

Improving Web Server Performance by Distributing Web
Applications

Mital Kakaiya1, Sushant Goel1, Hema Sharda1, David Taniar2

1 RMIT University, School of Electrical and Computer Engineering, Vic-3000, Australia
hemas@rmit.edu.au

2 Monash University, School of Business Systems, Vic 3800, Australia
David.Taniar@infotech.monash.edu.au

Abstract. Distributed interNet Application (DNA) covers a wide range of
topics. DNA is a methodology that specifies how to distribute Internet
application on various Web servers. DNA helps to generate scalable, reliable
enterprise applications. It provides load-balancing techniques to distribute load
on multiple Web servers. This paper describes DNA methodology for a
distributed application, which enables better performance, availability and
service to clients. This paper also provides comparison of application�s
performance and scalability between DNA and non-DNA application. The
comparison clearly indicates web server performance improvement using DNA
methodology. CPU usage improvement statistics are also provided in this
paper. Choosing optimized technology is one of the major criteria in a
distributed system to achieve best result. Current major industries are moving
towards distributed Internet application solution for global market strategies.

1 Introduction

Distributed computing is a technique, which converts a huge software problem into
smaller parts and distributes the smaller segments among several computers. It is a
complicated job to develop a large application, which is distributed among several
servers. Distributed interNet Application (DNA) provides a methodology for such
applications, which are easy to understand and implement onto multiple servers.
DNA architecture is not a solution � but rather a methodology to solve a complex
distributed problems. In other words, DNA is just an abstract pattern. It is a software
application engineering design, which generates a solution to a set of common
generic problems.

The 2-tier architecture works well up to a medium size application requirement. If
application is huge, the single server cannot process all user requests. Some
application might require lots of memory and processing work. The server needs to
process lots of instructions and data to generate final required output for clients. In
major cases, increase in hardware speed is not a solution for application�s
performance, scalability and reliability. To overcome these difficulties, the single
server�s load could be distributed among multiple servers. In distributed computing,
multiple servers are connected together to perform a specific task in a distributed

T. Böhme, G. Heyer, H. Unger (Eds.): IICS 2003, LNCS 2877, pp. 156-167, 2003.
 Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.2
 Für schnelle Web-Anzeige optimieren: Ja
 Piktogramme einbetten: Ja
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [1200 1200] dpi
 Papierformat: [595 842] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 600 dpi
 Downsampling für Bilder über: 900 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein
 Bitanzahl pro Pixel: Wie Original Bit

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Untergruppen bilden unter: 100 %
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: []
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren
 Methode: Standard
Arbeitsbereiche:
 Graustufen ICC-Profil:
 RGB ICC-Profil: sRGB IEC61966-2.1
 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Nein
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Nein
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Nein
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Nein
 EPS-Info von DSC beibehalten: Nein
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Nein

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments false
 /DoThumbnails true
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize true
 /ParseDSCCommentsForDocInfo false
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue false
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.2
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends false
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo false
 /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /sRGB
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 150
 /EndPage -1
 /AutoPositionEPSFiles false
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 600
 /AutoFilterGrayImages true
 /AlwaysEmbed []
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 150
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [1200 1200]
>> setpagedevice

mailto:David.Taniar@infotech.monash.edu.au

Improving Web Server Performance by Distributing Web Applications 157

environment. The multiple servers can be connected in horizontal as well as vertical
hierarchy. DNA helps to develop enterprise applications as a scalable, secure, robust
and reliable manners [1]. The goal of the distributed architecture is to distribute the
processing load across as many resources as necessary; it doesn�t mean to distribute
the data within the system [1]. DNA is an abstract idea, which helps to understand
design of multi-tier client/server application. There are no coding practices, special
notation or even restrictions on the technologies to use. Developer can develop and
deploy DNA architecture applications without any restriction of using DNA
methodology.

Due to distributed development and communication demand, new network-based
technologies were invented, which enabled faster, secure and reliable communication
protocols and standards between computers within a network. The Internet and web
based applications with open Internet standards have great ability to communicate
across machine boundaries and provide information in a reliable, secure and efficient
way.

