
X. Zhou et al. (Eds.): APPT 2003, LNCS 2834, pp. 643–654, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Multi-scheduler Concurrency Control for Parallel
Database Systems

Sushant Goel1, Hema Sharda1, and David Taniar2

1 School of Electrical and Computer systems Engineering,
Royal Melbourne Institute of Technology, Australia

s2013070@student.rmit.edu.au
hema.sharda@rmit.edu.au

2 School of Business Systems,
Monash University, Australia

David.Taniar@infotech.monash.edu.au

Abstract. Increase in amount of data stored and requirement of fast response
time has motivated the research in Parallel Database Systems (PDS).
Requirement for correctness of data still remains one of the major issues.
Concurrency control algorithms used by PDS uses single scheduler approach.
Single scheduler approach has some inherent weaknesses such as – very big
lock tables, overloaded centralized scheduler and more number of messages in
the system. In this paper we investigate the possibility of multiple schedulers
and conclude that single scheduler algorithms cannot be migrated in the present
form to multi-scheduler environment. Next, we propose a Multi-Scheduler
Concurrency Control algorithm for PDS that distributes the scheduling
responsibilities to the respective Processing Elements. Correctness of the
proposed algorithm is then discussed using a different serializability criterion –
Parallel Database Quasi-Serializability.

1 Introduction

Research and development efforts have made Parallel Database Systems (PDS) a
reality during the last decade. PDS are specifically used to meet requirements of Very
Large Databases (VLDB) – volume of data spanning to terabyte (1012) size. Any
database system must guarantee the consistency of the database.

Researchers in the recent past have concentrated on query optimization [12,13] in
parallel database environment. Very little work has been done in the area of
transaction processing and concurrency control to meet the specific needs of PDS.
Single scheduler approach, and thus serializability [9], has been used as the
correctness criterion for concurrency control. High performance and multiprocessor
database systems such as Parallel Database Systems (PDS) [2,15], Distributed
Database Systems (DDS) [15,16], Multidatabase Systems (MDS) [14] have made the
notion of conflict serializability [9] insufficient as a correctness criterion.

This paper proposes a new serializability criterion, Parallel Database Quasi-
serializability (PDQ-serializability), and then formulates a Multi-scheduler
Concurrency Control algorithm to meet the requirements of PDS. We focus on the

644 S. Goel, H. Sharda, and D. Taniar

problem of concurrent transaction execution in parallel database systems.
Serializability as a correctness criterion assumes the existence of single scheduler to
ensure the database consistency. Single scheduler strategy may not meet the
requirements of PDS. Also, Single scheduler strategy may not be directly migrated to
multi-scheduler environment, the underlying problem is discussed in detail in the next
section. The single scheduler scheme has some inherent weaknesses, such as: 1) Due
to centralized scheduling, the lock table grows very big at the scheduler. 2) Abundant
computing power of multiple processors is not utilized to the fullest. 3) All sites have
to communicate to a central scheduling node thus increasing the number of messages
in the system. 4) Sometimes it is difficult to decide the coordinator-node.

The proposed multi-scheduler concurrency control approach minimizes the above-
mentioned weaknesses for obvious reasons; we would not discuss them in detail as
they are out of the scope of the paper. The purpose of this research is to explore the
issues in concurrency control of parallel database systems that uses multiple
schedulers. The paper covers two major aspects: 1) We show that the concurrency
control algorithms implemented in single scheduler environment may produce
incorrect results in multi-scheduler environment. We use multiple schedulers to
distribute the load, contrary to single scheduler environment. 2) Next, we propose a
Multi-scheduler Concurrency Control algorithm that distributes the scheduling
responsibilities to the respective Processing Elements (PE) and guarantees a PDQ-
serializable schedule. We must emphasize that this concept is similar yet different
than multidatabase serializability (MDBS) or heterogeneous distributed database
serializability (HDDBS). MDBS and HDDBS consider two levels of transactions –
local and global, and treat them differently, but the proposed algorithm treats all the
transactions equally, for detailed description and comparison refer [2, 14, 15, 16].

