
Parallel Collection-Equi Join Algorithms for Object-Oriented Databases

David Taniar
Monash University – GSCIT

Churchill, Victoria 3842,
Australia

David.Taniar@fcit.monash.edu.au

J. Wenny Rahayu
La Trobe University

School of Computer Sc. & Comp. Eng.
Bundoora, Vic 3083, Australia
wenny@latcs1.lat.oz.au

Abstract

One of the differences between relational and object-
oriented databases (OODB) is that attributes in OODB
can be of a collection type (e.g. sets, lists, arrays, bags) as
well as a simple type (e.g. integer, string). Consequently,
explicit join queries in OODB may be based on collection
attributes. One form of collection join queries in OODB is
“collection-equi join queries”, where the joins are based
on collection attributes and the queries check for an
equality of both collection operands. Our previous work
[7] describes "Parallel Double Sort-Merge" algorithm for
collection-equi join queries. Since the publication, we
realize that we have overlooked the complexity of
collection merging in the algorithm. In this paper, we not
only present alternative solutions relating to the
collection merging problem, but also introduce a new
algorithm called "Parallel Sort-Hash" algorithm. The two
algorithms play an important role in parallel object-
oriented query processing, due to their superiority over
the conventional join methods through relational division
and intersection operators.

1 Introduction

In Object-Oriented Databases (OODB), although
path expression between classes may exist, it is sometimes
necessary to perform an explicit join between two or more
classes due to the absence of pointer connections or the
need for value matching between objects. Furthermore,
since objects are not in a normal form, an attribute of a
class may have a collection as a domain. Collection
attributes are often mistakenly considered merely as set-
valued attributes. As the matter of fact, set is just one type
of collections. There are other types of collection. The
Object Database Standard ODMG [1] defines different
kinds of collections: particularly set, list/array, and bag.
Consequently, object-oriented join queries may also be
based on attributes of any collection type. Such join
queries are called collection join queries [6].

An interest in Parallel OODB (POODB) among
database community has been growing rapidly, following
the popularity of multiprocessor servers and the maturity
of OODB. The emerging between parallel technology and
OODB has shown promising results [3, 4, 9]. However,
most research done in this area concentrated on path
expression queries with pointer chasing. Explicit join
processing exploiting collection attributes has not been
given much attention. It is the aim of this paper to present
parallel algorithms for collection-equi join queries. The
algorithms are non-trivial to POODB, since most
conventional join algorithms (e.g. hybrid hash join, sort-
merge join) deal with single-valued attributes and hence
most of the time they are not capable to handle collection
join queries without complicated tricks, such as using
loop-division (repeated division operator) and intersection.

The rest of this paper is organized as follows. Section
2 presents the background of this paper, which consists of
a brief discussion on collection-equi join queries, and how
these queries may be processed using conventional
methods through the use of relational division and
intersection operators. Section 3 explains our previous
work on parallel algorithm for collection-equi join
queries. The algorithm is called "Parallel Double Sort-
Merge" algorithm. Section 4 describes the complexity of
collection merging and provides three alternative solutions
to the problem. Section 5 introduces a new algorithm
called "Parallel Sort-Hash" algorithm. Section 6 presents
performance evaluation of the two parallel algorithms and
the comparison with the conventional relational division
method. Finally, section 7 draws the conclusions and
explains the future work.

2 Background

To provide enough background for the proposed
algorithms, we first define collection-equi join queries.
Secondly, we describe how conventional processing
method using relational division and intersection
operators can be used to process such queries.

2.1 Collection-Equi Join Queries

Collection-Equi Join Queries contain join predicates
in a form of standard comparison using a relational
operator, particularly the equality operator (i.e. the =
operator) [6]. The operands of these queries are attributes
of any collection types. As mentioned above, ODMG has
formulated four kinds of collection types, namely set, list,
array, and bag [1].

Sets are basically unordered collections that do not
allow duplicates. Each object that belongs to a set is
unique. Lists are ordered collections that allow duplicates.
The order of the elements in a list is based on the insertion
order or the semantic of the elements. Arrays are one-
dimensional arrays with variable length, and allow
duplicates. The main difference between a list and an
array is in the method used to store the pointers that
assign the next element in the list/array. Because this
difference is mainly from the implementation point of
view, lists and arrays will have the same treatment in this
paper. A bag is similar to a set except for allowing
duplicate values to exist. Thus, it is an unordered
collection that allows duplicates. For example, an attribute
author of class Book has a collection of Person as its
domain. Because the order of persons in the attribute
author is significant, the collection must be of type list. In
other words, the type of the attribute author is list of
Person. This shows that the domain can be a collection,
not only a single value or a single object.

