
Aggregation Transformation of XML Schemas to
Object-Relational Databases

Nathalia Devina Widjaya1, David Taniar1, and J. Wenny Rahayu2

1 Monash University, School of Business Systems, Vic 3800, Australia
{Nathalia.Widjaya, David.Taniar}@infotech.monash.edu.au

2 La Trobe University, Department of Computer Science and Engineering,
wenny@cs.latrobe.edu.au

Abstract. As XML has become an emerging standard for information exchange
on the World Wide Web, it has gained attention in database communities to
extract information from XML sees as a database model. Recently, many
researchers have addressed mappings from XML structures onto database
structures. In this paper, we present the way to transform the XML encoded
format, which can be treated as a logical model, to the ORDB format. Firstly,
the paper discusses the modelling of XML and why we need the
transformation. Then, a number of transformation steps from the XML schema
to the ORDB, with the emphasis on the transformations of aggregation
relationships are presented. Two perspectives regarding this conceptual
relationship (existence dependent aggregation which consists of homogeneous
and ordered composition and independent aggregation) and their
transformations are mainly discussed.

1. Introduction

The popularity of XML (eXtensible Markup Language) is growing and XML schema
is being widely used to describe data. XML has emerged and is gradually accepted as
the standard for describing data and interchanging data between various systems and
databases on the Internet [1]. At the moment, XML offers the Document Type
Definition (DTD) as formalism for defining the syntax and structure of XML
documents. Then XML Schema definition language as a substitution of DTD
provides more rich facilities for defining and constraining the content of XML
documents [10].

With the wide acceptance of the Object Oriented conceptual models, more and
more systems are initially modeled and being expressed with OO notation. This
situation suggests the necessity to integrate the OO conceptual models and XML. The
used of XML and XML Schemas to restore the data is no longer effective and
efficient to store a lot of data. Because of that, there is a need to put the data from
XML into the database without eliminating the object-oriented features that exist in
XML Schemas.

The goal of this work is to present a coherent way to transform the XML schema
into ORDB (Object-Relational Databases) using Oracle 9i features models. The

T. Böhme, G. Heyer, H. Unger (Eds.): IICS 2003, LNCS 2877, pp. 251-262, 2003.
 Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.2
 Für schnelle Web-Anzeige optimieren: Ja
 Piktogramme einbetten: Ja
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [1200 1200] dpi
 Papierformat: [595 842] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 600 dpi
 Downsampling für Bilder über: 900 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein
 Bitanzahl pro Pixel: Wie Original Bit

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Untergruppen bilden unter: 100 %
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: []
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren
 Methode: Standard
Arbeitsbereiche:
 Graustufen ICC-Profil:
 RGB ICC-Profil: sRGB IEC61966-2.1
 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Nein
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Nein
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Nein
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Nein
 EPS-Info von DSC beibehalten: Nein
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Nein

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments false
 /DoThumbnails true
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize true
 /ParseDSCCommentsForDocInfo false
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue false
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.2
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends false
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo false
 /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /sRGB
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 150
 /EndPage -1
 /AutoPositionEPSFiles false
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 600
 /AutoFilterGrayImages true
 /AlwaysEmbed []
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 150
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [1200 1200]
>> setpagedevice

mailto:wenny@cs.latrobe.edu.au

252 N.D. Widjaya, D. Taniar, and J.W. Rahayu

emphasis of this paper is only on the transformation of aggregation relationship from
XML schema in order to help people conveniently and automatically generate Oracle
database. This transformation is important so that all the tables that are created using
XML schema can be transformed to the object relational databases using Oracle
format and features.

The work presented in this paper is actually part of a larger research project on
Transformation from XML Schema to Object-Relational Databases. This project
consists of three stages: (i) transformation association relationship from XML
Schema to Object-Relational Database, (ii) transformation inheritance relationship
from XML Schema to Object Relational Database and (iii) transformation
aggregation relationship from XML Schema to Object Relational Database. The
research results from the first and second stage have been reported in [8] and [9]. In
this paper, we focus on the final stage of the project.

The content of the article will consist of the introduction about XML schema and
ORDB. We will explain the relationship that can exist in the XML schema and OO
(Object-Oriented) concepts. The remainder of the paper is organised as follows.
Section 2 discusses about the overview over OO concepts and OO in XML schemas.
Then, we review some closely related work. Section 3 presents several generic-
transforming rules from XML schema to ORDB with the emphasis on the
transformation of aggregation relationship. We discuss the transformation steps and
give example for each of them. Section 4 concludes the paper and further work that
can be done.

