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Abstract 

 
Data cube queries containing aggregate functions 

often combine multiple tables through join operations. We 
can extend this to “Multi-Join Expansion_Aggregate” 
data cube queries by using more than one aggregate 
functions in “SELECT” statement in conjunction with 
relational operators. In parallel processing for such 
queries, it must be decided which attribute to use as a 
partitioning attribute, in particular, join attribute or 
cube-by. Based on the partitioning attribute, we introduce 
three parallel multi-join expansion_aggregate data cube 
query methods, namely Multi-join Partition Method 
(MPM), Expansion Partition Method (EPM) and Early 
Expansion Partition with Replication Method (EPRM). 
All three methods use the join attribute and cube-by as the 
partitioning attribute. Performance evaluation of the 
three parallel processing methods is also carried out and 
presented here. 

 
1. Introduction 
 

In recent years, heterogeneous decision support 
systems such as On-line Analytical Processing (OLAP) 
and data mining for analysing data in data warehouse 
have become topical issues in research community [1, 4, 
8]. Queries involving aggregates are very common in 
database processing, especially in OLAP, and Data 
Warehouse [6]. These queries are often used as a tool for 
strategic decision making. With the vast amount of data 
growing rapidly in the data repository, efficient queries 
are critical and are set as high priority. We use parallelism 
techniques to achieve performance improvement of 
aggregate data cube queries. We are particularly 
interested in formulating efficient parallel processing 
methods for multi-join expansion_aggregate data cube 
queries especially in powerful PC processor environment. 
In this paper, we presented three parallel processing 
methods for multi-join expansion_aggregate data cube 
queries, Multi-join Partition Method (MPM), Expansion 
Partition Method (EPM) and Early Expansion Partition 
with Replication Method (EPRM). 

 
2. Multi-Join Expansion_Aggregate Data 

Cube Query: A Background 
 

Data cube aggregate queries normally involved a 
number of groups based on designated attributes where 
aggregate functions are carried out in each of the groups. 
Star schemas based on relational databases are often 
applied to data warehousing. ROLAP (Relational OLAP) 
that adapts the data architecture of the relational database 
and employs a star schema can execute high-speed 
retrievals and aggregations [5]. This star schema usually 
consists of a single fact table and a dimension table for 
each dimension as shown in Figure 1. The dimension tables 
Product, Location, Time, and Customer are connected with 
the fact table, Sales, by joining the keys Product_key (P#), 
Location_key (L#), Time_key (T#), and Customer_key 
(C#), respectively. Although this kind of star schema in a 
practical data warehouse application would typically have 
more than 6 tables or even hundreds. Typically, the fact 
table is much larger than any other table, such as the 
dimension table. 

LLooccaattiioonn  
ddiimmeennssiioonn 

Location_key 
City 
Town 

CCuussttoommeerr  
ddiimmeennssiioonn  

Customer_key 
Trade-type 
Business-type 

SSaalleess ffaacctt 

Customer_key 
Location_key 
Time_key 
Product_key 
Amount 
Unit_sales 
U_City TTiimmee  

ddiimmeennssiioonn 
Time_key 
Year 
Month 
Day 

PPrroodduucctt  
ddiimmeennssiioonn  

Product_key 
Product_name 
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Quantity 

 
Figure 1. A simple star schema 

Data cube queries containing aggregate functions often 
consist of multiple tables through join operations. Multi-
join is using more than one SELECT list or joining more 
than one condition. Expansion_aggregate uses more than 
one aggregate function in the SELECT statement and also 
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uses the relational operator (that is, =, <, >, =<, >=, <>). 
We call this kind of query multi-join expansion_aggregate 
data cube queries. 

For simplicity, we use the following query to give an 
illustration of multi-join expansion_aggregate data cube 
queries. This type of query involves more than one join 
and aggregate functions. Query is to “retrieve product 
number by their city location where the sales amount is 
less than or equal to 10,000 and the count of the related 
cities less than or equal to 3”.  
 