A typical collection-equi join query is to compare
two collections for a full equality. Suppose the attribute
editor-in-chief of class Journal and the attribute program-
chair of class Proceedings are of type arrays of Person. To
retrieve conferences chaired by all editor-in-chief of a
journal, the join predicate becomes (editor-in-chief
= program-chair). Only pairs having an exact match
between the join attributes will be retrieved. The query
expressed in OQL (Object Query Language) [1] can be
written as follows:

Select A, B
From A in Journal, B in Proceedings
Where A.editor-in-chief = B.program-chair

As a running example, consider the data shown in
Figure 1. Suppose class A and class B are Journal and
Proceedings, respectively. Both classes contain a few
objects, shown by their OIDs (e.g., objects a to i are
Journal objects and objects p to w are Proceedings objects).
The join attributes are editor-in-chief of Journal and
program-chair of Proceedings; and are of type collection
of Person. The OID of each person in these attributes are
shown in the brackets. For example a(250,75) denotes a
Journal object with OID a and the editors of this journal
are Persons with OIDs 250 and 75.

The query results using the sample data shown in
Figure 1 depends on the collection type adopted by the
join attributes. If the attributes are of type array, the query
results are a concatenation between object i of class
Journal and object w of class Proceedings, since both have
the exact match not only on the OIDs of all elements, but
also in that order. However, if the join attributes are of
type set, the query results also include objects b-p.

Class A Class B

a(250, 75)
b(210, 123)
c(125, 181)
d(4, 237)
e(289, 290)
f(150, 50, 250)
g(270)
h(190, 189, 170)
i(80, 70)

p(123, 210)
q(237)
r(50, 40)
s(125, 180)
t(50, 60)
u(3, 1, 2)
v(100, 102, 270)
w(80, 70)

(Journal) (Proceedings)

Journal OIDs

editor-in-chief OIDs

Proceedings OIDs

program-chair OIDs

Figure 1. Sample data

Relational operators, like the = operator, are
overloaded functions. This feature is not new to object-
oriented join queries, because long before OODB exists,
relational operators in relational joins have shown this
capability. For example, it is permitted to compare an
integer with a real number. One of the operand is
automatically converted to the type of the other operand
(in this case, integer to real). Casting a collection,
however, must be done explicitly in the join predicate.
Using the previous example, if editor-in-chief is a list and
program-chair is a set, the equality predicate becomes
(listtoset(editor-in-chief) = program-
chair), where the editor-in-chief is converted from a list
to a set [1]. Comparing two sets/bags can be done easily
by sorting them prior to the actual comparison.

2.2 Relational Division: The Conventional Method

Collection-equi join queries may be processed using
conventional relational algebra operators. To process
collection-equi join queries, conventional partitioned join
algorithm (eg., hybrid hash join) will have each class or
table normalised prior to joining. Partitioning is then
carried out based on the join attribute. For each partition,
a hash join is performed [5]. This simple join method will
not produce correct results, unless a division operator is
applied, because the joining operation must be on
collection, not on individual elements.

In this section, we will describe how collection-equi
join queries may be processed correctly using relational
algebra operators, particularly a division and an
intersection operator. Our previous work reported in
Taniar and Rahayu [7] described relational division
technique to process collection-equi join queries. The
process can be explained as follows.

The first class of the join operand is called a divisor
table, and each collection of the second class is known as
a dividend table. Figure 2 shows an example of a
relational division operation. In this case, the divisor table
is a union of all editors-in-chief, and the dividend table is
the program-chairs of the first conference object p. The
result of this division is the combination of b and p.

all editors-in-chief program-chairs division
a 250 of a conference result
a 75 dividedby p 123 giving b p
b 210 p 210
b 123
c 125
c 181
...
...
...

...

...

...
i 80
i 70

Figure 2. Relational Division

It is clear from the example in Figure 2 that the
division operation must be repeated for each collection of
objects from the second class (it is called a loop division).
The algorithm can be written as follows.

// subquery 1
for each collection c in objects of the 2nd class

all coll. of the 1st class dividedby c giving Temp
T1 = T1 + Temp

End

The results of the loop division (subquery 1) are b-p,
d-q, and i-w. The first and the last pairs are produced by
the subquery because both collections within each pair are
the same, whereas the second pair is because the
collection in q is a subset of that of d.