This paper discusses how to distribute an Internet application on multiple web
servers, which provides scalability, reliability, availability and better performance.
This paper also describes performance tests between websites based on DNA
methodology and without DNA methodology. It provides clear understanding of a
performance improvement and necessary web server load balancing.

2 Distributed Component Technology: A Background

Traditional applications are hardly distributed among various servers due to limited
resources, difficulty in developing and managing. Development of distributed
application cost is very high and also contains high risk [9]. There are several
technologies available to develop robust and reliable distributed development
environment, like Component Object Model, Distributed COM, Transaction servers
etc.

2.1 Component Object Model (COM)

The traditional applications are made of single monolithic binary file. Once the
application file is compiled and published, it does not change until next version of the
application is developed and shipped. If there are any changes into the application
customers have to wait for the next rebuild. To find out bugs into monolithic
application is critical, because incorrect functionality at one point might affect other
parts of the application�s functionality. It is difficult to find out exact incorrect part in
a huge application.

COM [11] is a specification, which specifies binary standard. COM is a platform
independent, distributed; object-oriented system for creating binary software that can
interact with applications. It defines a standard for component�s interoperability and it
is available on multiple platforms like Windows, Macintosh, and Unix. Virtually, any
programming language can be used to develop a component. This standard is helpful

158 M. Kakaiya et al.

when different people at different locations develop different parts of the application.
COM is easily extendable and contains robust architecture. COM consists of a binary
code, which is distributed as a dynamic link library (DLL) or an executable (EXE).
The COM is not only specification. The COM has the COM library, which called
�COM API�. It provides components management services that are useful for all
components. The COM component provides various advantages to an application
like: Dynamic linking, increased performance, scalability, language independence,
version compatibility etc. COM+ is an extension of COM and it provides additional
helpful services like manage transaction, Just-In-Time (JIT) activation, advanced
security, object pooling, queued components, loosely coupled events, basic
interception services, deployment and administration. COM+ services help to develop
fast, powerful and robust component for an enterprise application [10].

2.2 Distributed COM

The Distributed Component Object Model (DCOM) is an extension of COM with
additional functionality of communication across machine boundaries. This protocol
enables software components to communicate directly over a network in a reliable,
secure and efficient manner. The concept of DCOM was introduced in 1992 by
developing Dynamic Data Exchange (DDE) protocol. The DCOM also helps to
reschedule one machine�s components to another machine�s components.

2.3 Load Balancing

A distributed application design consists of various components, which interact with
each other and provides reliable required output. The component distribution task
requires careful planning and analysis to distribute application on web servers. Load
balancing, performance and scalability become key aspects of the design process in a
distributed application [7]. Component�s runtime load, architecture including logical
packaging, physical deployment, remote server workload analysis, and available
network bandwidth needs to be considered [3].

Web server receives requests from clients randomly. Server needs to respond to
the client�s request, so it creates many instances of component within distributed
architecture. Due to uncertain request interval, some servers are heavily loaded, while
others are lightly loaded [5]. Uneven distribution of the load disturbs performance of
the distributed application. Load balancing algorithms helps to reduce uneven load,
which improves performance by distributing the component more evenly on various
servers. The performance of web server directly reflects with load balance. The over
loaded server or unbalanced system provides poor performance result.

The number of variety of applications using the distributed architecture is
increasing and the expectancy of customers is also increasing. As the number of users
of any application increases the response time also increases [6]. The over-loaded
server may not response to all clients, which can result in the timeout of the request.
There are two ways to meet the ever-increasing demand of the Internet server
performance.

Improving Web Server Performance by Distributing Web Applications 159

The Modern Approach: The better way of solving the problem is to use a cluster
of servers serving clients with one and the same service using synchronized contents.
When the requests for the Internet service increases new servers are added to the
cluster to meet the increased traffic requirements. The traffic is distributed among the
individual servers to balance the load on each server.

