

A New Parallel Genetic Algorithm

Ling Tan David Taniar Kate A. Smith
Monash University

School of Business Systems
Clayton, Vic 3800

AUSTRALIA
Email: {Ling.Tan, David.Taniar, Kate.Smith}@infotech.monash.edu.au

Abstract

One problem of propagating the globally fittest
individual via neighbourhood evolving in both island
model and cellular model of existing parallel genetic
algorithms (PGA) is that the migration of globally best
individual is delayed to non-adjacent processors. That
may cause inferior search in those sub-populations. The
propagation delay of the globally best individual is
proportional to the network distance between two
processors. Delayed migration of best individual in
parallel genetic algorithms is an essential deviation from
sequential version of genetic algorithm, in which the best
individuals are always used to compete with other
individuals. To solve this problem, this paper proposes an
extended version of island parallel genetic algorithm,
Virtual Community PGA (VC-PGA). In this paper, VC-
PGA is applied in a case study of optimizing parameters
of back-propagation neural network classifier.

1 Introduction

Two major parallel genetic algorithms (PGA) are
reported in literature, namely island model and cellular
model. Island model (or network model) runs an
independent GA with a sub-population on each processor,
and the best individuals in a sub-population are
communicated either to all other sub-populations or to
neighbouring population [2, 3]. Cellular model (or
neighbourhood model) runs an individual on each
processor, and cross with the best individual among its
neighbours [4]. The problem of migrating globally best
individual via neighbourhood evolving is that the best
individual is not immediately used in the subpopulations of
non-adjacent processors. This delay causes inferior search

in those sub-populations. Delayed migration of best
individual in parallel genetic algorithms is an essential
deviation from sequential version of genetic algorithm, in
which the best individuals are always used to compete with
other individuals throughout the life circle of iterations. To
solve this problem, we propose an extended version of
island parallel genetic algorithm, Virtual Community PGA
(VC-PGA).

This rest of paper is organized as follows. Section 2
gives brief introduction on genetic algorithm (GA),
parallel genetic algorithm (PGA), and describes GA-
guided parametric optimisation on back-propagation
neural network classifier, which will be used as a case
study of VC-PGA. Section 3 describes the proposed
virtual community model (VC-PGA) in details. Section 4
describes the implementation issues VC-PGA. Section 5
describes parameters and environment of performance
studies and discusses some initial results obtained, which
is then followed by the conclusions in Section 6.

2 Background

In this section, we briefly describe genetic algorithm
(GA), existing parallel genetic algorithms (PGA) and their
problems. Then, we introduce parametric optimisation of
neural network classifier, which will be used as a case
study in our experiments later.

2.1 Genetic Algorithm (GA)

GA is a domain-independent global search technique.
It works with a set of solutions that are encoded in strings
and a fitness function to evaluate these solutions. These
strings represent points in search space. In each iteration
(or generation), a new set of solutions is created by
crossing some of good solutions in current iteration and by
occasionally adding new diversity of search [6]. This

Proceedings of the International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN�02)
1087-4089/02 $17.00 © 2002 IEEE

process is done through three important operators, i.e.
selection, crossover, and mutation. In the following
section, we describe each operator in turn.

Selection. Candidate selection is based on evaluating

the fitness of candidates. Candidate fitness is calculated
though objective function. Fitness values generally need to
be scaled for further use. Scaling is important to avoid
early convergence caused by dominant effect of a few
strong candidates in the beginning, and to differentiate
relative fitness of candidates when they have very close
fitness values near the end of run [1]. Three basic methods
are proportional selection, tournament selection, and
ranking selection. In proportional approach, selection is
based on a probability of candidate fitness in a population,
e.g. roulette wheel method. In tournament approach,
selection is based on sub-group competition of randomly
selected with or without replacement. In ranking approach,
selection is based on fitness of individuals, and the rank N
is assigned to the best individual and the rank 1 is to the
worst [8].

Crossover. Crossover is the most important operator of
GA. It explores new search space by recombining existing
search elements, which may produce better solutions based
on partial and local solutions. In a simple crossover, the
operation takes two candidates and recombines them at a
random point. Crossover rate is generally set with a high
probability.

