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Abstract. Increase in amount of data stored and requirement of fast response 
time has motivated the research in Parallel Database Systems (PDS). 
Requirement for correctness of data still remains one of the major issues. 
Concurrency control algorithms used by PDS uses single scheduler approach. 
Single scheduler approach has some inherent weaknesses such as – very big 
lock tables, overloaded centralized scheduler and more number of messages in 
the system. In this paper we investigate the possibility of multiple schedulers 
and conclude that single scheduler algorithms cannot be migrated in the present 
form to multi-scheduler environment. Next, we propose a Multi-Scheduler 
Concurrency Control algorithm for PDS that distributes the scheduling 
responsibilities to the respective Processing Elements. Correctness of the 
proposed algorithm is then discussed using a different serializability criterion – 
Parallel Database Quasi-Serializability. 

1   Introduction 

Research and development efforts have made Parallel Database Systems (PDS) a 
reality during the last decade. PDS are specifically used to meet requirements of Very 
Large Databases (VLDB) – volume of data spanning to terabyte (1012) size. Any 
database system must guarantee the consistency of the database.  

Researchers in the recent past have concentrated on query optimization [12,13] in 
parallel database environment. Very little work has been done in the area of 
transaction processing and concurrency control to meet the specific needs of PDS. 
Single scheduler approach, and thus serializability [9], has been used as the 
correctness criterion for concurrency control. High performance and multiprocessor 
database systems such as Parallel Database Systems (PDS) [2,15], Distributed 
Database Systems (DDS) [15,16], Multidatabase Systems (MDS) [14] have made the 
notion of conflict serializability [9] insufficient as a correctness criterion.  

This paper proposes a new serializability criterion, Parallel Database Quasi-
serializability (PDQ-serializability), and then formulates a Multi-scheduler 
Concurrency Control algorithm to meet the requirements of PDS. We focus on the 
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problem of concurrent transaction execution in parallel database systems. 
Serializability as a correctness criterion assumes the existence of single scheduler to 
ensure the database consistency. Single scheduler strategy may not meet the 
requirements of PDS. Also, Single scheduler strategy may not be directly migrated to 
multi-scheduler environment, the underlying problem is discussed in detail in the next 
section. The single scheduler scheme has some inherent weaknesses, such as: 1) Due 
to centralized scheduling, the lock table grows very big at the scheduler. 2) Abundant 
computing power of multiple processors is not utilized to the fullest. 3) All sites have 
to communicate to a central scheduling node thus increasing the number of messages 
in the system. 4) Sometimes it is difficult to decide the coordinator-node. 

The proposed multi-scheduler concurrency control approach minimizes the above-
mentioned weaknesses for obvious reasons; we would not discuss them in detail as 
they are out of the scope of the paper. The purpose of this research is to explore the 
issues in concurrency control of parallel database systems that uses multiple 
schedulers. The paper covers two major aspects: 1) We show that the concurrency 
control algorithms implemented in single scheduler environment may produce 
incorrect results in multi-scheduler environment. We use multiple schedulers to 
distribute the load, contrary to single scheduler environment. 2) Next, we propose a 
Multi-scheduler Concurrency Control algorithm that distributes the scheduling 
responsibilities to the respective Processing Elements (PE) and guarantees a PDQ-
serializable schedule. We must emphasize that this concept is similar yet different 
than multidatabase serializability (MDBS) or heterogeneous distributed database 
serializability (HDDBS). MDBS and HDDBS consider two levels of transactions – 
local and global, and treat them differently, but the proposed algorithm treats all the 
transactions equally, for detailed description and comparison refer [2, 14, 15, 16]. 

Rest of the paper is organized as follows: Section 2 gives the fundamental 
definitions of database terms and PDS, Section 3 discusses the motivation of this 
work, Section 4 presents the formal model of PDS that we consider for the algorithm. 
Section 5 elaborates the proposed algorithm and proves the correctness of the 
algorithm. Finally, Section 6 concludes the paper and discusses the future extension 
of the work. 

