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Abstract 

One problem of propagating the globally fittest 
individual via neighbourhood evolving in both island 
model and cellular model of existing parallel genetic 
algorithms (PGA) is that the migration of globally best 
individual is delayed to non-adjacent processors. That 
may cause inferior search in those sub-populations. The 
propagation delay of the globally best individual is 
proportional to the network distance between two 
processors. Delayed migration of best individual in 
parallel genetic algorithms is an essential deviation from 
sequential version of genetic algorithm, in which the best 
individuals are always used to compete with other 
individuals. To solve this problem, this paper proposes an 
extended version of island parallel genetic algorithm, 
Virtual Community PGA (VC-PGA). In this paper, VC-
PGA is applied in a case study of optimizing parameters 
of back-propagation neural network classifier.  

1 Introduction 

Two major parallel genetic algorithms (PGA) are 
reported in literature, namely island model and cellular 
model. Island model (or network model) runs an 
independent GA with a sub-population on each processor, 
and the best individuals in a sub-population are 
communicated either to all other sub-populations or to 
neighbouring population [2, 3]. Cellular model (or 
neighbourhood model) runs an individual on each 
processor, and cross with the best individual among its 
neighbours [4].  The problem of migrating globally best 
individual via neighbourhood evolving is that the best 
individual is not immediately used in the subpopulations of 
non-adjacent processors. This delay causes inferior search 

in those sub-populations. Delayed migration of best 
individual in parallel genetic algorithms is an essential 
deviation from sequential version of genetic algorithm, in 
which the best individuals are always used to compete with 
other individuals throughout the life circle of iterations. To 
solve this problem, we propose an extended version of 
island parallel genetic algorithm, Virtual Community PGA 
(VC-PGA). 

This rest of paper is organized as follows. Section 2 
gives brief introduction on genetic algorithm (GA), 
parallel genetic algorithm (PGA), and describes GA-
guided parametric optimisation on back-propagation 
neural network classifier, which will be used as a case 
study of VC-PGA. Section 3 describes the proposed 
virtual community model (VC-PGA) in details. Section 4 
describes the implementation issues VC-PGA. Section 5 
describes parameters and environment of performance 
studies and discusses some initial results obtained, which 
is then followed by the conclusions in Section 6. 

2 Background 

In this section, we briefly describe genetic algorithm 
(GA), existing parallel genetic algorithms (PGA) and their 
problems. Then, we introduce parametric optimisation of 
neural network classifier, which will be used as a case 
study in our experiments later. 

2.1 Genetic Algorithm (GA) 

GA is a domain-independent global search technique. 
It works with a set of solutions that are encoded in strings 
and a fitness function to evaluate these solutions. These 
strings represent points in search space. In each iteration 
(or generation), a new set of solutions is created by 
crossing some of good solutions in current iteration and by 
occasionally adding new diversity of search [6]. This 
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process is done through three important operators, i.e. 
selection, crossover, and mutation. In the following 
section, we describe each operator in turn. 

 
Selection. Candidate selection is based on evaluating 

the fitness of candidates. Candidate fitness is calculated 
though objective function. Fitness values generally need to 
be scaled for further use. Scaling is important to avoid 
early convergence caused by dominant effect of a few 
strong candidates in the beginning, and to differentiate 
relative fitness of candidates when they have very close 
fitness values near the end of run [1]. Three basic methods 
are proportional selection, tournament selection, and 
ranking selection. In proportional approach, selection is 
based on a probability of candidate fitness in a population, 
e.g. roulette wheel method.  In tournament approach, 
selection is based on sub-group competition of randomly 
selected with or without replacement. In ranking approach, 
selection is based on fitness of individuals, and the rank N 
is assigned to the best individual and the rank 1 is to the 
worst [8]. 