SELECT S.P#, S.U_City, 
(SELECT (COUNT (S.U_City) <= 3) 
FROM Sales S), 
(SELECT (SUM (S.amount) <= 10,000) 
FROM SALES S) 

FROM Sales S, Product P, Location L 
WHERE P.P# = S.P# and L.L# = S.L# 
CUBE-BY S.P#, S.U_City 

 
In the above Query, all Sales records are sum up 

based on the P# and L# attributes. After summing up this, 
the result is joined with tables Product and Location. In 
this paper, we focus on the cases where cube-by operation 
is performed before the join operation. Therefore, we will 
use the above Query as a theme example throughout this 
paper. 
 
3. Parallel Multi-join Expansion_aggregate 

Query Processing methods 
 

In this paper, we introduce three parallel processing 
methods for multi-join expansion_aggregate data cube 
queries, namely Multi-join Partition Method (MJM), 
Expansion Partition Method (EPM), Early Expansion 
Partition with Replication Method (EPRM). They are 
discussed in more detail in the following sections. 

3.1 Multi-join Partition Method (MJM) 
 

The Multi-join Partition method is influenced by the 
practice of parallel join algorithms, where raw records are 
first partitioned/distributed and allocated to each 
processor, and then each processor performs its operation 
[6]. This method is motivated by fast message passing 
multi processor systems. 

The Multi-join Partition method comprised of two 
phases: distribution phase and cube-by with multi-join 
phase. Using Query, the three tables to be joined are 
Sales, Product and Location based on attributes P# and 
L#, and the cube-by will be based on table Sales. For 
simplicity of notation, the table which becomes the basis 
for cube-by is called fact table F (e.g. table Sales), and the 
other tables are called D1 and D2 (e.g. tables Product and 

Location). From now on, we will refer them as tables F, D1 
and D2.   

In the distribution phase, raw records from three tables 
(i.e. tables F, D1 and D2) are distributed based on the 
join/cube-by attributes according to two data partitioning 
functions. In the first partitioning function, we allocate 
product numbers of a certain range to each processor. For 
example, product numbers (attribute P#) p1-p100 to 
processor 1, product numbers p101-p200 to processor 2, 
product numbers p201-p300 to processor 3, and so on. We 
need to emphasize that the raw records within the three 
tables F, D1 and D2 are all distributed. As a result, for 
example, processor 1 will have records from the Sales table 
with P# between p1 and p100, inclusive, as well as records 
from the Product table with P# p1-p100. The process is 
repeated for the second partitioning function for records of 
p1-p100, whereby p1-p100 is distributed according to 
location numbers (attribute L#) L1-L25, L26-L50, L51-L75, 
and so on among the processors. This is then applied to 
p101-p200, and so on. This distribution scheme is 
commonly used in parallel join, where raw records are 
partitioned into buckets based on an adopted partitioning 
scheme like the above range partitioning scheme [6]. 

Once the distribution is completed, each processor will 
have records within specific group range identified by the 
cube-by/join attribute. Subsequently, the second phase (the 
cube-by with multi-join phase) calculates the aggregate 
values on each group. Aggregating in each processor can 
be carried out through a sort or a hash function. After table 
F is grouped in each processor, it is joined with tables D1 
and D2 in the same processor. After joining, each processor 
will have a local query result. The final query result is a 
union of all sub-results produced by each processor. 

Figure 2 shows an illustration of the Multi-join 
Partition method. Notice that partitioning is done to the raw 
records of three tables F, D1 and D2, and aggregate 
operation of table F, and then join with tables D1 and D2 in 
each processor is carried out after the distribution phase. 

 

1 2 3 4 

Perform cube-by 
(aggregate function) of 
table F, and then join 
with tables D1 and D2. 

Distribute the three 
tables (F, D1 and D2) on 
the cube-by/join 
attributes. 

Records from where they are originally stored 

 
Figure 2. Multi-join Partition method (MJM) 

 
3.2 Expansion Partition Method (EPM) 
 

Expansion Partition Method performs the cube-by 
operation first before anything else (e.g. distribution). The 
Expansion Partition Method comprised of three phases: (i) 
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local clustering phase, (ii) distribution phase, and (iii) 
final-amass phase. 

In the local clustering phase, each processor performs 
its cube-by operation and calculates its local aggregate 
values on records of table F. In this phase each processor 
groups local records F according to the designated cube-
by attribute and performs the aggregate function. Using 
the same example as that in the previous section, one 
processor may produce, for example, (p1, 2000) and 
(p140, 7000), and another processor (p101, 8000) and 
(p140, 4000). The numerical figures indicate the 
SUM(amount) of each Sales. 

