
Sorting in Parallel Database Systems

David Taniar
Department of Computer Science

Royal Melbourne Institute of Technology
GPO Box 2476V, Melbourne 3001, Australia

taniar @cs.rmit.edu.au

Abstract

Sorting in database processing is frequently required
through the use of Order By and Distinct clauses in SQL.
Sorting is also widely known in computer science
community at large. Sorting in general covers internal
and external sorting. Past published work has extensively
focused on external sorting on uni-processors (serial
external sorting), and internal sorting on multi-
processors (parallel internal sorting). External sorting on
multi-processors (parallel external sorting) has received
surprisingly little attention; furthermore, the way current
parallel database systems do sorting is far from optimal
in many scenarios. In this paper, we present a taxonomy
for parallel sorting in parallel database systems, which
covers jive sorting methods: namely parallel merge-all
sort. parallel binary-merge sort, parallel redistribution
binary-merge sort, parallel redistribution merge-all sort,
and parallel partitioned sort. The first two methods are
previously proposed approaches to parallel external
sorting which have been adopted as status quo of parallel
database sorting, whereas the latter three methods which
are based on redistribution and repartitioning are new
that have not seen discussed in the literature of parallel
external sorting.

1 Introduction

Sorting is one of the most common operations in
database processing [SI. Sorting may be requested
explicitly by users through the use of Order B y clause
in SQL. The Order By clause basically requires the
query results to be ordered on the designated attributes in
ascending or descending order. Another operation which
also requires sorting is duplicate removal through the use
of Distinct keyword in SQL. The Distinct
operation basically removes all duplicates found in the
query result. This can be achieved by first sorting the
query results and then followed by removing duplicates
through scanning [8].

0-7695-0589-2/00 $10.00 0 2000 IEEE
830

J. Wenny Rahayu
Department of Comp. Sc. and Comp. Eng.

La Trobe University
Bundoora Vic 3823, Australia

wenny @cs.latrobe.edu.au

Sorting may also be required in join operations
through the use of sort-merge join algorithm [161. This is
less explicit than the use of Order B y and Distinct
clauses in SQL. However, some query optimizers allow
users to specify any join algorithms to be used when
invoking an SQL query [151.

The topic of sorting in traditional data structure and
algorithm subjects is divided into two areas, namely
internal and external sorting [121. Internal sorting is
where sorting takes place totally in main memory. The
data to be sorted is assumed to be small and fits the main
memory. Internal sorting has been a foundation of
computer science. A number of internal sorting both serial
and parallel has been explored [3]. External sorting on the
other hand is where the data to be sorted is large and
resides in secondary memory. Thus, external sorting is
also known as file sorting. In databases, since data is
stored in tables (or files) and is normally very large,
database sorting is therefore an external sorting. External
sorting is not really a new research topic. It has been
explained in computer science textbooks [6] . However,
external sorting has always been discussed in a uni-
processor environment through the use of multiple disks
or tapes [7] . Parallel external sorting has not been fully
explored. The traditional approaches of parallel external
sorting have been to perform local sort in each processor
in the first stage and to carry out merging by the host or
using a pipeline hierarchy of processors in the second
stage [2,3].

It is the aim of this paper to fully explore parallel
external sorting for high performance parallel database
systems. We assume that the parallel database architecture
used is a shared-nothing architecture, where each
processor has its own processor and memory (main and
secondary) [I] . In the taxonomy, besides the two
traditional approaches, we add with three new approaches
based on the redistribution/repartitioning methods. In
these approaches, parallelism is better achieved because
bottleneck problem and inefficient merging are solved
through redistribution and repartitioning.

Before we present the taxonomy, it is necessary for
the reader to be familiar with the concept of serial

external sorting, since this is the foundation of parallel
external sorting as local sort in each processor is actually
a serial external sorting. A brief background on serial
external sorting will be discussed next.

2 Serial External Sorting: A Background

Serial external sorting is external sorting in a uni-
processor environment. The most common serial external
sorting algorithm is based on sort-merge. The underlying
principle of sort-merge algorithm is to break the file up
into unsorted subfiles, sort the subfiles, and then merge
the sorted subfiles into larger and larger sorted subfiles
until the entire file is sorted. Notice that the first stage is
to sort the first lot of subfiles, whereas the second stage is
actually the merging phase. In this scenario, i t is
important to determine the size of the first lot of subfiles
which are be sorted. Normally, each of these subfiles
must be small enough to fit into main memory, so that
sorting these subfiles can be done in main memory using
any internal sorting technique.

We divide a serial external sorting algorithm into two
phases: sort and merge.