Mutation. Mutation is an operator to explore new
search space by introducing new search elements not
found in existing candidates. In a binary string, the
operation flips a single bit. Mutation rate is generally set
with a very low probability.

By iteratively applying these operators, GA-based
search is able to converge on one of global optimal. GA is
a powerful technique to solve optimization problems in a
large search space, where random walk is not feasible.

2.2 Parallel Genetic Algorithm (PGA)

Two major parallel versions of GA (PGA) are reported
in literature, namely island model and cellular model.
Island model (or network model) runs an independent GA
with a sub-population on each processor, and the best
individuals in a sub-population are communicated either to
all other sub-populations or to neighbouring population [2,
3].

Cellular model (or neighbourhood model) runs an
individual on each processor, and cross with the best
individual among its neighbours [4]. Cellular model can
be seen as a massive parallel extension of island model

where population is reduced to a single individual on each
processor.

Figure 1. The Degree of Inferiority

The problem of neighbourhood evolving, in both

island model and cellular model, is that the migration of
globally best individual is delayed to non-adjacent
processors. That may cause inferior search in those sub-
populations, which are not physically adjacent to the sub-
population where the best individual is found. The
propagation delay of the globally best individual is
proportional to the distance between the processor which
sends the globally best individual and the processor which
receives it. The degree of inferiority intensifies circularly
outwards as shown in Figure 1. Delayed migration of best
individual in parallel genetic algorithms is an essential
deviation from sequential version of genetic algorithm, in
which the best individuals are always used to compete with
other individuals.

 In addition, it is not scalable to use multicast to
communicate local best individuals among sub-populations
in a network environment (e.g. cluster of workstations). To
solve the above problems, we propose an extended version
of parallel genetic algorithm, Virtual Community PGA
(VC-PGA) in section 3.

2.3 GA-guided Parameter Optimisation in
Neural Network

This section describes details of GA-based search in
application to parameter optimization in a back-
propagation neural network classifier (NN).

Data mining is a process of extracting useful
information from data. To use any data mining algorithm,
a set of parameters often needs to be specified. Generally,
a set of default values is provided for a given data mining
algorithm, and these default parameter values were
considered a ‘good’ estimate for any data set. However,
data mining models are known to be data dependent, and
so are for their parameter values. Default values may be

Getting Worse

Proceedings of the International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN�02)
1087-4089/02 $17.00 © 2002 IEEE

good estimates for some data sets, but they are often not
tuned to a particular data set.

Parametric search scans through parameter space in
order to find the best set of parameter values. However,
parameter space is often very large, and brute-force search
is simply too expensive to be feasible. This paper
investigates parallel genetic algorithm based heuristic
search techniques to optimise parameters of data mining
algorithms. As a case study, back-propagation neural
network (NN) will be used for parameter optimisation in
this paper.

The reason we choose to use NN in our parameter
optimization case study is that (i) parameter value of NN is
difficult to choose, and default values are not always good
estimates; and (ii) it has a relatively large parameter space,
which is too expensive to enumerate. A number of
parameters need to be specified for a back-propagation
NN. The choice of single parameter value and the
combining effects of different parameter values have an
influence over prediction accuracy of the final data mining
model. Parameters in a back-propagation NN include
learning rate, momentum, the number of hidden layer and
hidden node, and epoch; and their overall search space is
234.

3. The Proposed PGA: Virtual Community
Model (VC-PGA)

In this section, we describe in details the proposed
virtual community parallel genetic algorithm (VC-PGA).
VC-PGA aims to solve two problems in the existing
parallel genetic algorithms explained in section 2.2: i)
delayed migration of globally fittest individual. ii)
communication overhead introduced by multicast. VC-
PGA addresses these two problems with the concept of
virtual community. The globally best individuals are
migrated to all processors in the networked environment
through hierarchy of virtual communities.

In virtual community model, each processor hosts a
sub-population just like in island model. A local
community (LC) is formed among neighboring processors,
and each local community has a server processor to
facilitate exchanges of best individuals within community
and with other communities as shown in Figure 2. To
facilitate exchange of best local individuals across
community, virtual community (VC) can be formed and a
virtual server processor performs similar tasks as a local
community server processor.