2. Background and Related Work

2.1 Object-Oriented: A Brief Overview

In 1970 there was only Relational Database Management System (RDBMS) [2].
Traditional RDBMSs perform well only when working on numeric data and
characters stored in tables, what are often called "simple data types." [8] Then,
ORDBMS (Object-Relational Database Management System) comes later to improve
RDBMSs performance. Basically, the ORDBMS is the RDBMS with the object-
oriented features. ORDBMS becomes popular because of the failure of ODBMSs,
which has limitations that can prevent it from taking on enterprise-wide tasks.
Therefore, by storing objects in the object side of the ORDBMS but keeping the
simpler data in the relational side, users may approach the best of both worlds. For
the foreseeable future, however, most businesses data will continue to be stored in
object relational database system.

Since ORDBMS has object-oriented features, we will discuss briefly about
Object-Oriented Conceptual Model (OOCM). OOCM encapsulates the
structural/static as well as behavioural/dynamic aspects of objects. The static aspects
consist of the classes/objects and the relationship between them, namely inheritance,
association and aggregation. The dynamic aspect of the OOCM consists of generic
methods and user-defined methods. We only discuss about the static aspects since
this is the topic that is relevant with this paper. Static aspects in OOCM create objects
and classes that also include decisions regarding their attributes. Furthermore, they

Aggregation Transformation of XML Schemas to Object-Relational Databases 253

also concern on the relationship between objects. The basic segment of the object-
oriented system is an object. An object is a data abstraction that is defined by an
object name as a unique identifier, valued attributes (instance variables), which give a
state to the object, and methods, or routines that access the state of the object.

In XML Schemas, there are static aspects from object-oriented conceptual model
that we can find. The aggregation is one of OOCM features that we will discuss in
this paper. Aggregation is a �part-of� relationship (refer to figure 1), in which a
composite object (�whole�) consists of other component objects (�parts�).

 C

C1 C2 C3

Aggregation Level 1

Figure 1. A one-levelled aggregation relationship rooted at C

There are four types of aggregation relationship according to Dillon and Tan

(1993) such as: sharable dependent, sharable independent, non-sharable dependent
and non-sharable independent composition. In this paper, we only focus on existence
dependent and existence independent composition. It is vital to remember that in
UML the term �composition� refers to exclusive and dependent aggregation.
However, we use composition interchangeably with aggregation and use
qualifications to distinguish between the different categories. Furthermore, we also
look at two more types of aggregation relationship, i.e. ordered composition and
homogenous/heterogeneous composition.

 In v o ic e

H e a d in g C o n ta c t_ P e r so n I te m s _ O r d e r e d T o ta l_ P r ic e
Figure 2. Class diagram showing existence dependent composition

Existence-dependent aggregation means there is a dependency between the

�whole� object and its �part� object. In the existence-dependent, the deletion of the
�whole� object will cause the deletion of that object and its elements (Refer to figure
2). While in existence-independent aggregation, there is no dependency between the
�whole� object and its �part� object, therefore the deletion of the �whole� object will
not cause the deletion of its element (Refer to figure 3).

H a m p e r

B i s c u i t C o n f e c t i o n a r y D e l i

Figure 3. An existence independent composition example

254 N.D. Widjaya, D. Taniar, and J.W. Rahayu

We called the aggregation as ordered composition if a �whole� object composed
of different �part� objects in particular order. In other words, the order of occurrence
of the �part� objects in the composition is vital to the model.

The other types of composition are heterogeneous and homogeneous. Basically all
categories of composition are heterogeneous since one �whole� object may consist of
several different types of �part� objects. On the other hand, Homogenous composition
means that one �whole� object consists of �part� objects that are of the same type
(Refer to figure 4). The notation that is used to show the aggregation relationship is
the diamond arrow. The class with the diamond next to it refers to the super class.

D aily_Program

Program

Figure 4. Class diagram showing homogeneous composition example

2.2 Related Work

Most existing work has focused on a methodology that has been designed to map a
relational database to an XML database for database interoperability. The schema
translation procedure is provided with an EER (Extended Entity Relationship) model
mapped into XML schema [3].

