
A Simple Fortran Primer

2nd Edition

Rosemary Mardling and Daniel Price

School of Physics & Astronomy

Monash University

2020

1

Contents

1 Introduction 2

2 Simple Mathematical Expressions 3

3 Real and Integer Variables; Vectors and Subscripted Variables 8

3.1 Data Types . 8

3.2 Arrays . 11

4 Sums, Products, and Other Repetitive Operations: Do Loops 15

4.1 Do loops . 15

4.2 Implied do loops . 16

4.3 Another kind of do loop . 17

5 Logical Decisions: If Statements 21

6 Subprograms 26

6.1 Functions . 26

6.2 Subroutines . 31

7 Reading From Files; Writing To Files 34

8 Putting It All Together... 37

A Appendix: Some Intrinsic Functions 49

2

1 Introduction

The aim of this primer is to get you fearlessly writing simple programs in Fortran. As with any
language, the vocabulary and grammar (called syntax in a computer language) seem vast at first,
but with practice soon become manageable. We have followed the philosophy that learning by
example is an efficient way of learning. We have also approached problems from a mathematical
point of view rather than a computer science point of view. After all, the language name Fortran
comes from FORmula TRANslation.

Each section consists of a series of Examples, each of which is set out as follows:

• A mathematical problem is stated.

• A sample program is given which solves the problem and introduces some new elements
of Fortran.

• Each new Fortran element is pointed out and discussed.

At the end of each section, a series of Exercises is given for which the student must write her/his
own program. Attempting these Exercises will consolidate what has been learned so far.

Since this primer covers only the basics of Fortran programming, we often suggest reference to
a Fortran manual. The best reference is the book by Metcalf, Cohen & Reid:

Modern Fortran Explained
Metcalf, M., Cohen, J., Reid, M. (Oxford University Press)
(The 3rd edition is called “Fortran 90/2003 explained”)

in which most Fortran statements are defined and examples are given. It is our hope that after
having worked through this primer, the student will feel confident consulting such a manual.

The current version of Fortran is simply called ‘Fortran’ which is essentially “Fortran 90” with
some minor updates to the standard in 2003, 2008 and 2015. Modern Fortran is backwards
compatible with older languages called “FORTRAN 77”, “FORTRAN 66” (66 ≡ 1966, 77 ≡
1977). These older standards are indicated by filenames ending in .f, while filenames in modern
Fortran end in .f90. Older Fortran is referred to as FORTRAN (in SHOUT CASE) and required
some quirks like indenting all code by 6 characters along with other features which are regarded
as ‘deprecated’ and should no longer be used.

Finally, there is no one “right” way to write a Fortran program. The examples presented in this
primer indicate the programming style of the author, but you may find after some practice that
you prefer to organise and present your programs differently.

First edition for Fortran 77 by Rosemary Mardling 1997
Second edition updated to Fortran 90 by Daniel Price 2016

3

2 Simple Mathematical Expressions

Try as much as possible to make your program “look” like your mathematics.

Example 2.1

Write a program to evaluate the following expression for x = −3, printing out the answer on
the screen;

y = 2x+ 3,

1 program myprog

2

3 x = -3.0

4 y = 2.0*x + 3.0

5 print*,y

6

7 end program

Things to note:

1. Each expression begins on a new line. Each line is called a statement.

2. The indentation of each line is optional in modern Fortran (i.e. if the filename ends in
.f90).

3. You must tell the computer the value of every variable, either directly as in x=-3.0 or
indirectly, as in y=2.0*x+3.0.

4. The numbers are written with a decimal point. Although this is not necessary here, it is
good practice to do this because Fortran distinguishes between real and integer variables
(and also complex variables, but we won’t look at them in this primer). We will look at
this in more detail in Section 3.

5. In Fortran, multiplication is performed by the * symbol.

6. The simplest way to see the value of a variable on the computer is to use the print*,

statement. The * means the computer can print out the answer the way it wants (this is
called free format) instead of how you might like it.

7. Fortran doesn’t distinguish between upper and lower case letters.

8. Note the last line: it is the end statement; every Fortran program (including functions

and subroutines) must end with this statement.

4

Example 2.2

Evaluate

z =
3α− 4β

2α

for α = 1 and β = 2.

1 program myprog

2

3 alpha = 1.0

4 beta = 2.0

5 z = (3.0* alpha - 4.0* beta)/(2.0* alpha)

6 print*,’ z = ’,z

7

8 end program myprog

Things to note:

1. Variable names can be of any length, should start with a letter of the alphabet, but can
contain numbers (and the underscore character). Although we could call the variables
anything we like, it is good practice to try and mimick the original mathematical expres-
sion. Of course, a and b would have done just as well.

2. In Fortran, division is performed by the / symbol (don’t get this mixed up with the
backslash symbol \).

3. Note the placement of the brackets. We would not get the correct answer if we didn’t
bracket the whole denominator, i.e. if we put z=(3.0*alpha-4.0*beta)/2.0*alpha, or
worse still, z=3.0*alpha-4.0*beta/2.0*alpha.

4. If you try this exercise, you will see that the computer prints out z=-2.500000, whereas in
Example 2.1, only the number is printed out. You can get the computer to print out things
which make it easier for you to read the answers (such as the z= part in this example) by
putting such things between single quotes. Note the comma between ’z=’ and z in the
print*, statement.

5. See what happens when you run the program if you replace alpha=1.0 by alpha=0.0 -
the computer does not like to divide by zero!

5

Example 2.3

Evaluate the following expression for several values of x and a:

y = log (x+
√
x2 + a2)

1 program log

2

3 print*,’x,a?’

4 read*,x,a

5 y = log(x + sqrt(x**2 + a**2))

6 print*,’y’,y

7

8 end program log

Things to note:

1. You can read in data by typing it in directly using the read*, statement. When you
run the program, it will pause at this statement until you have typed in as much data as
it expects separated by commas, spaces or <return> (in this example, it will wait for 2
numbers).

2. The statement print*,’x,a?’ is not actually necessary for the running of the program,
but it is used as a “prompt” so that we know the program is waiting for values of xand a.

3. In Fortran, you can raise a variable to a power using **. For example, x1/2 is written
x**0.5.

4. The two “Fortran intrinsic functions” log(...) and sqrt(...) have been used here. The
argument of these functions must be enclosed in brackets. Other library functions may be
found in the appendix.

