Message-Oriented-Middleware in a
Distributed Environment

Sushant Goel', Hema Sharda', and David Taniar’

! School of Electrical and Computer systems Engineering,
Royal Melbourne Institute of Technology, Australia
hema.sharda@ermit.edu.au
% School of Business Systems, Monash University, Australia
David.Taniar@infotech.monash.edu.au

Abstract. Middleware technologies have been facilitating the communication
between the distributed applications. Traditional messaging system’s are
synchronous and have inherent weaknesses like — limited client connections,
poor performance due to lack of resource pooling, no store-and-forward
mechanism or load balancing, lack of guaranteed messaging and security as
well as static client and server’s location dependent code. These weaknesses
and increasing e-business requirements for the distributed systems motivated us
to undertake this research. This paper proposes an asynchronous
communication architecture — Transfer of Messages in Distributed Systems.
The advantage of the proposed architecture is that the sender of the message
can continue processing after sending the message and need not wait for the
reply from other application.

1 Introduction

Type of applications in the computing world has evolved rapidly from stand-alone
architecture to mainframe architecture to two-tier client/server or three-tier (multi-
tier) client/server architecture [6]. As the applications are becoming distributed,
problems of information management on a large and distributed scale have become
highly apparent.

This paper aims to enhance the features of messaging-architecture in distributed
environment. Middleware is important in providing communication across
heterogeneous platforms. Middleware technologies also plays important role in
paradigm shift from mainframe to client/server architecture. Middleware is
connectivity software that consists of a set of enabling services that allow multiple
processes running on one or more machines to interact across a network [3].

Till now the industry had different commercial product for communication
between components, but Java Message Service (JMS) is an effort towards
standardization of the communication protocol. JMS is an API provided by Sun
Microsystems, which is being supported by most of the messaging vendors. The
Transfer of Messages in Distributed Systems (TMDS) architecture proposed in this
paper, implements JMS specifications and enhances the features of existing

T. Bohme, G. Heyer, H. Unger (Eds.): IICS 2003, LNCS 2877, pp. 93-103, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.2
 Für schnelle Web-Anzeige optimieren: Ja
 Piktogramme einbetten: Ja
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [1200 1200] dpi
 Papierformat: [595 842] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 600 dpi
 Downsampling für Bilder über: 900 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein
 Bitanzahl pro Pixel: Wie Original Bit

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Untergruppen bilden unter: 100 %
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: []
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren
 Methode: Standard
Arbeitsbereiche:
 Graustufen ICC-Profil:
 RGB ICC-Profil: sRGB IEC61966-2.1
 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Nein
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Nein
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Nein
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Nein
 EPS-Info von DSC beibehalten: Nein
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Nein

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments false
 /DoThumbnails true
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize true
 /ParseDSCCommentsForDocInfo false
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue false
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.2
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends false
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo false
 /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /sRGB
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 150
 /EndPage -1
 /AutoPositionEPSFiles false
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 600
 /AutoFilterGrayImages true
 /AlwaysEmbed []
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 150
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [1200 1200]
>> setpagedevice

94 S. Goel, H. Sharda, and D. Taniar

middleware technologies. This is a step forward towards paradigm shift from
synchronous to asynchronous messaging.

The basic aim of this paper to present a standard communication protocol in
distributed environment and let the distributed components communicate in a more
effective way. The proposed TMDS architecture puts together the benefits of
synchronous and asynchronous communication (JMS). JMS was released in late
1998, and doesn’t support XML, this paper enhances the feature of JMS and enable
applications to communicate via XML message format.

The rest of this paper is organized as follows. Section 2 describes the background
including messaging systems, middleware, JMS, and domain of messaging. Section 3
presents our proposed architecture. Section 4 presents a case study using our
proposed architecture. Finally, Section 5 gives the conclusions and explains future
work.

2 Background

We discuss various concepts of Message Oriented Middleware (MOM) in this
section, including various domains of messaging like publish/subscribe and point-to-
point messaging. Message is the package of business data, which contains the actual
load and all the necessary routing information to travel in the network for delivery.
Till late 90’s there were couple of companies, who used to provide asynchronous
communications between distributed components, like IBM’s MQ Series.