LC

LC

LC

LC

VC

Figure 2. The Proposed VC-PGA Model

Virtual community model gives three advantages over
island model: (i) Local sub-populations can get globally
fittest individuals, (ii) The communication overhead is
much less expensive, and (iii) The evolution surface of
solution space is independent from topology of network of
workstations. The procedure of VC-PGA is described as
follows:

Step 1: Set up local communities and virtual

communities in a cluster of workstations. A local
community is formed with adjacent processors,
and one of processor is elected as its community-
server. Grouping local community-servers forms
a virtual community. Higher-level of virtual
communities can be formed if necessary.

Step 2: Initialise a sub-population of size p on each

community member across network.

Step 3: On each processor of a local community, run

GA for a fixed number of iterations, and send top
n fittest of local sub-population to the
community-server. At the mean time, compare the
fitness of any received individual with the best
local fitness, and include it to local population if
the received has a higher fitness value.

Step 4: On each community-server, find the best

individuals of local community from the received
best individuals of community members. Send
top n fittest individuals of local community to
higher level community server. At the mean time,
compare the fitness of any received individual
from its virtual community with the best local
fitness, and include it to local population if the
received has a higher fitness value. Send the best
individuals to community members.

Proceedings of the International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN�02)
1087-4089/02 $17.00 © 2002 IEEE

4. Implementation issues

In this section, we describe implementation issues of
VC-PGA. The implementation of VC-PGA is based on its
sequential version. Therefore we first describe GA issues
and then followed by issues specific to virtual community
model of PGA.

4.1 GA Implementation

Like any other GA applications, two essential problems
have to be addressed before using GA to parameter
optimisation.

First is string encoding. Many encoding schemes have
been proposed, for example, integer coding and grey
coding. There is no standard way to choose these schemes
and the choice really depends on the nature expression of
problems. The order of putting encoded parameter into a
string is also important. In principle, closely associated
parameters need to be put together to avoid disruption
caused by crossover operator. For parameter optimisation
problem, we use binary encoding. In addition, we assume
no knowledge on relationship of parameters, and
parameters are encoded in a random order.

The second issue is how to evaluate string. The fitness
of string is evaluated though prediction accuracy of NN
model based on a data set. The fitness function is the
reverse of classification error (i.e. root mean square error).
In the following section, we illustrate how GA and its
parallel version can be used in our performance study.

There are many variations of GA operators. Our
purpose is to see the effectiveness of GA-guided parameter
optimization, rather than to compare different GA
operators. Therefore, we use the simple genetic algorithm
(SGA) described in [1] for our study of both GA and PGA.
However, we use elitism, which always include the best
search point from the last iteration to the current iteration,
to prevent early convergence. The procedure of SGA is
described as the following.

Step 1: Initialise population.

Step 2: For a specified number of iteration, do

selection, crossover and mutation according to a
set of user specified parameters. And then
evaluate population individuals for next iteration.

GA is implemented in five classes in Java language, i.e.

parameter, chromosome, generation, evaluationFunction,
and ga.

Parameter class is a container of single parameter. It
allows users to specify a parameter value and its range in
the form of [min, max], and it scales the value down into
unsigned integer.

Chromosome class consists of attributes and methods
of binary string. It encodes multiple parameter values into
binary values, and joins them into a single string. It also
has a decoding operation to reverse the process.

Generation class applies three GA operators on a
population of chromosomes (or individuals). As part of
pre-processing of current generation, scaling of fitness is
applied to entire population so that two objectives can be
achieved, i) to avoid early convergence caused by a few
relatively fitter individuals at beginning of run, and ii) to
avoid convergence caused by dominance of a large portion
of highly-fit individuals at end of run. In selection, a
deterministic sampling method is implemented. To select a
population, first compute expected value of individuals for
each chromosome. Then allocate individuals based on
integer part of expected number. If population is not filled
up after initial allocation, sort previous population on
fractional part of expected value and fill up the gap from
the top of sorted list. Include the best individual at this
point in the new population. Once selection is done, select
a list of chromosomes for crossover based on specified
crossover probability. For each pair of chromosomes,
cross over at a randomly chosen point. Then perform
mutation by negating each bit of string based on pre-
specified probability.

