An Introduction to Fortran

Daniel Price

School of Physics and Astronomy
Monash University

Melbourne, Australia

Part | Introduction to FO

RT

SAN

A brief history of Fortran (and FORTRAN)

* developed in the 1950’s by IBM

« FOR(mula) TRAN(slation): written for doing Maths!

* Prior to FORTRAN, most code was written in assembly language (i.e., machine specific)
* 1961: FORTRAN [V

+ 1966: FORTRAN 66

- 1977: FORTRAN 77 standard (now known as FORTRAN).

+ 1990: significant new standard, Fortran 90

* 1995: Minor update to Fortran 90

 2003: Further updates (incl. interface with C)

« 2008: most recent standard, including generic types and co-arrays

Punch cards

http://en.wikipedia.org/wiki/Fortran

http://en.wikipedia.org/wiki/Fortran

The future?

......

Scientists from the RAND Corporation bave created this model to illustrate bow a “home computer” could look like in the
year 2004. However the needed technology will not be economically feasible for the average home. Also the scientists readily
admit that the computer will require not yet invented technology to actually work, but 50 sears from now scientific progress is
expected to solve these problems. With teletype interface and the Fortran language, the computer will be easy to use and only

unfortunately a hoax: http://www.snopes.com/inboxer/hoaxes/computer.asp#photo

http://www.snopes.com/inboxer/hoaxes/computer.asp#photo

When should *you™ use Fortran®

- Fairly low level, compiled language. So not like matlab “solve ODE”, more
like basic Maths, x =y + z; z = sin(x), etc.

« Used commonly for numerical work, e.g. solving ODEs, PDEs. Not for
things like writing computer operating systems (C) or scripting (python/
perl/unix shell).

- Modern Fortran is a fully object-oriented language, similar to C++, but
designed for solving mathematical problems.

Hello world in FORTRAN

program helloworld
implicit none

orint*,’hello world’

end

| |

start typing in column 6 (cf. punchcard) stop typing in column 72

What a compiler does (l)

source code assembler executable
(.f or .f90 file) 1 (€.9.x86,) binary
DOWErPC)
*human) . L«
AnaUAGe” machine code a program you
guag can run”

gfortran -o myprog helloworld.f

to run:
/myprog

What a compiler does (ll):

program helloworld oons

.ascii "hello.fo0\0"

implicit none " asei *helor

text
.globl _MAIN__
_MAIN__:
' pushl %ebp
orint™, ’hello world’ movl Sbesp, %ebp
) pushl %ebx
subl $372, %esp
call __ i686.get_pc_thunk.bx
"LO0000000001$pb":
d leal _options.0.1494-"L00000000001$pb"(%ebx), Y%eax
eﬂ movl %eax, 4(%esp)
movl $8, (%esp)
call L__gfortran_set_options$stub
leal LCO-"LO0000000001$pb"(%ebx), %eax
movl %eax, -340(%ebp)
movl $4, -336(%ebp)
movl $128, -348(%ebp)
movl $6, -344(%ebp)
leal -348(%ebp), %eax

movl %eax, (%esp)
g fO rt ra n - S h e | | O . f9 O call L__ gfortran_st_write$stub
movl $5, 8(%esp)
leal LC1-"LO0O000000001$pb"(%ebx), %eax
movl %eax, 4(%esp)
leal -348(%ebp), %eax
movl %eax, (%esp)
call L__gfortran_transfer_character$stub

Fortran variable types
program variables
implicit none

logical ihavebrain

ihavebrain = .true.

INnum = 1
rum = 1
dnum = 1.0d0

orint*,’vars=",ihavebrain,inum,rnum,dnum

end

The evils of mplicit types

- Implicitly in FORTRAN, undeclared variables starting with a-h and o-h are of
type real, and i-n are of type integer.

God is real unless declared integer

Fortran variable types (well written)

program variables
implicit none

logical ihavebrain
integer inum

real rnum

double precision dnum

Ihavebrain = .true. ! check if we have a brain
iInum = 1 I number of brain cells
rnum = 1.0 | fraction of brain cells used
dnum = 0.5d0 | fraction working now

print*,’vars=",ihavebrain,inum,rnum,dnum

end program variables

A bad FORTRAN example (Why you should
ALWAYS use “implicit none”)

« what does this code do?

program lbadfort program badfort
implicit none
do 30 1=1.20 integer |
orint™, |
30 continue do 1=1.20
orint™, |
end enddo

end

Some basic good practice

- always use “implicit none” to avoid silly mistakes

- add comments to your code as much as possible. These are for YOU so you
remember what you did/what you were thinking at the time.

