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Abstract 

Sorting in database processing is frequently required 
through the use of Order By and Distinct clauses in SQL. 
Sorting is also widely known in computer science 
community at large. Sorting in general covers internal 
and external sorting. Past published work has extensively 
focused on external sorting on uni-processors (serial 
external sorting), and internal sorting on multi- 
processors (parallel internal sorting). External sorting on 
multi-processors (parallel external sorting) has received 
surprisingly little attention; furthermore, the way current 
parallel database systems do sorting is far from optimal 
in many scenarios. In this paper, we present a taxonomy 
for  parallel sorting in parallel database systems, which 
covers jive sorting methods: namely parallel merge-all 
sort. parallel binary-merge sort, parallel redistribution 
binary-merge sort, parallel redistribution merge-all sort, 
and parallel partitioned sort. The first two methods are 
previously proposed approaches to parallel external 
sorting which have been adopted as status quo of parallel 
database sorting, whereas the latter three methods which 
are based on redistribution and repartitioning are new 
that have not seen discussed in the literature of parallel 
external sorting. 

1 Introduction 

Sorting is one of the most common operations in 
database processing [SI. Sorting may be requested 
explicitly by users through the use of Order B y  clause 
in SQL. The Order By clause basically requires the 
query results to be ordered on the designated attributes in 
ascending or descending order. Another operation which 
also requires sorting is duplicate removal through the use 
of Distinct keyword in SQL. The Distinct 
operation basically removes all duplicates found in the 
query result. This can be achieved by first sorting the 
query results and then followed by removing duplicates 
through scanning [8]. 
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Sorting may also be required in join operations 
through the use of sort-merge join algorithm [ 161. This is 
less explicit than the use of Order B y  and Distinct 
clauses in SQL. However, some query optimizers allow 
users to specify any join algorithms to be used when 
invoking an SQL query [ 151. 

The topic of sorting in traditional data structure and 
algorithm subjects is divided into two areas, namely 
internal and external sorting [ 121. Internal sorting is 
where sorting takes place totally in main memory. The 
data to be sorted is assumed to be small and fits the main 
memory. Internal sorting has been a foundation of 
computer science. A number of internal sorting both serial 
and parallel has been explored [3]. External sorting on the 
other hand is where the data to be sorted is large and 
resides in secondary memory. Thus, external sorting is 
also known as file sorting. In databases, since data is 
stored in tables (or files) and is normally very large, 
database sorting is therefore an external sorting. External 
sorting is not really a new research topic. It has been 
explained in computer science textbooks [6] .  However, 
external sorting has always been discussed in a uni- 
processor environment through the use of multiple disks 
or tapes [7] .  Parallel external sorting has not been fully 
explored. The traditional approaches of parallel external 
sorting have been to perform local sort in  each processor 
in the first stage and to carry out merging by the host or 
using a pipeline hierarchy of processors in  the second 
stage [2,3]. 

It is the aim of this paper to fully explore parallel 
external sorting for high performance parallel database 
systems. We assume that the parallel database architecture 
used is a shared-nothing architecture, where each 
processor has its own processor and memory (main and 
secondary) [ I ] .  In the taxonomy, besides the two 
traditional approaches, we add with three new approaches 
based on the redistribution/repartitioning methods. In 
these approaches, parallelism is better achieved because 
bottleneck problem and inefficient merging are solved 
through redistribution and repartitioning. 

Before we present the taxonomy, it  is necessary for 
the reader to be familiar with the concept of serial 



external sorting, since this is the foundation of parallel 
external sorting as local sort in each processor is actually 
a serial external sorting. A brief background on serial 
external sorting will be discussed next. 

2 Serial External Sorting: A Background 

Serial external sorting is external sorting in a uni- 
processor environment. The most common serial external 
sorting algorithm is based on sort-merge. The underlying 
principle of sort-merge algorithm is to break the file up 
into unsorted subfiles, sort the subfiles, and then merge 
the sorted subfiles into larger and larger sorted subfiles 
until the entire file is sorted. Notice that the first stage is 
to sort the first lot of subfiles, whereas the second stage is 
actually the merging phase. In this scenario, i t  is 
important to determine the size of the first lot of subfiles 
which are be sorted. Normally, each of these subfiles 
must be small enough to fit into main memory, so that 
sorting these subfiles can be done in main memory using 
any internal sorting technique. 

