1 Bonnor-Ebert spheres

1.1 Hydrostatic equilibrium

Starting with the equations of motion for a compressible, self-gravitating gas,

\[\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} = -\nabla \frac{P}{\rho} - \nabla \Phi, \]

(1)

together with the Poisson equation for the gravitational field

\[\nabla^2 \Phi = 4\pi G \rho, \]

(2)

show that, in hydrostatic equilibrium (\(\mathbf{v} = 0 \)) and for an isothermal equation of state

\[P = c_s^2 \rho, \]

(3)

where \(c_s = \text{const} \), the equations reduce to the form (in spherical coordinates)

\[\frac{d \ln \rho}{dr} = -\frac{GM(r)}{c_s^2 r^2}, \]

(4)

\[\frac{dM(r)}{dr} = 4\pi r^2 \rho(r) \left[M(r) = \int_0^r 4\pi \rho(r') r'^2 dr' \right] \]

(5)

1.2 Numerical solution

1.2.1 Solutions for \(\rho_c = \text{const} \)

Write a short program to integrate Eqs. (4) and (5) numerically (using any standard method for integrating ODEs), assuming a given central density \(\rho(0) = \rho_c \).
• Plot the resultant density profile as a function of radius (in parsecs), using a central
density reasonable for molecular cloud cores (e.g. $\rho_c \sim 10^{-17}$ g/cm3) and a typical
sound speed (e.g. $c_s = 2 \times 10^4$ cm/s).

• Plot the resulting density profiles for a range of central densities (e.g. $\rho_c = 10^{-19} -
-10^{-14}$ g/cm3). Plot all the solutions on the same graph using logarithmic axes
for both the x and y axes. How does the solution change as the central density is
increased?

• Plot (with log axes) pressure as a function of radius for the above solutions. Define
an outer radius based on when the pressure falls below a threshold value and compare
the size of the sphere to typical sizes inferred for molecular cloud “cores” (\sim 0.1 pc).
Discuss how an outer boundary condition on the pressure could be used instead of
giving the central density in order to obtain a solution.

• Integrate each of the solutions from $r = 0$ to your outer radius to find the mass of
the sphere (in solar masses) in each case.

• Discuss (briefly) how one might compare the density profile of a Bonnor-Ebert sphere
to observations that measure only the column density.

1.2.2 The singular isothermal sphere

Verify (by substitution into the equations) that the ‘Singular Isothermal Sphere’, given by

$$\rho(r) = \frac{c_s^2}{2\pi G} \frac{1}{r^2},$$

(6)
is a solution to eqs. (4) and (5). What is the central density for this solution? Plot (6)
on a log-log plot alongside the solutions obtained previously given the same sound speed.
Discuss whether or not you expect the Singular Isothermal Sphere to be a stable or unstable
equilibrium.