Rest of the paper is organized as follows: Section 2 gives the fundamental
definitions of database terms and PDS, Section 3 discusses the motivation of this
work, Section 4 presents the formal model of PDS that we consider for the algorithm.
Section 5 elaborates the proposed algorithm and proves the correctness of the
algorithm. Finally, Section 6 concludes the paper and discusses the future extension
of the work.

2 Background

In this section we first give the fundamental definitions of database terminologies that
we use through out the paper. Next we briefly discuss most common architecture of
the PDS.

2.1 Fundamental Definitions

We would like to briefly define the transaction and properties of transactions before
we proceed with the proposed algorithm. From the user’s viewpoint, a transaction is
the execution of operations that accesses shared data in the database, formally [9]:

Multi-scheduler Concurrency Control for Parallel Database Systems 645

Definition 1: A transaction Ti is a set of read (ri), write (wi), abort (ai) and commit
(ci). Ti is a partial order with ordering relation � i where:

1) Ti ⊆ {ri [x], wi [x] | x is a data item} � {ai, ci}
2) ai ∈ Ti iff ci ∉Ti
3) If t is ai or ci , for any other operation p ∈ Ti, p � i t

4) If ri [x], wi [x] ∈ Ti, then either ri [x] � i wi [x] or wi [x] � i ri [x].

Definition 2: A complete history (or schedule) H over T (let, T be set of
transactions, T = {T1, T2, . . . Tn}) is a partial order with ordering relation � H where
[9]:

1) H = n
i 1=� Ti;

2) � H ⊇ n
i 1=� � i; and

3) For any two conflicting operations p, q∈H, either p� H q or q� H p.

Definition 3: A history H is Serializable (SR) if its committed projection, C(H), is

equivalent to a serial execution Hs [9].

Definition 4: A database history Hs is serial iff [9]
(∃ p ∈ Ti , ∃ q ∈ Tj such that p Hs� q) then (∀ r ∈ Ti , ∀ s ∈ Tj, r Hs� s).

A history (H) is serializable iff serialization graph is acyclic [3, 9].

2.2 Parallel Database Systems

The enormous amount and complexity of data and knowledge to be processed by the
systems imposes the need for increased performance from the database system. The
problems associated with the large volumes of data are mainly due to: 1) Sequential
data processing and 2) The inevitable input/output bottleneck.

 . . .

 . . .

 P 1 P 2 P n

 M 1 M 2 M n

 In terconnec tion N etw ork

Fig. 1. Shared Nothing PDS

646 S. Goel, H. Sharda, and D. Taniar

Parallel database systems have emerged in order to avoid these bottlenecks.
Different strategies are used for data and memory management in multiprocessor
environment to meet specific requirements. In shared memory architecture processors
have direct access to the disks and have a global memory. This architecture is good
for load balancing. In shared disk architecture processors have direct access to all
disks but have private memory. Shared-nothing architecture has individual memory
and disk for each processor, called processing element (PE). The main advantage of
shared-nothing multi-processors is that they can be scaled up to hundreds and
probably thousands of processors, for detailed discussion and comparison see [1, 2, 5,
7, 8]. We assume shared nothing architecture for this study.

3 Motivating Example

The following example shows that single scheduler algorithms may not be directly
migrated to meet the requirements of multi-scheduler environment. We consider two
PE and four data objects (O1, O2, O3, O4) to demonstrate the motivation of our work.
The two PE’s are denoted as P1 and P2. Say, the data objects are located as follows:

P1 = O1, O2
P2 = O3, O4

Now, consider two transactions are submitted to the database as shown below.
T1 = r1(O1) r1(O2) w1(O3) w1(O1) C1
T2 = r2(O1) r2(O3) w2(O4) w2(O1) C2