Fig. 1. Modern approach of load balancing

The Traditional Approach: The first way is the single server solution in which
the server is upgraded to a higher performance. There is a problem in this approach
that soon this server can be overloaded again and a next upgrade will be required. The
whole process of upgrading is complex, time consuming and expensive.

2.4 Load Balancing Algorithms

The load balance algorithms are helpful to share load on various servers. Major load
balancing algorithms add load state information to existing client requests. There are
two types of useful load balancing techniques, which are static and dynamic
algorithm [2]. The static algorithm does not distribute request based on current load
on web server. The dynamic load-balancing algorithm calculates current load on web
servers and forwards request to minimum load server [4].

Round-Robin Algorithm: Round-Robin algorithm is the simplest form of load
balancing algorithm. The round-robin scheduling algorithm sends each incoming
request to the next server in it's list. Thus in a three server cluster (servers A, B and
C) request 1 would go to server A, request 2 would go to server B, request 3 would
go to server C, and request 4 would go to server A, thus completing the cycling or
'round-robin' of servers.

Weighted Round-Robin Algorithm: The weighted round-robin scheduling is
better than the round-robin scheduling, when the processing capacity of real servers
are different. The weighted round-robin algorithm assigns each server hidden weight
load based on processing power. However, it may lead to dynamic load imbalance
among the real servers if the load of the requests varies highly.

160 M. Kakaiya et al.

Least-Connection Algorithm: The least-connection scheduling algorithm directs
network connections to the server with the least number of established connections.
This is one of the dynamic scheduling algorithms because it needs to count live
connections for each server dynamically. The least-connection scheduling cannot get
load well balanced among servers with various processing capacities. The faster
server can process thousands of requests and keep them in the TCP's TIME_WAIT
state.

3 Performance Enhancement Using DNA

With the single server Internet application the chance of the server being unavailable
is high. Adding new servers can increase availability significantly. If one server has
95-percent availability that would mean it's not available for an average of 1.2 hours a
day. The probability of the server failing at a given moment is 0.1. Adding one
additional server decreases the probability that both servers will fail at once to
0.1*0.1= 0.01. The likelihood of one of the servers being available is increased to a
much-improved 99 percent. The algorithms discussed in the previous section helps to
distribute the load to different servers. But the load on the servers is not evenly
distributed, as the work to be allocated to the servers is not determined dynamically.

Optimized Weighted Round-Robin Algorithm: This algorithm is similar with
the Weighted Round Robin algorithm. But the server can be dynamically assigned a
weight depending on its current availability and current load.

Weighted Least Connections: As we know from the previous section, least
connection algorithm cannot balance the load effectively among the servers if the
processing capacity of the servers is different. In weighted least connection algorithm
a performance weight is assigned to each real server. Larger percentage of live
connections is assigned to the server with the higher weight value. If number of
connections are C1, C2, C3,...,Cn and the performance weight assigned to the
servers are W1, W2, W3,...,Wn, then as per the weighted least connection any
new connection will be assigned to the server with minimum Ci/Wi value (where i
= 1,2,3,...,n). The advantage of using this algorithm is any new connection
will be allocated to the least loaded server.

Any cluster of servers or a server farm not properly balanced; may reject client
requests because some of the servers may be at their performance level threshold but
others may be still well under the threshold. But using the proper load-balancing
algorithm like the �Weighted Least Connection� may distribute the load evenly in all
the servers in the server farm. The following figures (2 & 3) show the comparison
between the two:

Improving Web Server Performance by Distributing Web Applications 161

Fig. 2. Improperly balanced server-farm Fig. 3. Properly balanced server-farm

3.1 Distributed interNet Application

Distributed interNet Application (DNA) describes architecture for building multi-tier
distributed computing solutions. The major tier of the DNA is Presentation tier,
Business tier and Data tier. Each tier represents own services to the application. Each
layer or tier usually resides on a different virtual machine. The presentation layer only
communicates with the application or middle layer, which contains the business
objects. The middle layer handles the applications processing logic and in turn
communicates with the data access layer, such as SQL server. A three-tier application
allows the implementation of thin client and is much more flexible and easy to
maintain than a two or one-tier. For example, the data storage layer can be substituted
completely without having to change any code at the presentation layer.