2.1 Messaging and Message-Oriented-Middleware

Messaging is a peer-to-peer communication between software applications [5]. All
the messaging clients are connected via an external agent and can send messages to
any other client as well as can receive messages from any other messaging client [2].
The agent provides the way to communicate between the clients; it provides the
facilities for creating, sending, receiving and reading the messages. Distributed
applications can communicate in two ways:

In synchronous communication the application sends any message to another
application and waits for the reply, the communication is typically known as
synchronous communication. No further action could be done by the application till it
receives the reply. But in asynchronous communication the application sends the
message and continues processing without waiting for reply from another application
[8].

Middleware in general could be defined as software that is designed for building
large scale distributed systems [5]. Middleware is connectivity software that consists
of a set of enabling services that allow multiple processes running on one or more
machines to interact across a network [2,5].

To open up from the tightly synchronized hardware Messaging-Oriented-
Middleware (MOM) provides the reliable data delivery mechanisms. MOM also lets
the systems to be loosely coupled - not always operating at the same speed,

Message-Oriented-Middleware in a Distributed Environment 95

sometimes disconnected, and not having the recipient synchronously locked until the
communication has completed [10].

If any new client has to be added in the messaging infrastructure then in highly
coupled system the new client should know the location of all the existing clients [1],
but in the MOM architecture the new client has to connect only to the middleware. If
there are N numbers of client, then for a new client to be added in a tightly coupled
architecture it must add N number of new connections but in MOM architecture only
one new connection is added irrespective of the number of existing clients.

2.2 Java Message Service (JMS)

The JMS API provides the way to decouple the clients. JMS is a specification, which
contains interfaces and abstract classes in itself needed by the messaging clients while
communicating with messaging systems. If any of the components is down it does not
hinder working of the system as a whole. JMS supports two major domains of
messaging [8]:

Publish and subscribe domain of messaging (Pub/sub) is used when a group of
users are to be informed about a particular event. The destination of the message is
not the application component but the messages are delivered to the virtual
destination called ‘fopic’ [8]. This model allows the publisher or message-producer to
broadcast the message to one or more subscribers. Point-to-Point domain of
messaging Point-to-point messaging domain communicates between clients using the
concept of ‘queue’, sender’ and ‘receiver’. Sender sends all the messages addressed
to a specific queue. All the messages are kept in the queue until the receiver fetches
them or the message expires. There can be multiple senders to the queue but only
single receiver.

IJMS provides standard API that java developers can use to access the common
features of the enterprise message systems. The design aim of JMS is to provide
consistent set of interfaces that messaging clients can use independent of the
underlying message system provider. The basic component of the JMS architecture is
a message [7,8].

Major components to build up the application are:

Administered objects: JMS destinations and connection factories are maintained
administratively and not programmatically. The messaging client lookup these
administered object using JNDI API.

Connection Factories: Connection factory encapsulates set of connection
configuration parameters defined by the administrator. This object is used to create
the connection.

Destination: A destination is the object a client uses to specify the target of
messages it produces and the source of message it consumes.

Connections: Connection object provides resource allocation and management.
Connections are created by the connection-factories and encapsulate a virtual
connection with a JMS provider.

Sessions: Sessions are objects, which provide context for producing and
consuming messages. Session creates the message producers, message consumers and
message itself.

96 S. Goel, H. Sharda, and D. Taniar

Ciontection Clobie ctiot
Factory Fartory
Creates Creates
¥ b
Cormecton Conrecton
Creates Cmates
¥ Y
Session Sessiom
Creates Ceates
¥ Sets
Listener
Messaze Producer Iless age Consurmer A
Message
l Listerer

i

| Delivers Mess age

Fig. 1. Architecture of JIMS application [8]

Message Producers: Session object creates message producers, to send or publish
the message to the destination.

Message Consumers: Session object also creates message consumers, to receive
the messages sent to a destination. The message consumer registers the interest in a
destination with a JMS provider.

Messages: Message is the most important part of the messaging system, which is
the point of communication between applications. The purpose of JMS application is
to produce and consume messages.