The sort algorithm, which incorporates a partitioning
of the original file, is explained as follows: First,
determine R, the number of records, which we can
reasonably sort internally. Second, determine K the total
number of disks we can use. Third, sort R, records at a
time internally, writing the results in turn onto each of K/2
disks with file markers at their ends. Finally, repeat the
third step above, writing additional files onto the K/2
disks.

Once sorting of subfiles is completed, merging phase
starts. An algorithm for the merging process is described
as follows. First, do a K/2-way merge using the first
subfile from each disk, writing the output onto one of the
K/2 empty disks. Second, repeat the first step above for
each of the rest of the K/2 empty disks. Finally, repeat
steps 1 and 2 above, merging in rotation onto the K/2
subfiles until the original K/2 disks are empty.

As stated in the beginning that serial external sort is
the basis for parallel external sort, because in a multi-
processor system, particularly in a shared-nothing
environment, each processor has its own data, and sorting
this data locally in each processor is done as per serial
external sort explained above. Therefore, the main
concern in parallel external sort is not the local sort, but
whether local sort is done first or later, and how merging
is performed. The next section describes different ways of
parallel external sort by basically considering the two
factors mentioned above.

3 A Taxonomy of Parallel External Sort

We present five parallel external sort for parallel
database systems. They are parallel merge-all sort,

parallel binary-merge sort, parallel redistribution binary-
merge sort, parallel redistribution merge-all sort, and
parallel partitioned sort. Each of them will be described
in more details in the following.

3.1 Parallel Merge-All Sort

Parallel Merge-All Sort method is a traditional
approach which has been adopted as the basis for
implementing sorting operations in several research
prototype (Gamma) [4] and some commercial Parallel
DBMS. Parallel Merge-All Sort is composed of two
phases: local sort andfinal merge. The local sort phase is
carried out independently in each processor. Local sorting
in each processor is performed as per normal serial
external sorting mechanism. We emphasize that it is a
serial external sorting as it is assumed that the data to be
sorted in each processor is very large and they cannot be
fitted into the main memory, and hence external sorting
(as opposed to internal sorting) is required in each
processor.

After local sort phase is completed, the second phase:
final merge phase starts. In this final merge phase, the
results from the local sort phase are transferred to the host
for final merging. The final merge phase is carried out by
one processor namely the host. This merging operation is
influenced by the practice of k-way merging (i.e. k22) in
serial external sorting [7] .

Figure 1 gives an illustration of parallel merge-all sort
process. For simplicity, we use a list of numbers which
are to be sorted. In the real world, the list of numbers is
actually a list of records from very large tables.

El
IiI
(17 Final merge

Local son

Record\ from rhe child operaror

Figure 1. Parallel Merge-All Sort

Looking at the graphical illustration in Figure I ,
Parallel Merge-All Sort is simple, as it is a one-level tree.
Load balancing in each processor at the local sort phase is
relatively easy to achieve, especially if a round-robin data
placement technique is used in the initial data partitioning

83 1

[5] . It is also easy to predict the outcome of the process,
as performance modelling of such process is relatively
straightforward.

Despite its simplicity, Parallel Merge-All Sort method
incurs an obvious problem, particularly in the final
merging phase, as merging in one processor is heavy.
This is true especially if number of processors is large,
and there is a limit of number of files to be merged (i.e.
limitation in number of files to be opened or number of
disks available in the host). If the number of processors is
greater than the number of open files permitted, final
merging in the host must perform multiple level merging.
For example, if there are 8 processors and only 5 files
may be open.at once, final merging in the host can merge
the first 5 lists from 5 processors and produces one sorted
list. The same method is applied to the other three lists
producing another list. And finally, the two temporary
lists may be merged to produce the final results. Detailed
discussions on this issue are commonly found in
literatures on serial external sorting.

Another problem with Parallel Merge-All Sort is
network contention, as all temporary results from each
processor in the local sort phase are passed to the host.
The problem of merging by one host is to be tackled by
the next sorting scheme whereby merging is not done by
one processor but shared by multiple processors in a form
of hierarchical merging.

3.2 Parallel Binary-Merge Sort

Parallel Binary-Merge Sort is first proposed by Bitton
et a1 [2 ,3] . The first phase of Parallel Binary-Merge Sort
is a local sorr as like in parallel merge-all sort. The
second phase: the merging phase is pipelined, instead of
concentrating on one processor. The way the merging
phase works is by taking the results from two processors,
and merging the two in one processors. As this merging
technique uses only two processors, this merging is called
"Binary Merging". The result of the merging between two
processors is passed on to the next level until one
processor left; that is the host. Subsequently, the merging
process forms a hierarchy. Figure 2 gives an illustration of
the process.

