
Parallel Selection Query Processing Involving Index in Parallel Database Systems

J. Wenny Rahayu

Department of Computer Science & Comp. Eng.
La Trobe University

Bundoora, Victoria 3083, AUSTRALIA
Email: wenny@cs.latrobe.edu.au

David Taniar

School of Business Systems,
Monash University,Clayton Campus

Victoria 3800, AUSTRALIA
Email: David.Taniar@infotech.monash.edu.au

Abstract

Index is an important element in databases, and the

existence of index is unavoidable. When an index has
been built on a particular attribute, database operations
(e.g. selection, join) on this attribute will become more
efficient by utilizing the index. In this paper we focus on
parallel algorithms for selection queries involving index –
that is data searching on indexed attributes. In this paper,
we propose two categories of parallel selection queries
using index: parallel exact match and range selections;
depending on the type of selection conditions. As parallel
algorithms for these selection queries are very much
influenced by indexing schemes, we will also describe
various index partitioning methods for parallel databases,
and discusses their efficiency in supporting parallel
selection query processing.

1. Introduction

Most of the work on parallel database processing has
been focused on parallel join processing and optimization
[5, 10, 11]. This is very much motivated due to the fact
that join processing is considered as one of the most
expensive operations in database processing [6], and
parallelism of join is critically needed.

In contrast, parallelism of selection operation is often
neglected and overlooked, despite the fact that selection
operation is one of the most common operations not only
in relational databases, but also in other type of databases,
such as image databases, text databases, etc. Data
retrieval in these databases is basically a selection
process. In other term, selection operation is also known
as searching operation [4]. It is the aim of this paper to
focus on parallel selection processing for high
performance database systems, especially selection
operations on indexed attributes.

Index, together with table, is an important element in
database systems, particularly because index provides an
efficient data structure for database processing (e.g.
search, join operations). Therefore, when an index exists
on a particular attribute, database processing will be more

efficient by utilizing this index. Queries not taking indexes
into account are certainly more general, however, in many
situations, it is quite common to expect that the searched
attributes are indexed. This is especially true in the case
where a selection operation is based on a primary key (PK)
or secondary key (SK) on a table. Primary keys are
normally indexed to prevent duplicate values exist in that
table, whereas secondary keys are indexed to speed up the
searching process [7].

The work presented in this paper is actually part of a
larger research project on Parallel Indexing in Parallel
Database Systems. This project consists of three stages: (i)
taxonomy of parallel indexing schemes, (ii) parallel join
query algorithms using index, and (iii) parallel selection
query algorithms using index. The research results from the
first two stages have been reported in the Distributed and
Parallel Databases – an International Journal [8], and
Parallel and Distributed Computing Applications and
Technology PDCAT’2000 conference [9], respectively. In
this paper, we focus on the third and final stage of the
project.

2. Background

2.1 Parallel Indexing Schemes

Our previous work [8] has presented various indexing

schemes for parallel database architectures. Three parallel
indexing schemes were considered, namely:

(i) Non-Replicated Index (NRI),
(ii) Partially-Replicated Index (PRI), and
(iii) Fully-Replicated Index (FRI).
There were three variations for NRI and PRI,

depending on two factors, namely index partitioning
attributes and table partitioning attributes. The first
variation is where the index partitioning attribute is the
same as the table partitioning attribute. The second
variation is where no index partitioning attribute is used.
And the third variation is where the index partitioning
attribute is different from that of the table. For the FRI
scheme, only two variations are available, that is the first
and the third variations of the above.

Proceedings of the International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN�02)
1087-4089/02 $17.00 © 2002 IEEE

2.1.1 Non-Replicated Indexing (NRI) Schemes

A Non-Replicated Indexing (NRI) scheme, as the

name suggests, is where the global index is partitioned
into several disjoint and smaller indices. Each of these
small indices is placed in a separate processing element.

The first model of NRI, abbreviated as NRI-1, is
where the index partitioning attribute is the same as the
table partitioning attribute. In our example, Assume the
table has been partitioned based on the ID field, based on
the following range partitioning: processor 1 = IDs 1 to
30, processor 2 = IDs 31 and 60, and processor 3 = IDs 60
and 100.