JMS defines five types of message body [7]: (i) Text Message (ii) Object Message
(iii) Bytes Message (iv) Map Message (v) Stream Message

The Message-Listener interface has a method called onMessage() The IMS
provider invokes this method automatically when the message arrives. This is called
as asynchronous message delivery.

3 Transfer of Messages in Distributed Systems

This section proposes the Transfer of Messages in Distributed Systems (TMDS)
architecture. The proposed TMDS architecture is based on the extension of
specifications provided by JMS. The application should be able to handle the
messages not only when the consumer of the message is disconnected, but the

Message-Oriented-Middleware in a Distributed Environment 97

application should also be able to provide the acknowledgment of the received
message, TMDS architecture takes care of these issues by implementing durable
subscribers and different acknowledgment modes. Few applications cannot afford to
have messages re-delivered, TMDS architecture takes care of this situation, by
implementing the once-and-only once delivery mechanism.

TMDS architecture supports XML message formats. The benefit of using the
XML message format is that, the industry has a unanimously agreed standard of
communication and the messages can be shared between different vendors without
any conflict. One more advantage of using XML data format is that, self-defined data
formats can be used. The motivation to develop the TMDS architecture is to support
both the models of messaging; Publish/Subscribe and Point-To-Point in the same
architecture. This can be explained as:

e To develop architecture for electronic exchange.

e To provide the ability to transport XML data as a document.

e To ensure the delivery of important messages to the recipient and

acknowledge the delivery.

A message is sent from one participant (the Sender) to a second participant (the
Recipient). Additionally, it might be sent on behalf of a third participant (the
Originator). Essentially, an interaction (message) between two participants might
require the recipient to forward a similar message to some other participant. In this
case, it is often necessary for the latter to know for whom the message is being sent.
This can be modelled as shown in Figure 2.

T
> | Bwocfora |
L
A
. | Eeplyto B framm C
Feplyto & ford
froen B

Fig. 2. XML data transfer between applications

3.1 Message Acknowledgment

Message acknowledgment protocol is most important in the guaranteed messaging
domain. The JMS API provides message acknowledgment infrastructure. The
successful message consumption takes place in three stages: (i) Message is received,
(if) Message is processed, and (iii) Message is acknowledged. Acknowledgment is set

when the session is created:
TopicSession topicSession =topicConnection.createTopicSession
(false, Session.AUTO ACKNOWLEDGE)

98 S. Goel, H. Sharda, and D. Taniar

Different types of message acknowledgment that are supported:
AUTO_ACKNOWLEDGE, DUPS OK ACKNOWLEDGE, and CLIENT ACKNOWLEDGE.

AUTO_ ACKNOWLEDGE: The session automatically acknowledges a client’s receipt
of a message when the client has successfully executed the receive () method for
the queue or when the messageListener () is successfully executed for the topic.
AUTO ACKNOWLEDGE mode can be viewed in three different perspectives: Message
producer, Message server and Message consumer.

Publish() and send() methods of TopicPublisher and QueuerSender respectively
are synchronous methods. These methods are responsible for sending the message
and wait for an acknowledgment from the server. If the server is down or the message
expires and the acknowledgment could not be sent the message is considered to be
undelivered and the message is sent again.

From the server perspective, an acknowledgment is sent to the producer of the
message means that the server has received the message and it takes the responsibility
to deliver the message to the concerned recipient, but it has not yet reached the final
destination. Messages are further classified as PERSISTENT and NON-PERSISTENT.
For persistent message the server first writes the message to the disk (store-and-
forward mechanism) and then sends the acknowledgment to the producer.

In case of non-persistent message the server may send the acknowledgment as
soon as it receives the message and the message is kept in the memory of the server,
and if the server dies before delivering the message the message is lost and can not be
recovered.

The subscriber can also be divided into two categories namely: durable subscriber
and non-durable subscriber. If any of the clients is of durable nature then the JMS
server keeps the message in the persistent storage till it receives acknowledgment
from all the clients. Certain clients cannot afford redelivered message. To prevent this
the JMS server sets the flag for the get JMSRedelivered () method, and thus guards
against re-delivery of message and thus ensures once-and-only-once delivery of
messages.