EvaluationFuction class evaluates a set of parameter
values on back propagation NN classifier and returns its
fitness value. In order to evaluate these parameter values, a
training data set is required. Then build classifier model,
evaluate it with n-fold cross validation, and return fitness
value as reverse value of evaluation error rate.

Ga class allows users to specify various parameters of
GA, e.g. cross over rate, and mutation rate, and iteration
number. And it initialises a generation instance, and
iterates the generation till its stop criteria.

After GA is implemented, its performance is compared
with random search in same environment setting. A
separate class, RandomSearch, is implemented for this
purpose. The class iteratively calls an instance of
EvaluationFunction class with randomised parameter
values. To make search results comparable, multithreading
is used in our implementation so that each search method
is running on a separate thread. To record results at end of
fixed number of iteration, synchronization between two
threads makes use of global static variables as signals. A
duplicate copy of data set is used to avoid I/O race.

Proceedings of the International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN�02)
1087-4089/02 $17.00 © 2002 IEEE

4.2 VC-PGA Implementation

In the above section we described how GA is
implemented in Java language and how GA-based search
is compared with random search. In this section, we
describe VC-PGA implementation details.

One issue in VC-PGA is how to form local
communities (LCs) and virtual communities (VCs). By
definition, a local community refers to a group of adjacent
workstations which includes a leader station and member
stations, and a virtual community is a special case of local
community which consists of a group of leader stations. A
workstation is included in a community if it is the closest
to that community than other communities. This is very
similar to clustering problems in data mining. A data
mining clustering algorithm identifies sparse and dense
regions in a large set of multi-dimensional data points. In
this case, local community and virtual community can be
taken as clusters, and community leaders are the centroids
(the centres of clusters). The distances between any two
workstations are measured in term of round-trip time. First
local communities of given workstations need to be found
by applying a clustering algorithm, and then virtual
communities of leader stations can be found by running the
algorithm again, and higher level of virtual communities
can be located in same way. We implemented k-means
clustering algorithm [7] for its simplicity, and the
procedure is described in the following section.

Step 1: Find distances between any two processors.

Step 2: Specify a cluster number, k, and randomly

select k processors as initial cluster centres.

Step 3: Processors are assigned to their closest cluster

centres (processors) based on Euclidean distance function.

Step 4: Compute the centroid of each cluster. These

centroids are the new cluster centres.

Step 5: Repeat Step 3) and 4) until these centroids

remain the same in consecutive runs. Thus, a cluster of
workstations with k local communities is set up. Centroids
are community servers, and non-centroids processors in
the cluster are community members.

Once we partitioned workstations with a clustering

algorithm, simply install GA on each workstation with a
sub-population. The communication between a leader
station and its member stations are done via client-server
programming.

5 Performance Evaluation

5.1 Environment and Parameters

Performance study of PGA-based parameter
optimization is conducted over local area network, which
consists of eight homogeneous Pentium workstations.
Back-propagation neural network classifier in WEKA [5]
data mining library is used to build and evaluate
classification models. Fitness value is derived from root
mean square error returned by neural network classifier.
Parameters and their value ranges used in PGA-guided
parametric optimization of back propagation neural
network classifier are summarized in Figure 3. Default
values in Figure 3 refer to default values used in standard
back-propagation Neural Network classifier, and included
here for cross reference. After iterations of PGA-guided
search, parameter values derived from the search result are
the tailored values for the particular data set.

Parameters Value
Range

Bit Length Default
Value

Learning
Rate

[0, 1.00] 7 0.3

Momentum [0, 1.00] 7 0.2
Hidden layer [1, attribute

number]
Round(log

2 A)
4

Epochs in
training

[1, 1000] 10 500

Error
threshold in
validation

[1, 100] 7 30

Figure 3. Parameters in Back propagation NN Classifier

Proportional selection with elitism is used in PGA, and
a clustering algorithm is used as pre-processing in PGA to
partition workstations by distance. For PGA-related
parameters, a high cross over rate and a low mutation rate
are used. To study speed-up of PGA, we keep total
population size constant, and decrease population size on
each workstation while increasing the number of
workstations. Parameters in VC-PGA are summarized in
Figure 4.

