
An introduction to Fortran

Daniel Price

School of Physics and Astronomy

Monash University

Melbourne, Australia

Part I: Introduction to FORTRAN

A brief history of Fortran (and FORTRAN)

• developed in the 1950’s by IBM

• FOR(mula) TRAN(slation): written for doing Maths!

• Prior to FORTRAN, most code was written in assembly language (i.e., machine specific)

• 1961: FORTRAN IV

• 1966: FORTRAN 66

• 1977: FORTRAN 77 standard (now known as FORTRAN).

• 1990: significant new standard, Fortran 90

• 1995: Minor update to Fortran 90

• 2003: Further updates (incl. interface with C)

• 2008: most recent standard, including generic types and co-arrays

Punch cards

http://en.wikipedia.org/wiki/Fortran

http://en.wikipedia.org/wiki/Fortran

The future?

unfortunately a hoax: http://www.snopes.com/inboxer/hoaxes/computer.asp#photo

http://www.snopes.com/inboxer/hoaxes/computer.asp#photo

When should *you* use Fortran?

• Fairly low level, compiled language. So not like matlab “solve ODE”, more
like basic Maths, x = y + z; z = sin(x), etc.

• Used commonly for numerical work, e.g. solving ODEs, PDEs. Not for
things like writing computer operating systems (C) or scripting (python/
perl/unix shell).

• Modern Fortran is a fully object-oriented language, similar to C++, but
designed for solving mathematical problems.

Hello world in FORTRAN

 program helloworld
 implicit none

 print*,’hello world’

 end
1 0

start typing in column 6 (cf. punchcard) stop typing in column 72

What a compiler does (I)

source code
(.f or .f90 file)

gfortran -o myprog helloworld.f

to run:
 ./myprog

assembler
(e.g. x86,
powerpc)

“human
language” “machine code”

executable
binary

“a program you
can run”

What a compiler does (II):

 program helloworld
 implicit none

 print*,’hello world’

 end

 .const
LC0:
 .ascii "hello.f90\0"
LC1:
 .ascii "hello"
 .text
.globl _MAIN__
_MAIN__:
 pushl %ebp
 movl %esp, %ebp
 pushl %ebx
 subl $372, %esp
 call ___i686.get_pc_thunk.bx
"L00000000001$pb":
 leal _options.0.1494-"L00000000001$pb"(%ebx), %eax
 movl %eax, 4(%esp)
 movl $8, (%esp)
 call L__gfortran_set_options$stub
 leal LC0-"L00000000001$pb"(%ebx), %eax
 movl %eax, -340(%ebp)
 movl $4, -336(%ebp)
 movl $128, -348(%ebp)
 movl $6, -344(%ebp)
 leal -348(%ebp), %eax
 movl %eax, (%esp)
 call L__gfortran_st_write$stub
 movl $5, 8(%esp)
 leal LC1-"L00000000001$pb"(%ebx), %eax
 movl %eax, 4(%esp)
 leal -348(%ebp), %eax
 movl %eax, (%esp)
 call L__gfortran_transfer_character$stub
 leal -348(%ebp), %eax

 gfortran -S hello.f90

Fortran variable types

 program variables
 implicit none
 logical ihavebrain

 ihavebrain = .true.
 inum = 1
 rnum = 1
 dnum = 1.0d0

 print*,’vars=’,ihavebrain,inum,rnum,dnum

 end

The evils of implicit types

• Implicitly in FORTRAN, undeclared variables starting with a-h and o-h are of
type real, and i-n are of type integer.

God is real unless declared integer

Fortran variable types (well written)

 program variables
 implicit none
 logical ihavebrain
 integer inum
 real rnum
 double precision dnum

 ihavebrain = .true. ! check if we have a brain
 inum = 1 ! number of brain cells
 rnum = 1.0 ! fraction of brain cells used
 dnum = 0.5d0 ! fraction working now

 print*,’vars=’,ihavebrain,inum,rnum,dnum

 end program variables

A bad FORTRAN example (Why you should
ALWAYS use “implicit none”)

• what does this code do?

 program badfort

 do 30 i=1.20
 print*,i
 30 continue

 end

 program badfort
 implicit none
 integer i

 do i=1.20
 print*,i
 enddo

 end

Some basic good practice

• always use “implicit none” to avoid silly mistakes

• add comments to your code as much as possible. These are for YOU so you
remember what you did/what you were thinking at the time.

• try to avoid writing the same bit of code more than once: cut and paste is
convenient but deadly whilst writing programs! Use a short subroutine or
function instead.