Each transaction is divided into subtransactions according to the location of data
objects. From T1 and T2 following subtransactions are obtained:

T11 = r11(O1) r11(O2) w11(O1) C11
T12 = w12(O3) C12
T21 = r21(O1) w21(O1) C21
T22 = r22(O3) w22(O4) C22

T11 and T12 are read as subtransaction of transaction 1 at PE1 and subtransaction of
transaction 1 at PE2 respectively. Assume, the following histories are produced by the
local scheduler at the processing elements:

H1 = r11(O1) r11(O2) w11(O1)C11 r21(O1) w21(O1) C21
H2 = r22(O3) w22(O4) C22 w12(O3) C12

H1 and H2 are history at PE1 and PE2 respectively. Both the local scheduler
produces serializable history with following serialization order:

Scheduler 1: schedules transaction 1 � transaction 2
Scheduler 2: schedules transaction 2 � transaction 1

The two serialization orders are contradictory. Although individual schedulers
generate serial history the combined effect produces a cycle T1 → T2 → T1. Thus, the
responsibility of scheduler at each PE is much more than that of a single scheduler.
Hence, we conclude that the concurrency control strategies applicable to single
scheduler may not be migrated in its present form to multi-scheduler environment.

In the literature, we could not find any algorithm that considers multiple schedulers
for PDS. Weaknesses of single scheduler algorithms motivated us to distribute the
scheduling responsibilities to the respective PE and consider multiple schedulers. We
propose a new serializability, Parallel Database Quasi-serializability, criterion to

Multi-scheduler Concurrency Control for Parallel Database Systems 647

meet requirements of multi-scheduler concurrency control algorithms in the following
sections.

4 Model of Parallel Database System

Shared-nothing parallel database system is considered in this study. For the sake of
simplicity we consider only two processing elements to demonstrate our algorithm.

 T 1 T 2

P E 1 P E 2

Schedu ler 2 S chedu le r 1

T 11
T 22

T 12 T 21

D B

S P L I T T E R

P rocessor

M em ory D B

P rocessor

M em ory

Fig. 2. Conceptual model of multi-scheduler concurrency control

We assume that local schedulers are capable of producing serializable schedule.
Different parts of the model is described as follows:

a) Splitter: Splitter contains the information regarding the data allocated to the
processing elements and splits the transaction into multiple subtransactions
depending on data location. In the literature splitter had the responsibility of
central scheduler. We will refer to scheduler as shown in figure-2.

b) Processing Elements: PE contains a processor, a memory and a fragment of
database as discussed in the shared nothing architecture (section 2).

c) Schedulers at each PE: Schedulers are responsible for generating a
serializable schedule. The responsibility of each scheduler is much more than
in a single scheduler environment as discussed in the previous section.

d) Transactions: Transactions are exactly same as that of single processor
environment and follow the properties of Definition 1.

5 Proposed Serializability Theorem and Algorithm

In this section we first discuss the correctness criterion for the Multi-scheduler
Concurrency Control algorithm namely Parallel Database Quasi-serializability

648 S. Goel, H. Sharda, and D. Taniar

(PDQ-serializability) subsection 5.2 proposes a PDQ-serializability theorem,
subsection 5.3 explains the proposed Timestamp based Multi-scheduler Concurrency
Control algorithm and finally subsection 5.4 proves the correctness of the algorithm.

5.1 PDQ-Serializability

Scheduling responsibilities in PDS is distributed to respective PE according to the
partitioned data. The motivating example shows that although individual schedulers
produce serial histories the database is not in a consistent state. Some additional
criterion has to be enforced to ensure multi-scheduler concurrency control in addition
to subtransaction level granularity. We propose a new serializability criterion that
separates two types of transactions – transactions having only one subtransaction and
transactions having more than one subtransaction. The following definition states the
correctness criterion for PDS.