2   Background 

In this section we first give the fundamental definitions of database terminologies that 
we use through out the paper. Next we briefly discuss most common architecture of 
the PDS. 

2.1   Fundamental Definitions 

We would like to briefly define the transaction and properties of transactions before 
we proceed with the proposed algorithm. From the user’s viewpoint, a transaction is 
the execution of operations that accesses shared data in the database, formally [9]:  
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Definition 1: A transaction Ti is a set of read (ri), write (wi), abort (ai) and commit 
(ci). Ti is a partial order with ordering relation � i where: 

1) Ti ⊆  {ri [x], wi [x] | x is a data item} �  {ai, ci} 
2) ai ∈  Ti iff ci ∉Ti 
3) If t is ai or ci , for any other operation p ∈  Ti, p � i  t  

4) If ri [x], wi [x] ∈  Ti, then either ri [x] � i wi [x] or wi [x] � i  ri [x].  

Definition 2: A complete history (or schedule) H over T (let, T be set of 
transactions, T = {T1, T2, . . . Tn}) is a partial order with ordering relation � H where 
[9]:  

1) H = n
i 1=� Ti;  

2) � H ⊇  n
i 1=�  � i; and 

3) For any two conflicting operations p, q∈H, either p� H q or q� H p.  

Definition 3: A history H is Serializable (SR) if its committed projection, C(H), is 

equivalent to a serial execution Hs [9].  

Definition 4: A database history Hs is serial iff  [9] 
( ∃ p ∈  Ti , ∃ q ∈  Tj such that p Hs�  q) then ( ∀ r ∈  Ti , ∀ s ∈  Tj, r Hs�  s). 

  
A history (H) is serializable iff serialization graph is acyclic [3, 9].  

2.2   Parallel Database Systems 

The enormous amount and complexity of data and knowledge to be processed by the 
systems imposes the need for increased performance from the database system. The 
problems associated with the large volumes of data are mainly due to: 1) Sequential 
data processing and 2) The inevitable input/output bottleneck. 

                                                     
 
 
                                            
                                   .    .    . 
 
 
 
 
                                         .    .    . 

 P 1   P 2   P n  

  M 1   M 2   M n 

        In terconnec tion  N etw ork  

 
Fig. 1. Shared Nothing PDS 
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Parallel database systems have emerged in order to avoid these bottlenecks. 
Different strategies are used for data and memory management in multiprocessor 
environment to meet specific requirements. In shared memory architecture processors 
have direct access to the disks and have a global memory. This architecture is good 
for load balancing. In shared disk architecture processors have direct access to all 
disks but have private memory. Shared-nothing architecture has individual memory 
and disk for each processor, called processing element (PE). The main advantage of 
shared-nothing multi-processors is that they can be scaled up to hundreds and 
probably thousands of processors, for detailed discussion and comparison see [1, 2, 5, 
7, 8]. We assume shared nothing architecture for this study. 

3   Motivating Example 

The following example shows that single scheduler algorithms may not be directly 
migrated to meet the requirements of multi-scheduler environment. We consider two 
PE and four data objects (O1, O2, O3, O4) to demonstrate the motivation of our work. 
The two PE’s are denoted as P1 and P2. Say, the data objects are located as follows: 

P1 = O1, O2 
P2 = O3, O4 

Now, consider two transactions are submitted to the database as shown below. 
T1 = r1(O1) r1(O2) w1(O3) w1(O1) C1 
T2 = r2(O1) r2(O3) w2(O4) w2(O1) C2 

Each transaction is divided into subtransactions according to the location of data 
objects. From T1 and T2 following subtransactions are obtained: 

T11 = r11(O1) r11(O2) w11(O1) C11 
T12 = w12(O3) C12 
T21 = r21(O1) w21(O1) C21 
T22 = r22(O3) w22(O4) C22 

T11 and T12 are read as subtransaction of transaction 1 at PE1 and subtransaction of 
transaction 1 at PE2 respectively. Assume, the following histories are produced by the 
local scheduler at the processing elements: 

