
Parallel Processing of Multi-join Expansion_aggregate
Data Cube Query in High Performance Database Systems

David Taniar

School of Business Systems
Monash University, Clayton Campus

Victoria 3800, AUSTRALIA
Email: David.Taniar@infotech.monash.edu.au

Rebecca Boon-Noi Tan

Gippsland School of Computing and IT
Monash University, Gippsland Campus

Victoria 3842, AUSTRALIA
Email: Rebecca.Tan@infotech.monash.edu.au

Abstract

Data cube queries containing aggregate functions

often combine multiple tables through join operations. We
can extend this to “Multi-Join Expansion_Aggregate”
data cube queries by using more than one aggregate
functions in “SELECT” statement in conjunction with
relational operators. In parallel processing for such
queries, it must be decided which attribute to use as a
partitioning attribute, in particular, join attribute or
cube-by. Based on the partitioning attribute, we introduce
three parallel multi-join expansion_aggregate data cube
query methods, namely Multi-join Partition Method
(MPM), Expansion Partition Method (EPM) and Early
Expansion Partition with Replication Method (EPRM).
All three methods use the join attribute and cube-by as the
partitioning attribute. Performance evaluation of the
three parallel processing methods is also carried out and
presented here.

1. Introduction

In recent years, heterogeneous decision support
systems such as On-line Analytical Processing (OLAP)
and data mining for analysing data in data warehouse
have become topical issues in research community [1, 4,
8]. Queries involving aggregates are very common in
database processing, especially in OLAP, and Data
Warehouse [6]. These queries are often used as a tool for
strategic decision making. With the vast amount of data
growing rapidly in the data repository, efficient queries
are critical and are set as high priority. We use parallelism
techniques to achieve performance improvement of
aggregate data cube queries. We are particularly
interested in formulating efficient parallel processing
methods for multi-join expansion_aggregate data cube
queries especially in powerful PC processor environment.
In this paper, we presented three parallel processing
methods for multi-join expansion_aggregate data cube
queries, Multi-join Partition Method (MPM), Expansion
Partition Method (EPM) and Early Expansion Partition
with Replication Method (EPRM).

2. Multi-Join Expansion_Aggregate Data

Cube Query: A Background

Data cube aggregate queries normally involved a
number of groups based on designated attributes where
aggregate functions are carried out in each of the groups.
Star schemas based on relational databases are often
applied to data warehousing. ROLAP (Relational OLAP)
that adapts the data architecture of the relational database
and employs a star schema can execute high-speed
retrievals and aggregations [5]. This star schema usually
consists of a single fact table and a dimension table for
each dimension as shown in Figure 1. The dimension tables
Product, Location, Time, and Customer are connected with
the fact table, Sales, by joining the keys Product_key (P#),
Location_key (L#), Time_key (T#), and Customer_key
(C#), respectively. Although this kind of star schema in a
practical data warehouse application would typically have
more than 6 tables or even hundreds. Typically, the fact
table is much larger than any other table, such as the
dimension table.

LLooccaattiioonn
ddiimmeennssiioonn

Location_key
City
Town

CCuussttoommeerr
ddiimmeennssiioonn

Customer_key
Trade-type
Business-type

SSaalleess ffaacctt

Customer_key
Location_key
Time_key
Product_key
Amount
Unit_sales
U_City TTiimmee

ddiimmeennssiioonn
Time_key
Year
Month
Day

PPrroodduucctt
ddiimmeennssiioonn

Product_key
Product_name
Category
Quantity

Figure 1. A simple star schema

Data cube queries containing aggregate functions often
consist of multiple tables through join operations. Multi-
join is using more than one SELECT list or joining more
than one condition. Expansion_aggregate uses more than
one aggregate function in the SELECT statement and also

Proceedings of the International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN�02)
1087-4089/02 $17.00 © 2002 IEEE

uses the relational operator (that is, =, <, >, =<, >=, <>).
We call this kind of query multi-join expansion_aggregate
data cube queries.