Using NRI-1, after the table is partitioned according
to this range partitioning strategy, each processing
element then builds its local index on the ID field. Figure
1 shows the composition of each processing element with
its local index. We use a B+ tree structure for the index
[1, 2]. The index tree has a maximum number of node
pointers from any non-leaf node of 4, and a maximum
number of data pointers from any leaf node of 3.

o 8 o 10 o 15

o 23 o 24 o 28

o 49 o 50 o 56

o 16 o 18

o 33 o 37

o 20 o 21

 46

 15 18

 37 39

 21

 48 56

o 38 o 39

o 43 o 46

o 47 o 48 o 59 o 60

o 74 o 75 o 78 o 92 o 65 o 69 o 71

 71 75

Processor 1 (1-30):

Processor 2 (31-60):

Processor 3 (61-100):

Figure 1. NRI-1 scheme

The second model of NRI, abbreviated as NRI-2, is

where local indices are built on whatever data already in
each processing element. The table partitioning attribute
can be unknown, or a different attribute is used in table
partitioning, or even a non-range partitioning applied to
the indexed attribute. For example, the table is partitioned
based on attribute Name, and a certain partitioning
function is used on this attribute. Once the table is
partitioned using these rules, local indices based on the ID
field are then built. NRI-2 scheme assumes that each

processor is like an independent single processor, and an
index is built on the local data without considering the
global picture of a multi-processor environment.

The last model for NRI (abbreviated as NRI-3) is
where there is an attribute used in the index partitioning,
but it is different from that of the table partitioning. For
example, the index is partitioned based on the ID field,
whereas the table is partitioned according to the Name
field. Because of the difference in attribute partitioning, it
becomes impossible to locate all of the records at the same
place as its indices. In case where the index entry is located
at a different processor from where the record is, there will
be necessary to have a data pointer from the leaf node in
one processor to the actual record in the other processor.

2.1.2 Partially-Replicated Indexing (PRI) Schemes

A Partially-Replicated Indexing (PRI) scheme has two

major differences from the NRI scheme. First is suggested
by the name itself, where PRI has some degree of
replication while NRI has not. The second difference is
related to the composition of the index itself. Unlike in NRI
where the global index is physically partitioned, in PRI, the
global index is maintained. In other words, each processing
element has a different part of the global index, and the
overall structure of global index is still preserved. The
ownership rule of each index node is that the processor
owning a leaf node also owns all nodes from the root to
that leaf. Consequently, the root node is replicated to all
processors, and non-leaf nodes may be replicated to some
processors. Additionally, if a leaf node has several keys
belonging to different processors, this leaf node is also
replicated to the processors owning the keys.

An example of PRI-1 is exhibited in Figure 2. In this
example, PRI-1 uses the ID field as the index partitioning
attribute, which is the same as for the table partitioning.
Notice that some non-leaf nodes are replicated whereas
others are not. For example, the non-leaf node 15 is not
replicated and located only in processor 1, whereas non-
leaf node 18 is replicated to processors 1 and 2. It is also
clear that the root node is fully replicated.

PRI-2 scheme has a similar concept with NRI-2. As an
example, the table is already partitioned according to some
partitioning rule on non-ID attribute. The global index is
subsequently partitioned based on the location of the partial
table. As a result, more replication can be expected even at
the leaf node level, because a leaf node consists of k keys
and each key may be located at a different processor. For
example, Suppose records (8, Agnes) and (10, Mary) are
located at processor 1 and record (15, Peter) is at processor
2, then the first leaf node of (8, 10, and 15) is replicated to
both processors 1 and 2.