Basic maths operations

 program basicmaths
 implicit none
 real a,b,c,d,e

 a = 1.
 b = 2.
 c = a + b
 d = a*b
 e = sqrt(b)

 print*,’a=’,a,’ b=’,b,’ c=’,c,’ d=’,d,’ e = ’,e

 end program basicmaths

Basic maths operations (in double precision)

 program basicmathsdbl
 implicit none
 double precision a,b,c,d

 a = 1.0d0
 b = 2.0d0
 c = a + b
 d = a*b
 e = sqrt(b)

 print*,’a=’,a,’ b=’,b,’ c=’,c,’ d=’,d,’ e = ’,e

 end program basicmathsdbl

Arrays

 program array1
 implicit none
 real rnum(3)

 rnum(1) = 1.0
 rnum(2) = 2.0  
 rnum(3) = 3.0

 print*,’rnum=’,rnum

 end program array1

Arrays II

 program array2
 implicit none
 real rnum(3,2)

 rnum(1,1) = 1.0
 rnum(2,1) = 2.0  
 rnum(3,1) = 3.0
 rnum(1,2) = 4.0
 rnum(2,2) = 5.0
 rnum(3,2) = 6.0

 print*,’rnum=’,rnum

 end program array2

Logical constructs: if-then-else

 program ifanimal
 implicit none
 logical :: isacow,hastwohorns
 integer, parameter :: nhorns = 2

 isacow = .true.
 if (isacow) then ! check if our animal is a cow
 print*,’ my animal is a cow...’
 if (nhorns.eq.2) print*,’ ...with two horns’
 else
 print*,’ my animal is not a cow’
 endif

 end program ifanimal

Logical constructs: if-then-elseif

 isacow = .false.
 isadog = .true.
 !
 !--here we check the type of animal
 ! (and the number of horns if it is a cow)
 !
 if (isacow) then ! check if our animal is a cow
 print*,’ my animal is a cow...’
 if (nhorns.eq.2) print*,’ ...with two horns’
 elseif (isadog) then ! or if it is a dog
 print*,’ my animal is a dog. Woof.’
 else
 print*,’ my animal is not a cow or a dog’
 endif

Fortran loops

 program loop
 implicit none
 integer :: i

 do i=1,10
 write(*,”(a,i2)”) ‘ number ‘,i
 enddo

 end program loop

 program loop
 implicit none
 integer :: i

 i = 0
 do while (i.lt.10)
 i = i + 1
 write(*,”(a,i2)”) ‘ number ‘,i
 enddo

 end program loop

Formatted print

print*,’x=’,x
print “(f6.3)”, x
print “(a,2x,f6.3)”, ’x = ’,x
print “(’ x= ’,f6.3)”,x
 print 10,x
10 format(‘x = ‘,f6.3)

Fortran loops: advanced

 program loop
 integer :: i

 loop1: do i=1,10
 write(*,”(a,i2)”) ‘ number ‘,i
 if (i.eq.5) exit loop1
 enddo loop1

 end program loop

Reading and writing to/from the terminal

 program hello
 character(len=20) :: name

 print “(’---’,2x,a,2x,’---’)”,’welcome to the hello program’

 print*,’ please enter your name’
 read(*,*) name

 write(*,*) ’hello ’,name
 write(6,*) ’I like the name ’//trim(name)
 write(*,”(a)”) ’I once had a friend called ’//trim(name)

 end program hello

 program nametofile
 character(len=20) :: name
 integer :: npets

 print*,’ please enter your name’
 read(*,*) name
 print*,’ how many pets do you have?’
 read(*,*) npets

 open(unit=1,file=’myname.txt’,status=’replace’)
 write(1,*) name
 write(1,*) npets
 close(unit=1)

 end program nametofile

Writing to a file

Opening a file and reading content

 program namefromfile
 character(len=20) :: name

 open(unit=3,file=’myname.txt’,status=’old’)
 read(3,*) name
 read(3,*) npets
 close(unit=3)

 write(*,*) ’hello ’,name
 write(*,*) ’I see you have ’,npets,’ pets’

 end program namefromfile

Subroutines
 program callsub
 implicit none
 real :: x1,y1,z1

 x1 = 3.
 y1 = 4.
 call mysub(x1,y1,z1)
 print*,’z1= ’,z1

 contains

 subroutine mysub(x,y,z)
 implicit none
 real, intent(in) :: x,y
 real, intent(out) :: z

 z = sqrt(x**2 + y**2)

 end subroutine mysub

 end program callsub

Functions
 program callfunc
 implicit none
 real :: x1,y1,z1
 real :: zfunc

 x1 = 3.
 y1 = 4.
 z1 = zfunc(x1,y1)
 print*,’z1= ’,z1

 end program callfunc

 function zfunc(x,y)
 implicit none
 real, intent(in) :: x,y
 real :: zfunc

 zfunc = sqrt(x**2 + y**2)

 end function zfunc

Part II: A simple FORTRAN primer...

