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Abstract

To improve performance of object-oriented database
processing, integration between parallel and object-
oriented technologies is sought. In this paper, we
concentrate on path expression queries. Parallelization of
path expression queries can be achieved through
simultaneous processing among objects (inter-object
parallelization), or concurrent processing among classes
(inter-class parallelization). These two parallelization
models view parallel object-oriented query processing
from two different angles, particularly from an object
point of view and from a class point of view, respectively.
We also present performance measurements through an
implementation which highlight the strengths and the
weaknesses of each parallelization model.

1 Introduction

The expressiveness of object-oriented data modelling
has been.one of the strengths of Object-Oriented
Database (OODB), which also gives rise to highly
complex data structures and access patterns, with a
consequent adverse impact on database performance {6,
11]). Moreover, as database sizes grow to terabyte
magnitude, there is a critical need to-investigate methods
for parallel execution of object-oriented database queries
{18, 22].

Parallelism can be beneficial in the context of
database processing for various reasons, such as to
increase system throughput, and to decrease response time
[8, 16]. The system throughput may be increased by
applying inter-query parallelization, whereas query
response time may improve by intra-query parallelization
focusing at inter-operation and intra-operation
paralletization. Parallelism allows a query to be split into
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sub-queries. Each of these sub-queries is allocated a
number of processors on which to operate. Furthermore,
multiple sub-queries may be processed simultaneously.

Apart from the performance benefits of parallelism,
the integration between parailelism and object-orientation
is also motivated by the following facts. The first fact is
that objects are conceptually concurrent {5]. An object has
its own thread of control. It can execute in parallel with
other objects. This ability reveals potential applications of
objects and object-orientation in parallel processing.

The second fact is that parallel machines have
become increasingly popular [1, 15]. High performance
parallel machines are no longer a monopoly of
supercomputers. Parallel architectures now cover a broad
range of architectures, i.e., from fast Local Area Networks
connecting parallel servers and workstations (eg., quad-
processor Pentiums, Sun workstations, DEC Alpha
servers), to massively parallel processing systems MPP
(eg., CMS5).

It is the aim of this paper to describe how
paralielization and object-orientation can be coupled to
increase the performance -of - object-oriented database
processing. Our previous work [20] concentrated on
parallelization of inheritance queries. In this paper, we
would like to explore parallelization techniques for path
expression queries.

The rest of this paper is organized as follows. Section
2 explains parallelization elements which include parallel
architectures and object partitioning. Section 3 describes
path expression queries. Sections 4 and 5 present two
parallelization -techniques available for path expression
queries, namely inter-object parallelization and inter-
class  parallelization.  Section 6 presents some
implementation results. And finally, section 7 draws the
conclusions.
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2 Parallelization

There are two key factors in parallel object-oriented
database processing: distribution and processing strategies
[8). Distribution deals with object partitioning in which
particularly causing parallelism, whereas the processing
strategy chooses the most efficient execution method that
will be carried out by each processor. Since object
distribution, being a key role of parallelism, is influenced
by the parallel architecture, parallel architectures are
discussed first, then followed by object partitioning
methods.

2.1 Parallel Database Architectures

Parallel database architectures are normally classified
into four categories: shared-memory, shared-disk, shared-
thing, and shared hing architectures [3, 23].

These architectures are shown in Figure 1.

Shared-memory architecture is an architecture where
all processors share a common main memory and
secondary memory. Processor load balancing is relatively
easy to achieve, because data is located in one place.
However, this architecture suffers from memory and bus
contention, since many processors may compete for an
access to the shared data.

In a shared-disk architecture, the disks are shared by
all processors, each of which has its own local main
memory. As a result, data sharing problems can be
minimized, and load balancing can largely be maintained.
On the other hand, this architecture suffers from
congestion in the intetconnection network when many
processors are trying to access the disks at the same time.

A shared-nothing architecture, also known as a
distributed memory architecture, provides each processor
with a local main memory and disks. The problem of
competing for access to the shared data will not occur in
this system, but load balancing is difficult to achieve even
for simple queries, since data is placed locally in each
processor, and each processor may have unequal load.
Because each processor is independent of others, it can be
easy to scale up the number of processors without
adversely affecting performance.