6

Example 2.4

Generate the first 4 numbers in the sequence defined as follows:

ni+1 = 4− ni, n1 = 1.

Ans: {1, 3, 1, 3}

1 program seq

2

3 n = 1

4

5 n = 4-n

6 print*,n

7

8 n = 4-n

9 print*,n

10

11 n = 4-n

12 print*,n

13

14 end program seq

Things to note:

1. The symbol ‘=’ means replace or assign, ie. in this case, the old value for n is replaced
by the new value for n. Each variable has a space assigned to it in the memory of the
computer, and this is filled with the present value of the variable.

2. You can see how cumbersome it is to repeat the statements n=n-4 and print*,n several
times. We will address this when we look at do loops in Section 4.

7

Exercises

Evaluate the following expressions by writing a Fortran program for each, printing out the
answers on the screen.

1. y = s2 + r3, where s = cosx, r = ex and x = 0.5. Ans: y = 5.251840

2. y = tanh(f(z)), where f(z) = log
√

1+z
1−z , and z = 1/2. Ans: y = 1/2

3. y = cos2 θ − sin2 θ, where θ = π/2. Ans: y = −1

4. y = Sin−1x+ Cos−1x, for any value of x. Ans: y = π/2

Notes to Exercises

Q. 2: You will not get the correct answer if you put z=1/2; you must put either z=0.5 or
z=1.0/2.0. See the following section.

Q. 3: You must tell the computer the value of π. For instance you can say pi=3.141593 or
pi=4.0*atan(1.0). Of course you needn’t call π pi, but if you do, you will know immediately
what this variable stands for.

8

3 Real and Integer Variables; Vectors and Subscripted Variables

3.1 Data Types

As mentioned earlier, Fortran distinguishes between real and integer variables1, and we have
three options to follow:

1. We can let the computer follow the Fortran convention of assuming all variables which
start with the letters i,j,k,l,m,n are integer type variables, while all others are real, and
risk forgetting about this convention (we’ll see shortly what happens if you do this);

2. We can partly follow this convention making sure that the data types of any variables
which don’t follow the convention are declared at the top of the program; forgetting will
incur an error message when the program is compiled, or

3. We can put the statement implicit none at the top of the program and declare the data
type of all the variables appearing in the program. If we forget to declare any, we will get
an error message when we compile the program.

1As well as complex variables, double precision variables, logical variables and character variables; see the
Fortran manual for more information.

9

Example 3.1

Here is an example of the first option where the programmer has forgotten two things:

1 program vars

2

3 noddy = 3.7

4 bigears = -2.8

5

6 m = 2

7 n = 3

8

9 golly = noddy + bigears

10 j = m/n

11

12 print*,’golly=’,golly

13 print*,’j = ’,j

14

15 end program vars

When you try running this program, you might expect to get the answers golly=0.9 and
j=0.666667; instead you will find the computer comes up with golly=0.2 and j=0. In the
first case, the programmer has forgotten to declare the variable noddy as real, so the computer
assumes it is of type integer and will round it down to the nearest integer (no matter what the
decimal part of the number is). The second mistake was to forget that integer division only
gives the correct answer when the denominator is a factor of the numerator. Otherwise it again
rounds down2.

• Note the blank lines in this program; while the computer ignores them, they help to make the
program easier to read.

2Integer division can be used to obtain the integer part of a number.

10

Example 3.2

Now we will repeat Example 3.2 using the implicit none statement at the top of the program.

1 program vars

2 implicit none

3 real :: noddy ,bigears ,golly ,j

4 integer :: m,n

5

6 noddy = 3.7

7 bigears = -2.8

8

9 m = 2

10 n = 3

11

12 golly = noddy + bigears

13 j = m/n

14

15 print*,’golly=’,golly

16 print*,’j = ’,j

17

18 end program vars

Although the variable n is an integer, we can obtain the correct answer for the division if we
temporarily take n to be real by replacing j=m/n by j=m/real(n). Similarly, if we wanted to
temporarily treat a real variable as integer, or if we wanted to take the integer part of a real
number, we would use int(...) as in y=int(x).

• From now on we will use implicit none at the top of the program and declare
the data type of all our variables.

• Statements which declare the data type of variables go at the top of the pro-
gram before the executable statements. Executable statements such as x=3.1 are
statements which get the computer to do something.

11

3.2 Arrays

Arrays are used for subscripted variables such as the components of a vector or of a matrix.

Example 3.3

Evaluate u · v, where u = 3i + 4j and v = −i + 2j.

1 program arrays

2 implicit none

3 real :: u(2), v(2), y, z

4

5 u(1) = 3.0

6 u(2) = 4.0

7

8 ! this is a comment

9 v = (/-1.0, 2.0/)

10

11 y = u(1)*v(1) + u(2)*v(2)

12

13 print*,’u.v = ’,y

14

15 z = dot_product(u,v)

16 print*,’u.v = ’,z

17

18 end program arrays

Things to note:

1. The second statement plays two roles: it tells the computer that the array variables u and
v as well as the scalar variable y are of data type real, and that the computer should leave
2 “spaces” of memory for the array u and 2 spaces for the array v. Generally the array size
has to be at least as many as the program will need; for example we could have put real
u(10),v(23), and the program would work. On the other hand, putting real u(1),v(1)

would not work. The computer assumes the arrays start with subscript 1, unless
specified otherwise (see the Fortran manual).

2. The arrays in this example are 1-dimensional; Fortran allows arrays of up to 7 dimensions.
For example, a 2-dimensional array would be used to represent a 3 × 3 matrix as in the
following example.

3. We can define arrays by either specifying each component u(1)=, u(2)=, or by setting all
components at once v = (/-1.0, 2.0/).

4. The dot_product intrinsic function computes the dot product between two arrays

5. Comments are lines starting with an exclamation mark. You should use them copiously.
They are mainly for your future self, so you can remember what you were trying to do.

12

Example 3.4

Find the value for x such that the following matrix has zero determinant:




3 1 1
6 −2 −1
x 2 3




Ans: x = 18.