DUPS_OK_ACKNOWLEDGE: This type of acknowledgment is used if any
application can afford to receive duplicate messages. AUTO ACKNOWLEDGMENT incurs
in extra over-head and affects the performance.

CLIENT ACKNOWLEDGE: A client acknowledges a message by calling the
acknowledge () method of message. Acknowledging a consumed message
automatically acknowledges the receipt of all messages that have been delivered in
that session prior to the consumption of the acknowledged message.

3.2 Allowing Messages to Expire and Setting Message Priority

TMDS architecture provides the facility to expire the message after a certain amount
of time to increase the performance of the application. TMDS also allows setting the
priority level of the message for urgent messages. Both of these values can be set in
the publish () method of TopicPublisher class.

TopicPublisher.publish (message, DeliveryMode.NON PERSISTENT,
7, 5000);

Message-Oriented-Middleware in a Distributed Environment 99

The above line of code sets the priority level of 7 (0 - lowest, 10 - highest) for the
message and the time to live the message is 5 seconds. By default the message never
expires and its priority level is 4. If the time-to-live is set to 0 the message never
expires.

3.3 Creating Durable Subscription

TMDS architecture uses the PERSISTENT messages and durable subscription for the
subscriber to ensure that the messages are delivered to the client. A durable
subscriber has a higher over-head. The durable subscriber registers a durable
subscription with a unique identity that is retained by the messaging server. Non-
durable subscribers receive the messages only when they are active but durable
subscribers receive all the messages for their subscription period whether or not they
are active. The messaging server keeps the message in the persistent storage till the
message is delivered to all the durable subscribers or the message expires. A durable
subscription can have only one active subscriber at a time. The client ID is set
administratively for a client specific connection factory using the j2eeadmin

command.
J2eeadmin -addJmsFactory DURABLE TCF topic -props clientID=MYID

For the normal subscriber, the subscription is only when the subscriber is active,
but for the durable subscriber the subscription is still active even if the subscriber is
off-line and the subscription lasts till the unsubscribe () method is called.

3.4 Features of TMDS Architecture

The messages are not directly delivered to the recipient but the messages are
delivered to the recipient via the virtual destinations called ‘“opic’ or ‘queue’.
Destinations are the delivery labels in messaging rather than the place where the
message is ultimately delivered. A destination is the commonly understood staging
area for the message. The overview of TMDS Architecture distinguishes the two JMS
messaging domains.

Point-to-Point (PTP): Produces messages to a named ‘queue’, which is the
virtual destination of the message, placing new messages at the back of the queue.
Prospective consumers of messages addressed to a queue can either receive the front-
most message (thereby removing it from the queue) or browse through all the
messages in the queue, causing no changes. Several clients can send messages to a
‘queue’, but only one client can receive the message (one-to-one communication).

Publish and Subscribe (Pub/Sub): Produces messages to a ‘fopic’, which is also
a virtual destination for the message like queue. Prospective consumers of messages
addressed to a topic simply subscribe to the topic. While a message can have many
subscribers (one-to-many), the producer does not know how many subscribers, if any,
exist for a topic.

Scalability: With TMDS Architecture, a B2B exchange can readily scale to more
number of trading partners without requiring changes to the routing architecture or
the trading applications. New e-business partners can subscribe to the existing Topic

100 S. Goel, H. Sharda, and D. Taniar

and get the information, they also have the option to get a dedicated channel for
communication from the e-broker.

Reliability: Messages can be guaranteed to persist when a message is sent to a
queue. If the pub/sub domain of messaging is used, then the message property must
be set to PERSISTENT to ensure guaranteed delivery of message. Mobile users,
although connected to the network frequently, need not be concerned that they missed
out on messages published when they were unable to receive them.

High Performance: TMDS architecture enables flexible programming models,
both PTP and pub/sub domains of messaging have been implemented. If any message
is to be directed only to the concerned e-business partner, it is delivered via the PTP
model and saves the over-head of publishing the message. The second model
(Pub/Sub) is used when the message is to be sent to a group of interested recipient.