Finally, a shared-something architecture compromises
the extensibility limitation of shared-memory and the load
balancing problem of shared-nothing. There are a number
of variations to this architecture, but basically each node is
a shared-memory architecture connected to an
interconnection network a la shared-nothing. Multiple
disks (i.e., RAID) can aiso be attached to the network (or
in each shared-memory node) to increase /O bandwidth.
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Obvious features of a shared-something architecture
include flexibility in the configuration (i.e., number of
nodes, size of nodes) and lower network communication
traffic as the number of nodes is reduced. Intra-query
parallelization can be isolated to a single multiprocessor
shared-memory node, as it is far easier to parallelize a
query in a shared-memory than in a distributed system,
and moreover, the degree of parallelism on a single
shared-memory node may be sufficient for most
applications. On the other hand, inter-query
parallelization is consequently achieved through paraliel
execution among nodes.
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Figure 1. Parallel Database Architectures
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2.2 Object Partitioning

Object partitioning is used to distribute objects over a
number of processors. Each processor is then executed
simultaneously with other processors. Depending on the
architecture, object partitioning can be done physically or
logically. In a shared-nothing architecture, objects are
placed permanently over several disks, whereas in a
shared-memory architecture, objects are assigned logically
to each processor. Regardless of the adopted architecture,
object partitioning plays an important role in parallel
query processing since parallelism is achieved through
object partitioning,.

There is a number of well-known object partitioning
strategies, namely round-robin, hash, and range
partitioning [8]. Figure 2 gives an illustration of these
partitioning methods.

The simplest technique is round-robin partitioning,
where each complex object in turn is allocated to a
processor in a clock-wise manner. Although the division
of the root object may be equal, objects within one
partition are not grouped semantically. Moreover, due to
the fluctuation of the fan-out degree of the root class,
some root objects might have a lot associated objects,

while others have only a few, resulting in a skewness!
problem occurring.

To make a partition more meaningful (by grouping
objects having the same semantics or features),
partitioning can be based on an attribute of the root class.
One type of attribute-based partitioning is hash
partitioning, where ‘a hash function is applied. The result
of this hash function determines the processor where the
object will be placed. As a result, objects within one
partition occupy the same hash value. This arrangement is
best for exact match retrieval based on the partitioning
attribute, where the processor containing the desired
objects can be accessed directly. The problem of hash
partitioning includes processing objects of a certain range,
where hash partitioning cannot directly detect object
location. A range-based partitioning is then needed.

Range partitioning spreads objects based on a given
range of the partitioning attribute. Consequently,
processing objects on a particular range of the partitioning
attribute can be directed to a small subset of processors

containing the desired range of objects. However, both

hash and range partitioning risk roor object skew?, in

! skew is when the variance of data distribution is greater than
the mean.

2 the skewness of the number of root objects in each partition.

addition to association skew as occurs in round-robin
partitioning. Furthermore, retrieval processing based on a
non-partitioning  attribute cannot make use of the
hash/range partitioning.

Round-robin:

Processors.

Hash:

Processors:

Range:

Processors:| PO Proc. ceeaen Proc.
1 2 n

Dara:| a-c

Figure 2. Object Partitioning
3 Path Expression Queries
Path expression queries are queries involving

muitiple classes along the association and aggregation
hierarchies {2, 12). This is one of the most common query
forms in OODB. These queries are usually processed
through path traversal.

Figure 3 shows an example of a class schema together
with its instantiations. A typical query from this schema is
to select objects which satisfy some predicates of both
class A and B (4, 12].

OQL.
Select a
From a in A, b in a.rell
Where a.attrl = const AND
b.attrl = const;
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processing root objects and their associated objects is done
by pointer navigation from the root object to all of its
associated objects. When there is no pointer left, it skips to
the next root object. In this case, objects that do not form a
complex object described in the query predicate are
discarded naturally.

Figure 4 shows an inter-object parallelization from
the example in Figure 3. Lower case letters are used to
indicate OIDs. The number of associated objects for a root
object is known as the fan-out degree of that root object.
In this example, the fan-out degree of al, a2 and a3 are
equal to 2, 3 and 1, respectively. It clearly shows that
using this clustering approach, processing a root object
(say a2) can be done together with all its associated
objects (e.g., b2, b3 and b4).