H1 = r11(O1) r11(O2) w11(O1)C11 r21(O1) w21(O1) C21  
H2 = r22(O3) w22(O4) C22 w12(O3) C12 

H1 and H2 are history at PE1 and PE2 respectively. Both the local scheduler 
produces serializable history with following serialization order: 

Scheduler 1: schedules transaction 1 �  transaction 2 
Scheduler 2: schedules transaction 2 �  transaction 1 

The two serialization orders are contradictory. Although individual schedulers 
generate serial history the combined effect produces a cycle T1 → T2 → T1. Thus, the 
responsibility of scheduler at each PE is much more than that of a single scheduler. 
Hence, we conclude that the concurrency control strategies applicable to single 
scheduler may not be migrated in its present form to multi-scheduler environment.  

In the literature, we could not find any algorithm that considers multiple schedulers 
for PDS. Weaknesses of single scheduler algorithms motivated us to distribute the 
scheduling responsibilities to the respective PE and consider multiple schedulers. We 
propose a new serializability, Parallel Database Quasi-serializability, criterion to 
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meet requirements of multi-scheduler concurrency control algorithms in the following 
sections. 

4   Model of Parallel Database System 

Shared-nothing parallel database system is considered in this study. For the sake of 
simplicity we consider only two processing elements to demonstrate our algorithm.  

 T 1 T 2 

P E  1  P E  2  

Schedu ler  2  S chedu le r  1  

T 11 
T 22 

T 12 T 21 

D B  

S  P  L  I  T  T  E  R  

P rocessor 

M em ory  D B  

P rocessor 

M em ory  

 

Fig. 2. Conceptual model of multi-scheduler concurrency control 

We assume that local schedulers are capable of producing serializable schedule. 
Different parts of the model is described as follows: 

a) Splitter: Splitter contains the information regarding the data allocated to the 
processing elements and splits the transaction into multiple subtransactions 
depending on data location. In the literature splitter had the responsibility of 
central scheduler. We will refer to scheduler as shown in figure-2. 

b) Processing Elements: PE contains a processor, a memory and a fragment of 
database as discussed in the shared nothing architecture (section 2).  

c) Schedulers at each PE: Schedulers are responsible for generating a 
serializable schedule. The responsibility of each scheduler is much more than 
in a single scheduler environment as discussed in the previous section. 

d) Transactions: Transactions are exactly same as that of single processor 
environment and follow the properties of Definition 1. 

5   Proposed Serializability Theorem and Algorithm  

In this section we first discuss the correctness criterion for the Multi-scheduler 
Concurrency Control algorithm namely Parallel Database Quasi-serializability 
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(PDQ-serializability) subsection 5.2 proposes a PDQ-serializability theorem, 
subsection 5.3 explains the proposed Timestamp based Multi-scheduler Concurrency 
Control algorithm and finally subsection 5.4 proves the correctness of the algorithm. 

5.1   PDQ-Serializability 

Scheduling responsibilities in PDS is distributed to respective PE according to the 
partitioned data. The motivating example shows that although individual schedulers 
produce serial histories the database is not in a consistent state. Some additional 
criterion has to be enforced to ensure multi-scheduler concurrency control in addition 
to subtransaction level granularity. We propose a new serializability criterion that 
separates two types of transactions – transactions having only one subtransaction and 
transactions having more than one subtransaction. The following definition states the 
correctness criterion for PDS. 

Definition 5: A Multi-Scheduler Serial (MS-Serial) history is considered correct in 
parallel database system. A history is MS-Serial iff:   

1. Every PE produces serializable history and 
2. Any transaction having more than one subtransaction i.e. accessing more 

than one PE, executes the transaction according to total order. Total order for 
two transactions Ti and Tj can be defined as – if Ti precedes Tj at any PE then all 

of Ti’s operations precede Tj’s operations in all PE in which they both appear.  

The second condition is similar to quasi-serializability. Hence, we name the 
correctness criterion as Parallel Database Quasi-Serializability. 