We divide a serial external sorting algorithm into two 
phases: sort and merge. 

The sort algorithm, which incorporates a partitioning 
of the original file, is explained as follows: First, 
determine R, the number of records, which we can 
reasonably sort internally. Second, determine K the total 
number of disks we can use. Third, sort R, records at a 
time internally, writing the results in turn onto each of K/2 
disks with file markers at their ends. Finally, repeat the 
third step above, writing additional files onto the K/2 
disks. 

Once sorting of subfiles is completed, merging phase 
starts. An algorithm for the merging process is described 
as follows. First, do a K/2-way merge using the first 
subfile from each disk, writing the output onto one of the 
K/2 empty disks. Second, repeat the first step above for 
each of the rest of the K/2 empty disks. Finally, repeat 
steps 1 and 2 above, merging in rotation onto the K/2 
subfiles until the original K/2 disks are empty. 

As stated in the beginning that serial external sort is 
the basis for parallel external sort, because in a multi- 
processor system, particularly in a shared-nothing 
environment, each processor has its own data, and sorting 
this data locally in each processor is done as per serial 
external sort explained above. Therefore, the main 
concern in parallel external sort is not the local sort, but 
whether local sort is done first or later, and how merging 
is performed. The next section describes different ways of 
parallel external sort by basically considering the two 
factors mentioned above. 

3 A Taxonomy of Parallel External Sort 

We present five parallel external sort for parallel 
database systems. They are parallel merge-all sort, 

parallel binary-merge sort, parallel redistribution binary- 
merge sort, parallel redistribution merge-all sort, and 
parallel partitioned sort. Each of them will be described 
in more details in the following. 

3.1 Parallel Merge-All Sort 

Parallel Merge-All Sort method is a traditional 
approach which has been adopted as the basis for 
implementing sorting operations in several research 
prototype (Gamma) [4] and some commercial Parallel 
DBMS. Parallel Merge-All Sort is composed of two 
phases: local sort andfinal merge. The local sort phase is 
carried out independently in each processor. Local sorting 
in each processor is performed as per normal serial 
external sorting mechanism. We emphasize that it is a 
serial external sorting as it  is assumed that the data to be 
sorted in each processor is very large and they cannot be 
fitted into the main memory, and hence external sorting 
(as opposed to internal sorting) is required in each 
processor. 

After local sort phase is completed, the second phase: 
final merge phase starts. In this final merge phase, the 
results from the local sort phase are transferred to the host 
for final merging. The final merge phase is carried out by 
one processor namely the host. This merging operation is 
influenced by the practice of k-way merging (i.e. k22) in 
serial external sorting [ 7 ] .  

Figure 1 gives an illustration of parallel merge-all sort 
process. For simplicity, we use a list of numbers which 
are to be sorted. In the real world, the list of numbers is 
actually a list of records from very large tables. 
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Figure 1. Parallel Merge-All Sort 

Looking at the graphical illustration in Figure I ,  
Parallel Merge-All Sort is simple, as it  is a one-level tree. 
Load balancing in each processor at the local sort phase is 
relatively easy to achieve, especially if a round-robin data 
placement technique is used in the initial data partitioning 
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[ 5 ] .  It is also easy to predict the outcome of the process, 
as performance modelling of such process is relatively 
straightforward. 

Despite its simplicity, Parallel Merge-All Sort method 
incurs an obvious problem, particularly in the final 
merging phase, as merging in one processor is heavy. 
This is true especially if  number of processors is large, 
and there is a limit of number of files to be merged (i.e. 
limitation in number of files to be opened or number of 
disks available in the host). If the number of processors is 
greater than the number of open files permitted, final 
merging in the host must perform multiple level merging. 
For example, if there are 8 processors and only 5 files 
may be open.at once, final merging in the host can merge 
the first 5 lists from 5 processors and produces one sorted 
list. The same method is applied to the other three lists 
producing another list. And finally, the two temporary 
lists may be merged to produce the final results. Detailed 
discussions on this issue are commonly found in 
literatures on serial external sorting. 