For simplicity, we use the following query to give an
illustration of multi-join expansion_aggregate data cube
queries. This type of query involves more than one join
and aggregate functions. Query is to “retrieve product
number by their city location where the sales amount is
less than or equal to 10,000 and the count of the related
cities less than or equal to 3”.

SELECT S.P#, S.U_City,
(SELECT (COUNT (S.U_City) <= 3)
FROM Sales S),
(SELECT (SUM (S.amount) <= 10,000)
FROM SALES S)

FROM Sales S, Product P, Location L
WHERE P.P# = S.P# and L.L# = S.L#
CUBE-BY S.P#, S.U_City

In the above Query, all Sales records are sum up

based on the P# and L# attributes. After summing up this,
the result is joined with tables Product and Location. In
this paper, we focus on the cases where cube-by operation
is performed before the join operation. Therefore, we will
use the above Query as a theme example throughout this
paper.

3. Parallel Multi-join Expansion_aggregate

Query Processing methods

In this paper, we introduce three parallel processing
methods for multi-join expansion_aggregate data cube
queries, namely Multi-join Partition Method (MJM),
Expansion Partition Method (EPM), Early Expansion
Partition with Replication Method (EPRM). They are
discussed in more detail in the following sections.

3.1 Multi-join Partition Method (MJM)

The Multi-join Partition method is influenced by the
practice of parallel join algorithms, where raw records are
first partitioned/distributed and allocated to each
processor, and then each processor performs its operation
[6]. This method is motivated by fast message passing
multi processor systems.

The Multi-join Partition method comprised of two
phases: distribution phase and cube-by with multi-join
phase. Using Query, the three tables to be joined are
Sales, Product and Location based on attributes P# and
L#, and the cube-by will be based on table Sales. For
simplicity of notation, the table which becomes the basis
for cube-by is called fact table F (e.g. table Sales), and the
other tables are called D1 and D2 (e.g. tables Product and

Location). From now on, we will refer them as tables F, D1
and D2.

In the distribution phase, raw records from three tables
(i.e. tables F, D1 and D2) are distributed based on the
join/cube-by attributes according to two data partitioning
functions. In the first partitioning function, we allocate
product numbers of a certain range to each processor. For
example, product numbers (attribute P#) p1-p100 to
processor 1, product numbers p101-p200 to processor 2,
product numbers p201-p300 to processor 3, and so on. We
need to emphasize that the raw records within the three
tables F, D1 and D2 are all distributed. As a result, for
example, processor 1 will have records from the Sales table
with P# between p1 and p100, inclusive, as well as records
from the Product table with P# p1-p100. The process is
repeated for the second partitioning function for records of
p1-p100, whereby p1-p100 is distributed according to
location numbers (attribute L#) L1-L25, L26-L50, L51-L75,
and so on among the processors. This is then applied to
p101-p200, and so on. This distribution scheme is
commonly used in parallel join, where raw records are
partitioned into buckets based on an adopted partitioning
scheme like the above range partitioning scheme [6].

Once the distribution is completed, each processor will
have records within specific group range identified by the
cube-by/join attribute. Subsequently, the second phase (the
cube-by with multi-join phase) calculates the aggregate
values on each group. Aggregating in each processor can
be carried out through a sort or a hash function. After table
F is grouped in each processor, it is joined with tables D1
and D2 in the same processor. After joining, each processor
will have a local query result. The final query result is a
union of all sub-results produced by each processor.

Figure 2 shows an illustration of the Multi-join
Partition method. Notice that partitioning is done to the raw
records of three tables F, D1 and D2, and aggregate
operation of table F, and then join with tables D1 and D2 in
each processor is carried out after the distribution phase.

1 2 3 4

Perform cube-by
(aggregate function) of
table F, and then join
with tables D1 and D2.

Distribute the three
tables (F, D1 and D2) on
the cube-by/join
attributes.

Records from where they are originally stored

Figure 2. Multi-join Partition method (MJM)

3.2 Expansion Partition Method (EPM)

Expansion Partition Method performs the cube-by
operation first before anything else (e.g. distribution). The
Expansion Partition Method comprised of three phases: (i)

Proceedings of the International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN�02)
1087-4089/02 $17.00 © 2002 IEEE

local clustering phase, (ii) distribution phase, and (iii)
final-amass phase.