Enterprise Application Integration: The basic purpose of TMDS architecture is
to enable communication between enterprise applications. And most of the enterprise
works on their legacy systems and won’t be interested in changing their systems. If
standard data format is used for communication, this could solve the purpose to some
extend. XML was designed to describe the data and to focus on actual data. Users can
define their own XML tags to describe the data.

4 TMDS Architecture with XML: A Case Study

The traditional way of exchanging data was through EDI, which uses proprietary data
formats, which is defined by a specific company and cannot be used without their
permission. XML offers a method to represent the data that is not proprietary.
However XML does not have a reliable way of transporting critical business data
over the intra-company communication environment. Server or network failure can
occur during communication. Applications participating in the distributed
environment can crash or have scheduled down time, thus a reliable transport
mechanism is required to overcome these issues, e.g. if any client wants to
communicate price changes to all the other parties, it must be ensured that message is
delivered to all the disconnected clients as well. The RPC mechanism doesn’t provide
features like: persistence, verification and transactional support, so these features
have to be embedded in the application logic.

4.1 Case Study

The TMDS Architecture enables to communicate between different trading partners.
It has been simulated for a transport exchange but can be extended for any application
where clients have to communicate with each other in a distributed environment.

There are four major components in this application: () Client, (if) RMI Server,
(iif) Message Server, and (iv) Transport Companies (could be any e-partner in the
business).

The client has to be a registered user of the site. If the client is accessing the site
for the first time he has to register himself with the e-broker and the details will be
stored in the database. As the client enters the site, he has to mention the origin and

Message-Oriented-Middleware in a Distributed Environment 101

destination of the goods to be delivered along with the date of delivery. The client has
two options for selecting the Transport Company. The client could either select a
specific transport company to deliver the goods or they could select “no choice”, if
the client is not sure of the company to be used. If the client opts for a specific
transport company the request is sent to the transport company through a queue and if
the client has no specific option the order is published to all the transport companies.

If the order is published to all the clients then the transport companies reply back
their interest in the specific order to the Message Server via the queue.

public interface Interface extends Remote
{
public void publishOrder (String cFrom, String cTo,
String cDhay, String cMonth, String cYr)
throws java.rmi.RemoteException;
public void queueOrder (String cName)
throws java.rmi.RemoteException;

}
The sample code for the publisher to the “Topic” of message is as follows:

public void publishOrder (String cFrom, String cTo, String cDay,
String cMonth, String cYr)

{
String topicName = null;
Context JjndiContext = null;
TopicConnectionFactory
topicConnectionFactory = null;
TopicConnection topicConnection = null;
TopicSession topicSession = null;
Topic topic = null;
TopicPublisher topicPublisher = null;
TextMessage message = null;
final int NUM MSGS =1;

/* Creates a string with XML tags and publishes this message to the topic,
which the subscribers receive and store it in the file and parses the file to get

the data. */
String xmlString = null;
Date date = new Date ();

xmlString="<?xml version="+"\"1.0\""+" 2>
<order><origin>"+cFrom+"</origin>
<destination>"+ cTo +"</destination>
<delivery day>"+cDay +"</delivery day>
<delivery month>"+cMonth+"</delivery month>
<delivery yr>"+cYr+"</delivery yr>
</order>";

/* Create a JNDI InitialContext object if none exists yet.*/

topicName = "NewOrder";
try
{
jndiContext = new InitialContext ();
}
catch (NamingException e) {
System.out.print ("JNDI Error "+e.toString ());

102 S. Goel, H. Sharda, and D. Taniar

System.exit (1);
}

/* Look up connection factory and topic. If either does not exist, exit. */

try
{
topicConnectionFactory=(TopicConnectionFactory)
jndiContext.lookup"TopicConnectionFactory"
topic = (Topic)jndiContext.lookup (topicName) ;
}
catch (NamingException e) {
System.out.println ("Lookup Fail"+e.toString());
System.exit (1);

}

/* Create connection, Create session from connection; false means
session is not transacted. */

try

{
topicConnection =
topicConnectionFactory.createTopicConnection () ;
topicSession=topicConnection.createTopicSession