The division operator is a manifestation of a
universal quantifier, which differs from the collection
equality. The universal quantifier evaluates whether a
divisor object contains all values of the dividend table.
This requirement does not ensure that all values within a
divisor object must contain all values in the dividend
table. Therefore, the another loop division must be carried
out to the two classes, but with a reverse role (eg., the
division is the second table and the dividend is each

collection of the first table). The following pseudo-code is
for the second loop division operation.

// subquery 2
for each collection c in objects of the 1st class

all coll. of the 2nd class dividedby c giving Temp
T2 = T2 + Temp

End

The results of subquery 2 (T2) will include the pairs
b-p, i-w, and q-v. To obtain the final query result, the
results from the first (T1) and the second (T2) loop
division are intersected.

Collection-Equi-Join = T1 intersect T2.

The intersection of T1 and T2 is given by b-p and i-
w. These pairs show that both collections in each pair are
equal.

3 Parallel Double Sort-Merge Join
Algorithm: Our Previous Work

In this section, we describe our previous work on
parallel join algorithm for collection-equi join queries.
The details of this algorithm can be found in Taniar and
Rahayu [7]. Parallel Double Sort-Merge join algorithm for
collection-equi join queries proceeds in two steps. The
first step is the data partitioning step which produces
disjoint partitions, and the second step is the joining step.
Since the partitions are disjoint, the join operation in each
partition can be done independently. In the joining step
the sort-merge operation are used twice: one to the
collection attribute, the other to the objects of both classes.
The pseudocode of the algorithm is shown in Figure 3.
Parallel-Double-Sort-Merge-Collection-Equi-Join:
Begin

// step 1: partitioning step
partition the objects of both classes based on their
first elements (for lists/arrays), or their minimum
elements (for sets/bags).

// step 2: joining step (in each processor)
// a. sort phase
(i) sort the elements of each collection (sets/bags

only).
(ii) sort the objects based on the 1st element of the

collection.
// b. merge phase
(iii) merge the objects of both classes based on their

first element on the join attribute.
(iv) if matched, merge the two collection attributes

based on their individual elements (starting from
the second element).

End
Figure 3. Parallel Double Sort-Merge Algorithm

The data partitioning method for parallel collection-
equi join is much influenced by common practices of
arrays/sets comparison in programming. An array can be
compared with another array by evaluating each pair of
elements from the same position of the two arrays. A
characteristic of arrays comparison is that once an element
is found to be different from its counterpart (i.e., element
of the same position from the other array), the comparison
stops and returns a negative result. Unlike arrays
comparison, sets comparison is not based on the position
of each element in the collection, since the order of the
elements is not significant. For example, array(2,3,1) ≠
array(3,2,1), but set(2,3,1) = set(3,2,1). In comparing two
sets, it will become easier if the two sets are
alphabetically/numerically pre-sorted. For instance,
set(2,3,1) is sorted to be set(1,2,3), and so is the second
set. Comparison can then be carried out as per array
comparison.

It is clear that an array comparison very much
depends on the position of each element in an array. The
first element will open the gate for further element
comparisons, if the first pair is evaluated to be true. In
contrast, set comparison depends on the smallest element
in a set, which is the first element after sorting. This
element acts like the first element in the array. Based on
these characteristics, the first element of an array and the
smallest element of a set play an important role in data
partitioning. Common horizontal data partitioning
methods, such as range or hash, can be used to produce
disjoint (non-overlap) partitions. If the collection is an
array or a list, partitioning is based solely on the first
element of the list/array, since list/array comparison
operates on the original element composition of the
collection. If the partitioning attribute is a set or a bag,
partitioning is based on the smallest element of the
collection, because a set/bag comparison requires the
collections to be sorted.

The joining step is further decomposed into the
sorting and the merging phases. The sorting operation is
applied twice: to the collections, and to the class. Sorting
each collection is needed only if the collection is a set or a
bag, and sorting the objects is based on the first element
(if it is an array or a list) or on the smallest element (if it
is a set or a bag). The sorting phase is not carried out
before data partitioning, as sorting done in parallel in each
processor after data partitioning will minimize the elapsed
time.