Figure 3. Class Schema and Instantiations

In this paper, class A is referred to as a root class,
whereas class B is called an associated class. Further,
objects of a root class are root objects, and objects of an
associated class are associated objects.

4 Inter-Object Parallelization

Inter-object parallelization is a method whereby an
object is processed simultaneously with other objects.
Since path expression queries involve multiple classes
along aggregation hierarchies, inter-object parallelization
exploits the associativity within complex objects. All
associated objects connected to a root object assemble a
complex object. This associative approach views a
complex object as a cluster, and consequently processing
these objects can be done together.

Inter-object parallelization is accomplished by
partitioning all complex objects rooted of a particular
class into a number of partitions, in which each partition
is allocated to a different processor. As a result, each
processor works independently without a need for
communicating with other processors. The partitioning
method used is either round-robin, range or hash
partitioning [8, 10]. Whatever partitioning method is
used, it will not be that important to the associated objects,
as the initial partitioning has lost its effect on them.

Using this associative approach, objects along the
association path that are not reachable from the root object
will not be processed. This method is very attractive
because of not only the filtering feature, but also it is jow
in overhead. It does not require any checking, because
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Figure 4. Inter-Object Parallelization Model

A problem of inter-object parallelization is that when
the cardinality of the association is many-many or many-
one, object replication is unavoidable. Associated objects
referred by more than one root object will need to be
replicated. In the example, objects b2 and b4 are
replicated as they accompany root objects al, a2 and a3.

5 Inter-Class Parallelization

Inter-class parallelization is a method whereby a
query involving multiple classes and each class appearing
in the query predicate is evaluated simultaneously. Inter-
class parallelization considers each predicate as an
independent task, and the objects of a particular class are
attached to the predicate to be evaluated. As a result, the
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entire process is composed of many independent tasks,
which may run concurrently.

Basically, inter-class parallelization consists of two
phases: selection phase and consolidation phase. The
selection phase is a process where the predicate of each
class is invoked independently regardless of the
associative relationship. In the consolidation phase, the
results from the selection phase are consolidated to obtain
the final results.

Inter-class parallelization does not filter unnecessary
objects prior to processing. Non-associated objects will be
processed, although these objects will not be part of the
query results. The processing performance of a class will
be down graded by (1-r) times 100% percent, where o is
a probability of an object of having an association with
objects from a different class. This problem will not exist
if both classes have total participation in the association
relationship (a=1).

Inter-class parallelization also determines access
plans of path expression queries. Figure 5 shows two
examples of access plans. When there is only one selection
involved in the query, only the class involved in the
selection operation is processed in the selection phase.

5.1 Selection Phase

There are two options for implementing a selection
phase, especially when the two classes in a path
expression query are involved in a selection. The options
are sharing resources and queuing for resources.

Sharing resources is a manifest of concurrent
processing. The two classes share resources (ie.
processors) at the same time. The resources must be
divided into two groups: each group to serve one
class. The division is not necessarily equal
depending on the size of each class. Determining
an appropriate number of processors for each class
is critical. Otherwise, it will create load imbalance
as one class might have finished processing while
others have not. Figure 6 shows a selection phase
where the resources are divided into 2 groups.

processors

Class A Class B

where 1<=k<n

perform selection operations

Figure 6. Selection Phase (Resource Division)

Queuing for resources is typical in a pipeline
processing model. Once a class takes the control,
all resources will be allocated to it. There is no
need to divide the resources. The usage of
processors will be optimal, because when a class
has finished, another class will occupy the idle
processors. In this way, load balancing can always
be maintained. Figure 7 shows class A and class B
are queuing to use the resources.

(a) two selections

OQLs: Select a
From a in A, b in a.rell
Where a.attr = constant
And b.attr = constant

hid
Query Graphs:
(4] (o)

Access Plans: Phase 1: Selection phase

Phase 2: Consolidation phase

consolidation

Selection on A Selection on B

(b) one selection

Select a
From a in A, b in a.rell
Where b.attr = constant

consolidation

Selection on B

Figure 5. Access Plans for Inter-Class Parallelization
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Figure 7. Selection Phase (Queuing up for resources)

The difference between “sharing resources” and
"queuing for resources” can be illustrated by two queues
for "sharing resources” and one queue for "queuing for
resources”. Because only the average workload of each
processor is considered (not the response time of each
item in the queue), one queue model is more efficient,
because it guarantees that all processors (service
providers) will be busy when the queue is not empty.
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5.2 Consolidation Phase

Inter-class paratlelization is an “independence class
processing” based parallelization model. The development
of this class-independence processing is influenced by the
concept of object copying used in object-oriented query
processing [14].