The main motivation to use parallel binary-merge sort
is that the merging workload is spread to a pipeline of
processors, instead of one processor. It is true however
that final merging has still to be done by one processor.

Some of the benefits of parallel binary-merge sort are
similar to those of parallel merge-all sort, such as
balancing in local sort can be done if a round-robin data
placement is initially used to the raw data to be sorted.
Another benefit as stated before that merging workload is
now shared among processors.

However, problems relating to the heavy merging
workload in the host still exists, even though it is now the
final merging only merges a pair of list of sorted data, not

a k-way merging like that in parallel merge-all sort.
Binary merging can still be time consuming, particularly
if the two lists to be merged are very large.

Two- lrvr l
hirrarchicul
merging u.\ing
(N-I) nodrs in
U piprl inr.

Loccrl
sort

RYL ordr from rhr c hrld oprrcrror

Figure 2. Parallel Binary-Merge Sort

The main difference between k-way merging and
binary merging is that in k-way merging there is a
searching process in the merging; that is to search the
smallest value among all values compared at the same
time. In binary merging, this searching is purely a
comparison between two values compared at one time.

Regarding the system requirement, k-way mcrging
requires sufficient number of files to be opened at the
same time. This requirement is trivial in binary merging,
as i t only requires a maximum of two files to be opened,
and this is easily satistied by any operating systems.

Pipcline system as in the binary merging will ccrtainly
produce extra work through the pipe itself. The pipeline
mechanism also produces a higher tree, not a one-level
tree as in the previous method. However, if the limitation
of the number of opened tiles permitted in the k-way
merging, parallel merge-all sort will incur mcrgins
overheads.

In parallel binary-merge sort, i t is still no true
parallelism i n the merging as only a subset, not all, of
available processors is used.

We propose three possible altcrnativcs using the
concept of redistribution or repartitioning. The first
approach we would like to introduce is a modification of
parallel binary-merge sort by incorporating redistribution
in the pipeline hierarchy of merging. The second
approach is an alteration to parallel m e r g e d sort, also
through the use of redistribution. The third approach we
would like to include in this paper differs from the others,
as local sorting is delayed after partitioning is done. The
details of these three methods are described next.

832

3.3 Parallel Redistribution Binary-Merge Sort

Parallel Redistribution Binary-Merge Sort is
motivated by parallelism at all levels in the pipeline
hierarchy. Therefore, i t is similar to parallel binary-merge
sort where both methods use hierarchy pipeline for
merging local sort results, but differ in the context of
number of processors involved in the pipe. Using parallel
redistribution binary-merge sort, all processors are used in
each level in the hierarchy of merging.

The steps for parallel redistribution binary-merge sort
can be described as follows. First, a local sort is carried
out in each processor as like in the previous sorting
methods. Second, redistribute the results of local sort to
the same pool of processors. Third, do a merging using
the same pool of processors. Finally, repeat the above two
steps until final merging. The final result is the union of
all temporary results obtained in each processor. Figure 3
gives an illustration of parallel redistribution binary-
merge sort method.

Notice from the illustration that in the final merge
phase, some of the boxes are empty (e.g. gray boxes).
They indicate that they do not receive any values from the
designated processors. For example, the first gray box on
the left is because there is no values ranging from 1-5
from processor 2. Practically, in this example, processor 1
performs final merging of two lists, because the other two
lists are empty.

Also notice that the results produced by the
intermediate merging in the above example are sorted
within and among processors. It means that for example,
processors 1 and 2 produce a sorted list each, and the
union of these results is also sorted where the results from
processor 2 are preceded by those from processor 1. This
is applied to other pairs of processors. Each pair of
processors in this case forms a pool of processor. In the
next level of merging, two pools of processors use the
same strategy as in the previous level. Finally, in the final
merging, all processors will form one pool, and therefore,
results produced in each processor are sorted, and these
results union altogether are sorted based on the processor
order. In some systems, this is already a final result. If
there is a need to place the results in one processor, results
transfers is then carried out.

The apparent benefit of this method is that merging
becomes lighter compared to those without redistribution,
because merging is now shared by multiple processors,
not monopolized by just one processor. Parallelism is
therefore accomplished at all levels of merging, even
though performance beneficial of this mechanism is
restricted (In the performance evaluation section, this
matter will be further clarified and quantified).