In the second phase (i.e. distribution phase), the 
results of local aggregates from each processor, together 
with records of tables D1 and D2, are distributed to all 
processors according to two partitioning function. The 
two partitioning function are based on the join/cube-by 
attributes, which in this case is attribute P# of tables 
Product and Sales and also attribute L# of tables Location 
and Sales. Again using the same partitioning function in 
the previous section, P# of p1-P100 are to be distributed 
to processor 1, P# of p101-p200 to processor 2, and so on. 

In the third phase (i.e. final-amass phase), two 
operations are carried out - final aggregate or grouping of 
F, and join with D1 and D2. The final clustering can be 
carried out by merging all temporary results obtained in 
each processor. The way it works can be explained as 
follows. After local aggregates are formulated in each 
processor, each processor then distributes each of the 
groups to another processor depending on the adopted 
distribution function. Once the distribution of local results 
based on a particular distribution function is completed, 
global aggregation in each processor is simply done by 
merging all identical product number (P#) into one 
aggregate value. For example, processor 2 will merge 
(p140, 7000) from one processor and (p140, 4000) from 
another to produce (p140, 11000) which is the final 
aggregate value for this product number. 

After global aggregation results are obtained, it then 
joins tables D1 and D2 in each processor. Figure 3 shows 
an illustration of this scheme. There are several note 
worthy points that are of interest. First, records F in each 
processor are aggregated/grouped before distributing 
them. Consequently, communication costs associated with 
table F can be expected to reduce depending on the cube-
by selectivity factor. This method is expected to improve 
the Multi-join Partition Method. Second, we observe that 
if the number of groups is less than the number of 
available processors, not all processors can be exploited; 
reducing the capability of parallelism. And lastly, records 
from tables D1 and D2 in each processor are all distributed 
during the second phase. In other words, there is no 
filtering mechanism applied to D1 and D2 prior to 
distribution. This can be inefficient particularly if D1 and 

D2 are very large. To avoid the problem of distributing D1 
and D2, we will introduce another method in the next 
section. 

1 2 3 4 
Global aggregation 
F and join with D1 
and D2 

1 2 3 4 
Local aggregation 
of table F. 

Distribute local 
aggregation results 
(F), and tables D1 
and D2 based on the 
cube-by/join 
attribute. 

Records from where they are originally stored 

 
Figure 3. Expansion Partition Method (EPM) 

 
3.3 Early Expansion Partition with Replication 
Method (EPRM) 
 

Early Expansion Partition with Replication Method is 
similar to the Expansion Partition method. The similarity is 
due to the cube-by processing to be done before the 
distribution phase. However, the difference is pointed by 
the keyword "Replication" in this method, as opposed to 
"Partition". The Early Expansion Partition with 
Replication Method, which also comprised of three phases, 
works as follows. The first phase that is the local clustering 
phase, is exactly the same as that of the Expansion Partition 
method where local aggregate is performed to table F for 
each processor. The main difference is in phase two. Using 
the "Replication" method, the local aggregate results 
obtained from each processor are replicated to all 
processors. Tables D1 and D2 are not moved at all from 
where they are originally stored. 

The third phase, the final-amass phase, is basically 
similar to that of the " Partition" method, where the local 
aggregates from all processors are merged to obtain global 
aggregate and then joined with D1 and D2. On closer 
inspection, we can find a difference between the two 
Expansion methods. In the "Replication" method, after the 
replication phase, each processor will have local aggregate 
results from all processors. Consequently, processing 
global aggregates in each processor will produce the same 
results, and this can be inefficient as no parallelism is 
employed. However, joining and global aggregation 
processes can be done at the same time. First, hash local 
aggregate results from F to obtain global aggregate values, 
and then hash and probe the fragment of tables D1 and D2 
to produce final query result. The minor snag is that many 
of the global aggregate results will have no match with 
local tables D1 and D2 in each processor. 

Figure 4 gives a graphical illustration of the scheme. It 
looks very similar to Figure 3, except that in the replication 
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phase, the arrows shown are thicker to emphasize the fact 
that local aggregate results from each processor are 
replicated to all processors, not distributed. 