Basically, the results of a query are a copy of objects
satisfying the selection predicates. In the absence of the
selection predicates, the query resuits are the same as the
original objects. Figure 8(a) shows an example of a simple
query to retrieve all student objects. The result of this
query is pointed by variable a which is the same copy of
all student objects.

. Student objects
2) Si retrieval
® Sople rets EEE T
OQL:  select a \l, copy
Fram a in Student
all Sudent objects
ﬁ 0111 ]
(b) Simple selection Student objects
CIITT 11
OQL:  select a
Fram a in Student \L copy
Where a.id Like "94%" all Student objects
[TTTT 11
\L filter
orIr—mn
. Student objects Subject objects
¢) Path expression
(O Puh CIILI {1111 8]
OQL:  select a
eng b s yem yen
where a.id Like "94%" all Student objects all Subject objects
And b.code Like "DE%" [ITTT T—{TTT11
selection phase \L filier \1/ filter
[ 0
consolidation phase

Figure 8. Object Copying in Query Retrieval Operations
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In the presence of selection predicates, filtering is
carried out to the copied objects. Figure 8(b) shows that
variable a points to student objects which satisfy the
selection predicate (i.e., ID Like "94%").

Using the same principle, when the selection
predicates span to classes in a path expression, object
copying and filtering can be performed for each class
independently. Running through each root object once
again to check whether the root object not pointing to a
NULL value is done thereatter. Figure 8(c) shows a path
expression query, the process to obtain the results, and the
query results.

A consolidation process is performed by means of a
"NOT NULL" association evaluation of the root object.

6 Implementation

The experimental environment was a DEC Alpha
2100 model with 4 CPUs running at 190MHz. The total
performance of the system is around 3000Mips and
8Gflops. The size of main memory was 2Gb, and each
CPU was equipped with 4Mb cache. The processors are all
based on the same 64-bit RISC technology. The 64-bit
technology breaks the 2-gigabytes limitations imposed by
conventional 32-bit systems. Subsequently, the usage of
very large memory is common to Digital Alpha servers.
Very large memory systems significantly enhance the
performance of very large database applications by
caching key data into memory. The underlying operating
system was Digital UNIX, and the algorithms were
implemented in C++.

Time

The Alpha system structure is shown in Figure 9.
Four CPUs, each is equipped with a sufficient cache, are
connected to a shared memory through a high-speed bus
system.

In the experimentations, a two-class path expression
query was constructed. The objects were generated by a
random number generator, in which the degree of fan-out
and selectivity were also created.

Processing
Elements

Figure 9. The Alpha System Structure

6.1 Inter-Object Parallelization

Inter-object parallelization is well-recognized mainly
due to its filtering feature. The effect of selectivity degree
on filtering will be investigated. The cost of inter-object
parallelization includes the processing costs for the root
class and the associated class. The proportion of the root
class processing cost and the associated class processing
cost, especially in the presence of association skew, and
the effect of skewness to speed up, will be examined.

Figure 10 shows the performance of inter-object
parallelization by varying the selectivity factor. When the
selectivity degree is low, the elapsed time taken to answer
the query is also low, regardless of the fan-out degree.
This is because most of the associated objects are not
accessed and subsequently the fan-out degree gives only
little impact. As the selectivity degree grows, the
processing cost also increases, especially for those
medium to high fan-out degrees.

The impact of low fan-out, when the selectivity
degree is high, is not as big as those with higher fan-out
degree. This demonstrates that when the selectivity is
high, the processing cost is determined by the number of
accesses to the associated class which is partly indicated
by the fan-out degree.