1 program get_x

2 implicit none

3 real :: A(3,3),x,det1 ,det2 ,det3

4

5 A(1,1) = 3

6 A(1,2) = 1

7 A(1,3) = 1

8 A(2,1) = 6

9 A(2,2) = -2

10 A(2,3) = -1

11 A(3,2) = 3

12 A(3,3) = 3

13

14 det1 = A(1 ,2)*A(2,3)-A(1,3)*A(2,2)

15 det2 = A(1 ,1)*A(2,3)-A(1,3)*A(2,1)

16 det3 = A(1 ,1)*A(2,2)-A(1,2)*A(2,1)

17

18 x = (A(3 ,2)*det2 -A(3 ,3)* det3)/det1

19

20 print*,’ x = ’,x

21

22 end program get_x

Things to note:

1. A matrix consisting of n rows and m columns must be allocated at least n×m spaces of
memory, with the first dimension being at least n and the second being at least m. Thus a
3× 4 matrix must be dimensioned at least A(3,4), although A(5,5) would also be correct
while A(4,3) would not.

2. Rather than evaluate an expression for x in one line, we have calculated each subdetermi-
nant (det1, det2, det3) separately. This has several advantages including making the
mathematics more obvious and making the program easy to check for errors.

3. The last row has been used to evaluate the determinant; recall that any row or column
may be used for this purpose.

13

Example 3.5

Repeat example 3.4, but using some modern features of Fortran to make the code shorter:

1 program get_x

2 implicit none

3 real :: A(3,3),x,det1 ,det2 ,det3

4

5 ! define each row separately

6 A(1,:) = (/3,1 ,1/)

7 A(2,:) = (/6,-2,-1/)

8 A(3 ,2:3) = 3

9

10 det1 = A(1 ,2)*A(2,3)-A(1,3)*A(2,2)

11 det2 = A(1 ,1)*A(2,3)-A(1,3)*A(2,1)

12 det3 = A(1 ,1)*A(2,2)-A(1,2)*A(2,1)

13

14 x = (A(3 ,2)*det2 -A(3 ,3)* det3)/det1

15

16 print*,’ x = ’,x

17

18 end program get_x

Things to note:

1. We can define whole columns or rows using a colon as the index, e.g. A(:,1). We can also
refer to just part of a row or column by specifying a range of numbers, e.g. A(3,2:3).

2. Setting an array equal to a scalar sets every component of the array equal to that number.
For example, using A(3,2:3) = 3 sets both A(3,2) and A(3,3) to the value 3.

3. An alternative way to assign the whole array in one line would be to use the reshape

intrinsic function. Try the following in the program above:

A = reshape((/3,6,0,1,-2,3,1,-1,3/),shape=(/3,3/))

Notice that here we have to set the whole array, including setting the blank entry to zero.
Also note that the entries are listed in column-major order, which is the order in which
the actual numbers are stored in the computer in Fortran.

4. In modern Fortran you can perform operations on arrays just as if they were numbers. For
example you can compute the sum of two matrices, A and B, by simply typing A+B (see
exercise on next page). For this to work both arrays must have the same rank.

14

Exercises

1. Find the magnitude of the vectors a = 2i− 3j + k and b = −i + 4j + 2k. Ans: 3.741657,
4.582576

2. Find the angle between the two vectors in Question 1 in degrees. Ans: 134.415◦

3. Find the component of a in the direction of b. Ans: −4/7b

4. Evaluate the following:



−3 1

1 2
4 1


+




2 1
0 3
−1 −1




15

4 Sums, Products, and Other Repetitive Operations: Do Loops

This section looks at what we call looping. This can be used when we need to repeat an operation
more than once, such as defining the components of a vector via a formula. There are several
ways to “loop”; here are two — a third way is illustrated in Ex. 8.3.

4.1 Do loops

We will use the following kind of do loop most often in this primer; it is up to you to choose
which you prefer.

Example 4.1

Convert the polar coordinates (r = 2, θ = π/6), (r = 1, θ = π/4), (r = 3, θ = π/2) into Cartesian
coordinates (xi, yi), i = 1, 2, 3.

1 program loops

2 implicit none

3 real :: x(3),y(3),r(3), theta (3)

4 integer :: i

5 real , parameter :: pi = 4.* atan (1.0)

6

7 r = (/2.0 , 1.0, 3.0/)

8 theta = (/pi/6. ,0.25*pi ,0.5* pi/)

9

10 do i=1,3

11 x(i) = r(i)*cos(theta(i))

12 y(i) = r(i)*sin(theta(i))

13 print*,’x(’,i,’) = ’,x(i)

14 print*,’y(’,i,’) = ’,y(i)

15 enddo

16

17 end program loops

Things to note:

1. We must define π: Fortran doesn’t have such numbers inbuilt. We used the parameter

attribute to specify that pi should have a fixed value throughout the program execution

2. The loop starts with do i=1,3 and ends with enddo. The computer repeats the statements
in between for each value of the counter variable i. Although it is possible to use non-
integers for counter variables, it is good practice to use integers.

3. To make the do loop easier to read, we have indented the statements between do i=1,3

and enddo by 3 spaces.

4. You can nest do loops, ie. you can have do loops inside do loops.

16

4.2 Implied do loops

We can simplify the previous example by using the array notation in modern Fortran

Example 4.2

Repeat example 4.1 but using array notation instead of do loops.

1 program loops

2 implicit none

3 real :: x(3),y(3),r(3), theta (3)

4 integer :: i

5 real , parameter :: pi = 4.* atan (1.0)

6

7 r = (/2.0 , 1.0, 3.0)

8 theta = (/pi/6. ,0.25*pi ,0.5* pi/)

9

10 x = r*cos(theta)

11 y = r*sin(theta)

12

13 print*,’x = ’,x

14 print*,’y = ’,y

15

16 end program loops

Things to note:

1. The do loop is no longer explicit in the code, but it is implied by the array operations on
x and y.

2. We could equivalently use

x = r*cos(theta)

or

x(:) = r(:)*cos(theta(:))

or

x(1:3) = r(1:3)*cos(theta(1:3))

3. An alternative to do loops for array assignment with conditions is the where/end where

construct, e.g.:

1 where (r > 0)

2 x = r*cos(theta)

3 y = r*sin(theta)

4 elsewhere

5 x = 0.

6 y = 0.

7 end where

17

4.3 Another kind of do loop

Example 4.3

Compute the sum

10∑

n=1

(n2 + n)

1 program loopy

2 implicit none

3 integer :: n, sum

4

5 sum = 0.