Proceedings of the International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN�02)
1087-4089/02 $17.00 © 2002 IEEE

o 8 o 10 o 15 o 28 o 33 o 37 o 46 o 47 o 48

o 38 o 39 o 43 o 49 o 50 o 56 o 65 o 69 o 71 o 16 o 18 o 23 o 24

o 20 o 21 o 59 o 60 o 74 o 75

o 78 o 92

 15 43 56

 37

 18

 21 24 71 75

 48 60

Processor 1 (1-30)
Processor 2 (30-60) Processor 3 (61-100)

Figure 2. PRI-1 scheme

PRI-3 scheme is analogous with NRI-3. As example

the table is partitioned based on the Name field, whereas
the index is based on the ID field. Therefore, the index
tree will look like PRI-1, but the data pointers will look
like those of PRI-2 in which they cross the boundary of
processors.

2.1.3 Fully-Replicated Indexing (FRI) Schemes

A Fully-Replicated Indexing (FRI) scheme is where

the global index is fully replicated to all available
working processors. Due to its simplicity of this parallel
indexing scheme, there are only two different variations,
particularly the table partitioning attribute is the same as
the indexed attribute, and the table partitioning attribute is
different from the indexed attribute. In the context of NRI
and PRI, only variations 1 and 3 are available to the FRI
scheme. To make the naming convention uniform across
the three parallel indexing schemes, the two variations for
the FRI scheme are numbered as 1 and 3, leaving
variation 2 as not applicable.

FRI-1 has a similar concept with the other two
variations 1 (i.e. NRI-1 and PRI-1). For example, table is
partitioned on the ID field, and the index is built on the
same field. Since the global index is fully replicated, leaf
nodes that do not have the base data located at the same
place must have their data pointers crossing the processor
boundaries. As a result, all records will have n incoming
data pointers from the leaf nodes where n is the number of
processors.

FRI-3 is quite similar to PRI-1, except that the table
partitioning for FRI-3 is not the same as the indexed
attribute. Since the index is fully replicated, and each of
the record will also have n incoming data pointers where
n is the number of replication of the index.

2.2 Selection Query

Selection is one of the most common Relational

Algebra operations [3]. It is a unary operation in which the
operator takes one operand only, that is a table. Selection is
an operation that selects specified records based on given
criteria. The result of the selection is a horizontal subset
(records) of the operand. Depending on the selection
predicates (conditions), we categorize selection queries into

(i) Exact Selection Match, and
(ii) Range Selection (Continuous and Discrete).
An Exact Match Selection Query is a query where the

selection predicate is to check for an exact matching
between a selection attribute and a given value. The
resulting table of an exact match query can contain
more than one record, depending on whether
duplicate values of selection attribute exist or not.

A Range Selection Query is a query where the
selection attribute value in the query result may contain
more than single unique values.

In the Continuous Range Selection Query, the
selection predicates contain a continuous range check,
normally with continuous range checking operators, such
as <, ≤, >, ≥, !=, Between, Not, and Like operators. On
the other hand, the Discrete Range Selection Query uses
discrete range check operators, such as In and Or
operators.

The main difference between the two range queries –
the continuous range selection query checks for a particular
range and the values between this range is continuous,
whereas the discrete range selection query checks for
multiple discrete values which may or may not be in a
particular range. Both these queries are called range queries
simply because the selection operation checks for multiple
values, as opposed to a single value like in the exact match
queries.

Proceedings of the International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN�02)
1087-4089/02 $17.00 © 2002 IEEE

3 Parallel Selection Query Algorithm

3.1 Parallel Exact Match Selection Query

There are three important factors in parallel exact

match selection query processing, especially processor
involvement, index tree traversal, and record loading.

3.1.1 Processor Involvement

For an exact match queries, ideally parallel

processing may isolate into the processor(s) where the
candidate records are located. Considering that the
number of processors involved in the query is an
important factor, there are particularly two cases in
parallel processing of exact match selection queries.
• Case 1 (selected processors are used):

This case is applicable to all indexing schemes,
except for the NRI-2 scheme. If the indexing scheme of
the indexed attribute is NRI-1, PRI-1, or FRI-1, we can
direct the query into the specific processors, since the data
partitioning scheme used by the index is known. It is also
the same case with NRI-3, PRI-3, and FRI-3. The only
difference between NRI/PRI/FRI-1 and NRI/PRI/FRI-3 is
that the records may not be located at the same place as
where the leaf nodes of the index tree are located.
However, from the index tree searching point of view,
they are the same, and hence it is possible to activate
selected processors that will subsequently perform an
index tree traversal.