Another problem with Parallel Merge-All Sort is 
network contention, as all temporary results from each 
processor in the local sort phase are passed to the host. 
The problem of merging by one host is to be tackled by 
the next sorting scheme whereby merging is not done by 
one processor but shared by multiple processors in a form 
of hierarchical merging. 

3.2 Parallel Binary-Merge Sort 

Parallel Binary-Merge Sort is first proposed by Bitton 
et a1 [2 ,3 ] .  The first phase of Parallel Binary-Merge Sort 
is a local sorr as like in parallel merge-all sort. The 
second phase: the merging phase is pipelined, instead of 
concentrating on one processor. The way the merging 
phase works is by taking the results from two processors, 
and merging the two in one processors. As this merging 
technique uses only two processors, this merging is called 
"Binary Merging". The result of the merging between two 
processors is passed on to the next level until one 
processor left; that is the host. Subsequently, the merging 
process forms a hierarchy. Figure 2 gives an illustration of 
the process. 

The main motivation to use parallel binary-merge sort 
is that the merging workload is spread to a pipeline of 
processors, instead of one processor. It is true however 
that final merging has still to be done by one processor. 

Some of the benefits of parallel binary-merge sort are 
similar to those of parallel merge-all sort, such as 
balancing in local sort can be done if a round-robin data 
placement is initially used to the raw data to be sorted. 
Another benefit as stated before that merging workload is 
now shared among processors. 

However, problems relating to the heavy merging 
workload in the host still exists, even though it is now the 
final merging only merges a pair of list of sorted data, not 

a k-way merging like that in parallel merge-all sort. 
Binary merging can still be time consuming, particularly 
if the two lists to be merged are very large. 
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Figure 2. Parallel Binary-Merge Sort 

The main difference between k-way merging and 
binary merging is that in k-way merging there is a 
searching process in the merging; that is to search the 
smallest value among all values compared at the same 
time. In binary merging, this searching is purely a 
comparison between two values compared at one time. 

Regarding the system requirement, k-way mcrging 
requires sufficient number of files to be opened at the 
same time. This requirement is trivial in binary merging, 
as i t  only requires a maximum of two files to be opened, 
and this is easily satistied by any operating systems. 

Pipcline system as in the binary merging will ccrtainly 
produce extra work through the pipe itself. The pipeline 
mechanism also produces a higher tree, not a one-level 
tree as in the previous method. However, if  the limitation 
of the number of opened tiles permitted in the k-way 
merging, parallel merge-all sort will incur mcrgins 
overheads. 

In parallel binary-merge sort, i t  is still no true 
parallelism i n  the merging as only a subset, not all, of 
available processors is used. 

We propose three possible altcrnativcs using the 
concept of redistribution or repartitioning. The first 
approach we would like to introduce is a modification of 
parallel binary-merge sort by incorporating redistribution 
in the pipeline hierarchy of merging. The second 
approach is an alteration to parallel m e r g e d  sort, also 
through the use of redistribution. The third approach we 
would like to include in this paper differs from the others, 
as local sorting is delayed after partitioning is done. The 
details of these three methods are described next. 
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3.3 Parallel Redistribution Binary-Merge Sort 

Parallel Redistribution Binary-Merge Sort is 
motivated by parallelism at all levels in the pipeline 
hierarchy. Therefore, i t  is similar to parallel binary-merge 
sort where both methods use hierarchy pipeline for 
merging local sort results, but differ in the context of 
number of processors involved in the pipe. Using parallel 
redistribution binary-merge sort, all processors are used in 
each level in  the hierarchy of merging. 

The steps for parallel redistribution binary-merge sort 
can be described as follows. First, a local sort is carried 
out in each processor as like in the previous sorting 
methods. Second, redistribute the results of local sort to 
the same pool of processors. Third, do a merging using 
the same pool of processors. Finally, repeat the above two 
steps until final merging. The final result is the union of 
all temporary results obtained in each processor. Figure 3 
gives an illustration of parallel redistribution binary- 
merge sort method. 