Like the sorting phase, the merging phase consists of
two operations: class-level merging and collection-level
merging. Merging the objects of the two classes is based
on the first element of each collection. If they are
matched, a subsequent element comparison can proceed.
Two cases are presented as an example. Case 1 is where

the two collections are arrays, and case 2 is where the
collections are sets. Figure 4 gives an illustration of the
result of the algorithm.

d(, 237)
i(, 70)

CASE 1: ARRAYS

Processor 1
(Range 0-99)

CASE 2: SETS

Results= (i, w)

80
4

c(, 181)
f(, 50, 250)

125
150

h(, 189, 170)190

a(, 75)250
b(, 123)210

e(, 290)289
g()270

r(, 40)50
t(, 60)50

u(, 1, 2)3

w(, 70)80

p(, 210)
s(, 180)

123
125

v(, 102, 270)100

q()237

d(, 237)4

h(, 189, 190)170

e(, 290)289
g()270

t(, 60)50

p(, 210)
s(, 180)

123
125

v(, 102, 270)100

q()237

c(, 181)125

Processor 2
(Range 100-199)

Results= nil

Processor 3
(Range 200-299)

Results= nil

f(, 150, 250)50
i(, 80)70
a(, 250)75Results= (i, w)

Results= (b, p)

Results= nil

w(, 80)70

u(, 2, 3)1
r(, 50)40

b(, 210)123

Notes:
• Collections 1 and 2 are arrays,
• 3 processors are used,
• Range partitioning is used (processor 1 = 0-99, processor 2

= 100-199, and processor 3 = 200-299)
• Partitioning is based on the first element in each collection
• Collections are sorted based on their first elements.

Notes:
• Collections 1 and 2 are sets,
• 3 processors are used,
• Range partitioning is used (processor 1 = 0-99, processor 2 =

100-199, and processor 3 = 200-299)
• Partitioning is based on the smallest element in each collection
• Each collection is sorted first, and then all collections are sorted

based on their first elements.

Processor 1
(Range 0-99)

Processor 2
(Range 100-199)

Processor 3
(Range 200-299)

Figure 4. Results of Parallel Double Sort-Merge algorithm

4 Issues Relating to Collection Merging

Since the publication of our previous work [7]
presented in the previous section, particularly Figure 3

nested-loop

class
merging

collection
merging

(i.e. the pseudocode for the “Parallel Double Sort-Merge”
join algorithm), we realize that we have overlooked the
complexity of the algorithm, especially the merging phase
(step 2b). Merging in parallel double sort-merge join is
tricky. Merging in this algorithm is done at two levels:
class level and collection level. Class level merging is
based on the first element on each collection. If the result
is positive, meaning that the result of this comparison is
true, collection merging is then pursued. Collection
merging is simply performed as done in simple arrays
merging.

The two-level merging process can be re-iterated as
follows. If the first element of the first collection is greater
than that of the second collection, the first collection is
ignored and the counter of the second class is incremented
by one object. If the opposite happens, the counter of the
first class is incremented instead. If the first elements of
two objects are the same, collection merging is then
carried out. The problem of a two-level merging can be
explained as follows. Regardless of the result of the
collection merging, complexity occurs regarding whether
or not the counter is to be incremented. If the counter is to
be incremented, which counter(s) are to be incremented.
In this section, we describe three alternative solutions to
the collection merging problem.

Solution 1: Nested-Loop at Class Level

The problem of two-level merging is similar to, but
more complicated than, the problem of simple merging of
two arrays where duplicates are allowed. To overcome this
problem, a simple nested loop can be applied. A nested-
loop construct is applied at a class level, and a sort-merge
is carried out at a collection level. This is a naive solution
to the collection merging problem. With a nested-loop
construct, there is no need to keep track the class counter.
This modified algorithm can then be called “Parallel
Nested-Loop Sort-Merge” join algorithm, instead. Since a
nested loop is used for merging at a class level, class
sorting becomes unnecessary. Collection sorting is still
needed, as merging at a collection level is carried out as
per normal merging operation.

Solution 2: Nested-Loop at Collection Level

The second alternative solution is to employ a
nested-loop, not at a class level, but at a collection level.
The way it works is similar to the problem description
stated earlier in section 4. That is, when the first elements
of the two collections to compare are the same, collection
merging can be pursued. A nested-loop is applied to all
collections from both classes, where they have the same
first elements. To clarify the matter, consider an example
given in Figure 5. A nested-loop is carried out by the
collections having the same first elements.

Class A Class B
… …

a(4,10,15) p(4,10)
b(4,13) q(4,13)
c(4,13) r(4,13)
d(4,15) s(4,13,60)
e(4,105) t(6,12)
f(5,10) …