There are many works that explain about the mapping from relational databases to
XML. Some of them still use DTD [10,11] and some of them use XML schema [5].
Since XML is rapidly emerging as the dominant standard for exchanging data on the
WWW, the previous work already discussed about mapping referential integrity
constraints from Relational Database to XML, semantic data modeling using XML
schemas and enhancing structural mapping for XML and ORDB.

In addition, the study about the use of new scalar and aggregate functions in SQL
for constructing complex XML documents directly in the relational engine has been
done [10].

Relational and object-relational database systems are a well-understood technique
for managing and querying such large sets of structured data. In [5], the writers wrote
about how a relevant subset of XML documents and their implied structure can be
mapped onto database structures. They suggest mapping DTDs onto object-relational
databases schemas and to overcome the typical problems (large schemas), they
suggested an algorithm for determining an optimal hybrid database schema.

The way to model XML and to transform the OO conceptual models into XML
Schema have been discussed in [10]. The writers choose the OO conceptual model
because of its expressive power for developing a combined data model. They come
out with several generic-transforming rules from the OO conceptual model to XML
schema, with the emphasis on the transformations of generalization and aggregation
relationships. The XML Schema code that is presented below, in this paper, is

Aggregation Transformation of XML Schemas to Object-Relational Databases 255

adopted from the existing work that is done previously. In addition, our paper is done
to improve what has been done in [10].

The work reported in this paper is distinguishes from this work in the following
aspects. First, we focus the transformation from XML schema to ORDB. Second, our
transformation target using OO features in Oracle 9i not just the general OO features.
The similarity is we take aggregation relationships into consideration (existence
dependent and independent aggregation).

3. Transformation from XML Schema to ORDB: The Proposed
Methodology

In the following, we use XML Schema and Oracles 9i to interpret the aggregation
relationship in OO conceptual models. We discuss the transformation or mapping
from XML Schema to ORDB. In this section, we also validate the following
documents against the schema. In addition, we also give the example how to insert
the data to the table after creating the table in Oracle 9i. Table 1 shows the
expressions that are used for data types from XML schema and ORDB in this article.
Both of them have the same meaning, but using different phrase.

XML Schema Data types ORDB Data Types
String Varchar2
Decimal Decimal(l,d); l = length, d = decimal

Table 1. Data Types Mapping

3.1 Existence Dependent (Ordered Composition)

The following steps generate a transformation from XML Schema to Object Oriented
Relational Database in Oracles 9i for ordered existence dependent aggregation
relationship.

(i) For an aggregation relationship rooted at a composite class C, an element
named C with a complex Type Ctype in XML schema (<xsd:element
name = ″C″ type= ″Ctype″>) can be transformed by creating a
cluster named C_cluster in ORDB. Then, write the type of class C attributes
(such as C_id). Usually it is in the varchar2 format and the user will enter
the length for it. Refer to table 1.0 to transform the data types from XML
schema to ORDB.
XML Schema:

<xsd:element name=″Invoice″ type = ″InvoiceType″/>
<xsd:complexType name =″InvoiceType″>

ORDB:
Create Cluster Invoice_Cluster

(invoice_Id varchar2 (10))

256 N.D. Widjaya, D. Taniar, and J.W. Rahayu

(ii) Create a table for composite class C and the type of its attribute, which is
exactly the same as C_cluster above and has Not Null besides the C_id
which means table invoice must have an id. Then, create a primary key for
this table, which is usually C_id. Next, create a cluster as C table attributes
and the type will be C_cluster (C_id).

ORDB:

Create Table Invoice
(invoice_id varchar2(10) Not Null,
 Primary Key (invoice_id))

Cluster Invoice_Cluster (invoice_id);

(iii) Based on each sub-element named C1 within the complexType Ctype in the
XML Schema (<xsd:element name = ″C1″ type= ″�″>), we
need to create another table for each of sub-element. Its attributes will
consist of C_id, C1_id and other attributes that are relevant with C1.
C_id and C1_id will be the primary key and the foreign key will be C_id
references C (C_id). Next, create a cluster and its type that should be the
same with the cluster that is created before, C_cluster (C_id).

XML Schema:

<xsd:sequence>
<xsd: element name = ″Heading″ type = ″xsd:string″/>

ORDB:
Create Table Heading

(invoice_id varchar2 (10) Not Null,
 heading_id varchar2 (10) Not Null,
 Heading varchar2 (30),
 Primary Key (invoice_id, heading_id),
 Foreign Key (invoice_id) References Invoice (invoice_id))

Cluster Invoice_Cluster (invoice_id);

(iv) Create index for C_cluster_index on cluster C_cluster

ORDB:
Create Index Invoice_Cluster_Index

On Cluster Invoice_Cluster;

Below is the full example of the transformation from ordered existence dependent
aggregation relationship from XML Schema to ORDB.