Inter-Object Parallelization
800 7
700 -
600 +
500 %
400+
300 +
200 +

[P e SR S Low Fanout
)] t 5 + i

low

high
Selectivity

Figure 10. Performance of Inter-Object Parallelization

Figure 11 shows a comparison between the processing
cost for the root class and the associated class, particularly
in regard to the association skewness. When the
association skew is low, which refers to the associated
objects being distributed quite evenly (note that using a
round-robin partitioning, the root class is divided equally
to all processors), the processing cost for the associated
class is also low. However, when the association skew is
getting worse, the processing cost for the associated class
is becoming higher too, especially when the degree of
skewness is really high. In contrast, the processing cost
for the root class is quite steady, despite the association



skewness degree. This is because the root class has been
divided quite equally. Depending on the fan-out degree
which determines the number of accesses to the associated
class, and the degree of association skew, the processing
cost for the associated class can become dominant,
especially when the aforementioned two factors are
indicated to be quite high.

Inter-object Parallelization
(root cost and association cost)

1400 T

1000 +
800 1
600 +
400 |
200

Time

Root cost
S G I NI SIS R R T M

low high
Association Skewness

Figure 11. Processing costs for the root class and the
associated class.

Figure 12 shows the effect of skew on the
performance of the inter-object parallelization. The result
shows that the skewness affected the improvement greatly.
Only when the skewness is low, is near-linear speed-up
attainable. This indicates that without a careful treatment
of the skew problem, performance improvement is barely
achieved.

Inter-Object Parallelization

127 (Effect of Skew)

10T
81 mediu,rg//'
6 J—

Speedup

2 4 6 8 10 12

Degree of Parallelization

Figure 12. Performance of inter-object parallelization in
the presence of skew.

6.2 Inter-Class Parallelization

As inter-class parallelization is divided into two
phases, selection phase and consolidation phase, these two
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elements will be investigated in the overall cost for inter-
class parallelization.

Figure 13(a) shows the comparison between the
processing costs for the selection and the consolidation,
particularly when the query involves two selection
operations: one selection operation on each class. The
selection cost is shown to be dominant, and quite constant
regardless of the selectivity factor. It is because all objects
from the two classes in the query need to be accessed. The
consolidation cost is shown to be minor and increases
when the selectivity factor is high. This indicates that,
using a shared-memory/distributed cache main-memory
architecture, the consolidation cost for this particular
query type is low.

Figure 13(b) presents a performance of inter-class
paralielization for queries having selection operations on
the root class and no selection operations on the associated
class. The selection path is shown to be quite constant and
smaller than the one having two selection operations. In
this query type, the selection operation is the cost for
going through all root objects only. The consolidation cost
is shown to be non-trivial. With the increase of the
selectivity degree, the consolidation cost also increases.
This cost includes the cost for accessing the associated
objects for each selected root object.

(a) Inter-Class Parallelization
(2 selections: on root and assoc. classes)

Consolidation

Time

low high
Selectivity

(b) Inter-Object Parallelization
{1 selection on the root class)

250 -

200~

150+
Consolidation

Time

low high
Selectivity

Figure 13. Performance of Inter-Class Parallelization
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Figure 14 shows a comparison between queries
having two selections (one on each class), one selection on
the root class, and one selection on the associated class.
When the selectivity degree is low, performance ot the
query having a selection on the root class is demonstrated
to be the best. This is because the selection cost is lower
than that of the queries with two selections. and the
consolidation cost seems to be lower than that of the
queries with one selection on the associated class. As the
selectivity degree increases, the filtering feature provided
by the selection operation on the root class becomes
ineffective. Hence, performance of the query having a
selection on the associated class becomes the best. This is
because the selection part of this query is lower than that
of queries having two selections, and the consolidation
part of this query seems to be not as high as that of queries
with a selection on the root class.

Inter-Class Parallelization

2501
—&— Select(A,B)
2001 - Select(A)
—h—Select
150
Time
100
L
504
0 t t i
low high

Selectivity

Figure 14. Performance of inter-class parallelization of a
variety of query types.

7 Conclusions

In this paper we have presented an application of
parallel processing on object-oriented path expression
queries. Parallelization models for path expression queries
are available in two forms: inter-object parallelization
which exploits the associativity of complex objects, and
inter-class  parallelization which produces process
independency. Inter-object parallelization will function
well if a filtering mechanism in the form of selection
operation exists. On the other hand. inter-class
parallelization relies upon independency among classes,
not the filtering feature. These two parallelization models
form the basis for parallelization of more complex object-
oriented queries.
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