Definition 6: A history in multi-scheduler environment is PDQ-serializable iff it is 

equivalent to a MS-Serial history (definition of equivalence ( ≡ ) from [9], page 30).  

5.2   Proposed PDQ-Serializability Theorem 

The PDQ-serializability of the history is determined by analysing Parallel Database 
Quasi-Serializability (PDQ-serializabilty) graphs. Only the committed projection [9] 
of the history C(H) is considered in the definition. The following definition describes 
the PDQ-serializability graph. 

Definition 7: At any given instance, histories of all the schedulers at each PE can 

be represented using a directed graph defined with the ordered three: ( 1T , nT , A). 
The graph would be referred as Multi-scheduler Serializability Graph (MSG).  

1. 1T : set of labelled vertices representing transactions with one 
subtransaction. 

2. nT : set of labelled vertices representing transactions with more than one 
subtransaction. 

3. A is the set of arcs representing the ordering of transaction in each PE.  
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In rest of the paper we would only consider transaction having more than one 
subtransaction and denote that as T. Transactions with single subtransaction are taken 
care by the individual PE and do not pose any threat to the concerned problem. Based 
on the definition of MSG we next formalize the following theorem. 

Theorem 8: A history in multi-scheduler environment is PDQ-Serializable iff 
MSG is acyclic. 

Proof: (if) Let us assume without loss of generality that the committed history 
C(H) consists of  the set {T1, T2, …,Tn}. T1, T2, …,Tn are transactions with more than 
one subtransaction. We assume that all processing elements always schedule 
transactions in serializable order. The n vertices of the MSG ({T1, T2, …,Tn}) are 
acyclic and thus it may be topologically sorted (definition of topologically sorted 
from [9]). Let Ti1, Ti2, …, Tin be a topological sort of the multi-scheduler history for 
permutation of 1, 2, …, n. Let the MS-serial history be Ti1, Ti2, …, Tin. We show that: 
C(H) ≡  MS-serial. Let p∈  Ti and q∈Tj and p and q conflict such that p H�  q. This 
means an arc exists in the MSG from Ti to Tj. Therefore in any topological sort of 
multi-scheduler history Ti precedes Tj. Thus, all operations of Ti precede all operations 
of Tj in any topological sort. Thus C(H) ≡  MS-serial and from Definition-6 the history 
H is PDQ-serializable. 

(only if): Suppose a history H is PDQ-serializable and let Hs be a MS-serial 
history equivalent to H. Consider an arc exists in the MSG, Ti to Tj. This implies there 
exists two conflicting operations p∈  Ti and q∈Tj such that p H�  q at some PEi. This 
condition is valid as both operation conflicts at the same PEi. Since, Hs ≡ H, all 
operations of Ti occur before Tj at that specific PE. Suppose there is a cycle in MSG. 
This implies at any other PEj, Tj � Ti in MS-serial history. But Ti is known to precede 

Tj at PEi, which is contradictory to the earlier assumption.  

5.3   Timestamp Based Multi-scheduler Concurrency Control Algorithm 

In this section we propose a Timestamp based Multi-scheduler Concurrency Control 
(TMCC) algorithm that enforce total order in the schedule to ensure PDQ-
serializability. Total order is required only for those conflicting transactions that 
accesses more than one PE being accessed by other active transactions. 

Following functions are used to demonstrate the algorithm: 
1. Split_trans(Ti): This function takes the transaction submitted to the splitter 

as parameter and returns a set of subtransactions that access different PEs. 
2. PE_accessed(Ti): This function also takes the transaction as parameter and 

returns the set of PEs where the subtransactions for Ti are executed. 
3. Active_trans(PE): This function takes the processing element as parameter 

and returns the set of transactions that have an active subtransaction 
executing at that PE. 

