
Parallel Sub-collection Join Algorithm for High
Performance Object-Oriented Databases

David Taniar° J. Wenny Rahayu+

° Monash University - GSCIT, Churchill, Vic 3842, Australia
+ La Trobe University, Dept. of Computer Sc. & Comp. Eng., Bundoora, Vic 3083, Australia

1 Introduction

In Object-Oriented Databases (OODB), although path expression between classes
may exist, it is sometimes necessary to perform an explicit join between two or more
classes due to the absence of pointer connections or the need for value matching
between objects. Furthermore, since objects are not in a normal form, an attribute of
a class may have a collection as a domain. Collection attributes are often mistakenly
considered merely as set-valued attributes. As the matter of fact, set is just one type
of collections. There are other types of collection. The Object Database Standard
ODMG (Cattell, 1994) defines different kinds of collections: particularly set,
list/array, and bag. Consequently, object-oriented join queries may also be based on
attributes of any collection type. Such join queries are called collection join queries
(Taniar and Rahayu, 1996).

Our previous work reported in Taniar and Rahayu (1996, 1998a) classify three
different types of collection join queries, namely: collection-equi join, collection-
intersect join, and sub-collection join. In this paper, we would like to focus on sub-
collection join queries. We are particularly interested in formulating a parallel
algorithm based on the sort/merge technique for processing such queries. The
algorithms are non-trivial to parallel object-oriented database systems, since most
conventional join algorithms (e.g. hybrid hash join, sort-merge join) deal with
single-valued attributes and hence most of the time they are not capable of handling
collection join queries without complicated tricks, such as using a loop-division
(repeated division operator).

Sub-collection join queries are queries in which the join predicates involve two
collection attributes from two different classes, and the predicates check for whether
one attribute is a sub-collection of the other attribute. The sub-collection predicates
can be in a form of subset, sublist, proper subset, or proper sublist. The difference
between proper and non-proper is that the proper predicates require both join
operands to be properly sub-collection. That means that if both operands are the
same, they do not satisfy the predicate. The difference between subset and sublist is
originated from the basic different between sets and lists (Cattell, 1994). In other
words, subset predicates are applied to sets/bags, whereas sublists are applied to
lists/arrays.

S.M. Embury et al. (Eds.): Advances in Databases - BNCOD’98, LNCS 1405, pp. 173-174, 1998.
 c Springer-Verlag Berlin Heidelberg 1998

2 Parallel Sort-Merge Join Algorithm for Sub-collection Join

Parallel join algorithms are normally decomposed into two steps: data partitioning
and local join. The partitioning strategy for the parallel sort-merge sub-collection
join query algorithm is based on the Divide and Partial Broadcast technique.

The Divide and Partial Broadcast algorithm proceeds in two steps. The first step
is a divide step, where objects from both classes are divided into a number of
partitions. Partitioning of the first class (say class A) is based on the first element of
the collection (if it is a list/array), or the smallest element (if it is a set/bag).
Partitioning the second class (say class B) is exactly the opposite of the first
partitioning, that is the partitioning is now based on the last element (lists/arrays) or
the largest element (sets/bags).

The second step is the broadcast step. In this step, for each partition i (where i=1
to n) partition Ai is broadcasted to partitions Bi .. Bn. In regard to the load of each
partition, the load of the last processor may be the heaviest, as it receives a full copy
of A and a portion of B. The load goes down as class A is divided into smaller size
(e.g., processor 1). Load balanced can be achieved by applying the same algorithm to
each partition but with a reverse role of A and B; that is, divide B based on the
first/smallest value and partition A based on the last/largest value in the collection.

After data partitioning is completed, each processor has its own data. The join
operation can then be carried out independently. The local joining process is made
of a simple sort-merge and a nested-loop structure. The sort operator is applied to
each collection, and then a nested-loop construct is used in joining the objects
through a merge operator. The algorithm uses a nested-loop structure, because of not
only its simplicity but also the need for all-round comparisons among all objects.

In the merging process, the original join predicates are transformed into
predicate functions designed especially for collection join predicates. Predicate
functions are the kernel of the join algorithm. Predicate functions are boolean
functions which perform the predicate checking of the two collection attributes of a
join query. The join algorithms use the predicate functions to process all collections
of the two classes to join through a nested-loop. Since the predicate functions are
implemented by a merge operator, it becomes necessary to sort the collections. This
is done prior to the nested-loop in order to avoid repeating the sorting operation.

References

Cattell, R.G.G. (ed.), The Object Database Standard: ODMG-93, Release 1.1, Morgan
Kaufmann, 1994.

Taniar, D., and Rahayu, W., "Object-Oriented Collection Join Queries", Proceedings of the
International Conference on Technology of Object-Oriented Languages and Systems
TOOLS Pacific’96 Conference, Melbourne, pp. 115-125, 1996.

Taniar, D. and Rahayu, J.W., "A Taxonomy for Object-Oriented Queries", a book chapter in
Current Trends in Database Technology", Idea Group Publishing, 1998a (in press).

Taniar, D. and Rahayu, J.W., "Parallel Collection-Equi Join Algorithms for Object-Oriented
Databases", Proceedings of International Database Engineering and Applications
Symposium IDEAS’98, IEEE Computer Society Press, Cardiff, UK, July 1998b (to
appear).

174 David Taniar and J. Wenny Rahayu