Definition 5: A Multi-Scheduler Serial (MS-Serial) history is considered correct in
parallel database system. A history is MS-Serial iff:

1. Every PE produces serializable history and
2. Any transaction having more than one subtransaction i.e. accessing more

than one PE, executes the transaction according to total order. Total order for
two transactions Ti and Tj can be defined as – if Ti precedes Tj at any PE then all

of Ti’s operations precede Tj’s operations in all PE in which they both appear.

The second condition is similar to quasi-serializability. Hence, we name the
correctness criterion as Parallel Database Quasi-Serializability.

Definition 6: A history in multi-scheduler environment is PDQ-serializable iff it is

equivalent to a MS-Serial history (definition of equivalence (≡) from [9], page 30).

5.2 Proposed PDQ-Serializability Theorem

The PDQ-serializability of the history is determined by analysing Parallel Database
Quasi-Serializability (PDQ-serializabilty) graphs. Only the committed projection [9]
of the history C(H) is considered in the definition. The following definition describes
the PDQ-serializability graph.

Definition 7: At any given instance, histories of all the schedulers at each PE can

be represented using a directed graph defined with the ordered three: (1T , nT , A).
The graph would be referred as Multi-scheduler Serializability Graph (MSG).

1. 1T : set of labelled vertices representing transactions with one
subtransaction.

2. nT : set of labelled vertices representing transactions with more than one
subtransaction.

3. A is the set of arcs representing the ordering of transaction in each PE.

Multi-scheduler Concurrency Control for Parallel Database Systems 649

In rest of the paper we would only consider transaction having more than one
subtransaction and denote that as T. Transactions with single subtransaction are taken
care by the individual PE and do not pose any threat to the concerned problem. Based
on the definition of MSG we next formalize the following theorem.

Theorem 8: A history in multi-scheduler environment is PDQ-Serializable iff
MSG is acyclic.

Proof: (if) Let us assume without loss of generality that the committed history
C(H) consists of the set {T1, T2, …,Tn}. T1, T2, …,Tn are transactions with more than
one subtransaction. We assume that all processing elements always schedule
transactions in serializable order. The n vertices of the MSG ({T1, T2, …,Tn}) are
acyclic and thus it may be topologically sorted (definition of topologically sorted
from [9]). Let Ti1, Ti2, …, Tin be a topological sort of the multi-scheduler history for
permutation of 1, 2, …, n. Let the MS-serial history be Ti1, Ti2, …, Tin. We show that:
C(H) ≡ MS-serial. Let p∈ Ti and q∈Tj and p and q conflict such that p H� q. This
means an arc exists in the MSG from Ti to Tj. Therefore in any topological sort of
multi-scheduler history Ti precedes Tj. Thus, all operations of Ti precede all operations
of Tj in any topological sort. Thus C(H) ≡ MS-serial and from Definition-6 the history
H is PDQ-serializable.

(only if): Suppose a history H is PDQ-serializable and let Hs be a MS-serial
history equivalent to H. Consider an arc exists in the MSG, Ti to Tj. This implies there
exists two conflicting operations p∈ Ti and q∈Tj such that p H� q at some PEi. This
condition is valid as both operation conflicts at the same PEi. Since, Hs ≡ H, all
operations of Ti occur before Tj at that specific PE. Suppose there is a cycle in MSG.
This implies at any other PEj, Tj � Ti in MS-serial history. But Ti is known to precede

Tj at PEi, which is contradictory to the earlier assumption.

5.3 Timestamp Based Multi-scheduler Concurrency Control Algorithm

In this section we propose a Timestamp based Multi-scheduler Concurrency Control
(TMCC) algorithm that enforce total order in the schedule to ensure PDQ-
serializability. Total order is required only for those conflicting transactions that
accesses more than one PE being accessed by other active transactions.

Following functions are used to demonstrate the algorithm:
1. Split_trans(Ti): This function takes the transaction submitted to the splitter

as parameter and returns a set of subtransactions that access different PEs.
2. PE_accessed(Ti): This function also takes the transaction as parameter and

returns the set of PEs where the subtransactions for Ti are executed.
3. Active_trans(PE): This function takes the processing element as parameter

and returns the set of transactions that have an active subtransaction
executing at that PE.