6

7 myloop: do n=1,10

8 sum = sum + n**2 + n

9 enddo myloop

10

11 print*,’ sum = ’,sum

12

13 end program loopy

Things to note:

1. Do loops can have labels, which can be useful if you want to exit or skip over part of the
loop. For example, try inserting the following statement inside the loop:

if (n==9) exit myloop

or the following to skip n = 8:

if (n==8) cycle myloop

These statements should be used in place of the deprecated goto, continue and do <line
number> statements that were used in older FORTRAN programs.

2. Note the way the sum is evaluated. We initialize the variable sum by setting it equal to
zero. The sum is then built up each time the do loop is executed.

18

Example 4.4

For your choice of z, evaluate the product

3∏

j=1

z − xj
yj

,

and (xi, yi) are given in the following table:

i xi yi
1 3.1 5.7
2 −2.2 0.1
3 1.1 −4.8

1 program myprod

2 implicit none

3 real :: z,x(3),y(3),prod

4 integer :: i

5

6 x = (/3.1 , -2.2 ,1.1/)

7 y = (/5.7 ,0.1 , -4.8/)

8

9 print*,’ z?’

10 read*,z

11

12 prod = 1.0

13

14 do i=1,3

15 prod = prod*(z- x(i))/y(i)

16 enddo

17

18 print*,’product=’,prod

19

20 end program myprod

A thing to note:

• The product is evaluated by initializing the variable prod to 1. The product is then built
up as the do loop is executed.

19

Example 4.5

Generate the next 8 numbers of the following Fibonacci sequence using the rule:

xn+1 = xn + xn−1

with x1 = 1 and x2 = 1. Ans: {2,3,5,8,13,21,34,55}.

1 program fib

2 implicit none

3 integer :: x(10),n

4

5 x(1) = 1

6 x(2) = 1

7

8 do n=2,9

9 x(n+1) = x(n) + x(n-1)

10 print*,n+1,x(n+1)

11 enddo

12

13 end program fib

A thing to note:

• The print statement print*,n+1,x(n+1) involves the computer evaluating n+1 before it
can print out the answer.

20

Exercises

1. Verify the formula

N∑

n=0

arn =
a(1− rN+1)

1− r , r 6= 1

for various values of a, r and N .

2. Verify the formula

n−1∏

k=1

(
x2 − 2x cos

kπ

n
+ 1

)
=
x2n − 1

x2 − 1

for various values of x and n.

3. How many terms of the following product do you need to calculate to obtain three figure
accuracy?

∞∏

k=2

(
1− 1

k2

)
=

1

2
.

Ans: about 1000.

21

5 Logical Decisions: If Statements

It is possible to make logical decisions in Fortran using the if statement. There are several ways
this can be used:

Example 5.1

Find the minimum number in the following set: {ni, i = 1, 9} = {5, 7, 2, 9, 5, 3, 9, 1, 8}.

1 program mymin

2 implicit none

3 integer :: i,n(9),min

4

5 n = (/5,7,2,9,5,3,9,1,8/)

6 min = n(1)

7

8 do i=1,size(n)

9 if (n(i) < min) min = n(i)

10 enddo

11

12 print*,’minimum = ’,min

13 print*,’minimum = ’,minval(n)

14

15 end program mymin

Things to note:

1. This is the simplest form of the if statement. It has the structure

if(logical expression)statement

Some logical expressions are listed here:

Expression Modern Fortran Old-style FORTRAN

a < b a < b a.lt.b

a ≤ b a <= b a.le.b

a > b a > b a.gt.b

a ≥ b a >= b a.ge.b

n = m n == m n.eq.m

n 6= m n /= m n.ne.m

a < b & x ≥ y (a < b).and.(x >= y) a.lt.b.and.x.ge.y

n = m or α > β n==m .or. alpha > beta n.eq.m.or.alpha.gt.beta

2. We initialised the variable min by setting it to the first number in the set.

3. An alternative to the code above is the array intrinsic function minval. You can also use
minloc(n) to find the location of the minimum in the array..

22

Example 5.2

Find all integers less than 100 which are divisible by 7 or 17.

1 program div

2 implicit none

3 integer :: n

4

5 do n=1,99

6 if ((n==(n/7)*7). or. &

7 (n==(n/17)*17)) print*,n

8 enddo

9

10 end program div

Things to note:

1. We have taken advantage of the way the computer does integer division; (n/3)*3 will only
equal n when n is divisible by 3.

2. Lines in old FORTRAN programs were not allowed be more than 72 spaces long. This was
historical; it came from the days when computing was done with punch cards! This is no
longer necessary but for readability it is still a good idea to avoid lines that are too long.
We have broken the if statement into two lines to show you how to continue a statement
on a new line. You simply put an ampersand at the end of the line you want to continue.

3. You must always check that your brackets match!

4. An alternative way to achieve the above is with the mod intrinsic function, which returns
the remainder of an integer division operation. Thus we could replace the checks in the
if statement with the following:

if (mod(n,7)==0.or.mod(n,17)==0)

Try this!

23

Example 5.3

Evaluate the following function for x = −2.3,−e, 3π/4, 0:

f(x) =

{
ex − 1, x < 0
tanx, x ≥ 0.

1 program fun

2 implicit none

3 real :: f,x(4)

4 real , parameter :: e = exp (1.0)

5 real , parameter :: pi = 4.0* atan (1.0)

6

7 x = (/-2.3,-e ,0.75*pi ,0.0/)

8

9 do i=1,4

10 if (x(i) < 0.) then

11 f = exp(x(i)) - 1.0

12 else

13 f = tan(x(i))

14 endif

15

16 print*,’f(’,x(i),’) = ’,f

17 enddo

18

19 end program fun

Things to note:

1. You don’t need to declare all your variables of the same type in one line (note the two
real statements).

2. Note the way we have defined e and π - you don’t have to look them up or remember
them! We also used the parameter attribute to specify that they should not be changed
by the code.

3. In Example 5.1, we used a single line if statement because there was only one thing
the computer had to do if the logical expression was true. If there are several things the
computer must do if the logical expression is true, the structure is as follows:

1 if (<logical statement >) then

2 <statement >

3 <statement >

4 ..

5 ..

6 endif

If the logical expression is NOT true, you may wish the computer to execute some other state-
ments, as in the previous example. In this case, the structure is as follows:

24

1 if (<logical statement >) then

2 <statement >

3 <statement >

4 ..

5 elseif (<logical statement >) then

6 <statement >

7 <statement >

8 ..

9 else

10 <statement >

11 <statement >

12 ..