Part III: Advanced Fortran (Fortran 90)

Fortran 90

• files end in .f90

• lines can be longer than 72 characters, do not have to start in column 6

• powerful array notation a = b + c where a, b and c are arrays

• new intrinsic functions e.g., dot_product, trim, matmul

• modules: all subroutines should go in a module that is “used” by the calling routine - allows
interfaces to be checked. Modules also replace weird things like COMMON blocks.

• dynamic memory allocation (allocatable arrays) and pointers

• derived data types

• recursive subroutines and functions

Fortran 95

• very minor update to Fortran 90

• where/elsewhere statement

• forall

Fortran 2003

• interoperability with C

• intrinsic functions for getting command line arguments, environment variables
etc. (previously these had been compiler extensions)

• Fortran 2003 is fully object oriented.

Fortran 2008

• Co-array fortran for parallel computing

f90 vs f77

 program xdoty
 implicit none
 real x(3),y(3),xdoty

 x(1) = 1.
 x(2) = 1.
 x(3) = 1.
 y(1) = 0.
 y(2) = 0.
 y(3) = 3.

 xdoty = x(1)*y(1) + x(2)*y(2) + x(3)*y(3)
 print*,’ xdoty = ’,xdoty

 end

program xdoty
 implicit none
 real, dimension(3) :: x,y
 real :: xdoty

 x(:) = 1.
 y(1:2) = 0.
 y(3) = 3.

 xdoty = dot_product(x,y)
 print*,’ xdoty = ’,xdoty

end program xdoty

Logical constructs: select case (Fortran 90)
 program animalsounds
 implicit none
 character(len=20) :: myanimal
 character*20 :: youranimal

 myanimal = ’himalayan yak’
 write(*,*,ADVANCE=’NO’) ’my animal says ’

 select case(trim(myanimal))
 case(’cow’)
 write(*,*) ’moo’
 case(’zebra’,’donkey’,’mutated horse’)
 write(*,*) ’a kind of donkey-like braying’
 case default
 write(*,*) ’an unspecified non-human sound’
 end select

 end program animalsounds

Modules
module circles
 implicit none
 real, parameter :: pi = 3.1415926536

 public :: area
 private

contains
!
! a function to calculate the area
!
 real function area(r)
 implicit none
 real, intent(in) :: r

 area = pi*r**2 ! area of a circle

 end function area

end module circles

Using the module
program getarea
 use circles
 implicit none
 logical :: bored

 print*,’ pi = ‘,pi

 bored = .false.
 do while (.not.bored)
 print*,’ enter r’
 read*,r
 if (r < 0) then
 bored = .true.
 else
 print*,’ the area is ‘,area(r)
 endif
 enddo

end program getarea

program getarea
 use circles, only:area
 implicit none
 logical :: bored

 bored = .false.
 do while (.not.bored)
 print*,’ enter r’
 read*,r
 if (r < 0) then
 bored = .true.
 else
 print*,’ the area is ‘,area(r)
 endif
 enddo

end program getarea

Compiling multiple files

gfortran -o myprog myprog.f90 mysub.f90

Compiling multiple files (in steps)

gfortran -o mysub.o -c mysub.f90
gfortran -o myprog.o -c myprog.f90

gfortran -o myprog mysub.o myprog.o

Makefiles

• easy way to compile a program consisting of multiple source files

• just type “make” instead of having to remember all the separate commands

• we will type a simple example together

Fortran 90 Exercise

• write a subroutine that solves (returns all the real roots of) a cubic equation
using the exact solution for a cubic.

• put this in a module

• use this module in a program that reads the coefficients for the cubic as input
from the user, calls the subroutine you wrote to solve it, and checks the
answer.

• use the prompting module provided in the fortran_examples directory to
interface with the user

• write a Makefile that will compile your program with the cubic module and the
program in different files.

Advanced Fortran 90

• write a second version of your cubic solver subroutine that works on double
precision input