» try to avoid writing the same bit of code more than once: cut and paste is
convenient but deadly whilst writing programs! Use a short subroutine or
function instead.

Basic maths operations

program basicmaths
implicit none
real a,b,c,d,e

a=1
b=2
c=a+b
d=a

e = sqgrt(b)

orint*,’a=",a,” b=",b,’ c=",c,” d=",d,’ e = ’,e

end program basicmaths

Basic maths operations (in double precision)

program basicmathsdbl
implicit none
double precision a,b,c,d

a=1.0d0
b =2.0d0
c=a+b

d=a

e = sqgrt(b)

porint*,’a=",a,” b=",b," c=",c,” d=",d,’ e =",e

end program basicmathsdbl

Arrays

program array
implicit none
real rnum(3)

mum(1) = 1.0
mum(2) = 2.0
rnum(3) = 3.0

print™, rnum=",rnum

end program array

Arrays |l

program array?2
implicit none
real rnum(3,2)

rmum(1,1) =1.0
rmum(2,1) = 2.0
mum(3,1) = 3.0
rmum(1,2) = 4.0
mum(2,2) = 5.0
rnum(3,2) = 6.0

print®,’rnum=",rnum

end program array?

Logical constructs: if-then-else

program ifanimal

implicit none

logical :: isacow,hastwohorns
integer, parameter :: nhorns = 2

iISacow = .true.
if (Isacow) then | check if our animal is a cow
orint*,” my animal Is a cow...’
if (hhorns.eq.2) print*,” ...with two horns’
else
porint*,” my animal is not a cow’
endif

end program ifanimal

Logical constructs: if-then-elself

Isacow = .false.
iIsadog = .true.
|
I--here we check the type of animal
| (and the number of horns if it is a cow)
|
if (Isacow) then | check if our animal is a cow
orint*,” my animal is a cow...’
if (nhorns.eq.2) print™,” ...with two horns’
elseif (isadog) then !orifitis a dog
porint*,” my animal is a dog. Woof.’
else
print*,” my animal is not a cow or a dog’
endif

Fortran loops

program loop program loop
implicit none implicit none
integer :: | integer :: |
do i=1,10 =0

write(*,”(a,i2)”) * number ‘i do while (1.1t.10)
enddo =1+ 1

write(*,”(a,i2)”) number ‘i

end program loop enddo

end program loop

Formatted print

orint™,’x=",X

orint “(f6.3)”, X

orint “(a,2x,f6.3)”, 'X = ,X
orint “(" x=",16.3)",x

orint 10,X
10 format(‘x = *,16.3)

Fortran loops: advanced

program loop
integer . |

loop1: do i=1,10
write(*,”(a,i2)”) * number ‘i
if (1.eq.5) exit loop

enddo loopT

end program loop

Reading and writing to/from the terminal

program hello
character(len=20) :: name

print “(’---",2x,a,2x,’---")",’"welcome to the hello program’

print*,” please enter your name’
read(*,”) name

write(*,”) 'hello ’,name
write(6,”) 'l like the name ’//trim(name)
write(*,”(a)”) ’l once had a friend called '//trim(name)

)

end program hello

Writing to a file

program nametofile
character(len=20) :: name
Integer :: npets

print*,” please enter your name’
read(*,*) name

print*,” how many pets do you have?’
read(*,”) npets

open(unit=1,file="myname.txt’,status="replace’)
write(1,*) name

write(1,*) npets

close(unit=1)

end program nametofile

Opening a file and reading content

program namefromfile
character(len=20) :: name

open(unit=3,file="myname.txt’,status="old’)
read(3,*) name

read(3,”) npets

close(unit=3)

write(*,”) 'hello ’,name
write(*,”) 'l see you have ’,npets,’ pets’

end program namefromfile

Subroutines

program callsub
implicit none
real :: x1,y1,z1

x1 = 3.

yl =4,

call mysub(x1,y1,z1)
print*,’z1=",z1

contains

subroutine mysub(x,y,z)
implicit none

real, intent(in) :: X,y
real, intent(out) :: z

Z = sqrt(x*2 + y**2)

end subroutine mysub

end program callsub

Functions

program callfunc
implicit none

real :: x1,y1,z1
real :: zfunc

x1 = 3.

yl =4,

z1 = zfunc(x1,y1)
print*,’z1=",z1

end program callfunc
function zfunc(x,y)
implicit none

real, intent(in) :: X,y
real :: zfunc

zfunc = sqrt(x™*2 + y**2)

end function zfunc

Part Il: A simple FO

RT

RAN primer...