Apart from the facts that the non cube-by tables 
(tables D1 and D2) are not distributed and the local 
aggregate results of table F are replicated, and assuming 
that tables D1 and D2 are uniformly distributed to all 
processors initially (that is round-robin data placement is 
adopted in storing records D1 and D2), there will be no 
skew problem in the joining phase.  

1 2 3 4 Global aggregation 
of F and join with D1 
and D2. 

1 2 3 4 
Local aggregation of 
table F. 

Replicate local 
aggregation results 
(F) to all processors. 

Records from the child operator 

Processors: 

Processors: 

 
Figure 4. Early Expansion Partition with Replication (EPRM) 

 

4. Performance Evaluation 
 

In this paper, we want to study the behaviour of the 
methods described above and to compare their 
performances. In order to do that, a sensitivity analysis 
through a simulation technique is carried out. This 
sensitivity analysis is performed through varying the 
performance parameters. The parameters of the study 
basically comprised of parameters known by the system 
as well as the data, such as parameters related to the 
query, unit time costs, and communication costs as shown 
in Table 1. 
 
4.1 Result of Experiment 
 
It is of interest to find out which method performs best. 
The result is based on the above parameters. Table 2 
shows the three types of methods with their phases that 
we have mentioned before. 

The graphs in Figure 5 show a comparative 
performance between the three parallel methods by 
varying the Cube-By selectivity ratio (i.e. number of 
groups produced by the query). The selectivity ratio 
varies from 0.0000001 to 0.01. With 100 million records 
as input, the selectivity ratio of 0.0000001 produces 10 
groups, whereas the other end of selectivity ratio of 0.01 
produces 1 million groups. The machine in the 
experiment consists of 64 processors. The graphs also 
show the results when variation on parameters was 
applied. 

Description Value 

System and Data Parameters 
Number of processors 64 processors 
MIPS of the processor 450 Mips 
Fact Table size (Sales) 10 GB 
Number of records in table F 100 Million records 
Dimensional Table size (Product) 30 MB 
Number of records in table D1   30 thousand records 
Dimensional Table size (Location) 2.5 KB 
Number of records in table D2 25 records 
Page size 4 KB 
Maximum hash table entries 10,000 entries 

Query Parameters 

Projectivity ratio of the aggregation 0.15 
Selectivity ratio of local aggregate in a 
processor 

0.0000001 to 0.01 

Selectivity ratio of local aggregate in a node 0.0000001 to 0.01 
Selectivity ratio of global aggregate 0.0000001 to 0.01 
Join selectivity ratio 0.00000025 

Time Unit Costs 

Effective time to read a page from disk 3.5 ms 
Time to read a record 300/Mips 
Time to write a record 100/Mips 
Time to compute hash value 400/Mips 
Time to add a record to current aggregate 
value 

300/Mips 

Time to compute destination 10/Mips 
Time to compare a record with a hash table 
entry 

100/Mips 

Communication Unit Costs 
Message protocol cost per page 1000/Mips 
Message latency for one page 1.3 ms 

Table 1. Parameters  

 Multi-join 
Partition Method 

Expansion 
Partition Method 

Early-
expansion 
Partition 
Method 

Phase 
One 

Distribution Local clustering Local clustering 

Phase 
Two 

Cube-by with 
multi-join 

Distribution Replication 

Phase 
Three 

 Final-amass Final-amass 

Table 2. Which method is able to give the best performance? 

Using the Multi-join Partition method, more extensive 
data processing occurs during the first phase. In the first 
phase, the raw records are scanned and then distributed 
equally to each processor based on certain arrangement. 
Therefore the major cost of the method is on the scanning, 
loading and transferring data to every processor, and after 
that each processor is loaded with equal task and grouped 
data. Therefore, in the second phase, the total cost is minor 
unless the maximum capacity of each processor is 
exceeded. As the consequence, although the process of data 
transfer, aggregation and join and other processes occur 
after that, these have minimal effect on the total cost. This 
conforms to the graph which shows the total performance 
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is hardly affected. Factors like faster processors (4 times), 
faster communications network (4 times) and bigger 
memory (10 times) have more influences on the second 
phase of the method (see Figure 6). 