XML Schema for ordered existence dependent aggregation relationship:

<xsd:element name= ″Invoice″ type = ″InvoiceType″/>
<xsd:complexType name = ″InvoiceType″>

<xsd:sequence>
<xsd:element name = ″Heading″ type = ″xsd:string″/>
<xsd:element name = ″Contact_Person″ type =
″ContactPersonType″/>

Aggregation Transformation of XML Schemas to Object-Relational Databases 257

<xsd:element name = ″Items_Ordered″ type = ″xsd:string″/>
<xsd:element name = ″Total_Price″ type = ″xsd:decimal″>

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name = ″ContactPersonType″>

<xsd:sequence>
<xsd:element name = ″Name″ type = ″xsd:string″/>
<xsd:element name = ″Address″ type = ″xsd:string″/>
<xsd:element name = ″PhoneNo″ type = ″xsd:decimal″/>

</xsd:sequence>
</xsd:complexType>

ORDB for ordered existence dependent aggregation relationship:
Create Cluster Invoice_Cluster

(invoice_id varchar2 (10));
Create Table Invoice

(invoice_id varchar2 (10) Not Null,
 Primary Key (invoice_id))
 Cluster invoice_cluster (invoice_id);

Create Table Heading
(invoice_id varchar2 (10) Not Null,
 heading_id varchar2 (10) Not Null,
 Primary Key (invoice_id, heading_id),
 Foreign Key (invoice_id) References Invoice (invoice_id))

Cluster invoice_cluster (invoice_id);
Create Table Contact_Person

(contact_person_id varchar2 (10) Not Null,
 invoice_id varchar2 (10) Not Null,
 name varchar2 (40),
 address varchar2 (40),
 phone_no number
 Primary Key (invoice_id, contact_person_id),
 Foreign Key (invoice_id) References Invoice (invoice_id))

Cluster invoice_cluster (invoice_id);
Create Table Item_Ordered

(invoice_id varchar2 (10) Not Null,
 item_ordered_Id varchar2 (10) Not Null,
 Primary Key (invoice_id, item_ordered_id),
 Foreign Key (invoice_id) References Invoice (invoice_id))

Cluster invoice_cluster (invoice_id);
Create Table Total_Price

(invoice_id varchar2 (10) Not Null,
 total_price_ID varchar2 (10) Not Null,
 Primary Key (invoice_id, total_price_id),
 Foreign Key (invoice_id) References Invoice (invoice_id)

Cluster invoice_cluster (invoice_id)
Create Index Invoice_Cluster_Index On Cluster Invoice_Cluster

258 N.D. Widjaya, D. Taniar, and J.W. Rahayu

3.2 Existence Dependent (Homogeneous Composition)

Figure 3 shows the homogenous existence dependent aggregation relationship. We
can generate a transformation for existence dependent homogeneous aggregation
relationship from XML Schema to ORDB in Oracle 9i as follows.

(i) Each sub-element named C1 with a complex Type Ctype in XML schema

(<xsd:element name = ″C1″ type= ″�.″ MinOccurs= ″�″
maxOccurs= ″�″>) need to be created as an object named C1. Then,
write the type of C1 attributes (such as C1_id), usually it is in the
varchar2 format, and the user will enter the length for it.

XML Schema:

<xsd:element name = ″Program″ type = ″xsd:string″
minOccurs=″1″ maxOccurs=″unbounded″/>

The maxOccurs explains the maximum number of Program in
Daily_Program. This may be a positive integer value or the word
unbounded to specify there is no maximum number of occurrences. The
minOccurs shows the minimum number of times an element may appear. It
is always less than or equal to the default value of maxOccurs, i.e. it is 0 or
1. Similarly, if we only specify a value for the maxOccurs attribute, it must
be greater than or equal to the default value of minOccurs, i.e. 1 or more.

ORDB:

Create Or Replace Type Program As Object
(Program_id varchar2 (10));

(ii) Create a table for composite class C1 (as a table of the object above)

ORDB:

Create Or Replace Type Program_Table As Table Of Program

(iii) For a homogeneous existence dependent aggregation relationship rooted at a
composite class C, an element named C within the complexType Ctype
in the XML Schema (<xsd:element name = ″C″ type=
″Ctype″>) need to created as an object named C. Its attributes will consist
of C_id, and other attributes that are relevant to it. C_id will be the
primary key. Next, nested this table and stored it as the table that is created
before.