The same problem as that in without redistribution
method which relates to the height of the tree remains
outstanding. This is due to the fact that merging is done in
a pipeline format. Another problem raised by the

redistribution is skew [131. Although initial placement in
each disk is balanced through the use of round-robin data
partitioning, redistribution in the merging process may
likely produce skew, as shown in Figure 3. Modelling
skew is also known to be difficult, and hence simplified
assumption is often used, such as using a Zipfdistribution
to model skew. Like the merge-all sort method, final
merging in the redistribution method is also dependent
upon the maximum number of files opened.

n

Rrcordsfrom rhr child operaror

Figure 3. Parallel Redistribution Binary-Merge
sort

3.4 Parallel Redistribution Merge-All Sort

Parallel Redistribution Merge-All Sort is motivated by
two factors, particularly reducing the height of the tree
while maintaining parallelism at the merging stage. This
can be achieved by exploiting the feature of parallel
merge-all and parallel redistribution binary-merge
methods. In other words, parallel redistribution is a two

833

phase method (local sort and final merging) like parallel
merge-all sort, but does a redistribution based on a range
partitioning. Figure 4 gives an illustration of parallel
redistribution merge-all sort.

Sorted list

Range Redistribution

1 13

Local
sort

Recordyji-om the child opercrtor

Figure 4. Parallel Redistribution Merge-All Sort

As shown in Figure 4, parallel redistribution merge-all
sort is a two-phasc method, where in phase one, local sort
is carried out like in other methods, and in phase two,
results from local sort are redistributed to all processors
based on a range partitioning, and merging is then
performed by each processor.

Like in parallel redistribution hinary-merge sort,
empty boxes drawn by gray boxes are actually empty list
as a result of data redistribution. In the above example,
processor 4 has three empty lists coming from processors
I , 3 , and 4, as they do not have values ranging from 16-20
specified by the range partitioning function.

Also notice that the final results produced in the final
merging phase is each processor are sorted, and these are
also sorted among all processors based on the order of the
processors specified by the range partitioning function.

The advantage of this method is the same as that in
parallel redistribution binary-merge sort, including true
parallelism in the merging process. However, the tree of
parallel redistribution merge-all sort is not a tall tree as in
the parallel redistribution binary-merge sort. It is in fact a
one-level tree like in parallel m e r g e d sort.

Not only the advantages of parallel redistribution
merge-all sort are mirroring those in parallel merge-all
sort and parallel redistribution binary-merge sort, but also
the problems. Skew problems found in parallel

redistribution binary-merge sort also exist in this method.
Consequently, skew modelling needs some simplified
assumptions as well. Additionally, bottleneck problem in
merging which is similar to that is parallel merge-all sort
is also common here, especially if the number of
processor is large and exceeds the limit of number of files
can be opened at once.

3.5 Parallel Partitioned Sort

Parallel Partitioned Sort is influenced by the
techniques used in parallel partitioned join, where the
process is split into two stages: partitioning and
independent local work [14,161. In parallel partitioned
sort, first we partition local data according to range
partitioning used in the operation. Notice the difference
between this method and others. In this method, the first
phase is not a local sort. Local sort is not carried out here.
Each local processor scans its records and redistribute or
repartition according to some range partitioning.

After partitioning is done, each processor will have an
unsorted list in which the values come from various
processors (places). It is then local sort is carried out.
Thus, local sort is carried out after the partitioning, not
before. It is also noticed that merging is not needed. The
results produced by the local sort are already the final
results. Each processor will have produced a sorted list,
and all processors in the order of the range partitioning
method used in this process are also sorted. Figure 5
shows an illustration of this method.

Sorted list

Local sort

1-5 Redistribution

Ranee

Scan only
(no local sort)

Records from the child operator

Figure 5. Parallel Partitioned Sort

834

The main benefit of parallel partitioned sort is that no
merging is necessary, and hence the bottleneck in
merging is avoided. It is also a true parallelism, as all
processors are being uscd in the two phases. And most
importantly, i t is a one-level tree reducing unnecessary
overhead in the pipeline hierarchy.

Despite these advantages, the problem remain
outstanding is skew which is produced by the partitioning.
This is a common problem even in the partitioned join.
Load balancing in this situation is often carried out by
producing more buckets than the available number
processors, and workload arrangement of these buckets
can then be carried out to evenly distribute buckets into
processors [9,10,11]. For example, in Figure 6, seven
buckets is created for 3 processors. The size of each
bucket is likely to be different, and after the buckets are
created, bucket placement and arrangement are performed
to make the workload of the three processors balanced.
For example, buckets A, B, and G go to processor I ,
buckets C and F to processor 2 , and the rests to processor
3. In this way, the workload of these three processors will
be balanced.