In the local clustering phase, each processor performs
its cube-by operation and calculates its local aggregate
values on records of table F. In this phase each processor
groups local records F according to the designated cube-
by attribute and performs the aggregate function. Using
the same example as that in the previous section, one
processor may produce, for example, (p1, 2000) and
(p140, 7000), and another processor (p101, 8000) and
(p140, 4000). The numerical figures indicate the
SUM(amount) of each Sales.

In the second phase (i.e. distribution phase), the
results of local aggregates from each processor, together
with records of tables D1 and D2, are distributed to all
processors according to two partitioning function. The
two partitioning function are based on the join/cube-by
attributes, which in this case is attribute P# of tables
Product and Sales and also attribute L# of tables Location
and Sales. Again using the same partitioning function in
the previous section, P# of p1-P100 are to be distributed
to processor 1, P# of p101-p200 to processor 2, and so on.

In the third phase (i.e. final-amass phase), two
operations are carried out - final aggregate or grouping of
F, and join with D1 and D2. The final clustering can be
carried out by merging all temporary results obtained in
each processor. The way it works can be explained as
follows. After local aggregates are formulated in each
processor, each processor then distributes each of the
groups to another processor depending on the adopted
distribution function. Once the distribution of local results
based on a particular distribution function is completed,
global aggregation in each processor is simply done by
merging all identical product number (P#) into one
aggregate value. For example, processor 2 will merge
(p140, 7000) from one processor and (p140, 4000) from
another to produce (p140, 11000) which is the final
aggregate value for this product number.

After global aggregation results are obtained, it then
joins tables D1 and D2 in each processor. Figure 3 shows
an illustration of this scheme. There are several note
worthy points that are of interest. First, records F in each
processor are aggregated/grouped before distributing
them. Consequently, communication costs associated with
table F can be expected to reduce depending on the cube-
by selectivity factor. This method is expected to improve
the Multi-join Partition Method. Second, we observe that
if the number of groups is less than the number of
available processors, not all processors can be exploited;
reducing the capability of parallelism. And lastly, records
from tables D1 and D2 in each processor are all distributed
during the second phase. In other words, there is no
filtering mechanism applied to D1 and D2 prior to
distribution. This can be inefficient particularly if D1 and

D2 are very large. To avoid the problem of distributing D1
and D2, we will introduce another method in the next
section.

1 2 3 4
Global aggregation
F and join with D1
and D2

1 2 3 4
Local aggregation
of table F.

Distribute local
aggregation results
(F), and tables D1
and D2 based on the
cube-by/join
attribute.

Records from where they are originally stored

Figure 3. Expansion Partition Method (EPM)

3.3 Early Expansion Partition with Replication
Method (EPRM)

Early Expansion Partition with Replication Method is
similar to the Expansion Partition method. The similarity is
due to the cube-by processing to be done before the
distribution phase. However, the difference is pointed by
the keyword "Replication" in this method, as opposed to
"Partition". The Early Expansion Partition with
Replication Method, which also comprised of three phases,
works as follows. The first phase that is the local clustering
phase, is exactly the same as that of the Expansion Partition
method where local aggregate is performed to table F for
each processor. The main difference is in phase two. Using
the "Replication" method, the local aggregate results
obtained from each processor are replicated to all
processors. Tables D1 and D2 are not moved at all from
where they are originally stored.

The third phase, the final-amass phase, is basically
similar to that of the " Partition" method, where the local
aggregates from all processors are merged to obtain global
aggregate and then joined with D1 and D2. On closer
inspection, we can find a difference between the two
Expansion methods. In the "Replication" method, after the
replication phase, each processor will have local aggregate
results from all processors. Consequently, processing
global aggregates in each processor will produce the same
results, and this can be inefficient as no parallelism is
employed. However, joining and global aggregation
processes can be done at the same time. First, hash local
aggregate results from F to obtain global aggregate values,
and then hash and probe the fragment of tables D1 and D2
to produce final query result. The minor snag is that many
of the global aggregate results will have no match with
local tables D1 and D2 in each processor.