Notice from the illustration that in the final merge 
phase, some of the boxes are empty (e.g. gray boxes). 
They indicate that they do not receive any values from the 
designated processors. For example, the first gray box on 
the left is because there is no values ranging from 1-5 
from processor 2. Practically, in this example, processor 1 
performs final merging of two lists, because the other two 
lists are empty. 

Also notice that the results produced by the 
intermediate merging in the above example are sorted 
within and among processors. It means that for example, 
processors 1 and 2 produce a sorted list each, and the 
union of these results is also sorted where the results from 
processor 2 are preceded by those from processor 1. This 
is applied to other pairs of processors. Each pair of 
processors in this case forms a pool of processor. In the 
next level of merging, two pools of processors use the 
same strategy as in the previous level. Finally, in the final 
merging, all processors will form one pool, and therefore, 
results produced in each processor are sorted, and these 
results union altogether are sorted based on the processor 
order. In some systems, this is already a final result. If 
there is a need to place the results in one processor, results 
transfers is then carried out. 

The apparent benefit of this method is that merging 
becomes lighter compared to those without redistribution, 
because merging is now shared by multiple processors, 
not monopolized by just one processor. Parallelism is 
therefore accomplished at all levels of merging, even 
though performance beneficial of this mechanism is 
restricted (In the performance evaluation section, this 
matter will be further clarified and quantified). 

The same problem as that in  without redistribution 
method which relates to the height of the tree remains 
outstanding. This is due to the fact that merging is done in 
a pipeline format. Another problem raised by the 

redistribution is skew [ 131. Although initial placement in 
each disk is balanced through the use of round-robin data 
partitioning, redistribution in the merging process may 
likely produce skew, as shown in Figure 3. Modelling 
skew is also known to be difficult, and hence simplified 
assumption is often used, such as using a Zipfdistribution 
to model skew. Like the merge-all sort method, final 
merging in the redistribution method is also dependent 
upon the maximum number of files opened. 

n 

Rrcordsfrom rhr child operaror 

Figure 3. Parallel Redistribution Binary-Merge 
sort 

3.4 Parallel Redistribution Merge-All Sort 

Parallel Redistribution Merge-All Sort is motivated by 
two factors, particularly reducing the height of the tree 
while maintaining parallelism at the merging stage. This 
can be achieved by exploiting the feature of parallel 
merge-all and parallel redistribution binary-merge 
methods. In other words, parallel redistribution is a two 
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phase method (local sort and final merging) like parallel 
merge-all sort, but does a redistribution based on a range 
partitioning. Figure 4 gives an illustration of parallel 
redistribution merge-all sort. 

Sorted list 

Range Redistribution 

1 13 

Local 
sort 

Recordyji-om the child opercrtor 

Figure 4. Parallel Redistribution Merge-All Sort 

As shown in Figure 4, parallel redistribution merge-all 
sort is a two-phasc method, where in phase one, local sort 
is carried out like in other methods, and in phase two, 
results from local sort are redistributed to all processors 
based on a range partitioning, and merging is then 
performed by each processor. 

Like in parallel redistribution hinary-merge sort, 
empty boxes drawn by gray boxes are actually empty list 
as a result of data redistribution. In the above example, 
processor 4 has three empty lists coming from processors 
I ,  3 ,  and 4, as they do not have values ranging from 16-20 
specified by the range partitioning function. 

Also notice that the final results produced in the final 
merging phase is each processor are sorted, and these are 
also sorted among all processors based on the order of the 
processors specified by the range partitioning function. 

The advantage of this method is the same as that in 
parallel redistribution binary-merge sort, including true 
parallelism in the merging process. However, the tree of 
parallel redistribution merge-all sort is not a tall tree as in 
the parallel redistribution binary-merge sort. It is in fact a 
one-level tree like in parallel m e r g e d  sort. 