… …
Figure 5. Nested-Loop at a Collection Level

The snapshot of the merging process in a modified
version of the algorithm can be seen in Figure 6. From the
algorithm, it is clear that the algorithm still maintains the
two-level merging (i.e. merging at a class level, and at a
collection level). Therefore, the name of the join
algorithm is kept unchanged (i.e. parallel double sort-
merge) to reflect the two levels of sort-merge. In the
pseudocode, the function is_merged is assumed to be a
collection merging function, in which two collections are
compared for a full equality through a sort-merge process.
The function takes two parameters, that is the two
collections two be compared. Also notice that in order to
keep track the starting point of the nested-loop, a tag (in
this case, variables m and n) is used to label the starting
point of the loop.
…
i and j are object counter of class A and B, resp.
if the first element of A(i) is larger than

the first element of B(j) then
j = j + 1

else if the first element of A(i) is smaller than
the first element of B(j) then

i = i + 1
else

n = j // tag the starting point of the loop
while n is not end of class B and

is_merged(A(i), B(n))
concatenate A(i) & B(n) to the result
n = n + 1

end
m = i // tag the starting point of the loop
while m is not end of class A and

is_merged(A(m), B(j))
concatenate A(m) & B(j) to the result
m = m + 1

end
i=m, j=n // cont. the class merge process.

endif
…

Figure 6. Nested-Loop at Collection Level

nested-loop

class and
collection
merging.

Solution 3: Nested-Loop at Matched Collection Level

The third alternative solution to the merging
problem is achieved by having a nested-loop construct to
the matched collections only. This nested-loop construct is
necessary since all matched collections must be paired up
each other. To clarify the matter, consider the example
shown in Figure 7.

Class A Class B
… …

a(4,10,15) p(4,10)
b(4,13) q(4,13)
c(4,13) r(4,13)
d(4,15) s(4,13,60)
e(4,105) t(6,12)
f(5,10) …

… …
Figure 7. Nested-Loop at a Matched Collection Level

The order of the comparison is as follows: a-p, a-q,
b-q, b-r, b-s, c-q, c-r, c-s, d-s, d-t, e-t, and f-t. The bold
printed pairs indicate the nested-loop. Other than these,
the increment of a class counter is done by comparing the
whole collections, not the first elements only. Therefore, if
the first collection, as a whole, is larger than the second
collection, the second counter is incremented. The first
counter is incremented, otherwise. When both collections
are the same, a nested-loop is applied to find out whether
the subsequent collections from both sides are the same. In
other words, nested-loop at a matched collection level is
accomplished by not splitting class merging from
collection merging. The border between the two-level
merging becomes unclear, since class merging is now not
based on the first elements of both collections, but based
on the whole collections.

The snapshot of the merging process in a modified
version of the algorithm can be seen in Figure 8. In the
algorithm, the function coll_merge is a merging of two
collections. It is somehow similar to merging two strings.
Since strings are similar to lists/arrays, merging two
lists/arrays are also similar to merging strings. However,
set merging is a slightly different from string merging,
since sets are preprocessed by means of sorting, whereas
strings are not.

Based on the three proposed alternative solutions to
the merging problem, it is obvious that the third solution
is the best, since the impact of the nested-loop construct is
minimized. An important lesson drawn from the
modification of the original Parallel Double Sort-Merge
algorithm is that the merging process for class and
collection should not be separated as initially proposed. In
contrast, class and collection merging should be combined

into one step, as specified by the third alternative solution,
which is adopted as a solution for the merging problem
faced by the initial Parallel Double Sort-Merge algorithm.
…
i and j are object counter of class A and B, resp.
if coll_merge (A(i), B(j)) = +1 then // +1 is A(i) > B(j)

j = j + 1
else if coll_merge (A(i), B(j)) = -1 then // -1 is A(i) < B(j)

i = i + 1
else

concatenate A(i) and B(j) to the query result
n = j + 1 // tag the start point of the loop
while n is not end of class B and

coll_merge(A(i), B(n)) = 0
// 0 is A(i) = B(n)

concatenate A(i) and B(n) to query result
n = n + 1

end
m = i + 1 // tag the start point of the loop
while m is not end of class A and

coll_merge(A(m), B(j)) = 0 // 0 is A(m) = B(j)
concatenate A(m) and B(j) to query result
m = m + 1

end
i=m, j=n // cont. class merging process.

endif
…

Figure 8. Nested-Loop at Matched Collection Level

5 Parallel Sort-Hash Join Algorithm: A
New Algorithm

In this section we introduce a new algorithm based
on a combination of sort and hash methods for collection-
equi join queries. In the hashing part, hash tables are
used. Hash tables for collection joins are different from
those for relational hash join queries. For collection join
queries, multiple hash tables are used. The following
section describes multiple hash tables and probing
mechanism. The discussion on the join algorithm will
then follow.