Figure 4 gives a graphical illustration of the scheme. It
looks very similar to Figure 3, except that in the replication

Proceedings of the International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN�02)
1087-4089/02 $17.00 © 2002 IEEE

phase, the arrows shown are thicker to emphasize the fact
that local aggregate results from each processor are
replicated to all processors, not distributed.

Apart from the facts that the non cube-by tables
(tables D1 and D2) are not distributed and the local
aggregate results of table F are replicated, and assuming
that tables D1 and D2 are uniformly distributed to all
processors initially (that is round-robin data placement is
adopted in storing records D1 and D2), there will be no
skew problem in the joining phase.

1 2 3 4 Global aggregation
of F and join with D1
and D2.

1 2 3 4
Local aggregation of
table F.

Replicate local
aggregation results
(F) to all processors.

Records from the child operator

Processors:

Processors:

Figure 4. Early Expansion Partition with Replication (EPRM)

4. Performance Evaluation

In this paper, we want to study the behaviour of the
methods described above and to compare their
performances. In order to do that, a sensitivity analysis
through a simulation technique is carried out. This
sensitivity analysis is performed through varying the
performance parameters. The parameters of the study
basically comprised of parameters known by the system
as well as the data, such as parameters related to the
query, unit time costs, and communication costs as shown
in Table 1.

4.1 Result of Experiment

It is of interest to find out which method performs best.
The result is based on the above parameters. Table 2
shows the three types of methods with their phases that
we have mentioned before.

The graphs in Figure 5 show a comparative
performance between the three parallel methods by
varying the Cube-By selectivity ratio (i.e. number of
groups produced by the query). The selectivity ratio
varies from 0.0000001 to 0.01. With 100 million records
as input, the selectivity ratio of 0.0000001 produces 10
groups, whereas the other end of selectivity ratio of 0.01
produces 1 million groups. The machine in the
experiment consists of 64 processors. The graphs also
show the results when variation on parameters was
applied.

Description Value

System and Data Parameters
Number of processors 64 processors
MIPS of the processor 450 Mips
Fact Table size (Sales) 10 GB
Number of records in table F 100 Million records
Dimensional Table size (Product) 30 MB
Number of records in table D1 30 thousand records
Dimensional Table size (Location) 2.5 KB
Number of records in table D2 25 records
Page size 4 KB
Maximum hash table entries 10,000 entries

Query Parameters

Projectivity ratio of the aggregation 0.15
Selectivity ratio of local aggregate in a
processor

0.0000001 to 0.01

Selectivity ratio of local aggregate in a node 0.0000001 to 0.01
Selectivity ratio of global aggregate 0.0000001 to 0.01
Join selectivity ratio 0.00000025

Time Unit Costs

Effective time to read a page from disk 3.5 ms
Time to read a record 300/Mips
Time to write a record 100/Mips
Time to compute hash value 400/Mips
Time to add a record to current aggregate
value

300/Mips

Time to compute destination 10/Mips
Time to compare a record with a hash table
entry

100/Mips

Communication Unit Costs
Message protocol cost per page 1000/Mips
Message latency for one page 1.3 ms

Table 1. Parameters

 Multi-join
Partition Method

Expansion
Partition Method

Early-
expansion
Partition
Method

Phase
One

Distribution Local clustering Local clustering

Phase
Two

Cube-by with
multi-join

Distribution Replication

Phase
Three

 Final-amass Final-amass

Table 2. Which method is able to give the best performance?

Using the Multi-join Partition method, more extensive
data processing occurs during the first phase. In the first
phase, the raw records are scanned and then distributed
equally to each processor based on certain arrangement.
Therefore the major cost of the method is on the scanning,
loading and transferring data to every processor, and after
that each processor is loaded with equal task and grouped
data. Therefore, in the second phase, the total cost is minor
unless the maximum capacity of each processor is
exceeded. As the consequence, although the process of data
transfer, aggregation and join and other processes occur
after that, these have minimal effect on the total cost. This
conforms to the graph which shows the total performance

Proceedings of the International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN�02)
1087-4089/02 $17.00 © 2002 IEEE

is hardly affected. Factors like faster processors (4 times),
faster communications network (4 times) and bigger
memory (10 times) have more influences on the second
phase of the method (see Figure 6).