Not only the advantages of parallel redistribution 
merge-all sort are mirroring those in parallel merge-all 
sort and parallel redistribution binary-merge sort, but also 
the problems. Skew problems found in parallel 

redistribution binary-merge sort also exist in this method. 
Consequently, skew modelling needs some simplified 
assumptions as well. Additionally, bottleneck problem in 
merging which is similar to that is parallel merge-all sort 
is also common here, especially if the number of 
processor is large and exceeds the limit of number of files 
can be opened at once. 

3.5 Parallel Partitioned Sort 

Parallel Partitioned Sort is influenced by the 
techniques used in parallel partitioned join, where the 
process is split into two stages: partitioning and 
independent local work [ 14,161. In parallel partitioned 
sort, first we partition local data according to range 
partitioning used in the operation. Notice the difference 
between this method and others. In this method, the first 
phase is not a local sort. Local sort is not carried out here. 
Each local processor scans its records and redistribute or 
repartition according to some range partitioning. 

After partitioning is done, each processor will have an 
unsorted list in which the values come from various 
processors (places). It is then local sort is carried out. 
Thus, local sort is carried out after the partitioning, not 
before. It is also noticed that merging is not needed. The 
results produced by the local sort are already the final 
results. Each processor will have produced a sorted list, 
and all processors in the order of the range partitioning 
method used in this process are also sorted. Figure 5 
shows an illustration of this method. 

Sorted list 

Local sort 

1-5 Redistribution 

Ranee 

Scan only 
(no local sort) 

Records from the child operator 

Figure 5. Parallel Partitioned Sort 
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The main benefit of parallel partitioned sort is that no 
merging is necessary, and hence the bottleneck in 
merging is avoided. It is also a true parallelism, as all 
processors are being uscd in the two phases. And most 
importantly, i t  is a one-level tree reducing unnecessary 
overhead in the pipeline hierarchy. 

Despite these advantages, the problem remain 
outstanding is skew which is produced by the partitioning. 
This is a common problem even in the partitioned join. 
Load balancing in this situation is often carried out by 
producing more buckets than the available number 
processors, and workload arrangement of these buckets 
can then be carried out to evenly distribute buckets into 
processors [9,10,11]. For example, in Figure 6, seven 
buckets is created for 3 processors. The size of each 
bucket is likely to be different, and after the buckets are 
created, bucket placement and arrangement are performed 
to make the workload of the three processors balanced. 
For example, buckets A, B, and G go to processor I ,  
buckets C and F to processor 2 ,  and the rests to processor 
3.  In this way, the workload of these three processors will 
be balanced. 

Figure 6. Bucket Tuning Load Balancing 

However, bucket tuning in the original form as shown 
in Figure 6 is not relevant to parallel sort. This is because 
in parallel sort, the order of the processors is important. In 
the above example, buckets A will have values which are 
smaller than those in bucket B, and values in bucket B are 
smaller than those in bucket C, etc. Then buckets A to G 
are in order. The values in each bucket are to be sorted, 
and once they are sorted, the union of values from each 
bucket together with the bucket order produces a sorted 
list. Imagine that bucket tuning as shown in Figure 6 is 
applied to parallel partitioned sort. Processor 1 will have 
three sorted lists; from buckets A, B, and G. Processors 2 
and 3 will have 2 sorted lists each. However, since the 
buckets in the three processors are not in the original 
order (i.e. A to G), the union of sorted lists from 
processors I ,  2 and 3 will not produce a sorted list, unless 
further operation is carried out. We reserve the discussion 
on load balancing for future work, and thus it is out of 
scope of this paper. 

4 Conclusions and Future Work 

In this paper, we have presented a taxonomy for 
parallel external sorting in high performance database 
systems. The taxonomy consists of five sorting methods, 
namely parallel merge-all sort, parallel binary-merge 
sort, parallel redistribution binary-merge sort, parallel 
redistribution merge-all sort, and parallel partitioned 
sort. The first two sorts are widely known through 
previous publications. We added with the other three 
methods, through the use of redistribution and 
repartitioning concepts. 

Our future work is to investigate the behaviour of each 
of the parallel external sorting methods. This will include 
analytical analysis and performance measurements. We 
also plan to examine the skew problems and techniques to 
solve them. 
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