13 ..

14 endif

You can nest if statements, just as you can nest do loops, ie. you can have if statements inside
if statements to cover more than 2 alternatives.

25

Exercise

1. The function sgn x gives the sign of its argument, and thus is defined as follows:

sgn(x) =

{
−1, x < 0

1, x ≥ 0.

Write a program which tabulates values of the function f(x) = sgn(sinx) for 10 equally spaced
values of x in the range [0, 2π].

26
6 Subprograms

It is often convenient to separate a program into sections, with each section performing a specific
task. For instance, it may be that a particular calculation needs to be performed several times,
and if such a calculation involves several steps it is convenient to avoid repeating these steps
each time we need to do the calculation.

We thus can have a main program and several subprograms, each of which (except for function
statements) must follow the same rules regarding dimensioning arrays etc., as will be made clear
in the following examples.

Subprograms which return only one number to the main or subprogram which called it are
called functions. Subprograms which return more than one number and/or arrays are called
subroutines.

6.1 Functions

Sometimes it is necessary to evaluate a function at several points in a program. Rather than
repeating the definition of the function at each point, we can use a function statement if it is
possible to define the function in only one statement, or a function subprogram if we need more
than one statement to define the function. The following example is rather trivial in that the
definition of the function could have gone in the main body of the program, since it is only used
once. However, it illustrates how a function is used.

Example 6.1

Evaluate the function f(x) = (sinx+ 1)1/4 for x = π/3, 2π/3, π.

1 program morefun

2 implicit none

3 integer :: i

4 real :: x(3),y

5 real , parameter :: pi = 4.* atan (1.)

6

7 do i=1,3

8 x(i) = i*pi/3.

9 y = f(x(i))

10 print*,i,x(i),y

11 enddo

12

13 contains

14

15 real function f(z)

16 real , intent(in) :: z

17

18 f = (sin(z) + 1.0)**0.25

19

20 end function f

21

22 end program morefun

27

Things to note:

1. The function is defined after the contains statement and has the form

f = expression involving the variables a,b,c,... (and not of the form f(a,b,c,...) as
it is when called from the main program and in the first line of the function subprogram).
We use the intent(in) attribute to specify that the arguments are input only.

2. As in this example, the argument of the function need not be the same as the one used
in the main part of the program. This is because the function is treated like a separate
sub-program, as in Example 6.3.

3. In the above we have included the function as part of the program. In general it is better
to put functions inside a module, which are separate from the main program. This would
be structured as follows:

1 module mymod

2 implicit none

3 public :: f

4

5 contains

6

7 real function f(z)

8 real , intent(in) :: z

9

10 f = (sin(z) + 1.0)**0.25

11

12 end function f

13

14 end module mymod

15

16 program morefun

17 use mymod

18 implicit none

19 integer :: i

20 real :: x(3),y

21 real , parameter :: pi = 4.* atan (1.)

22

23 do i=1,3

24 x(i) = i*pi/3.

25 y = f(x(i))

26 print*,i,x(i),y

27 enddo

28

29 end program morefun

Modules were introduced in Fortran 90 and are very powerful. From now on we will put
all functions and subroutines inside modules. Even better is to put modules into separate
source files, which makes them re-usable by many different programs.

28

Example 6.2

Write a general program to calculate the first 3 terms of the Taylor series for a function f(x)
expanded about x = a, ie. calculate

f(x) = f(a) + f
′
(a)(x− a) +

f
′′
(a)

2
(x− a)2

Test it by calculating an approximate value for ln 1.1 using the Taylor series for lnx expanded
around x = 1 with a = 1 and x = 1.1.

1 module kanye

2 implicit none

3 public :: f,fd ,fdd

4

5 contains

6 real function f(x)

7 real , intent(in) :: x

8

9 f = log(x)

10

11 end function f

12

13 real function fd(x)

14 real , intent(in) :: x

15

16 fd = 1.0/x

17

18 end function fd

19

20 real function fdd(x)

21 real , intent(in) :: x

22

23 fdd = -1.0/x**2

24

25 end function fdd

26

27 end module kanye

28

29 program taytay

30 use kanye

31 implicit none

32 real :: a,x,y

33

34 a = 1.

35 x = 1.1

36 y = f(a) + fd(a)*(x-a) + 0.5* fdd(a)*(x-a)**2

37 print*,’x = ’,x,’ f(x) = ’,y

38

39 end program taytay

29

Example 6.3

Calculate an approximate value for e3−π using the first 5 terms of the following Taylor series
expansion:

ex =
∞∑

n=0

xn

n!
.

1 module factorial

2 implicit none

3 real , parameter :: pi = 4.* atan (1.)

4 public :: fac , pi

5

6 private

7

8 contains

9

10 function fac(n)

11 integer , intent(in) :: n

12 real :: fac , prod

13

14 if (n==0) then

15 fac = 1.

16 return

17 endif

18 prod = 1.0

19 do i=1,n

20 prod = prod*i

21 enddo

22 fac = prod

23

24 end function fac

25

26 end module factorial

27

28 program myfac

29 use factorial

30 implicit none

31 real :: x,sum

32 integer :: n

33

34 x = 3.-pi

35 sum = 0.

36 do n=0,4

37 sum = sum + x**n/fac(n)

38 enddo

39 print*,x,sum ,’ exact = ’,exp(x)

40

41 end program myfac

30

Things to note:

1. A function is treated as a separate sub-program, so you must declare the data type of all
the variables in it.

2. You must declare the data type of the function. You can either do this when defining the
function, as in real function fac or on a separate line as done in the example above

3. A real function may take an integer variable as an argument.

4. The statements where the function is defined take the form

fac=statement.

Note that it is NOT fac(n)=.....

5. For the special case n=0, fac is defined separately. If this option is taken, the program
must then return to the main program. Generally, if you need to return to the main
program before the end of the subprogram, you use the statement return (this statement
is sometimes used before the end statement as well, but is actually redundant in that case).

6. Modules can have public and private components. A public component is one that can be
seen by things outside the module, whereas private variables and functions are only visible
to other functions inside the module.

7. Public parts of modules are included in the main program via the use statement (e.g. use
factorial in the above example).

8. Modules can contain shared variables and constants. For example in the above we defined
π within the module and used this in the main program via the use statement.

31

6.2 Subroutines

We often need to return several numbers or even arrays to the program which called the sub-
program. For this purpose, we use subroutines.