4. Cardinality(): This function can take any set as parameter and returns the 
number of elements in the set. 

5. Append_TS(Subtransaction): This function takes a subtransaction of a 
transaction Ti and appends a timestamp to the subtransaction. All the 
subtransaction of a transaction will have the same timestamp value. 
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Algorithm 1:  TMCC Algorithm (Transaction submission) 
 
begin 

input Ti  : Transaction 
var Active_trans  : set of active transactions 
generate timestamp ts  : unique timestamp in increasing order is generated 
 
Split_trans(Ti) 
PE_accessed(Ti) ←  set of Processing Elements accessed 

(1)    if Cardinality(PE_accessed(Ti)) = 1 then 
             begin 
(2)   Active_Trans(PEk) ←  Active_Trans(PEk) �  Ti 
(3)   submit subtransaction to PE  
             end 

else begin 

(4)      Active_trans ←  � Active_Trans(PEk) 

(5)      Active_trans ← {T |T ∈Active_trans ∧ Cardinality(PE_accessed(T))>1} 
(6)      for each subtransaction of Ti  
(7)        Append_TS(Subtransaction)      
           end for 

(8)      if Cardinality(PE_accessed(Ti)� (� transActiveT _∈
PE_accessed(Tj)) ≤  1)  

              then begin 
(9)    for each PEk ∈  PE_accessed(Ti) 
       begin 
(10)          Active_Trans(PEk) ←  Active_Trans(PEk) �  Ti 
(11)          submit subtransaction to PEk    ::Subtransaction executes immediately. 
       end 
    end for 
 end 
          else 
(12)   for each PEk ∈  PE_accessed(Ti) 
           begin 
(13)         Active_Trans(PEk) ←  Active_Trans(PEk) �  Ti 
(14)  submit subtransaction to PE’s Queue    ::Subtransaction submitted to queue  
           end 
         end for      
       end if 
     end 
   end if 
end 

Working of the algorithm is explained below: 
1. As soon as the transaction arrives at the splitter, split_trans(Ti) splits the 

transaction into multiple subtransactions according to the allocation of data. 



Multi-scheduler Concurrency Control for Parallel Database Systems         651 

 

2. If there is only one subtransaction required by the transaction, the 
transaction can be submitted to the PE immediately without any delay. 
(Line 1).  

3. All the transactions having more than one subtransaction are added to the 
Active_Trans set (Line 4 and Line 5). 

4. Splitter appends a timestamp with every subtransaction for those 
transactions that require multiple subtransactions, before submitting to the 
PE (Line 6). 

5. If there are active transactions that access one or less than one PEs 
accessed by the transaction being scheduled then the subtransactions can be 
scheduled immediately (Line 8).  

6. If there is active transactions that access more than one of the PEs accessed 
by the transaction being scheduled then the subtransactions are submitted 
to the PE’s wait_queue. The subtransactions from the queue are executed 
strictly according to the timestamps (Line 12). 

7. Subtransactions from step-2 can be assumed to have lowest timestamp 
value e.g. 0 and can be scheduled immediately. 

8. When all subtransactions of any transaction complete the execution at all 
the sites, the transaction commits and is removed from Active_trans(PE) 
list. 

Algorithm 2 explains the steps when any subtransaction terminates at any 
particular processing element. 

Algorithm 2:  TMCC Algorithm (Transaction termination) 
 
begin 
   input subtransaction of Ti completes execution 
  Active_Trans(PEk) ←  Active_Trans(PEk) – Ti :: removes transaction from the PE 
  PE_accessed(Ti) ←  PE_accessed(Ti) – PEk    
            :: removes the PE being accessed from the PE_accessed set 
end 

5.4   Correctness of TMCC Algorithm 

The model assumes that each PE is capable of producing serializable schedule 
(Proposition-1). At the same time motivating example demonstrates the necessity of 
additional strictness criterion to guarantee the serialization of parallel database 
systems in multi-scheduler environment.  

Proposition 9: All processing elements always schedule all transactions in 

serializable order.  
To prove the correctness of the proposed algorithm we show that the additional 

criterion enforced by the splitter will guarantee serializable schedule in parallel 
database systems. The splitter does not control the execution of schedules but only 
determines the way subtransactions are submitted to the PE. If any transaction 
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accesses more than one database being accessed by other active transactions, the 
subtransactions cannot be scheduled immediately and thus have to be submitted to 
wait_queue (Proposition-2). Each processing element’s queue schedules the 
subtransactions according to their timestamp. 