There could be more than one web server and application logic server depending
on the traffic. Hence there could be a Load-Balancing Layer in addition to the
Presentation-Layer, Business-Layer and Data-Layer. Load-balancing solutions
present a single system image to clients in the form of a virtual host name, and
distribute client requests across multiple application servers.

Presentation-Layer: The presentation layer handles the basic user input and
output. It is responsible for providing the graphical user interface. This layer collects
input from client and sends user input to business services for further processing.
Some of the presentation layer tools are: DHTML, VBScript, Jscript, Browsers,
activeX controls.

Business-layer: Business layer is the core of the application. The business service
receives user input from presentation service tier, performs business operation
automated by an application, interfaces with data service as necessary, and returns
result to presentation service. Some business layer tools are: COM+, IIS Server, ASP,
ADO.

162 M. Kakaiya et al.

Data-Layer: Data service receives requests from business service, retrieve data
from database, and check data integrity and returns result to business services. Some
Data layer tools are: Exchange server, OLE DB providers, SQL Servers and other DB
servers.

Fig. 4. DNA architecture overview

4 Performance Evaluation

To study the behavior of the Distributed interNet application and the application
which is not distributed we performed the test on the following test bed:

• Processor: Intel P-III, 850 MHz.
• SD-RAM: 128 MB

Improving Web Server Performance by Distributing Web Applications 163

• Hard Disk: 5 GB
• Network Card: Intel 8255X based PCI Ethernet Adapter (10/100)
• Windows 2000 server
• IIS 5.0
• MS-SQL Server 2000
• MS- Web Application stress (WAS) tool Stress Version: 1.1.293.1

The WAS tool generates arbitrary requests and is used to measure the
performance level of the server. The test is done over two terminals. One terminal is
dedicated to run the application, the other terminal is used to run the WAS tool and
any activity other than running the application server. The test is conducted over two
terminals to ensure that the developed application gets full attention of the processor
in which the application is running so that the results are correct.

The tested application is a very standard e-commerce web site with member�s
login page, new client�s registration page, product display page, shopping cart page,
payment page etc. the WAS tool generates random requests for a specific time and
measures the response from the server. The testing is done for two different cases:

I. The application is developed using Distributed interNet Application
technology, three separate layers are created as discussed in the previous
section.

II. The application is developed without using the component technology.

4.1 Sample Code at Different Layer (Using DNA Technology)

The Presentation Layer for the application consists of HTML and DHTML coding.
The HTML coding is an important interface for users to communicate with website.
The following lines show an example of user interface for web browser:
<html>

<head> <title>Home Page</title> </head>

<body> </body>

</html>

For presentation of a website, It needs information from database and various
resources. The application is not able to communicate directly with database. It needs
to pass through business layer component to maintain application�s security.

The presentation layer creates an instance of a business layer component. The
business layer component is registered into MTS environment. It will create object in
MTS runtime boundary. The following lines shows create instance of
BusinessCOM.cbCart, which is defined as an objCart Object.

Dim objCart
�Create instance of a component
Set objCart = Server.CreateObject ("BusinessCOM.cbCart")

164 M. Kakaiya et al.

Business Layer shows component based development code using Microsoft
Visual Basic development language. Class initialize and terminate events are defined
which is called automatically based on object creation and deletion.
Private Sub Class_Initialize()
 � Component Initialized variables here
End Sub

Private Sub Class_Terminate()
 � Component Terminate variables here
End Sub

All required variable declaration has been defined inside InitializeVariables and
TerminateVariables functions. These functions contain general required initialization
and termination declaration for components, so it needs to call from all components.
It saves time and cost of development process. Modification at one function reflects
changes into all components. The business component defined in this application has
a Get property that returns the value of specified variable. Some of the methods
defined in the business Layer are AddCart(adds new product in the
shopping cart), UpdateQty, ClearCart, TotalProductPrice,
IsValidUser etc. Following is the sample code for ClearCart function.