For PRI-2 scheme, since a global index is
maintained, it becomes possible to traverse to any leaf
node from basically anywhere. Therefore, only selected
processors are used during the traversing of the index tree.

The processor(s) containing the candidate records can
be easily identified with NRI-1/3, PRI-1/3, or FRI-1/3
indexing schemes. With PRI-2 indexing scheme, it will
ultimately go to the desired processor.
• Case 2 (all processors are used):

This case is applicable to the NRI-2 indexing scheme
only, because using NRI-2 scheme, there is no way to
identify where the candidate records are located without
searching in all processors. NRI-2 basically builds a local
index based on whatever data it has from the local
processor without having a global knowledge.

3.1.2 Index Tree Traversal

Searching for a match is done through index tree

traversal. The traversal starts from the root node and
finishes either at a matched leaf node or no match is
found. Depending on the indexing scheme used, there are
two cases:

• Case 1 (traversal is isolated to local processor):
This case is applicable to all indexing scheme, but

PRI-2. When any of the NRI indexing schemes is used,
index tree traversal from the root node to the leaf node will
stay at the same processor.

When PRI-1 or PRI-3 is used, even though the root
node is replicated to all processors and theoretically
traversal can start from any node, the host processor will
direct the processor(s) containing the candidate results to
initiate the searching. In other words, index tree traversal
will start from the processors that hold candidate leaf
nodes. Consequently, index tree traversal will stay at the
same processor.

For any of the FRI indexing schemes, since the index
tree is fully replicated, it becomes obvious that there is no
need to move from one processor to another during the
traversal of an index tree.
• Case 2 (traversal from one processor to another):

This case is applicable to PRI-2 only, where searching
starting from a root node at any processor may end up on a
leaf node at a different processor. For example, when a
parent node at processor 1 points to a child node at
processor 2, the searching control at processor 1 is passed
to processor 2.

3.1.3 Record Loading

Once a leaf node containing the desired data is found,

the record pointed by the leaf node is loaded from disk.
Again here there are two cases:
• Case 1 (local record loading):

This case is applicable to NRI/PRI/FRI-1 and
NRI/PRI-2 indexing schemes, since the leaf nodes and the
associated records in these indexing schemes are located at
the same processors. Therefore, record loading will be
done locally.
• Case 2 (remote record loading):

This case is applicable to NRI/PRI/FRI-3 indexing
schemes where the leaf nodes are not necessarily placed at
the same processor where the records reside. Record
loading in this case is performed by trailing the pointer
from the leaf node to the record and by loading the pointed
record. When the pointer crosses from one processor to
another, the control is also passed from the processor that
holds the leaf node to the processor that stores the pointed
record. This is done similarly to the index traversal, which
also crosses from one processor to another.

3.2 Parallel Range Selection Query

For continuous range queries, possibly more

processors need to involve. However, the main importance
is that it needs to determine the lower and/or the upper
bound of the range. For open-ended continuous range

Proceedings of the International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN�02)
1087-4089/02 $17.00 © 2002 IEEE

predicates, only the lower bound needs to be identified,
whereas for the opposite, only the upper bound of the
range needs to take into account. In many cases, both
lower and upper bound of the range need to be
determined. Searching for the lower and/or upper bound
of the range can be directed to selected processors only
due to the same reasons as those for the exact match
queries.

With the selected attribute being indexed, once these
boundaries are identified, it becomes easy to trace all
values within a given range, by traversing leaf nodes of
the index tree. If the upper bound is identified, leaf node
traversal is done to the left, whereas if the lower bound is
identified, all leaf nodes to the right are traversed. We
must also note that record loadings within each processor
are performed sequentially. Parallel loading is only
possible among processors, not within a processor.

For discrete range queries, each discrete value in the
selection predicate is converted into multiple exact match
predicates. Further processing follows the processing
method for exact match queries. Since discrete range
queries can be transformed into multiple exact match
queries, from this point onward, we consider only the
exact match and continuous range selection queries.