Crossover. Crossover is the most important operator of 
GA. It explores new search space by recombining existing 
search elements, which may produce better solutions based 
on partial and local solutions.  In a simple crossover, the 
operation takes two candidates and recombines them at a 
random point. Crossover rate is generally set with a high 
probability. 

Mutation. Mutation is an operator to explore new 
search space by introducing new search elements not 
found in existing candidates.  In a binary string, the 
operation flips a single bit. Mutation rate is generally set 
with a very low probability. 

By iteratively applying these operators, GA-based 
search is able to converge on one of global optimal. GA is 
a powerful technique to solve optimization problems in a 
large search space, where random walk is not feasible.  

2.2 Parallel Genetic Algorithm (PGA) 

Two major parallel versions of GA (PGA) are reported 
in literature, namely island model and cellular model. 
Island model (or network model) runs an independent GA 
with a sub-population on each processor, and the best 
individuals in a sub-population are communicated either to 
all other sub-populations or to neighbouring population [2, 
3]. 

Cellular model (or neighbourhood model) runs an 
individual on each processor, and cross with the best 
individual among its neighbours [4].  Cellular model can 
be seen as a massive parallel extension of island model 

where population is reduced to a single individual on each 
processor. 

 
 
 
 
 
 
 
 
 
 

 
Figure 1. The Degree of Inferiority 

 
The problem of neighbourhood evolving, in both 

island model and cellular model, is that the migration of 
globally best individual is delayed to non-adjacent 
processors. That may cause inferior search in those sub-
populations, which are not physically adjacent to the sub-
population where the best individual is found. The 
propagation delay of the globally best individual is 
proportional to the distance between the processor which 
sends the globally best individual and the processor which 
receives it. The degree of inferiority intensifies circularly 
outwards as shown in Figure 1. Delayed migration of best 
individual in parallel genetic algorithms is an essential 
deviation from sequential version of genetic algorithm, in 
which the best individuals are always used to compete with 
other individuals. 

 In addition, it is not scalable to use multicast to 
communicate local best individuals among sub-populations 
in a network environment (e.g. cluster of workstations). To 
solve the above problems, we propose an extended version 
of parallel genetic algorithm, Virtual Community PGA 
(VC-PGA) in section 3. 

2.3 GA-guided Parameter Optimisation in 
Neural Network 

This section describes details of GA-based search in 
application to parameter optimization in a back-
propagation neural network classifier (NN). 

Data mining is a process of extracting useful 
information from data. To use any data mining algorithm, 
a set of parameters often needs to be specified. Generally, 
a set of default values is provided for a given data mining 
algorithm, and these default parameter values were 
considered a ‘good’ estimate for any data set. However, 
data mining models are known to be data dependent, and 
so are for their parameter values. Default values may be 

Getting Worse 
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good estimates for some data sets, but they are often not 
tuned to a particular data set. 

Parametric search scans through parameter space in 
order to find the best set of parameter values. However, 
parameter space is often very large, and brute-force search 
is simply too expensive to be feasible. This paper 
investigates parallel genetic algorithm based heuristic 
search techniques to optimise parameters of data mining 
algorithms. As a case study, back-propagation neural 
network (NN) will be used for parameter optimisation in 
this paper. 

The reason we choose to use NN in our parameter 
optimization case study is that (i) parameter value of NN is 
difficult to choose, and default values are not always good 
estimates; and (ii) it has a relatively large parameter space, 
which is too expensive to enumerate. A number of 
parameters need to be specified for a back-propagation 
NN. The choice of single parameter value and the 
combining effects of different parameter values have an 
influence over prediction accuracy of the final data mining 
model. Parameters in a back-propagation NN include 
learning rate, momentum, the number of hidden layer and 
hidden node, and epoch; and their overall search space is 
234. 