4. Cardinality(): This function can take any set as parameter and returns the
number of elements in the set.

5. Append_TS(Subtransaction): This function takes a subtransaction of a
transaction Ti and appends a timestamp to the subtransaction. All the
subtransaction of a transaction will have the same timestamp value.

650 S. Goel, H. Sharda, and D. Taniar

Algorithm 1: TMCC Algorithm (Transaction submission)

begin

input Ti : Transaction
var Active_trans : set of active transactions
generate timestamp ts : unique timestamp in increasing order is generated

Split_trans(Ti)
PE_accessed(Ti) ← set of Processing Elements accessed

(1) if Cardinality(PE_accessed(Ti)) = 1 then
 begin
(2) Active_Trans(PEk) ← Active_Trans(PEk) � Ti
(3) submit subtransaction to PE
 end

else begin

(4) Active_trans ← � Active_Trans(PEk)

(5) Active_trans ← {T |T ∈Active_trans ∧ Cardinality(PE_accessed(T))>1}
(6) for each subtransaction of Ti
(7) Append_TS(Subtransaction)
 end for

(8) if Cardinality(PE_accessed(Ti)� (� transActiveT _∈
PE_accessed(Tj)) ≤ 1)

 then begin
(9) for each PEk ∈ PE_accessed(Ti)
 begin
(10) Active_Trans(PEk) ← Active_Trans(PEk) � Ti
(11) submit subtransaction to PEk ::Subtransaction executes immediately.
 end
 end for
 end
 else
(12) for each PEk ∈ PE_accessed(Ti)
 begin
(13) Active_Trans(PEk) ← Active_Trans(PEk) � Ti
(14) submit subtransaction to PE’s Queue ::Subtransaction submitted to queue
 end
 end for
 end if
 end
 end if
end

Working of the algorithm is explained below:
1. As soon as the transaction arrives at the splitter, split_trans(Ti) splits the

transaction into multiple subtransactions according to the allocation of data.

Multi-scheduler Concurrency Control for Parallel Database Systems 651

2. If there is only one subtransaction required by the transaction, the
transaction can be submitted to the PE immediately without any delay.
(Line 1).

3. All the transactions having more than one subtransaction are added to the
Active_Trans set (Line 4 and Line 5).

4. Splitter appends a timestamp with every subtransaction for those
transactions that require multiple subtransactions, before submitting to the
PE (Line 6).

5. If there are active transactions that access one or less than one PEs
accessed by the transaction being scheduled then the subtransactions can be
scheduled immediately (Line 8).

6. If there is active transactions that access more than one of the PEs accessed
by the transaction being scheduled then the subtransactions are submitted
to the PE’s wait_queue. The subtransactions from the queue are executed
strictly according to the timestamps (Line 12).

7. Subtransactions from step-2 can be assumed to have lowest timestamp
value e.g. 0 and can be scheduled immediately.

8. When all subtransactions of any transaction complete the execution at all
the sites, the transaction commits and is removed from Active_trans(PE)
list.

Algorithm 2 explains the steps when any subtransaction terminates at any
particular processing element.

Algorithm 2: TMCC Algorithm (Transaction termination)

begin
 input subtransaction of Ti completes execution
 Active_Trans(PEk) ← Active_Trans(PEk) – Ti :: removes transaction from the PE
 PE_accessed(Ti) ← PE_accessed(Ti) – PEk
 :: removes the PE being accessed from the PE_accessed set
end

5.4 Correctness of TMCC Algorithm

The model assumes that each PE is capable of producing serializable schedule
(Proposition-1). At the same time motivating example demonstrates the necessity of
additional strictness criterion to guarantee the serialization of parallel database
systems in multi-scheduler environment.