3.3 Parallel Algorithms for Selection Query

Processing

The algorithm for parallel selection query processing

consists of four modules: (i) initialisation, where
variables are initialized and discrete range query is
transformed, (ii) processor allocation, based on the cases
explained above, (iii) parallel searching, and (iv) record
loading. The algorithm is presented as follows.

Algorithm: Parallel-Selection (Query Q and Index I)
Initialization - in the host processor:
1 Let P be all available processors
2 Let PQ be processors to be used by query Q
3 Let Vexact be the search value in Qexact_match
4 Let Vlower and Vupper be the range lower and upper

values
5 If Q is discrete range Then

6 Convert Qdiscrete into Qexact_match
7 Establish an array of Vexact []
Processor Allocation - in the host processor:
8 If index I is NRI-2 Then
9 PQ = P -- use all processors
10 Else
11 Select PQ from P based on Q -- use selected proc
Parallel Search – using processor PQ:
12 For each searched value V in query Q
13 Search value V in index tree I
14 If a match is found in index tree I Then
15 Put the index entry into an array of index entry

result
16 If Q is continuous range Then
17 Trace to neighbouring leaf nodes
18 Put the index entry into the array of entry result
Record Loading – using processor PQ:
19 For all entries in the array of entry result
20 Trace the data pointer to actual record r
21 If record r is located at a different processor Then
22 Load remote record r through a message passing
23 Else
24 Load the pointed local record r
25 Put record r into query result

4 Comparative Analysis

As there are different kinds of parallel indexing

schemes and consequently various parallel algorithms for
selection queries involving index, it becomes important to
analyze the efficiency of each parallel indexing scheme in
the context of parallel selection query processing. In this
section, we compare the complexity involved in parallel
selection query processing, which is imposed by each
parallel indexing scheme.

Based on the three key factors in parallel selection
query processing, we draw a matrix to show a comparison
among parallel indexing schemes. This is shown in Figure
3. The shaded cells show more expensive operations in
comparison with others within the same operation, whereas
the non-shaded cells indicate cheaper operations.

NRI Schemes PRI Schemes FRI Schemes

NRI-1 NRI-2 NRI-3 PRI-1 PRI-2 PRI-3 FRI-1 FRI-3
Processor

Involvement
Selected

processors
All

processors
Selected

processors
Selected

processors
Selected

processors
Selected

processors
Selected

processors
Selected

processors
Index

Traversal
Local
search

Local
search

Local
search

Local
search

Remote
search

Local
search

Local
search

Local
search

Record
Loading

Local
record load

Local
record load

Remote
record load

Local
record load

Local
record load

Remote
record load

Local
record load

Remote
record load

Figure 3. A Comparative Table for Parallel One-Index Selection Query Processing

Proceedings of the International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN�02)
1087-4089/02 $17.00 © 2002 IEEE

Based on this table comparison, each parallel
indexing scheme has advantages and disadvantages in
supporting parallel index selection query processing. It is
clear from the table that NRI/PRI/FRI-1 indexing
schemes provide more advantages than others, since only
selected processors are used, and index traversal and
record loading are locally done.

Less attractive indexing schemes offered by
NRI/PRI/FRI-3 where record loading may be done
remotely. The efficiency of remote data loading is very
much determined by the selectivity factor of the query.
The higher the selectivity, the more records to be loaded,
and there is a great chance the records to be loaded
remotely and this incurs overhead. In contrast, if the
selectivity ratio is very small, overheads for record
loading can be minimal. Consequently, NRI/PRI/FRI-3
can be as good as NRI/PRI/FRI-1 indexing schemes
particularly for parallel one-index selection query
processing.

The other option is NRI/PRI-2 indexing scheme.
NRI-2 requires all processors to be used. If the selectivity
ratio is very small, most processors will not produce any
results. From a elapsed time point of view (speed up), it
may not be a problem, but from a throughput point of
view (scale up), these processors that do not bring any
results may waste a lot of unnecessary processing time.
PRI-2 on the other hand may isolate into selected
processors, but traversal may need to move from one
processor to another – increasing communication
overhead.