3. The Proposed PGA: Virtual Community 
Model (VC-PGA) 

In this section, we describe in details the proposed 
virtual community parallel genetic algorithm (VC-PGA). 
VC-PGA aims to solve two problems in the existing 
parallel genetic algorithms explained in section 2.2: i) 
delayed migration of globally fittest individual. ii) 
communication overhead introduced by multicast. VC-
PGA addresses these two problems with the concept of 
virtual community. The globally best individuals are 
migrated to all processors in the networked environment 
through hierarchy of virtual communities.  

In virtual community model, each processor hosts a 
sub-population just like in island model. A local 
community (LC) is formed among neighboring processors, 
and each local community has a server processor to 
facilitate exchanges of best individuals within community 
and with other communities as shown in Figure 2. To 
facilitate exchange of best local individuals across 
community, virtual community (VC) can be formed and a 
virtual server processor performs similar tasks as a local 
community server processor. 
 

LC

LC

LC

LC

VC

 

Figure 2. The Proposed VC-PGA Model 

Virtual community model gives three advantages over 
island model: (i) Local sub-populations can get globally 
fittest individuals, (ii) The communication overhead is 
much less expensive, and (iii) The evolution surface of 
solution space is independent from topology of network of 
workstations. The procedure of VC-PGA is described as 
follows: 

 
Step 1: Set up local communities and virtual 

communities in a cluster of workstations. A local 
community is formed with adjacent processors, 
and one of processor is elected as its community-
server. Grouping local community-servers forms 
a virtual community. Higher-level of virtual 
communities can be formed if necessary. 

 
Step 2: Initialise a sub-population of size p on each 

community member across network.  
 
Step 3: On each processor of a local community, run 

GA for a fixed number of iterations, and send top 
n fittest of local sub-population to the 
community-server. At the mean time, compare the 
fitness of any received individual with the best 
local fitness, and include it to local population if 
the received has a higher fitness value. 

 
Step 4: On each community-server, find the best 

individuals of local community from the received 
best individuals of community members.  Send 
top n fittest individuals of local community to 
higher level community server. At the mean time, 
compare the fitness of any received individual 
from its virtual community with the best local 
fitness, and include it to local population if the 
received has a higher fitness value. Send the best 
individuals to community members. 
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4. Implementation issues 

In this section, we describe implementation issues of 
VC-PGA. The implementation of VC-PGA is based on its 
sequential version. Therefore we first describe GA issues 
and then followed by issues specific to virtual community 
model of PGA.  

4.1 GA Implementation 

Like any other GA applications, two essential problems 
have to be addressed before using GA to parameter 
optimisation. 

First is string encoding. Many encoding schemes have 
been proposed, for example, integer coding and grey 
coding. There is no standard way to choose these schemes 
and the choice really depends on the nature expression of 
problems. The order of putting encoded parameter into a 
string is also important. In principle, closely associated 
parameters need to be put together to avoid disruption 
caused by crossover operator. For parameter optimisation 
problem, we use binary encoding. In addition, we assume 
no knowledge on relationship of parameters, and 
parameters are encoded in a random order. 

The second issue is how to evaluate string. The fitness 
of string is evaluated though prediction accuracy of NN 
model based on a data set. The fitness function is the 
reverse of classification error (i.e. root mean square error). 
In the following section, we illustrate how GA and its 
parallel version can be used in our performance study. 

There are many variations of GA operators. Our 
purpose is to see the effectiveness of GA-guided parameter 
optimization, rather than to compare different GA 
operators. Therefore, we use the simple genetic algorithm 
(SGA) described in [1] for our study of both GA and PGA. 
However, we use elitism, which always include the best 
search point from the last iteration to the current iteration, 
to prevent early convergence.  The procedure of SGA is 
described as the following. 
 

Step 1: Initialise population. 
 
Step 2: For a specified number of iteration, do 

selection, crossover and mutation according to a 
set of user specified parameters. And then 
evaluate population individuals for next iteration. 

 
GA is implemented in five classes in Java language, i.e. 

parameter, chromosome, generation, evaluationFunction, 
and ga.  