Example 6.4

Verify that matrix multiplication is not commutative for the following pair of matrices:

(
1 2
3 −1

)
and

(
4 0
1 1

)

1 module mat

2 implicit none

3

4 contains

5 subroutine multiply(C,nc,mc,D,md,P)

6 real , intent(in) :: C(nc ,mc), D(mc ,md)

7 real , intent(out) :: P(nc ,md)

8 real :: sum

9

10 do i=1,nc

11 do j=1,md

12 sum = 0.

13 do k=1,mc

14 sum = sum + C(i,k)*D(k,j)

15 enddo

16 P(i,j) = sum

17 enddo

18 enddo

19

20 end subroutine multiply

21

22 end module mat

23

24 program mult

25 implicit none

26 integer , parameter :: na = 2, ma = 2, nb = 2, mb = 2

27 real :: A(2,2), B(2,2), P(2,2)

28

29 A = reshape ((/1,3,2,-1/), shape =(/2 ,2/))

30 B = reshape (/4,1,0,1/), shape =(/2 ,2/))

31

32 call multiply(A,na ,ma ,B,mb ,P)

33

34 do i=1,2

35 print*,(P(i,j),j=1,2)

36 enddo

37

32

38 call multiply(B,nb ,mb ,A,ma ,P)

39

40 do i=1,2

41 print*,(P(i,j),j=1,2)

42 enddo

43

44 end program mult

Things to note:

1. The main program uses the call statement to access the subroutine. It is of the form call

subroutine name(parameter list), where the parameter list consists of any constants/vari-
ables/arrays which the subroutine needs, as well as the required constants/variables/arrays
which the subroutine calculates.

2. Although the variable names in the parameter lists need not be the same, they must match
in data type and dimension. Thus in this example, the parameter list in both the main
program and subroutine must have in the exact same order: a 2 × 2 array, 2 scalars, a
2× 2 array, 1 scalar, a 2× 2 array.

3. It is acceptable to have constants in the parameter list of the call statement. In this
example, we could have used the statement call multiply(A,2,2,B,2,P).

4. Each variable and array must be declared in the subroutine.

5. The dimensions of the arrays in the main program and the subroutine must match.

6. Note that the second dimension of the matrix C is the same as the first dimension of the
matrix D. Matrix multiplication is not defined otherwise. Thus we only pass through to
the subroutine both dimensions for the left-hand matrix and the first dimension for the
right-hand matrix.

7. You should check that you understand how the nested do loops work in the subroutine -
for example, invent a 2× 3 and a 3× 2 matrix and try multiplying them together.

8. Unlike in the case of function subprograms, it is meaningless to talk of the data type of
a subroutine. Thus you can call a subroutine anything you like - in this case the name
starts with the letter m. It must be a single string of characters, so if you want to involve
more than one word, you can join them with the underscore character as in subroutine

very interesting(a,b,c).

9. The print statement in the main program uses an implied do loop. Try it and see how it
works!

10. The above subroutine is not actually necessary, since Fortran 90 introduced the matmul

intrinsic function. Try rewriting your code to use this function instead of your multiply

subroutine. The syntax is P = matmul(A,B).

33

Exercise

Verify that the following matrices are the inverse of each other, ie., that AB = BA = I. In this
case matrix multiplication is commutative!

A =




1 2 3
1 −1 1
0 2 1


 , B =



−3 4 5
−1 1 2

2 −2 −3




34

7 Reading From Files; Writing To Files

Often it is more convenient to read data from a file than type it in when you run the program.
As well, you may need to store data you have calculated so that another program can use it, or
so that you can print it out.

We have already used the read*, statement which pauses the program until you have read in the
data, as well as the print*, statement which prints the answers on the screen. In the following
example, data is read from a file called polar.dat and the data calculated is written to a file
called polar.out. These names are arbitrary, including the filename extensions .dat and .out

which here are used to distinguish between the data files. We could have used something like
polar1.dat and polar2.dat if we wanted. The filename extension of the Fortran file itself must
have the extension .f90.

Finally, in order to read from a data file, you must first create a data file!

Example 7.1

Convert from spherical polar to cartesian coordinates the following points:

r θ ϕ

2.34 0.44 0.62
1.02 1.02 −3.14
0.56 −3.76 −1.21
3.91 −0.60 6.03

35

1 program files

2 implicit none

3 real :: x,y,z,r(4), theta(4),phi (4)

4 integer :: i

5

6 open(1,file=’polar.dat ’,status=’old ’,action=’read ’)

7 open(2,file=’polar.out ’,status=’replace ’,action=’write ’)

8

9 do i=1,4

10 read (1,*) r(i),theta(i),phi(i)

11 x = r(i)*sin(theta(i))*cos(phi(i))

12 y = r(i)*sin(theta(i))*sin(phi(i))

13 z = r(i)*cos(theta(i))

14

15 write (2,*) ’x(’,i,’) = ’,x

16 write (2,*) ’y(’,i,’) = ’,y

17 write (2,*) ’z(’,i,’) = ’,z

18 write (2,*)

19 enddo

20 close (1)

21 close (2)

22

23 end program files

Things to note:

1. The open statement tells the program to associate a unit number with a particular data file.
In this case, unit number 1 is associated with a file called polar.dat and as it happens, the
program will read from this file. Unit number 2 is associated with a file called polar.out

and the program will write to this file. The file names must be placed between single
quotes.

2. We gave some options to the open command to indicate that the file should either already
exist (status=’old’) or be replaced (status=’replace’), and whether we are opening
the file for reading or writing using the action= specifier. These are optional, but help to
tell the program what your intention is so that any mistakes can be caught automatically.

3. The read statement has the form read(unit number,*)a,b,c,... where the * again
means free format. The data file the program reads from must have the data set out
exactly as in the read statement. For the present example, the following file shows how
polar.dat should look. There are two alternatives: you may separate your data with
commas or spaces. The computer uses spaces when it writes to a file.

4. Files should be closed with the close(unit number) statement.

36

2.34,0.44,0.62
1.02,1.02,-3.14
0.56,-3.76,-1.21
3.91,-0.60,6.03

or

2.34 0.44 0.62
1.02 1.02 -3.14
0.56 -3.76 -1.21
3.91 -0.60 6.03

5. The write statement has the same format as the read statement, ie., write(unit num-
ber,*)a,b,c,...

6. If the open statements for units 5 or 6 are omitted, these unit numbers can be used for
reading from and writing to the screen. In other words, the following are equivalent:

read*, and read(5,*), and

print*, and write(6,*).