Figure 6. Bucket Tuning Load Balancing

However, bucket tuning in the original form as shown
in Figure 6 is not relevant to parallel sort. This is because
in parallel sort, the order of the processors is important. In
the above example, buckets A will have values which are
smaller than those in bucket B, and values in bucket B are
smaller than those in bucket C, etc. Then buckets A to G
are in order. The values in each bucket are to be sorted,
and once they are sorted, the union of values from each
bucket together with the bucket order produces a sorted
list. Imagine that bucket tuning as shown in Figure 6 is
applied to parallel partitioned sort. Processor 1 will have
three sorted lists; from buckets A, B, and G. Processors 2
and 3 will have 2 sorted lists each. However, since the
buckets in the three processors are not in the original
order (i.e. A to G), the union of sorted lists from
processors I , 2 and 3 will not produce a sorted list, unless
further operation is carried out. We reserve the discussion
on load balancing for future work, and thus it is out of
scope of this paper.

4 Conclusions and Future Work

In this paper, we have presented a taxonomy for
parallel external sorting in high performance database
systems. The taxonomy consists of five sorting methods,
namely parallel merge-all sort, parallel binary-merge
sort, parallel redistribution binary-merge sort, parallel
redistribution merge-all sort, and parallel partitioned
sort. The first two sorts are widely known through
previous publications. We added with the other three
methods, through the use of redistribution and
repartitioning concepts.

Our future work is to investigate the behaviour of each
of the parallel external sorting methods. This will include
analytical analysis and performance measurements. We
also plan to examine the skew problems and techniques to
solve them.

References

[I] Bergsten, B. , Couprie, M., and Valduriez, P., "Overview of
Parallel Architecture for Databases", The Cornpiiter
Journal, vol. 36, no. 8, pp. 734-740, 1993.

[2] Bitton, D., et al. "Parallel Algorithms for the Execution of
Relational Database Operations", ACM TODS, 8(3), 1983.

[3] Bitton, D., et al, "A Taxonomy of Parallel Sorting", ACM
Conip. Surv., vol. 16, no. 3, pp. 287-318, September 1984.

[4] DeWitt, D.J., et al. ."The Gamma Database Machine
Project", lEEE TKDE, vol. 2 , no. I , March 1990.

[5] DeWitt, D.J. and Gray, J., "Parallel Database Systems: The
Future of High Performance Database Systems", Cornm. of
the ACM, vol. 35, no. 6, pp. 85-98, 1992.

[6] Elmasri, R. and Navathe, S.B., Aoidameritcil of Database
Sys tem, 2"d ed., BenjaminlCummings Publishing, 1994.

[7] Feldman, M.B., "Chapter IO: Sorting External Files", Dura
Strvctirres with Ada, Prentice Hall, pp.290-300, 1985.

[X I Graefe, G., "Query Evaluation Techniques for Large
Databases", ACM Comnp. Sitrv., 25(2), pp. 73-170, 1993.

[9] Hua, K.A. and Lee, C., "Handling Data Skew in
Multiprocessor Database Computers Using Partition
Tuning", Proc. ofthe 17'h VLDB C O $, pp. 525-535, 1991.

[IO] Hua, K.A., Lee, C. and Hua, C.M., "Dynamic Load
Balancing in Multicomputer Database Systems Using
Partition Tuning", lEEE TKDE, 7(6), pp. 968-983, 1995.

[1 I] Kitsuregawa, M. and Ogawa, Y., "Bucket Spreading
Parallel Hash: a New, Robust, Parallel Hash Join Method
for Data Skew in the Super Database Computer (SDC)",
Proc. offhe 16'h VLDB Cant, Brisbane, pp. 210-221, 1990.

(121 Knuth, D.E., The Art of Coinpurer Progratnining: Sorting
and Searching, vol. 3, Addison-Wesley, 1973.

[I31 Liu, K.H., Leung, C.H.C., and Jiang, Y., "Analysis and
Taxonomy of Skew in Parallel Databases", Proc. of H i g h
Pe$ Coinp. Symp. HPDCPS, Canada, pp. 304-315, 1995.

[141 Mishra, P. and Eich, M.H., "Join Processing in Relational
Databases", ACM Cornp. Surv., 24(1), pp. 63-1 13, 1992.

[151 Oracle, Oracle 8 Server Concepts, Release 8.0, 1998.
[I61 Wolf, J.L., Dias, D.M and Yu, P.S., "A Parallel Sort Merge

Join Algorithm for Managing Data Skew", lEEE TPDS,
vol. 4, no. I , pp. 70-86, January 1993.

83 5