Figure 5. Comparative Performance

In the Expansion Partition Method, data scanning and
loading are still the major cost factors. Besides that, the
second major data cost is data transfer and reading/writing
of overflow of bucket process. This is due to the process
of early clustering occurrence. In general, applying faster
processors, network and bigger memory in this method
does not have much impact on the overall performance.
This is almost similar to the Multi-join Partition Method.
However the performance remained steady as the number
of groups increases to 1000, and then the performance
starts to decline. This conforms to the logic, that when
number of groups produced increases, the data volume of
data of the second and third phase also increases (also see
Figure 6).

The result obtained using the Early Expansion
Partition with Replication Method is different compared

to the two previous methods. In this method, the major
costs exist in all three phases of the method. The major
costs are the data scanning and loading, data transfer and
aggregate and join processes. During the first phase, the
data scanning and loading is the major cost. This is so as
the result of the early clustering process. Then during the
second phase, the data transfer contributes to the decrease
of performance, as all data are sent to all processor for
replication. Finally during the third phase, pooling all data
to all processors also contributes to the decrease of the
performance, especially when number of groups continues
to grow.

4.2 Discussions

Expansion Partition method shows the best
performance if the number of groups produced tends to be
large, especially above 1000 groups. It is quite interesting
to note that in both the Multi-join Partition and Expansion
Partition methods, the time (in seconds) taken to process
the result remain fairly constant within the range of 10 to
1000 number of groups. However, this applies only within
the graphs in Figure 6 for faster CPU, faster network and
faster disk but not for the graph for bigger main-memory.

As the variation is being applied, for example the
variation for faster disk, the overall performance of all the
methods improves significantly. This applies where the
number of groups ranges from 0 to 1000. However, when
the number of groups is greater than 1000, there is a
significant decline of performance in the Early Expansion
Partition with Replication method as compared to the other
two methods. This also applies for factors such as faster
CPU, faster network and bigger memory.

Figure 6. Varying By Selectivity Ratio

Proceedings of the International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN�02)
1087-4089/02 $17.00 © 2002 IEEE

5. Related Work

There is a vast pool of literature applying parallel
processing techniques to relational data base systems (e.g.
[6]). From this literature has emerged the notion that
highly-parallel, shared-nothing architectures can yield
much better performance than equivalent closely-coupled
systems [6]. Various methods have been developed over
the years to distribute data across sites. With the
popularity of decision support systems such as data
warehouse, OLAP etc, there is a critical demand of
efficient query processing and for quick response time.
Datta, Moon & Thomas [5] offered a shared-nothing
approach to parallelise an OLAP database system and its
focus is primarily on data structures enabling proper
fragmentation and allocation of data.

Others work on materialized views provide the need
for an efficient, mostly read-only access to aggregates in a
multidimensional context [1, 7]. Lo, Hua & Young [9]
presented a multidimensional data partitioning technique
using multiple attributes for partitioning. Shukla,
Deshpande & Naughton [14] also presented the aggregate
selection for multi-cube data models, which compute
aggregates over multiple cubes.

There has been extensive work on different multi-join
methods (e.g. [10]). Recent work are attracted to process
certain kinds of star queries [13, 15], top N queries [3],
TID hash joins [11], special index structures such as
bitmap indices [12] or functional joins [2]. In this paper,
we are particularly interested in formulating efficient
parallel processing methods for multi-join
expansion_aggregate data cube queries.

6. Conclusion and Future work

In this paper, we have presented three parallel
processing methods for multi-join expansion_aggregate
data cube queries, Multi-join Partition Method (MPM),
Expansion Partition Method (EPM) and Early Expansion
Partition with Replication Method (EPRM). These
methods differ in ways in which the query tables are
distributed.