Proposition 10: Splitter submits the subtransactions to the wait_queue of PE if 

active transactions access more than one common database.  
This ensures that the conflicting transactions are executed according to the 

timestamp value to ensure the PDQ-serializable execution of the multi-scheduler 
system. The following Lemma proves this. 

Lemma 11: For any two transactions Ti, Tj scheduled by TMCC algorithm, either 
all of Ti’s subtransactions are executed before Tj at every PE or vice versa.  

Proof: There are three cases to be considered. 

Case 1) A transaction Ti requires only single subtransaction (STi): This situation is 
shown in line (1) of the algorithm. The subtransaction is submitted immediately as 
shown in the algorithm flow chart. From Poposition-1 it follows that any other 
subtransaction STj∈Tj either precedes or follows STi. 

Case 2) A transaction Ti splits into multiple subtransactions but accesses only one 
PE accessed by other active transaction: This situation is shown in line (8) of the 
algorithm. Line (8) checks for the above mentioned condition and the subtransaction 
is submitted to the PE immediately with a timestamp. The timestamp will be used for 
case-3. Consider two active transactions that overlap only at one PE. Since they 
overlap at only one PE, Proposition-1 ensures that the transactions would be ordered 
in a serializable way. 

Case 3) A transaction Ti splits into multiple subtransactions and accesses more 
than one PE accessed by other active transaction: This situation is shown in line (12) 
of the algorithm. Under this condition schedulers at PEs may schedule the 
transactions in conflicting mode. To avoid this conflict we submit the transactions in 
the PEs wait_queue instead of scheduling it immediately (Proposition-2). The 
transactions in the wait_queue are executed strictly according to the timestamp order.  

Say, transaction Ti has two subtransactions Ti1 and Ti2 already executing at PE1 and 
PE2. When Tj arrives and it also has Tj1 and Tj2. Then if condition at line (8) fails and 
the subtransactions are submitted to the wait_queue at each PE. Assume that the 
timestamp of Ti, TS(Ti) �  TS(Tj). Timestamp is appended to the subtransactions of Ti 
and Tj during the execution of line (6). Then Ti will precede Tj at both the sites 
because the transactions are scheduled strictly according to the timestamp value, thus 

avoids execution of incorrect schedules.  

Theorem 12: The Timestamp based Multi-scheduler Concurrency Control 
algorithm presented produces PDQ-serializable histories. 

Proof: All PDQ-serializable histories can be shown by acyclicity of multi-
scheduler serializability graph, as demonstrated by Theorem 1. Thus, we will show 
that the proposed TMCC algorithm avoids cycle in the MSG. 

Without loss of generality, consider that there is a sequence of arcs from 
T1 → T2 → … →  Tn. This implies that there exists an operation of subtransaction 
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T1k∈T1 that precedes and conflicts with an operation of Tnk∈  Tn at any particular, say 
PEk. For a cycle, another sequence of arcs must exist from Tn → Tn-1 → … →  T1. 
Two possibilities can exist due to this sequence. (1) An operation of Tnk∈  Tn precedes 
and conflicts with an operation of T1k∈  T1 at the same PEk. This contradicts 
Proposition 1. (2) An operation of some other subtransaction Tnl∈  Tn at another PEl 

precedes and conflicts with an operation of T1l∈  T1. This contradicts Lemma 1.  

6   Conclusion 

Due to the inherent weaknesses of single schedulers (discussed in the paper) multi-
scheduler approach has to be investigated. Our investigation shows that algorithms 
developed for single scheduler cannot guarantee correct schedules in multi-scheduler 
environment. The notion of conflict serializability is insufficient of producing correct 
schedule and a new serializability criterion is required for multi-scheduler approach. 
We discuss the PDQ-serializability and propose an algorithm that guarantees PDQ-
serializable schedules. The proposed algorithm distributes the scheduling 
responsibilities to the PEs, and reduces the overheads of single scheduler strategy.  
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