Proposition 9: All processing elements always schedule all transactions in

serializable order.
To prove the correctness of the proposed algorithm we show that the additional

criterion enforced by the splitter will guarantee serializable schedule in parallel
database systems. The splitter does not control the execution of schedules but only
determines the way subtransactions are submitted to the PE. If any transaction

652 S. Goel, H. Sharda, and D. Taniar

accesses more than one database being accessed by other active transactions, the
subtransactions cannot be scheduled immediately and thus have to be submitted to
wait_queue (Proposition-2). Each processing element’s queue schedules the
subtransactions according to their timestamp.

Proposition 10: Splitter submits the subtransactions to the wait_queue of PE if

active transactions access more than one common database.
This ensures that the conflicting transactions are executed according to the

timestamp value to ensure the PDQ-serializable execution of the multi-scheduler
system. The following Lemma proves this.

Lemma 11: For any two transactions Ti, Tj scheduled by TMCC algorithm, either
all of Ti’s subtransactions are executed before Tj at every PE or vice versa.

Proof: There are three cases to be considered.

Case 1) A transaction Ti requires only single subtransaction (STi): This situation is
shown in line (1) of the algorithm. The subtransaction is submitted immediately as
shown in the algorithm flow chart. From Poposition-1 it follows that any other
subtransaction STj∈Tj either precedes or follows STi.

Case 2) A transaction Ti splits into multiple subtransactions but accesses only one
PE accessed by other active transaction: This situation is shown in line (8) of the
algorithm. Line (8) checks for the above mentioned condition and the subtransaction
is submitted to the PE immediately with a timestamp. The timestamp will be used for
case-3. Consider two active transactions that overlap only at one PE. Since they
overlap at only one PE, Proposition-1 ensures that the transactions would be ordered
in a serializable way.

Case 3) A transaction Ti splits into multiple subtransactions and accesses more
than one PE accessed by other active transaction: This situation is shown in line (12)
of the algorithm. Under this condition schedulers at PEs may schedule the
transactions in conflicting mode. To avoid this conflict we submit the transactions in
the PEs wait_queue instead of scheduling it immediately (Proposition-2). The
transactions in the wait_queue are executed strictly according to the timestamp order.

Say, transaction Ti has two subtransactions Ti1 and Ti2 already executing at PE1 and
PE2. When Tj arrives and it also has Tj1 and Tj2. Then if condition at line (8) fails and
the subtransactions are submitted to the wait_queue at each PE. Assume that the
timestamp of Ti, TS(Ti) � TS(Tj). Timestamp is appended to the subtransactions of Ti
and Tj during the execution of line (6). Then Ti will precede Tj at both the sites
because the transactions are scheduled strictly according to the timestamp value, thus

avoids execution of incorrect schedules.

Theorem 12: The Timestamp based Multi-scheduler Concurrency Control
algorithm presented produces PDQ-serializable histories.

Proof: All PDQ-serializable histories can be shown by acyclicity of multi-
scheduler serializability graph, as demonstrated by Theorem 1. Thus, we will show
that the proposed TMCC algorithm avoids cycle in the MSG.

Without loss of generality, consider that there is a sequence of arcs from
T1 → T2 → … → Tn. This implies that there exists an operation of subtransaction

Multi-scheduler Concurrency Control for Parallel Database Systems 653

T1k∈T1 that precedes and conflicts with an operation of Tnk∈ Tn at any particular, say
PEk. For a cycle, another sequence of arcs must exist from Tn → Tn-1 → … → T1.
Two possibilities can exist due to this sequence. (1) An operation of Tnk∈ Tn precedes
and conflicts with an operation of T1k∈ T1 at the same PEk. This contradicts
Proposition 1. (2) An operation of some other subtransaction Tnl∈ Tn at another PEl

precedes and conflicts with an operation of T1l∈ T1. This contradicts Lemma 1.