 
Figure 5. Comparative Performance 

In the Expansion Partition Method, data scanning and 
loading are still the major cost factors. Besides that, the 
second major data cost is data transfer and reading/writing 
of overflow of bucket process. This is due to the process 
of early clustering occurrence. In general, applying faster 
processors, network and bigger memory in this method 
does not have much impact on the overall performance. 
This is almost similar to the Multi-join Partition Method. 
However the performance remained steady as the number 
of groups increases to 1000, and then the performance 
starts to decline. This conforms to the logic, that when 
number of groups produced increases, the data volume of 
data of the second and third phase also increases (also see 
Figure 6). 

The result obtained using the Early Expansion 
Partition with Replication Method is different compared 

to the two previous methods. In this method, the major 
costs exist in all three phases of the method. The major 
costs are the data scanning and loading, data transfer and 
aggregate and join processes. During the first phase, the 
data scanning and loading is the major cost. This is so as 
the result of the early clustering process. Then during the 
second phase, the data transfer contributes to the decrease 
of performance, as all data are sent to all processor for 
replication. Finally during the third phase, pooling all data 
to all processors also contributes to the decrease of the 
performance, especially when number of groups continues 
to grow. 

 
4.2 Discussions 
 

Expansion Partition method shows the best 
performance if the number of groups produced tends to be 
large, especially above 1000 groups. It is quite interesting 
to note that in both the Multi-join Partition and Expansion 
Partition methods, the time (in seconds) taken to process 
the result remain fairly constant within the range of 10 to 
1000 number of groups. However, this applies only within 
the graphs in Figure 6 for faster CPU, faster network and 
faster disk but not for the graph for bigger main-memory.   

As the variation is being applied, for example the 
variation for faster disk, the overall performance of all the 
methods improves significantly. This applies where the 
number of groups ranges from 0 to 1000. However, when 
the number of groups is greater than 1000, there is a 
significant decline of performance in the Early Expansion 
Partition with Replication method as compared to the other 
two methods. This also applies for factors such as faster 
CPU, faster network and bigger memory.  
 

 

 

Figure 6. Varying By Selectivity Ratio 
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5. Related Work 
 

There is a vast pool of literature applying parallel 
processing techniques to relational data base systems (e.g. 
[6]). From this literature has emerged the notion that 
highly-parallel, shared-nothing architectures can yield 
much better performance than equivalent closely-coupled 
systems [6]. Various methods have been developed over 
the years to distribute data across sites. With the 
popularity of decision support systems such as data 
warehouse, OLAP etc, there is a critical demand of 
efficient query processing and for quick response time. 
Datta, Moon & Thomas [5] offered a shared-nothing 
approach to parallelise an OLAP database system and its 
focus is primarily on data structures enabling proper 
fragmentation and allocation of data.  

Others work on materialized views provide the need 
for an efficient, mostly read-only access to aggregates in a 
multidimensional context [1, 7]. Lo, Hua & Young [9] 
presented a multidimensional data partitioning technique 
using multiple attributes for partitioning. Shukla, 
Deshpande & Naughton [14] also presented the aggregate 
selection for multi-cube data models, which compute 
aggregates over multiple cubes.  

There has been extensive work on different multi-join 
methods (e.g. [10]). Recent work are attracted to process 
certain kinds of star queries [13, 15], top N queries [3], 
TID hash joins [11], special index structures such as 
bitmap indices [12] or functional joins [2]. In this paper, 
we are particularly interested in formulating efficient 
parallel processing methods for multi-join 
expansion_aggregate data cube queries. 
 
6. Conclusion and Future work 
 

In this paper, we have presented three parallel 
processing methods for multi-join expansion_aggregate 
data cube queries, Multi-join Partition Method (MPM), 
Expansion Partition Method (EPM) and Early Expansion 
Partition with Replication Method (EPRM). These 
methods differ in ways in which the query tables are 
distributed. 

From our study it is concluded that the Expansion 
Partition Method is preferred to the two methods. Our 
performance evaluation results show that the variation in 
faster disk has the potential to produce the most efficient 
performance in all the situations investigated. In addition, 
increasing the number of processors, increasing the 
speeding of the CPU and adding bigger memory are some 
of the other techniques suggested that can be applied as 
the number of groups grow.  

Our future work in this field includes further 
refinement of the methods, implementation and testing of 
the methods for OLAP operations. As this type of 

applications normally involves vast amount of data, 
parallelism technique is important and necessary in order to 
keep the performance level acceptable.   
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