' Name of function: ClearCart
' Purpose : Clear all products from a Cart.
' Returns : true indicates Successful.

Public Function ClearCart() As Varient

' Assume successfully not clear products from cart

ClearCart = False
Dim intCountCart As Integer

 'loop until all products are clear.

For intCountCart = 0 To MAX_CART
TCart(intCountCart).m_intProductID = 0
TCart(intCountCart).m_strProductDesc = ""
TCart(intCountCart).m_intProductQty = 0
TCart(intCountCart).m_curProductPrice = 0

Next intCountCart

�Successfully clear products from cart

ClearCart = True
 End Function

The cart retains in memory up to user�s session time. It is automatically destroyed
when user�s session is destroyed. It does not need to connect with database and store
values. This component is not required to connect with data layer component for
shopping cart operation. This component has no data layer functionality. It still uses
data from database by accessing other data layer components. If username and
password is provided non-zero length and valid values, the business layer component
creates an object of a data layer component�s customer class.

Improving Web Server Performance by Distributing Web Applications 165

'Variable Declaration
Dim objCustomerData As DataCOM.cdCustomer
�Create Object of Business Layer Customer class
SetobjCustomerData = CtxCreateObject

 (TProgID.Data_cdCustomer)

The object is created using CtxCreateObject method. This method enables to
create a new instance inside MTS runtime. The MTS handles to minimize impact of
memory allocation and resources. This helps to improve overall performance.

Data layer is useful to communicate with database. The data layer is developed
on Microsoft Visual Basic environment. The data layer always check the data validity
before modify any permanent changes into a database. If data validity is correct and it
could not destroy any current information from database, it sends login request to
database objects. The data layer does not directly communicate with database table
objects. The database forwards request to stored procedure of SQL Server and passes
all required information to it. The following code creates ActiveX Data Object
(ADO) Connection and Command objects. The object is running inside MTS
environment by calling CtxCreateObject method.
 Dim objCmd As ADODB.Command
 �Create ADO Command Object inside MTS
 SetobjADOCommand=CtxCreateObject
 (TProgID.Data_clsADOCommandC)
 'open the connection object
 Set objConn = objADOCommand.OpenDB()
 'Command Object calls Stored Procedure of a database
 Set objCmd = objADOCommand.LoadProc(objConn,

 TDB.TStoredProcName.prc_tblCustomer_login)

The Command object executes stored procedure, which returns a result based on
arguments. The store procedure helps to execute faster query and data access.

Test Results

Two website test is taken using same hardware and test configuration: DNA and
NODNA. The �DNA� indicates test data, based on DNA methodology web
application. The �NODNA� indicates test data information using non-DNA
methodology. The paper describes both website test reports and performance
comparison. The DNA website is developed based on DNA methodology and sample
DNA code described in the above section. NODNA website does not follow DNA
methodology rules. NODNA website connects directly to database without interfere
with business layer or data layer. NODNA website has no business layer or data
layer.

166 M. Kakaiya et al.

Test results for DNA application:

DNA Overview
===
Report name : DNA
Run length : 00:01:00
Web Application Stress Tool Version: 1.1.293.1
Number of test clients : 1
Number of hits : 3989
Requests per Second : 66.39
%processor time : 83 %
Connection attempts/Sec. : 71
Request handeled/Sec. : 43

Socket Statistics

Socket Connects : 4594
Total Bytes Sent (in KB) : 1673.44
Bytes Sent Rate (in KB/s) : 27.85
Total Bytes Recv (in KB) : 23171.77
Bytes Recv Rate (in KB/s) : 385.63

Test result for NONDNA application:

NODNA Overview
===
Report name : NODNA
Run length : 00:01:00
Web Application Stress Tool Version:1.1.293.1
Number of test clients : 1
Number of hits : 1222
Requests per Second : 20.36
%processor time : 90 %
Connection attempts/Sec. : 20
Request handeled/Sec. : 13