6 Conclusion

Due to the inherent weaknesses of single schedulers (discussed in the paper) multi-
scheduler approach has to be investigated. Our investigation shows that algorithms
developed for single scheduler cannot guarantee correct schedules in multi-scheduler
environment. The notion of conflict serializability is insufficient of producing correct
schedule and a new serializability criterion is required for multi-scheduler approach.
We discuss the PDQ-serializability and propose an algorithm that guarantees PDQ-
serializable schedules. The proposed algorithm distributes the scheduling
responsibilities to the PEs, and reduces the overheads of single scheduler strategy.

References

[1] A. Bhide, “An Analysis of Three Transaction Processing Architectures”, Proceedings of
14th VLDB Conference, pp. 339–350, 1988.

[2] D.J. DeWitt, J. Gray, "Parallel Database Systems: The Future of High Performance
Database Systems", Communication of the ACM, vol. 35, no. 6, pp. 85–98, 1992.

[3] J. Gray, A. Reuter, Transaction Processing: Concepts and Techniques, Morgan
Kaufmann, 1993.

[4] L. Sha, R. Rajkumar, J. Lehoczky, “Priority Inheritance Protocols: An Approach to Real-
time Synchronization”, IEEE Transactions, vol–39, No.9, pp. 1175– 1185, 1990.

[5] M. Stonebraker, "The Case for Shared-Nothing", IEEE Data Engineering, vol. 9, no. 1,
pp. 4–9, 1986.

[6] M.-A. Neimat, D.A.Schneider, “Achieving Transactional Scaleup on Unix”, Parallel and
Distributed Information Systems, Proceedings of the 3rd Intl. Conf. on, pp. 249–252,
1994.

[7] P. Valduriez, “Parallel Database Systems: The Case For Shared Something”,
Proceedings of the International Conference on Data Engineering, pp. 460–465, 1993.

[8] P. Valduriez, "Parallel Database Systems: Open Problems and New Issues", Distributed
and Parallel Databases, volume 1, pp. 137–165, 1993

[9] P. A. Bernstein, V. Hadzilacos, N. Goodman, Concurrency Control and Recovery in
Database Systems, Addision-Wesley, 1987.

[10] S. S. Thakkar, M. Sweiger, “Performance of an OLTP Application on Symmetry
Multiprocessor System”, Proceeding, 17th Intl. Conf. on Comp. Arch., pp. 228–238, 1990.

[11] T.-W. kuo, J. Wu, H.-C. Hsih, “Real-time concurrency control in multiprocessor
environment”,IEEE Transaction, Parallel and Dist. Sys., vol.–13, no.–6, pp. 659–671,
’02.

[12] S.D.Chen; H. Shen; R. Topor, “Permutation-based range-join algorithms on N-
dimensional meshes”, Parallel and Dist. Sys., IEEE Trans,Vol–13, No–4, p: 413–431,
‘02.

654 S. Goel, H. Sharda, and D. Taniar

[13] C.-M. Chen, R. K Sinha, “Analysis and comparison of declustering schemes for
interactive navigation queries”, Knowledge and Data Engineering, IEEE Transactions
on, Vol–12 Issue: 5 ,pp: 763–778, 2000.

[14] K. Barker, “Transaction Management on Multidatabase Systems”, PhD thesis,
Department of Computer Science, The university of Alberta, Canada, 1990.

[15] T,Ozsu, P.Valduriez, "Distributed and Parallel Database Systems", ACM Computing
Surveys, vol.28, no.1, pp 125–128, March 1996.

[16] M.T. Ozsu and P. Valduriez, editors. Principles of Distributed Database Systems
(Second Edition). Prentice-Hall, 1999.

	Introduction
	Background
	Fundamental Definitions
	Parallel Database Systems

	Motivating Example
	Model of Parallel Database System
	Proposed Serializability Theorem and Algorithm
	PDQ-Serializability
	Proposed PDQ-Serializability Theorem
	Timestamp Based Multi-scheduler Concurrency Control Algorithm
	Correctness of TMCC Algorithm

	Conclusion