7. Notice how we don’t need to define arrays for x, y and z because they are written to
polar.out as soon as they are calculated. If they had been needed later on in the program,
we would have had to store their values in arrays.

8. The fourth write(2,*) statement will leave a blank line after every 3 lines in polar.out.
This makes large data files easier to read.

37

8 Putting It All Together...

Example 8.1

Write a general program to approximately evaluate a definite integral using the Trapezoidal
Rule:

∫ b

a
f(x)dx ' ∆x

2

(
f(a) + 2

n−1∑

i=1

f(a+ i∆x) + f(b)

)
,

where ∆x = (b − a)/n is the width of an interval and n is the number of such intervals; see
Figure 1.

35

8 Putting It All Together...

Example 8.1

Write a general program to approximately evaluate a definite integral using the Trapezoidal
Rule:

∫ b

a
f(x)dx ≃ ∆x

2

(
f(a) + 2

n−1∑

i=1

f(a + i∆x) + f(b)

)
,

where ∆x = (b − a)/n is the width of an interval and n is the number of such intervals;
see Figure ??.

xa+ ∆x

∆x

∆

y

a a+ 5 b. x

n=6
y=f(x)

Figure 1: Approximating
∫ b

a
f(x)dx.Figure 1: Approximating
∫ b

a
f(x)dx.

38

1 module myfun

2 implicit none

3

4 contains

5 real function f(x)

6 real , intent(in) :: x

7

8 f = ...

9

10 end function f

11

12 end module myfun

13

14 program trapezoidal

15 use myfun

16 implicit none

17 real :: a,b,dx,integral ,sum

18 integer :: i,n

19

20 ! define terms

21 a = ...

22 b = ...

23 n = ...

24 sum = 0.

25 dx = (b-a)/real(n)

26

27 do i=1,n-1

28 sum = sum + f(a+i*dx)

29 enddo

30 integral = 0.5*dx*(f(a) + 2.*sum + f(b))

31 print*,’ integral = ’,integral

32

33 end program trapezoidal

Things to note:

1. The line starting with an exclamation mark ! is called a comment. The computer ignores
this line; comments are used for your own information. It is good practice to put comments
in your programs; when you look at a program you have written in the past, it is sometimes
hard to remember what you have done. It is also helpful to other people who might use
your program.

2. To run this program, you need to supply values for a, b and n as well as a function (the
integrand of the integral).

39

Example 8.2

Create a table of values for the error function erf x, defined as follows:

erf x =
2√
π

∫ x

0
e−t

2
dt.

Use x = 0, 0.2, 0.4, . . . , 2.0. You should get:

x erfx

0.0 0.0000

0.2 0.2227
0.4 0.4284
0.6 0.6039
0.8 0.7421
1.0 0.8427

1.2 0.9103
1.4 0.9523
1.6 0.9763
1.8 0.9891
2.0 0.9953

Note that lim
x→∞erf x = 1, ie., the normalizing factor 2/

√
π ensures that

2√
π

∫ ∞

0
e−t

2
dt = 1.

40

1 module myfun

2 implicit none

3 real , parameter :: pi = 4.* atan (1.)

4 integer , parameter :: n = 100

5

6 public :: pi , trap

7 private :: n, f

8

9 contains

10 real function f(x)

11 real , intent(in) :: x

12

13 f = exp(-x**2)

14

15 end function f

16

17 real function trap(a,b)

18 real , intent(in) :: a,b

19 integer :: i

20 real :: sum ,dx

21

22 sum = 0.

23 dx = (b-a)/real(n)

24

25 do i=1,n-1

26 sum = sum + f(a+i*dx)

27 enddo

28 trap = 0.5*dx*(f(a) + 2.0* sum + f(b))

29

30 end function trap

31

32 end module myfun

33

34 program nerfgun

35 use myfun

36 implicit none

37 real :: x,myerf

38 integer :: i

39

40 print*,’ x ’,’ erf(x) ’

41 do i=0,10

42 x = 0.2*i

43 myerf = (2.0/ sqrt(pi))* trap(0.,x)

44 print*,x,myerf ,’ correct answer = ’,erf(x)

45 enddo

46

47 end program nerfgun

41

Things to note:

1. We have used the program in Example 8.1 to create a function subprogram to evaluate the
integral in the definition of erf x.

2. The intrinsic function erf was added in the Fortran 2008 standard, so we can use erf(x)

to check our answer. Try increasing the value of n to see if your answer gets closer to the
answer provided by the Fortran intrinsic routine.

3. The limits of the integral have been passed through to the function subprogram via the
parameter list of trap. Note that you need not use the same variable names in the subpro-
gram as in the main program, in fact in this example the number 0 in the main program
corresponds to the variable a in the subprogram.

4. Variables and parameters defined at the top of the module are shared by all the sub-
programs of the module (e.g. the value of n)

5. We used the public and private attributes to show which parts of the module should be
visible to the program, and which should be kept hidden

42

Example 8.3

Write a general program to find the root of the equation f(x) = 0 using the Newton- Raphson
iteration formula

xn = xn−1 −
f(xn−1)
f ′(xn−1)

,

where xn is the nth approximation of the solution to f(x) = 0 and x0 is an initial guess. Test
your program by finding the root of cosx = x, ie., put f(x) = cosx− x (solution x = 0.73908).
You should stop the iteration process when |f(x)| < ε, where ε = 10−5 (say).

43

1 module myfun

2 implicit none

3

4 contains

5

6 real function f(x)

7 real , intent(in) :: x

8

9 f = cos(x) - x

10

11 end function f

12

13 real function fd(x)

14 real , intent(in) :: x

15

16 fd = -sin(x) - 1.

17

18 end function fd

19 end module myfun

20

21 program newtraph

22 use myfun

23 implicit none

24 real , parameter :: eps = 1.e-5

25 integer , parameter :: maxits = 20

26 real :: x

27 integer :: k

28

29 print*,’ guess for x?’