Parameter class is a container of single parameter. It 
allows users to specify a parameter value and its range in 
the form of [min, max], and it scales the value down into 
unsigned integer.   

Chromosome class consists of attributes and methods 
of binary string. It encodes multiple parameter values into 
binary values, and joins them into a single string. It also 
has a decoding operation to reverse the process.  

Generation class applies three GA operators on a 
population of chromosomes (or individuals). As part of 
pre-processing of current generation, scaling of fitness is 
applied to entire population so that two objectives can be 
achieved, i) to avoid early convergence caused by a few 
relatively fitter individuals at beginning of run, and ii) to 
avoid convergence caused by dominance of a large portion 
of highly-fit individuals at end of run. In selection, a 
deterministic sampling method is implemented. To select a 
population, first compute expected value of individuals for 
each chromosome. Then allocate individuals based on 
integer part of expected number. If population is not filled 
up after initial allocation, sort previous population on 
fractional part of expected value and fill up the gap from 
the top of sorted list. Include the best individual at this 
point in the new population. Once selection is done, select 
a list of chromosomes for crossover based on specified 
crossover probability. For each pair of chromosomes, 
cross over at a randomly chosen point. Then perform 
mutation by negating each bit of string based on pre-
specified probability.  

EvaluationFuction class evaluates a set of parameter 
values on back propagation NN classifier and returns its 
fitness value. In order to evaluate these parameter values, a 
training data set is required. Then build classifier model, 
evaluate it with n-fold cross validation, and return fitness 
value as reverse value of evaluation error rate.  

Ga class allows users to specify various parameters of 
GA, e.g. cross over rate, and mutation rate, and iteration 
number. And it initialises a generation instance, and 
iterates the generation till its stop criteria.   

After GA is implemented, its performance is compared 
with random search in same environment setting. A 
separate class, RandomSearch, is implemented for this 
purpose. The class iteratively calls an instance of 
EvaluationFunction class with randomised parameter 
values. To make search results comparable, multithreading 
is used in our implementation so that each search method 
is running on a separate thread. To record results at end of 
fixed number of iteration, synchronization between two 
threads makes use of global static variables as signals. A 
duplicate copy of data set is used to avoid I/O race. 
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4.2 VC-PGA Implementation 

In the above section we described how GA is 
implemented in Java language and how GA-based search 
is compared with random search. In this section, we 
describe VC-PGA implementation details.  

One issue in VC-PGA is how to form local 
communities (LCs) and virtual communities (VCs). By 
definition, a local community refers to a group of adjacent 
workstations which includes a leader station and member 
stations, and a virtual community is a special case of local 
community which consists of a group of leader stations. A 
workstation is included in a community if it is the closest 
to that community than other communities. This is very 
similar to clustering problems in data mining. A data 
mining clustering algorithm identifies sparse and dense 
regions in a large set of multi-dimensional data points. In 
this case, local community and virtual community can be 
taken as clusters, and community leaders are the centroids 
(the centres of clusters).  The distances between any two 
workstations are measured in term of round-trip time. First 
local communities of given workstations need to be found 
by applying a clustering algorithm, and then virtual 
communities of leader stations can be found by running the 
algorithm again, and higher level of virtual communities 
can be located in same way. We implemented k-means 
clustering algorithm [7] for its simplicity, and the 
procedure is described in the following section. 

 
Step 1: Find distances between any two processors. 
 
Step 2: Specify a cluster number, k, and randomly 

select k processors as initial cluster centres. 
 
Step 3: Processors are assigned to their closest cluster 

centres (processors) based on Euclidean distance function. 
 
Step 4: Compute the centroid of each cluster. These 

centroids are the new cluster centres. 
 
Step 5: Repeat Step 3) and 4) until these centroids 

remain the same in consecutive runs. Thus, a cluster of 
workstations with k local communities is set up. Centroids 
are community servers, and non-centroids processors in 
the cluster are community members. 