5.1 Multiple Hash Tables and Probing Function

Each hash table contains all elements of the same
position of all collections. For example, entries in hash
table 1 contain all first elements in the collections. The
number of hash tables is determined by the largest
collection among objects of the class to be hashed. If the
collection is a list/array, the position of the element is as
the original element composition in each collection. If the
collection is a set/bag, the smallest element within each
collection will be hashed into the first hash table, the

second smallest element is hashed to the second hash
table, and so on. Set/bag hashing will be enhanced if the
set/bag is preprocessed by means of sorting, so that the
hashing process will not have to search for the order of the
elements within the set/bag. Figure 9 shows an example
where three objects are hashed into multiple hash tables.
Case 1 is where the objects are arrays, and case 2 is where
the objects are sets.

Case 1: ARRAYS

Hash Table 1

a(250, 75)
b(210, 123)
f(150, 50, 250)

150(f)

210(b)

250(a)

50(f)

75(a)

123(b)

Hash Table 2

250(f)

Hash Table 3

Case 2: SETS

Hash Table 1

a(250, 75)
b(210, 123)
f(150, 50, 250)

Hash Table 2

250(f)

Hash Table 3

Sort

50(f)

75(a)

123(b)

150(f)

210(b)

250(a)

a(75, 250)
b(123, 210)
f(50, 150, 250)

Figure 9. Multiple Hash Tables

Once the multiple hash tables are built, the probing
process begins. The probing process is basically the
central part of collection join processing. The probing
function for collection-equi join is called function
universal. It recursively checks whether a collection exists
in the multiple hash table and the elements belong to the
same collection. Figure 10 shows the pseudocode of the
probing function.
Function universal (element i, hash table j): Boolean
Begin

Hash and Probe element i to hash table j
If matched Then
// match the element and the object

Increment i and j
If end of collection is reached Then
// check for end of collection of the

Return TRUE // probing class.
End If
If hash table j exists Then
// check for the hash table

result = universal (i, j)
Else

Return FALSE
End If

Else
Return FALSE

End If
Return result

End Function
Figure 10. Probing Function Universal

5.2 Parallel Sort-Hash Collection-Equi Join
Algorithm

Like the sort-merge version of parallel collection-
equi join algorithm, the data partitioning is a disjoint
partitioning which makes use of the first elements (for
lists/arrays) or the smallest elements (for sets/bags).

The local joining process in each processor consists
of several steps. The first step (step 2a) is the
preprocessing and is only applicable to sets and bags. This
step is actually a sorting process for each collection. The
second step (step 2b) is to create multiple hash tables. The
third step (step 2c) is the probing process where the
function universal is called. Since this function acts like a
universal quantifier where it checks only whether all
elements in a collection exist in another collection, it does
not guarantee that the two collections are equal. In order
to check for the equality of two collections, it has to check
whether collection of class A (collection in the multiple
hash tables) has reached end of collection. This can be
done by checking whether the size of the two matched
collections is the same. Figure 11 shows the pseudo-code

for the sort-hash version of parallel collection-equi join
algorithm.
Parallel-Sort-Hash-Collection-Equi-Join:
Begin

// step 1 (disjoint partitioning):
partition the objects of both classes based on their
first elements (for lists/arrays), or their minimum
elements (for sets/bags).

// step 2 (local joining):
In each processor
// a. preprocessing (sorting) // sets/bags only

For each collection of class A and class B
Sort each collection

End For
// b. hash

For each object of class A
Hash the object into multiple hash table

End For
// c. hash and probe

For each object of class B
Call universal (1, 1) // element 1,hash table 1
If TRUE AND the collection of class A has

reached end of collection Then
Put the matching pair into the result

End If
End For

End
End

Figure 11. Parallel Sort-Hash Collection-Equi Join
Algorithm

6 Performance Evaluation

The experimental environment was a DEC Alpha
2100 model with 4 CPUs running at 190MHz. It is a
shared-memory based multi-processor system. The total
performance of the system is around 3000Mips and
8Gflops. The size of main memory was 2Gb, and each
CPU was equipped with 4Mb cache. The processors are all
based on the same 64-bit RISC technology. The 64-bit
technology breaks the 2-gigabytes limitations imposed by
conventional 32-bit systems. Subsequently, the usage of
very large memory is common to Digital Alpha servers.
Very large memory systems significantly enhance the
performance of very large database applications by
caching key data into memory. The underlying operating
system was Digital UNIX, and the algorithms were
implemented in C++.

6.1 Implementation Issues

A number of aspects emerged from the
implementation of collection-equi join algorithms.

Information on data distribution is kept in a
distribution table

The distribution table is a two-dimensional array of
number of processing elements x number of objects. The
row represents the number of child processes (each child
process is allocated a processor; the parent process is the
coordinator), and the column is the maximum number of
objects that can be allocated to one process (or processor).
The distribution table could have been implemented in a
single dimensional array, and each element in the array is
a linked-list. The difference is just a matter of dynamic
versus static data structure. For simplicity, a two-
dimensional array is used.