Part lll: Advanced Fortran (Fortran 90)

Fortran 90

files end in .f90

lines can be longer than 72 characters, do not have to start in column 6

powerful array notation a = b + ¢ where a, b and c are arrays

new intrinsic functions e.g., dot_product, trim, matmul

modules: all subroutines should go in a module that is “used” by the calling routine - allows
interfaces to be checked. Modules also replace weird things like COMMON blocks.

dynamic memory allocation (allocatable arrays) and pointers

derived data types

recursive subroutines and functions

Fortran 95

* very minor update to Fortran 90

« where/elsewhere statement

 forall

Fortran 2003

» interoperability with C

* intrinsic functions for getting command line arguments, environment variables
etc. (previously these had been compiler extensions)

 Fortran 2003 is fully object oriented.

Fortran 2008

- Co-array fortran for parallel computing

f90 vs 177

program xdoty program xdoty

implicit none implicit none

real x(3),y(3),xdoty real, dimension(3) :: X,y
real :: xdoty

X(1) = 1.

X(2):1 X():1

X(3) = 1. v(1:2) = 0.

y(1) = 0. y(3) =3

y(2) = 0.

V(3) = 3. xdoty = dot_product(x,y)

print™,” xdoty = ', xdoty

xdoty = x(1)*y(1) + x(2)*y(2) + x(3)"Y(3)

orint*,” xdoty = ’,xdoty end program xdoty

end

Logical constructs: select case (Fortran 90)

program animalsounds
implicit none
character(len=20) :: myanimal
character*20 :: youranimal

myanimal = ’himalayan yak’
write(*,”, ADVANCE="NO’) 'my animal says ’

select case(trim(myanimal))
case(’cow’)
write(*,*) 'moo’
case(’zebra’,’”donkey’,’ mutated horse’)
write(*,”) "a kind of donkey-like braying’
case default
write(*,*) "an unspecified non-human sound’
end select

end program animalsounds

Modules

module circles
implicit none
real, parameter :: pi = 3.1415926536

public :: area
private

contains
|

| a function to calculate the area
|

real function area(r)

implicit none

real, intent(in) :: r

area = pi'r*2 | area of a circle

end function area

end module circles

Using the module

program getarea

use circles program getarea
implicit none use circles, only:area
logical :: bored implicit none
logical :: bored
print*,” pi = ,pi
bored = .false.
bored = .false. do while (.not.bored)
do while (.not.bored) print*,” enter r’
print*,” enter r’ read™,r
read”,r if (r < 0) then
if (r < 0) then bored = .true.
bored = .true. else
else print*,” the area is ‘,area(r)
print*,” the area is ‘,arealr) endif
endif enddo
enddo

end program getarea
end program getarea

Compiling multiple files

gfortran -0 myprog myprog.f90 mysub.fO0

Compiling multiple files (in steps)

gfortran -0 mysub.o -¢ mysub.t90
gfortran -o myprog.o -¢ myprog.f90
gfortran -o myprog mysub.o myprog.o

Maketfiles

« easy way to compile a program consisting of multiple source files

* just type “make” instead of having to remember all the separate commands

- we will type a simple example together

Fortran 90 Exercise

write a subroutine that solves (returns all the real roots of) a cubic equation
using the exact solution for a cubic.

put this in a module

use this module in a program that reads the coefficients for the cubic as input
from the user, calls the subroutine you wrote to solve it, and checks the
answet.

use the prompting module provided in the fortran_examples directory to
interface with the user

write a Makefile that will compile your program with the cubic module and the
program in different files.

Advanced Fortran 90

 write a second version of your cubic solver subroutine that works on double
precision input