 
Once we partitioned workstations with a clustering 

algorithm, simply install GA on each workstation with a 
sub-population. The communication between a leader 
station and its member stations are done via client-server 
programming.  

5 Performance Evaluation 

5.1 Environment and Parameters 

Performance study of PGA-based parameter 
optimization is conducted over local area network, which 
consists of eight homogeneous Pentium workstations. 
Back-propagation neural network classifier in WEKA [5] 
data mining library is used to build and evaluate 
classification models. Fitness value is derived from root 
mean square error returned by neural network classifier. 
Parameters and their value ranges used in PGA-guided 
parametric optimization of back propagation neural 
network classifier are summarized in Figure 3. Default 
values in Figure 3 refer to default values used in standard 
back-propagation Neural Network classifier, and included 
here for cross reference. After iterations of PGA-guided 
search, parameter values derived from the search result are 
the tailored values for the particular data set. 
 

Parameters Value 
Range 

Bit Length Default 
Value 

Learning 
Rate 

[0, 1.00] 7 0.3 

Momentum [0, 1.00] 7 0.2 
Hidden layer [1, attribute 

number] 
Round(log 

2 A) 
4 

Epochs in 
training  

[1, 1000] 10 500 

Error 
threshold in 
validation 

[1, 100] 7 30 

Figure 3. Parameters in Back propagation NN Classifier 

Proportional selection with elitism is used in PGA, and 
a clustering algorithm is used as pre-processing in PGA to 
partition workstations by distance. For PGA-related 
parameters, a high cross over rate and a low mutation rate 
are used. To study speed-up of PGA, we keep total 
population size constant, and decrease population size on 
each workstation while increasing the number of 
workstations. Parameters in VC-PGA are summarized in 
Figure 4. 
 

Parameters VC-PGA 
Generation 20 
Population 
size 

15, 20, 30, 60, 
120 

Cross over rate 0.8 
Mutation rate 0.01 

Figure 4. Parameters in GA and VC-PGA 
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5.2 Performance Analysis 

We implemented VC-PGA model on up to 8 stations in 
a local area network to observe its speed-up. The depth of 
VC hierarchy is one, and two LCs are formed. To obtain 
speed-up, we keep total population size and the number of 
iterations constant, while using a different cluster size from 
1 to 8. For example, population size is 60 on each station 
in a 2-station cluster, population size 30 on each station in 
a 4-station cluster and so on. The elapsed time for each 
cluster to complete its job is taken using the maximum 
time spent across all stations in a cluster at end of iteration. 
As shown in Figure 5, VC-PGA closely follows a linear 
speed-up.  

Figure 5. PGA Speed-up 
 

Figure 6 shows population fitness in speed-up of VC-
PGA parametric optimization. Best fitness found at all 
cases is similar to each other. It indicates that search 
outcomes are comparable among different experiments 
when more workstations are used to process the same job 
size. Average population fitness across all sub-populations 
seems to increase as more nodes are used to work with 
smaller population size. This is because the results are 
taken at end of relatively small number of generation 
where sub-populations have not converged. 
 

Nodes Population 
Size 

Average 
Fitness 

Best Fitness 

1 120 70 77.66264 
2 60 71 77.51973 
4 30 73.5 77.52943 
6 20 73.3 78.20998 
8 15 75.3 77.51269 

Figure 6. Population Fitness in PGA Speedup 

6 Conclusions 

This paper proposed an extended version of island 
model, namely Virtual Community PGA (VC-PGA), to 
solve the problem of delayed propagation of the globally 
fittest individual via neighbourhood evolving in both 
island model and cellular model. Delayed migration of 
best individual in parallel genetic algorithms is an essential 
deviation from sequential version of genetic algorithm, in 
which the best individuals are always used to compete with 
other individuals. In our future work, we would like to 
investigate VC-PGA in more details including scalability 
and performance comparison with existing PGA models. 
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