30 read*,x

31

32 k = 0

33 do while (abs(f(x)) > eps)

34 k = k + 1

35 x = x - f(x)/fd(x)

36 if (k > maxits) then

37 print*,’ too many iterations ’

38 stop

39 endif

40 enddo

41

42 print*,’ root = ’,x,’ in ’,k,’ iterations ’

43

44 end program newtraph

44

We have introduced two new statements in this example:

1. the do while loop. This continues to iterate the loop until the condition in brackets is
satisfied or the exit command is issued

2. The stop statement. This causes the program to stop running at this point.

3. We have introduced a safeguard against getting stuck in an infinite loop by defining a
counter variable k; this is initialized to zero and is increased by 1 every iteration.

4. Note the statement x=x-f(x)/fd(x). Again we emphasize that the value assigned to the
variable x is replaced by a new value, ie., the = symbol means replace.

5. What happens if you put, say, ε = 10−10?

6. What happens if you have as your initial guess x0 = −π/2?

45

Example 8.4

Given n+1 points {(xi, yi), i = 0, 2, . . . , n}, an nth order polynomial can be defined which passes
through each point. Such a polynomial Pn(x) is given by the Lagrange Interpolation formula

Pn(x) =
n∑

k=0

yk

n∏

i = 0
i 6= k

(
x− xi
xk − xi

)
.

Evaluate the second order Lagrange polynomial which passes through the points given in Ex-
ample 4.4 on page 18 for several values of x. Terminate the program by reading in a value of x
which is greater than, say, 99.

1 program lagrange

2 implicit none

3 real :: z,x(3),y(3),prod ,sum ,xx

4 integer :: i,k,n

5

6 n = 3

7 open(1,file=’lagrange.dat ’,status=’old ’,action=’read ’)

8 do i=1,n

9 read (1,*) x(i),y(i)

10 enddo

11 close (1)

12

13 myloop: do

14 print*,’x ?’

15 read*,xx

16 if (xx > 99) exit myloop

17

18 sum = 0.

19 do k=1,n

20 prod = 1.0

21 do i=1,n

22 if (i /= k) prod = prod*(xx - x(i))/(x(k) - x(i))

23 enddo

24

25 sum = sum + y(k)*prod

26 enddo

27

28 print*,’Pn(’,xx ,’)=’,sum

29

30 enddo myloop

31 print*,’ thanks for coming ’

32

33 end program lagrange

46

Things to note

1. In order to exit the loop, we have included the statement if (xx > 99) exit myloop.
You can also “kill” the program from the unix command line using ctrl-c, which will
stop the execution of the program.

2. Note that the scalar x is called xx and the subscripted xi is called x(i). We would have
been in trouble if they had both been called x (try doing this and see what happens).

Example 8.5

By modifying the program for the Trapezoidal Rule (Example 8.1), write a program to evaluate
a definite integral using Simpson’s Rule, given by

∫ b

a
f(x)dx ' ∆x

3


f(a) + 4

n−1∑

i=1,2

f(a+ i∆x) + 2
n−2∑

i=2,2

f(a+ i∆x) + f(b)


 ,

where ∆x is the width of an interval, n is the number of such intervals and
n−1∑

i=1,2

means sum

from 1 to n− 1 in steps of 2 (so n must be even).

Use it to verify (approximately) the following for various m:

∫ π

0

sinmx

sinx
dx =

{
0, m even
π, m odd.

Try varying the number of intervals and notice how the accuracy increases with increasing n
(although there comes a point where roundoff errors will start to contaminate your solution).
Note also that straightforward use of the function statement for f(a) and f(b) will lead to a
divide by zero error; you will have to take advantage of the limit results

lim
x→0

sinmx

sinx
= m

and

lim
x→π

sinmx

sinx
= (−1)m+1m

(try deriving these yourself!)

47

1 module myfun

2 implicit none

3 real , parameter :: pi = 4.* atan (1.)

4 integer , parameter :: n = 100

5

6 public :: pi , simpson

7 private :: n

8

9 contains

10 real function f(x,m)

11 real , intent(in) :: x

12 integer , intent(in) :: m

13

14 if (abs(sin(x)) < tiny (0.)) then

15 f = (-1)**(m+1)*m

16 else

17 f = sin(m*x)/sin(x)

18 endif

19

20 end function f

21

22 real function simpson(a,b,m)

23 real , intent(in) :: a,b

24 integer , intent(in) :: m

25 integer :: i

26 real :: sum1 ,sum2 ,dx ,fa ,fb

27

28 fa = f(a,m)

29 fb = f(b,n)

30

31 sum1 = 0.

32 sum2 = 0.

33 dx = (b-a)/real(n)

34

35 do i=1,n-1,2

36 sum1 = sum1 + f(a+i*dx,m)

37 enddo

38 do i=2,n-2,2

39 sum2 = sum2 + f(a+i*dx,m)

40 enddo

41 simpson = dx /3.*(fa + 4.0* sum1 + 2.0* sum2 + fb)

42

43 end function simpson

44

45 end module myfun

46

47

48

49

48

50

51 program simp

52 use myfun

53 implicit none

54 integer :: m

55 real :: integral

56

57 do

58 print*,’m ?’

59 read*,m

60

61 integral = simpson (0.,pi,m)

62 print*,’ integral = ’,integral

63 enddo

64

65 end program simp

Things to note:

1. You should know how to “kill” the program before you attempt this; there is no exit point!

2. You can make a do loop increment in steps other than 1. For example, do k=10,-6,-2 will
step k from 10 back to -6 in steps of -2, ie., k will take the values 10,8,6,4,2,0,-2,-4,-6.

3. To ensure that we do not divide by zero if x = 0, we use the Fortran90 statement tiny(0.)
which returns the smallest possible positive real number.

49

A Appendix: Some Intrinsic Functions

All the following intrinsic functions must take a real number as their argument except abs(x),
int(x), min(x) and max(x) which can all take both real and integer type arguments. Search
online for Fortran intrinsic functions for other other intrinsic functions.

sinx sin(x)

cosx cos(x)

tanx tan(x)

sinhx sinh(x)

coshx cosh(x)

tanhx tanh(x)

Sin−1 x asin(x)

Cos−1 x acos(x)

Tan−1 x atan(x), atan2(x,y)

√
x sqrt(x)

ex exp(x)

lnx log(x)

log10x log10(x)

|x| abs(x)

[x] int(x)

max(x, y, z, . . .) max(x,y,z,...)

min(x, y, z, . . .) min(x,y,z,...)

Erf(x) erf(x)

Jn(x) bessel jn(n,x)

Γ(x) gamma(x)