Data distribution is carried out by assigning an OID
to an appropriate row in the distribution table. A counter
for each row in the distribution table is needed to keep
track of the number of objects allocated to a particular
process. For example, an object with OID 175 is to be
distributed to processor 0. If the counter for processor 0 is
equal to 16; meaning that there are 16 objects allocated to
processor 0 so far, OID 175 will be allocated to row 0
column 16 (row and column start from 0) and the counter
for this row is incremented by one. Apart having a counter
for each row in the distribution table, a lock must be used
every time the counter is updated. The checking of each
object can then be done in parallel using a round-robin
scheduling.

Hash tables are shared

For the sort-hash version of parallel collection-equi
join, each partition does not employ a separate hash table.
The consequence of having shared hash tables is that the
distribution for hash join is disjoint using a round-robin
partitioning. A hash table is implemented in a two-
dimensional array. The row indicates the hash index,
whereas the column is to accommodate collisions. The
decision to use an array representation is merely for
programming convenient. A linked-list-based
representation may have been used instead.

Linked multiple hash tables are used for collection-
equi join

Multiple hash tables have been implemented in a
cube array, where the additional dimension to the normal
two-dimensional array is to accommodate all elements of a
collection in which its first element has been hashed. Each
row in a cube array contains OIDs belonging to the same
hash values (i.e., collision). For each collection in a row,
all elements of the collection are attached to it. Hence,
once the first element is probed to a particular row,
probing for further elements of the same collection is
simple done by merging all elements attached to the root
cell. Using this mechanism, collection-equi join operation

is simplified, as probing is done once; that is to the
first/smallest element only.

6.2 Experimentation Results

Double Sort-Merge and Sort-Hash versions of
parallel collection-equi join algorithms are examined. A
comparison with the conventional method (i.e. relational
division) is also presented. Factors considered in the
experimentation include the size of collections, the size of
classes, and the join selectivity degree. Some of the results
are presented as follows.

Parallel Collection-Equi Join

0

50

100

150

200

250

300

350

400

1-2 >50
Collection Size

Time
Double Sort-Merge

Sort-Hash

Relational Division

Figure 12. Varying the collection sizes

Figure 12 shows a comparative performance between
the proposed algorithms with the relational division, by
varying the collection size. When the collection size is
small, the sorting cost for the collection is cheap, resulting
in the overall performance of the double sort-merge
version to improve. As the collection size grows, the
sorting cost for the collections also increases. However,
the overall performance of the double sort-merge version
is quite steady although the collection size is increased.
This is because sorting each collection is relatively small
compared to the other cost components, such as for the
sorting of the objects. In the experiments, the size of the
collection varies from 2 to over 50 elements. For the same
number of objects per class, the difference between sorting
50 elements and sorting 4 element is relatively
insignificant, unless the number of objects is increased
dramatically. Performance of the sort-hash version is
slightly better than (in general) that of the double sort-
merge version, especially when the collection size is large.
The processing cost for the sort-hash version is quite
comparable with that of the double sort-merge version
because the sort-hash version, in some cases (especially
for sets/bags), incurs a collection sorting cost.
Furthermore, the hashing and the probing processes have
to be repeated. The sort-hash version is however saved

from the objects collection sorting cost imposed by the
double sort-merge version.

Parallel Collection-Equi Join

0

200

400

600

800

1000

1800 2400 2800 3300 3800

Class Sizes

Time Double Sort-Merge

Sort-Hash

Relational Division

Figure 13. Varying the class sizes

Figure 13 shows another comparative performance
against the size of the operand. Performance of the sort-
hash version is shown to be better than that of the double
sort-merge version. Processing cost for the double sort-
merge version increases as the size of the operand
expands. This is due to the objects sorting cost. Processing
cost for the sort-hash version is not affected by the size of
the operand more than the double sort-merge version. The
hashing and the probing processes are linear in
complexity, which is much simpler than the NlogN
complexity for the objects sorting.

Parallel Collection-EquiJoin

0
50

100
150
200
250
300
350
400
450
500

low high
Selectivity

Time

Double Sort-Merge

Sort-Hash

Relational Division

Figure 14. Varying the selectivity degree

Figure 14 incorporates the selectivity degree for each
algorithm. It shows that the join selectivity factor does not
affect the degradation of performance significantly. For
the double sort-merge version, it appears that the merging
cost for the matched collections is only a small component
of the overall cost. For the sort-hash version, the increase
is due to the repetition of the hashing and the probing
processes, which can be expensive when the selectivity

degree is high. And for the relational division method,
intersection cost component seems to be small, compared
with the loop division. Hence, the join selectivity factor
does not play a significant role in the overall performance.