XML Schema:

<xsd:element name = ″Daily_Program″ type = ″DailyProgramType″/>
<xsd:complexType name = ″DailyProgramType″>

ORDB:
Create Table Daily_Program

(daily_program_id varchar2(10) Not Null,

Aggregation Transformation of XML Schemas to Object-Relational Databases 259

 program_name Program_Table,
 Primary Key (daily_program_id))
 Nested Table program_name Store As Program_Table;

Below is the full example of transformation from XML schema homogeneous
existence dependent aggregation to ORDB.

XML Schema for homogeneous existence dependent aggregation

<xsd:element name; ″Daily_Program″ type = ″DailyProgramType″/>
<xsd:complexType name = ″DailyProgramType″>

<xsd:element name = ″Program″ type = ″xsd:string″ minOccurs = ″1″
maxOccurs= ″unbounded″/>

ORDB for homogeneous existence dependent aggregation

Create Or Replace Type Program As Object
(program_id varchar2 (10));

Create Or Replace Type Program_Table As Table Of Program
Create Table Daily_Program

(daily_program_id varchar2(10) Not Null,
 program_name Program_Table,
 Primary Key (daily_program_id))
 Nested Table program_name Store As Program_Table;

3.3 Existence Independent

The following steps generate a transformation from XML Schema to Object Oriented
Relational Database in Oracle 9i for existence independent aggregation relationship.

(i) For an aggregation relationship rooted at a composite class C, an element
named C with a complex Type Ctype in XML Schema (<xsd:element
name = �C� type = �Ctype�>) can be transformed by creating a table named
C in ORDB. Then, write the type of class C attributes (such as C_id) based
on the attribute for that Ctype in the XML schemas.

 XML Schemas:

<xs:element name="Hamper" type ="HamperType">
���
<xs:element name = "HamperType">
<xs:complexType>
 <sequence>
 <xs:element name = "hamper_id" type = "xs:string"/>
 <xs:element name = "hamper_price" type ="xs:decimal"/>
 </sequence>
</xs:complexType>
</xs:element>

 ORDB:
Create Table Hamper
(hamper_id varchar2(3) Not Null,

260 N.D. Widjaya, D. Taniar, and J.W. Rahayu

 hamper_price Number,
 Primary Key (hamper_id));

ii) Create tables for each element under choice. The element reference under
 choice means that it refers to the details below where the element name
 equals to the element reference.

XML Schema:

<xs:complexType>
<xs:choice>
 <xs:element ref = "Biscuit"/>
 <xs:element ref = "Confectionary"/>
 <xs:element ref = "Deli"/>
</xs:choice>
</xs:complexType>

<xs:element name = "Biscuit">
<xs:complexType>
<sequence>
 <xs:element name = "biscuit_id" type = "xs:string"/>
 <xs:element name = "biscuit_name" type ="xs:string"/>
 <xs:element name = "biscuit_price" type = "xs:decimal"/>

</sequence>
</xs:complexType>
</xs:element>

 ORDB:
Create Table Biscuit
(biscuit_id varchar2(3) Not Null,
 biscuit_name varchar2(20),
 biscuit_price Number,
 Primary Key (biscuit_id));

iii) Create the last table that we called as an aggregate table which will link the
composite class with the sub-classes. Then, create the attributes for this class
which includes the id for the composite class, part_id and part_type. Lastly,
create a primary key and a foreign key.

 ORDB:

Create Table Aggregate
(hamper_id varchar2(3) Not Null,
 part_id varchar2(3) Not Null,
 part_type varchar2(20) Check
(part_type In (�biscuit�, �confectionery�, �deli�)),
 Primary Key (hamper_id, part_id),
 Foreign Key (hamper_id) References hamper (hamper_id));

Below is the mapping of ORDB for existence independent from the XML Schema
existence independent aggregation.