From our study it is concluded that the Expansion
Partition Method is preferred to the two methods. Our
performance evaluation results show that the variation in
faster disk has the potential to produce the most efficient
performance in all the situations investigated. In addition,
increasing the number of processors, increasing the
speeding of the CPU and adding bigger memory are some
of the other techniques suggested that can be applied as
the number of groups grow.

Our future work in this field includes further
refinement of the methods, implementation and testing of
the methods for OLAP operations. As this type of

applications normally involves vast amount of data,
parallelism technique is important and necessary in order to
keep the performance level acceptable.

References

[1] Albrecht et al, “Management of multidimensional

Aggregates for efficient Online Analytical Processing”,
Proceedings of International Database Engineering and
Applications Symposium (IDEAS), Montreal, 1999.

[2] Braumandl R., Claussen J. and Kemper A., “Evaluating
functional joins along nested references sets in object-
relational and object-oriented databases”, Proceedings of
the International Conference on Very Large Data Bases
(VLDB), pp. 110-121, New York, USA, August 1998.

[3] Carey M. and Kossmann D., “Reducing the braking
distance of an SQL query engine”, Proc. of the Intl Conf. on
Very Large Data Bases (VLDB), pp. 158-169, 1998.

[4] Chan C.Y. and Ioannidis Y.E., “Hierarchical Cubes for
Range_Sum Queries”, Proc. of Intl. Conf. on Very Large
Data Bases (VLDB), Edinburgh, pp. 675-686, 1999.

[5] Datta A. and Moon B., “A case for parallelism in data
warehousing and OLAP”, Proceedings of 9th International
Workshop on Database Systems Applications, 1998

[6] DeWitt, D.J. and Gray, J., “Parallel Database Ssytems: The
Future of High Performance Database Systems”,
Communication of the ACM, 35(6), pp. 85-98, 1992.

[7] Harinarayan V., Rajaraman A. and Ullman. J.,
“Implementing Data Cubes Efficiently”, Proceedings of
ACM SIGMOD International Conference on Management
of Data, Montreal, Canada, pp. 205-216, June 1996.

[8] Lee S.Y, Ling T.W. and Li H.G., “Hierarchical Compact
Cube for Range_Max Queries”, Proc. of Intl. Conf. on Very
Large Data Bases (VLDB), Cario, pp. 232-241, 2000.

[9] Lo Y., Hua K., Young H., “A General Multidimensional
Data Allocation Method for Multicomputer Database
Systems”, Proc. of 8th Intl. Conf. on Database and Expert
Systems Applications (DEXA), Toulouse, France, 1997.

[10] Lu, H., Shan M. C. and Tan K. L., “Optimization of Multi-
Way join Queries for Parallel Execution”, In Proceedings of
the International Conference on Very Large Data Bases
(VLDB), pp. 549-560, Barcelona, Spain, August 1990.

[11] Marek R.and Rahm E., “TID hash joins”, Proceedings of
International Conference on Information and Knowledge
Management (CIKM), pp. 42-49, Maryland, USA, 1994

[12] O’Neil P. and Graefe G., “Multi-Table Joins Through Bit-
mapped Join Indices”, Proceedings of ACM SIGMOD,
Record 24 (3), 1995.

[13] Shiefer et al, “IBM’s DB2 Universal Database
demonstration”, Proc. of the Intl. Conference on Very Large
Data Base (VLDB), New York, USA, pp. 703, 1998

[14] Shukla A., Deshpande P. and Naughton J., “Materialized
View Selection for Multi-cube Data Models”, Proc. of the
Intl. Conference on Extending Database Technology
(EDBT), LNCS, Springer-Verlag, pp. 269 – 284, 2000

[15] Stohr T., Martens H. and Rahm E., “Multi-Dimensional
Database Allocation for Parallel Data Warehouses”, Proc.
of the 26th International Conference on Very Large Data
Base (VLDB), Cario, Egypt, pp. 273-284, 2000

Proceedings of the International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN�02)
1087-4089/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