The performance graphs shown above prove that the
proposed algorithms (double sort-merge version and sort-
hash version) are always better than the conventional
relational loop division algorithm for parallel processing
collection-equi join queries. The efficiency of the proposed
algorithms can be more than 100% compared to the
relational loop division. The cost for the relational loop
division increases sharply especially for large operands.
This is due to the expensive loop division cost.

Parallel Collection-Equi Join

0

500

1000

1500

2000

2500

100x100 200x200 300x300 400x400 500x500

Operand Size

Time

Double Sort-Merge

Sort-Hash

Figure 15. Double Sort-Merge vs. Sort-Hash

Figure 15 shows the difference between the double
sort-merge version and the sort- hash version. The class
size varies from 100 to 500 objects. The average collection
size is 3 objects. A number of observations are made.
First, performance of the double sort-merge version is
quite comparable with the sort-hash-version. Second,
when the size of the operand is getting larger, the sort-
hash version shows its superiority to the double sort-merge
version. This indicates the reliability of the sort-hash
version of parallel collection-equi join algorithm. Finally,
the fixed cost for parallel processing is shown to be large,
since the increase in the elapsed time is far from linear,
which is caused by the major proportion (in the case of
small operand) is dominated by the processor set-up
overheads.

In general, performance of the sort-hash version for
collection-equi join queries is demonstrated to be superior
to that of the double sort-merge version. The degree of
improvement may vary from one system to another,
depending on the system architecture. Therefore, it can be
expected that the sort-hash version of parallel collection-
equi join algorithm will become the basis for processing
object-oriented collection join queries. This algorithm may
also be used in other non-relational systems (such as

nested relational systems) where collection types are
supported.

7 Conclusions and Future Work

The need for join algorithms especially designed for
collection-equi join queries is clear, as the conventional
parallel join algorithms were not designed for collection
types. In this paper, we present a modified version of
Parallel Double Sort-Merge algorithm by providing three
alternative solutions to the collection merging problem
found in our previous work, and propose a new algorithm
called Parallel Sort-Hash algorithm. These two
algorithms are designed especially for collection-equi join
queries in object-oriented databases. Performance of these
algorithms are promising compared to the traditional and
complicated relational division and intersection operators,
since the division operation must be applied repetitively
(i.e. loop division) and an intersection must also be used
to obtain the final results. Our future plan includes
investigating the possibility to use a double hash method,
instead of a combination of sort and hash like in the
Parallel Sort-Hash algorithm.

References

[1] Cattell, R.G.G. (ed.), The Object Database Standard:
ODMG-93, Release 1.1, Morgan Kaufmann, 1994.

[2] DeWitt, D.J. and Gray, J., "Parallel Database Systems:
The Future of High Performance Database Systems",
Communication of the ACM, vol 35, no 6, pp. 85-98, 1992.

[3] Kim, K-C., "Parallelism in Object-Oriented Query
Processing", Proceedings of the Sixth International
Conference on Data Engineering, pp. 209-217, 1990.

[4] Leung, C.H.C., and Taniar, D., "Parallel Query Processing
in Object-Oriented Database Systems", Australian
Computer Science Communications, vol. 17, no. 2, pp.
119-131, 1995.

[5] Mishra, P. and Eich, M.H., "Join Processing in Relational
Databases", ACM Computing Surveys, vol. 24, no. 1, pp.
63-113, March 1992.

[6] Taniar, D., and Rahayu, W., "Object-Oriented Collection
Join Queries", Proceedings of TOOLS Pacific’96
International Conference, Melbourne. pp. 115-125, 1996.

[7] Taniar, D., and Rahayu, W., "Parallel Double Sort-Merge
Algorithm for Object-Oriented Collection Join Queries",
Proceedings of International Conference on High
Performance Computing HPC ASIA'97, IEEE Computer
Society Press, Seoul, Korea, 1997.

[8] Taniar, D., and Rahayu, W., "Parallelization and Object-
Orientation: A Database Processing Point of View",
Proceedings of the TOOLS Asia’97 International
Conference, Beijing, China, pp. 301-310, 1997.

[9] Thakore, A.K. and Su, S.Y.W., "Performance Analysis of
Parallel Object-Oriented Query Processing Algorithms",
Distributed and Parallel Databases 2, pp. 59-100, 1994.