Socket Statistics
--
Socket Connects : 1367
Total Bytes Sent (in KB) : 604.34
Bytes Sent Rate (in KB/s) : 10.07
Total Bytes Recv (in KB) : 20758.11
Bytes Recv Rate (in KB/s) : 345.89

4.2 Result Discussion

From the above mentioned test results it is very obvious that the number of requests
handled by the DNA application is much higher than the NONDNA application. The
�%processor time� is an important criterion during performance test. If %processor
time goes above 90% of total time, it may result in delay in response. The incoming

Improving Web Server Performance by Distributing Web Applications 167

request might wait into a request queue. The usage of processor time of the DNA
application is less compared to NODNA web application. It increases performance of
the website by reducing processor time and increasing response time. The
performance test shows clearly that DNA website provides high performance with
low CPU usage. It helps to handle more requests with less processing power because
of caching various business layer and data layer objects into memory.

5 Conclusions and Future Work

As a result of growing interest and need for more powerful enterprise solutions, vast
amount of research is undertaken in this field. This field depends on major research
areas such as networking, programming language improvements, hardware and
software technology changes, and database speed improvements. The improvement of
any area may provide significant change in overall performance of the application.
The DNA is not restricted with any programming language. It helps to develop
Internet based applications by choosing any programming language. This provides
benefits of using latest programming techniques and language such as Microsoft .Net
framework, Microsoft asp, Sun jsp, php etc to develop a web application.

The test result of a real time application is also important during comparison
between test results. The real time configuration and real time application output
indicates exact performance capability of the web servers. The real time application
response is an important factor to achieve better performance result.

References

1 Joseph M., Enterprise Application Architecture With VB, ASP and MTS, Wrox Press
Ltd. 1999,

2 Colajanni M., Yu P., Diad D., �Analysis of task assignment policies in scalable
distributed wed-server systems�, IEEE Trans. Parallel And Distributed systems,
9(6):585-600, June 1998

3 Ezhilchelvan, Palmer D., Khayyambashi R., Morgan G. �Measuring the Cost of
Scalability and Reliability for Internet-based, server-centered applications�, 6th Intl.
Workshop on Object-oriented Real-time Dependable Systems (WORDS01), Rome, �01.

4 Petra B., Tom F., Ernst W. �Parallel Continuos RandomizedLoad Balancing�. Proc. of
the 10th Annual ACP Symposium on Parallel Algorithms and Arch.�, pp. 192�201, �98.

5 Thomas L., Jon G. �Analysis of Three Dynamic Distributed Load-Balancing Strategies
with Varying Global Info. Requirements�. IEEE Computer, pp 185�192, August 87.

6 Xu C. and Lau F., Load Balancing in Parallel Computers, Kluwer
AcademicPublishers, Boston,MA, 1997.

7 Andresen D.,Yang T., Ibarra O. H., Smith T. R., �Scalability issues for high
performance digital libraries on the world wide web�, Proceedings of IEEE ADL,
Forum on research and technology advances in digital libraries, Washingoton, 1996.

8 Clements, Paul, �From Subroutines to Subsystems: Component-Based Software
Development�, The American Programmer, Vol 8, No 11, Nov 1995

9 Clements P. E., �Requirements for software systems which enable the flexible
enterprise�, 1997, MSI Research Institute.

10 �Microsoft COM Technologies� http://www.microsoft.com/com/

http://www.microsoft.com/com/

	1 Introduction
	2 Distributed Component Technology: A Background
	2.1 Component Object Model (COM)
	2.2 Distributed COM
	2.3 Load Balancing
	2.4 Load Balancing Algorithms

	3 Performance Enhancement Using DNA
	3.1 Distributed interNet Application

	4 Performance Evaluation
	4.1 Sample Code at Different Layer (Using DNA Technology)
	4.2 Result Discussion

	5 Conclusions and Future Work