In wrapping up the comparison, we can clearly see
that NRI/PRI/FRI-1 offer much benefit for parallel
selection query processing involving index. These
indexing schemes clearly offer the best performance. The
main difference between these three indexing schemes is
the structure of the index, where NRI-1 is purely local
index, PRI-1 maintains a global index which is spread
among processors, FRI-1 replicates the whole index.
Since extra benefits of PRI-1 and FRI-1 are not clearly
seen, maintaining global index as in PRI-1 and replicating
the whole index as in FRI-1 do not offer extra benefits. In
fact, the drawback of PRI-1 and FRI-1 is quite clear,
where PRI-1 needs to maintain the link from one index
node of one processor to another node in another
processor, and FRI-1 needs enormous extra space to
maintain the index. On the other hand, NRI-1 is sufficient
enough to provide support for parallel selection query
processing.

5 Conclusions and Future Work

In this paper, we have proposed a parallel selection

query processing algorithm involving index. Discussing
parallel selection query algorithms cannot be separated

from that of the index structure used in a parallel
environment. We have described three parallel indexing
schemes, namely non-replicated indexing (NRI), partially-
replicated indexing (PRI), and fully-replicated indexing
(FRI) schemes. A number of variations to these parallel
indexing schemes were also discussed.

The comparison among these parallel indexing
schemes particularly in supporting the efficiency of parallel
selection query algorithms shows clearly that
NRI/PRI/FRI-1 is the most supportive. Others offer various
advantages and disadvantages. Looking into this matter
more details, it appears that PRI/FRI schemes do not add
extra benefits. The decision to choose another index for
other attributes is determined by the balance between
storage versus performance.

Our future work includes parallel selection query
processing involving multiple indexes on different
selection attributes.

References

[1] Bayer, R. and McCreight, E.M., “ Organization and

Maintenance of Large Ordered Indices” , Acta Informatica,
volume 1, number 3, pp-173-189, 1972.

[2] Comer, D., “ The Ubiquitous B-Trees” , ACM Computing
Surveys, volume 11, number 2, pp 121-137, 1979.

[3] Elmasri, R. and Navathe, S.B., Fundamental of Database
Systems, Third Edition, Addison-Wesley, 2000.

[4] Knuth D. E., “ The art of computer programming” , Volume
3, Addison-Wesley Publishing Company, INC., 1973

[5] Lakshmi, M.S. and Yu, P.S., "Effectiveness of Parallel
Joins", IEEE Transactions of Knowledge and Data
Engineering, volume 2, number 4, pp. 410-424, December
1990.

[6] Mishra, P. and Eich, M.H., "Join Processing in Relational
Databases", ACM Computing Surveys, volume 24, number 1,
pp. 63-113, March 1992.

[7] Ramakrishnan, R. Database Management Systems, McGraw
Hill, 1998.

[8] Taniar, D. and Rahayu, J.W., "A Taxonomy of Indexing
Schemes for Parallel Database Systems", Distributed and
Parallel Databases: An International Journal, 2001 (in
press).

[9] Taniar, D. and Rahayu, J.W., "Chapter 17: Parallel Join
Query Algorithms Involving Index", Parallel and
Distributed Computing Applications and Technologies,
C.S.Leung, J.Sum, C.L.Wang, and G.H.Young (eds.), ISBN:
962-85887-1-0, The University of Hong Kong, pp. 133-140,
2000.

[10] Wolf J. L., Dias D. M., and P. S. Yu, "A parallel sort-merge
join algorithm for managing data skew", IEEE Transactions
On Parallel And Distributed Systems, volume 4, number1,
January 1993.

[11] Wolf J. L., Yu P. S., Turek J. and D. M. Dias, "A parallel
hash join algorithm for managing data skew", IEEE
Transactions On Parallel and Distributed Systems, volume
4, number 12, December 1993.

Proceedings of the International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN�02)
1087-4089/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