Aggregation Transformation of XML Schemas to Object-Relational Databases 261

 ORDB for existence independent aggregation
Create Table Hamper
 (hamper_id varchar2(3) Not Null,
 hamper_price Number,
 Primary Key (h_id));
Create Table Biscuit
 (biscuit_id varchar2(3) Not Null,
 biscuit_name varchar2(20),
 biscuit_price Number,
 Primary Key (biscuit_id));
Create Table Confectionery
 (confectionery_id varchar2(3)
 confectionery_name varchar2(20),
 confectionary_price Number,
 Primary Key (confectionary_id));
Create Table Deli
 (deli_id varchar2(3) Not Null,
 deli_name varchar2(20),
 deli_price Number,
 Primary Key (deli_id));
Create Table Aggregate
 (hamper_id varchar2(3) Not Null,
 part_id varchar2(3) Not Null,
 part_type varchar2(20) Check
 (part_type In(�biscuit�, �confectionery�, �deli�)),
 Primary Key (hamper_id, part_id),
 Foreign Key (hamper_id) References hamper (hamper_id));

4. Conclusion and Future Work

In this paper, we have investigated the transformation from XML schema to the
ORDB by using Oracle 9i. We emphasis the transformation of aggregation
relationship to help people easily understand the basic object conceptual mapping
that we proposed. This transformation is important because people always eliminate
the object-oriented conceptual features when they transform XML schema to the
database.

Our research gives better solution in transformation XML Schema into ORDB
rather than the XML features that Oracle 9i have. Oracle 9i can only convert all the
data or query result in XML format but it does not deal with the type of database that
is used, such as relational database or object oriented database, like we do. This
transformation can be applied on any XML documents that use XML Schema.

Our future work is being planned to investigate more transformation from XML
schema to ORDB for other XML Schema features that has not been discussed in this
paper. In addition, further research should be done to create a query from XML
schema to get the data from the Oracle 9i databases.

262 N.D. Widjaya, D. Taniar, and J.W. Rahayu

References

1. Bray, T., Paoli, J., Sperberg-McQueen, C.M (eds)., �Extensible Markup Language (XML)
1.0. W3C (1998) http://www.w3c.org/TR/REC-xml

2. Dillon T and Tan PL, Object Oriented Conceptual Models. Prentice Hall, 1993.
3. Fong J., Pang F., and Bloor, C., � Converting Relational Database into XML Document�.

Proc. 12th Intl. Workshop on Database and Expert Systems Appl, 2001, pp. 61-65, 2001.
4. Klettke M. and Meyer H., � XML and Object Relational Database System�. Lecture Notes

in Computer Science, vol 1997, Springer-Verlag, pp.151-170, 2001.
5. Mani M., Lee D. and Muntz R., � Semantic Data Modelling Using XML Schemas�.

Lecture Notes in Computer Science, vol 2224, Springer-Verlag pp.149-163, 2001.
6. Shanmugasundaram, J. et al., �Efficiently publishing relational data as XML documents�.

The VLDB Journal, vol 10, pp. 133-154
7. Stonebraker, M., and Moore, D., �Object-relational DBMSs:the next great wave�. Mogran

Kaufmann Publishers. San Francisco, 1996.
8. Widjaya, N.D., Taniar, D., Rahayu, J.W., and Pardede, E., "Association Relationship

Transformation of XML Schemas to Object-Relational Databases", Proceedings of the 4th
International Conference on Information Integration and Web-based Applications and
Services (IIWAS'2002), pp. 135-142, 2002

9. Widjaya, N.D., Taniar, D., and Rahayu, J.W, "Inheritance Relationship Transformation of
XML Schemas to Object-Relational Databases", Proc. of the 4th Intl. Conference on
Intelligent Data Engineering & Automated Learning (IDEAL�2003), 2003.

10. Xiao R., Dillon T., Chang E., and Feng L., �Modelling and Transformation of Object-
Oriented Conceptual Models into XML Schema�. Lecture Notes in Computer Science, vol
2113, Springer-Verlag, pp.795-804, 2001.

11. Yang X. and Wang G., �Efficiently Mapping Referential Integrity Constraints from
Relational Databases to XML. LNCS, vol 2151, Springer-Verlag, pp.338-351, 2001.

12. Yang X. and Wang G., �Mapping Referential Integrity Constraints from Relational
Databases to XML. LNCS, vol 2118, Springer-Verlag, pp.329-340, 2001.

	1.Introduction
	2.Background and Related Work
	2.1Object-Oriented: A Brief Overview
	2.2Related Work

	3.Transformation from XML Schema to ORDB: The Proposed Methodology
	3.1Existence Dependent (Ordered Composition)
	3.2Existence Dependent (Homogeneous Composition)
	3.3Existence Independent

	4.Conclusion and Future Work