(false, session.AUTO_ACKNOWLEDE);

topicPublishr=topicSesion.createPublisher (topic)
message = topicSession.createTextMessage ();

/* sets the message stream to xml message format.*/

message.setText (xmlString) "Order Recived:”+date;
System.out.print ("New Order"+message.getText ());
topicPublisher.publish (message);
}
catch (JMSException e) {
System.out.println ("Exception:"+ e.toString ());
}
finally
{
if (topicConnection != null) {
try{
topicConnection.close () ;
}
catch (JMSException e) {}

The message, which is published at the message server and then is send to the
subscribers, is transferred in XML format. Similarly, there is another class namely
TopicSubscriber which subscribes to any specific topic and receives all the
published messages.

Message-Oriented-Middleware in a Distributed Environment 103

5 Conclusion and Future Work

TMDS architecture supports both the domain of messaging, pub/sub and Point-to-
Point, thus enhancing the features of JMS specification. The basic aim of the
architecture is to enhance the features of existing Middle-ware technologies (like
RMI, DCOM etc.). TMDS architecture uses the advantages of existing Middle-ware
technology and enhances the feature of distributed communication by adding
asynchronous communication facility, prioritizing the message delivery as per the
importance of message and a standard format of data transfer (XML format).

Aim of a new architecture shouldn’t be to replace the existing one, but it should
have the capability to be integrated with the existing system. TMDS architecture has
the capability of integration with the existing messaging systems (supports EAI).
There are a lot of commercial products for communication in distributed
environment, but industry is still waiting for a standard architecture. TMDS
architecture is a step, which implements and extends the features of communication
standards proposed by Sun Micro-system’s JMS. TMDS architecture uses the data-
centric XML. Using the document-centric XML can still enhance the features of the
architecture.

References

[1] Adler, R. M. "Distributed Coordination Models for Client/Sever Computing." Computer
28, 4, 14-22 April 1995.

[2] Bernstein, Philip A. "Middleware: A Model for Distributed Services." Communications of
the ACM 39, 2, 86-97, February 1996.

[3] Eckerson, Wayne W., "Three Tier Client/Server Architecture: Achieving Scalability,
Performance, and Efficiency in Client Server Applications", Open Information Systems
10, 20, 1, January 1995.

[4] Newell D., Jones, O., and Machura, M. "Interoperable Object Models for Large Scale
Distributed Systems," 30-31. Proceedings. International Seminar on Client/Server
Computing. La Hulpe, Belgium, October 30-31, 1995. London, England: IEE, 1995.

[5] Rao, B.R. "Making the Most of Middleware." Data Communications International 24, 12,
89-96 September 1995.

[6] Schill, Alexander. "DCE-The OSF Distributed Computing Environment Client/Server
Model and Beyond," 283. Intl. DCE Workshop, Germany, Springer-Verlag, Oct. 1993.

[7]1 Gopalan S, Grant S., Giotta P “Professional JMS”, 1* Edition, Wrox publicaton.

[8] Mark Hapner, Java Message Service Specification version 1.0.2b, Sun Microsystems,
August, 2001, http.//java.sun.com/jms/

[9] A. B. Arulanthu, C. O’Ryan, D. C. Schmidt, M. Kircher, and J. Parsons, “The Design and
Performance of a Scalable ORB Architecture for CORBA Asynchronous Messaging”,
Proceedings of the Middleware2000 Conference, ACM/IFIP, Apr. 2000.

[10] Birmen K., “Building Secure and Reliable Network applications” Manning Publishing
and Prentice Hall, December 1996.

http://java.sun.com/jms/

	1 Introduction
	2 Background
	2.1 Messaging and Message-Oriented-Middleware
	2.2 Java Message Service (JMS)

	3 Transfer of Messages in Distributed Systems
	3.1 Message Acknowledgment
	3.2 Allowing Messages to Expire and Setting Message Priority
	3.3 Creating Durable Subscription
	3.4 Features of TMDS Architecture

	4 TMDS Architecture with XML: A Case Study
	4.1 Case Study

	5 Conclusion and Future Work

