graph clearly shows the effect of locking overhead in
single scheduler strategy is higher than multi-scheduler strategy.

Next we run the experiment under same environment by increasing the data volume
by 1.5 times, that increases the number of pages per node from 125 to 188 (see fig. 3).
The nature of the graph is same as that of fig. 2 but an interesting fact to note is that
the rate of increase in abort ratio is less in multi-scheduler strategy. Under heavy
loading conditions (inter-arrival time with m = 1) the increase in abort ratio for single
scheduler is 97.22% but for multi-scheduler strategy the increase in abort ratio is
71.87%. Thus increasing the size of the database adversely affects the performance of
single scheduler as discussed in previous sections.

Fig. 4 presents the relation between write-probability and percentage of blocking
transactions. Number of nodes for this experiment was 4 and the mean of the inter-
arrival time was 2.5 second. Depending on the type of transaction e.g. update, read-
only etc., write-probability of the transaction may vary. Fig. 4 shows the effect of
write-probability on the percentage of transactions that are blocked. We vary the
write-probability from 15% to 60% and measure the percentage of blocking
transactions for both single and multi-scheduler strategy. Observation shows a
marginal difference between the two strategies at higher write-probability. At lower
write-probability of 15% the number of blocking transactions for both strategies are
approximately equal but with increasing write-probability the separation between the
two strategies increases exponentially. Write operations acquire locks in exclusive
mode and also tend to keep locks for longer duration. Hence, with increasing write-
probability lock contention increases and centralized or single scheduler's
performance deteriorates greatly.

The next experiment was motivated to test the affect of distributing the scheduling
responsibilities on scale-up issues of high performance database systems. We vary the
number of processors to 2, 4 and 8, then measure the average utilisation of the
processors (see fig. 5). As expected the utilisation of the processors reduces in both
the strategies but the rate of reduction in both the cases are different. Decrease in
average percentage utilisation for the single scheduler case is 13% for 4 processors
and 20% for 8 processors (percentage reduction is measured with respect to 2

Transaction Management in Distributed Scheduling Environment 129

processors). For multi-scheduler strategy the decrease in average percentage
utilisation is 33% for 4 processors and 52% for 8 processors. Thus in multi-scheduler
strategy, with increase in number of processors the average utilisation of processors
reduces faster and the processor can be used to serve more transaction and thus
achieve scale-up.

5 Conclusion

This paper aimed to evaluate and compare the performance of single and proposed
multi-scheduler policies in high performance database applications. The motivation
behind this work was to reduce the message and locking overheads of centralized
scheduling scheme. Though the performance of both strategies is comparable under
light workload, the performance of single scheduler deteriorates exponentially under
heavy loading conditions. Thus, we can conclude that multi-scheduler algorithms
show better chances of scalability and performance under heavy workload conditions.
The reason for enhanced performance of multi-scheduler algorithm (TMCC in this
case) is due to better distribution of work to individual nodes.

In future we plan to test the sensitivity of multi-scheduler strategy to different data
distribution strategy e.g. hash partitioning and round robin partitioning. We also
intend to investigate the direct relation of speedup and scaleup with the multi-
scheduler strategy. The performance of the algorithm may also be examined for
different loading conditions of the application such as decision support queries and
mixed workloads (OLTP and decision support queries).

References

[1] Bhide, “An Analysis of Three Transaction Processing Architectures”,
Proceedings of 14" VLDB Conference, pp. 339-350, 1988.

[2] D.J. DeWitt, J. Gray, "Parallel Database Systems: The Future of High
Performance Database Systems", Communication of the ACM, vol. 35, no. 6,
pp- 85-98, 1992.

[3] J. Gray, A. Reuter, Transaction Processing: Concepts and Techniques, Morgan
Kaufmann, 1993.

[4] M. Stonebraker, "The Case for Shared-Nothing", IEEE Data Engineering, vol.
9, no. 1, pp. 4-9, 1986.

[5] P. Valduriez, “Parallel Database Systems: The Case For Shared Something”,
Proceedings of the International Conference on Data Engineering, pp. 460-
465, 1993.

[6] P. Valduriez, "Parallel Database Systems: Open Problems and New Issues",
Distributed and Parallel Databases, vol. 1, pp. 137-165, 1993.

[71 P. A. Bernstein, V. Hadzilacos, N. Goodman, Concurrency Control and
Recovery in Database Systems, Addision-Wesley, 1987.

130

(8]

[10]
[11]
[12]

[13]

Sushant Goel et al.

T. Ohmori, M. Kitsuregawa, H. Tanaka, “Scheduling batch transactions on
shared-nothing parallel database machines: effects of concurrency and
parallelism” Data Engineering, Proceedings, Seventh Intl. Conference on, 8-
12, pp: 210 219, Apr 1991.

K. Barker, “Transaction Management on Multidatabase Systems”, PhD thesis,
Department of Computer Science, The university of Alberta, Canada, 1990.

T. Ozsu, P. Valduriez, "Distributed and Parallel Database Systems", ACM
Computing Surveys, vol.28, no.1, pp 125-128, March 1996.

M.T. Ozsu and P. Valduriez, editors. Principles of Distributed Database
Systems (Second Edition). Prentice-Hall, 1999.

CSIM, User's Guide CSIM18 Simulation Engine (C++ Ver.), Mesquite
Software, Inc.

S. Goel, H. Sharda, D. Taniar, “Multi-scheduler Concurrency Control
Algorithm for Parallel Database Systems”, Advanced Parallel Processing
Technology, Lecture Notes in Computer Science, Springer-Verlag, 2003.