Parameters VC-PGA
Generation 20
Population
size

15, 20, 30, 60,
120

Cross over rate 0.8
Mutation rate 0.01

Figure 4. Parameters in GA and VC-PGA

Proceedings of the International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN�02)
1087-4089/02 $17.00 © 2002 IEEE

5.2 Performance Analysis

We implemented VC-PGA model on up to 8 stations in
a local area network to observe its speed-up. The depth of
VC hierarchy is one, and two LCs are formed. To obtain
speed-up, we keep total population size and the number of
iterations constant, while using a different cluster size from
1 to 8. For example, population size is 60 on each station
in a 2-station cluster, population size 30 on each station in
a 4-station cluster and so on. The elapsed time for each
cluster to complete its job is taken using the maximum
time spent across all stations in a cluster at end of iteration.
As shown in Figure 5, VC-PGA closely follows a linear
speed-up.

Figure 5. PGA Speed-up

Figure 6 shows population fitness in speed-up of VC-
PGA parametric optimization. Best fitness found at all
cases is similar to each other. It indicates that search
outcomes are comparable among different experiments
when more workstations are used to process the same job
size. Average population fitness across all sub-populations
seems to increase as more nodes are used to work with
smaller population size. This is because the results are
taken at end of relatively small number of generation
where sub-populations have not converged.

Nodes Population
Size

Average
Fitness

Best Fitness

1 120 70 77.66264
2 60 71 77.51973
4 30 73.5 77.52943
6 20 73.3 78.20998
8 15 75.3 77.51269

Figure 6. Population Fitness in PGA Speedup

6 Conclusions

This paper proposed an extended version of island
model, namely Virtual Community PGA (VC-PGA), to
solve the problem of delayed propagation of the globally
fittest individual via neighbourhood evolving in both
island model and cellular model. Delayed migration of
best individual in parallel genetic algorithms is an essential
deviation from sequential version of genetic algorithm, in
which the best individuals are always used to compete with
other individuals. In our future work, we would like to
investigate VC-PGA in more details including scalability
and performance comparison with existing PGA models.

Acknowledgment

The authors would like to thank anonymous referees for
their helpful comments.

References

[1] D.E. Goldberg, Genetic Algorithms in Search, Optimization,
and Machine Learning, Addison-Wesley Publishing Co.,
1989.

[2] T. Starkweather, D. Whitley, and K. Mathias, “ Optimization
using distributed genetic algorithm” , Parallel Problem
Solving from Nature, pp. 176-185, Springer Verlag, 1991.

[3] M. Gorges-Schleuter, “ Explicit parallelism of genetic
algorithms through population structures” , Parallel Problem
Solving from Nature, pp 150-159, Springer Verlag, 1991.

[4] V. S. Gordon and D. Whitley, “ A Machine-Independent
Analysis of Parallel Genetic Algorithms” , Complex Systems,
8:181-214, 1994.

[5] I. H. Witten and E. Frank, Data Mining: Practical Machine
Learning Tools and Techniques with Java Implementations,
Morgan Kaufmann, 2000.

[6] S. M. Sait and Y. Youusef, “ Iterative Computer Algorithms
with Application in Engineering” , Solving Combinatorial
Optimization Problems, IEEE Computer Society, 1999.

[7] L. Kaufman and P.J. Rousseeuw, Finding Groups in Data:
an Introduction to Cluster Analysis, John Wiley & Sons,
1990.

[8] T. Blickle and L. Thiele, “ A Comparison of Selection
Schemes used in Evolutionary Algorithms” , Evolutionary
Computation, volume 4, number 4, pp.361-394, MIT-Press,
1996.

PGA Speed-Up

0

2

4

6

8

10

1 2 3 4 5 6 7 8

Workstations

S
p

ee
d

-u
p

Linear

VC-PGA

Proceedings of the International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN�02)
1087-4089/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

