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Key revision points

1. Friction between orbiting rings causes them to spread into a disc

2. Accretion discs transport mass inwards and angular momentum outwards,

transferring all of the angular momentum to a small amount of mass

3. Discs are in hydrostatic equilibrium in the vertical direction, in general showing

a ‘flared’ profile depending on the radial temperature gradient

4. The ‘friction’ can be understood as an effective viscosity caused by turbulence

2.1 Ring spreading in discs

In the last lecture we derived the basic equation governing accretion discs in the form

∂Σ

∂t
=

3

R

∂

∂R

[
R1/2 ∂

∂R

(
νΣR1/2

)]
. (1)

Lynden-Bell and Pringle (1974) famously derived an exact solution to this equation for

the simple case of a discrete ring of matter m at some initial radius R0, i.e.

Σ(R, t = 0) =
m

2πR0

δ(R−R0), (2)

where δ is the Dirac delta function1.

1A mathematical oddity; the delta function is defined according to

δ(x− x0) ≡

{
1; x = x0,

0; elsewhere.
(3)
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Figure 1: Ring spreading in an accretion disc, according to the analytic solution derived
by Lynden-Bell and Pringle (1974). Figure by DJP. Click here for a movie.

What do you mean by a “diffusion equation”?
Equation (1) looks complicated, but it is actually just a form of the well-known

heat equation

∂f

∂t
= D

∂2f

∂X2
, (4)

where X ≡ 2R1/2, f ≡ 3ΣR1/2 = 3
2
ΣX and D ≡ 3ν/R = 12ν/X2.

The analytic solution in terms of x = R/R0 and τ = 12νt/R2
0 for this case is

Σ(x, τ) =
m

πR2
0

1

τx1/4
exp

[
−(1 + x)2

τ

]
I1/4

(
2x

τ

)
, (5)

where I1/4 is a modified Bessel function2.

This simple solution demonstrates all of the key physics of accretion discs. Figure 1 shows

snapshots of surface density as a function of time, according to (5). You can see that the

action of viscosity causes the ring to spread or diffuse. The majority of the mass moves

inwards , losing energy and transferring angular momentum to a small amount of matter

that spreads outwards to large R.

Now, recall that since the angular momentum L ∝ R1/2, then for material spreading

to R = ∞ we have L → ∞. So, while most of the mass is transported inwards and is

2Don’t let this scare you; the point is that there are standard routines to compute these kind of
functions e.g. in Mathematica or Matlab or with a simple Fortran routine.
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accreted onto the star, the angular momentum is transported outwards by a small amount

of matter, being ultimately carried to infinite radius by none of the mass.

2.2 Vertical structure of discs

Perpendicular to the disc, there is essentially no flow. The disc is supported against gravity

by a pressure gradient, i.e. it is in hydrostatic equilibrium. In cylindrical coordinates we

can express this as

1

ρ

∂P

∂z
= −∂Φ

∂z
, (6)

where P is the pressure and Φ is the gravitational potential. For a central point mass we

have

Φ = −GM
r

= − GM√
R2 + z2

, (7)

where we use r ≡
√
x2 + y2 + z2 to denote the spherical radius and R ≡

√
x2 + y2 to

denote the radius in cylindrical coordinates. Using (7) in (6) we have

1

ρ

∂P

∂z
= − GMz

(R2 + z2)
3
2

. (8)

If we make the assumption of a thin disc, i.e. that z � R, then we have

1

ρ

∂P

∂z
≈ −Ω2(R)z, (9)

where Ω(R) = (GM/R)3/2 is the Keplerian angular speed. If we make the further as-

sumption that the disc is vertically isothermal, i.e. that temperature depends only on R

and not z, such that P = c2s (R)ρ, where c2s (R) ≡ kBT (R)/µmH then we have

c2s
1

ρ

∂ρ

∂z
= −Ω2z, (10)

giving

d(ln ρ)

dz
= −Ω2z

c2s
. (11)

Integrating both sides, assuming ρ = ρc at z = 0 (i.e. at the midplane), we have

ρ = ρc exp

(
−Ω2z2

2c2s

)
= ρc exp

(
−z2

2H2

)
, (12)
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where we define H as the pressure scale height, i.e.

H ≡ cs
Ω
. (13)

Hence the vertical disc structure is just a Gaussian in the z direction, but with an aspect

ratio H/R that depends on radius.

How to define the size of a continuous distribution?
The pressure scale height gives the “size” of the disc in the vertical direction. But

the disc does not have a sharp edge. Our definition uses the standard deviation of the

density profile in the z direction to define the ‘height’. This is similar to definitions

used elsewhere in Astronomy, e.g. the full-width-at-half-maximum used to define the

‘width’ of spectral lines.

2.3 Disc flaring

For a Keplerian disc, Ω(R) ∝ R−3/2. If we assume that sound speed, and hence tempera-

ture, depends on R to some power q, i.e. cs(R) ∝ R−q so that T (R) ∝ R−2q then we have

H ∝ R
3
2
−q, (14)

and therefore that the disc aspect ratio H/R scales as

H

R
∝ R

1
2
−q. (15)

This means the disc will “flare” (aspect ratio increases with radius) if q < 1
2
, i.e. if T (R) ∝

R−1 (temperature inversely proportional to radius) or shallower. Most circumstellar discs

satisfy this requirement and hence appear flared (see Figure 2).

2.4 Disc viscosity

We have not yet discussed what actually makes accretion discs accrete. That is, what

causes the friction between rings, i.e. the disc viscosity ν? We can estimate the timescale

for the disc to drain onto the star, known as the viscous timescale using dimensional

analysis, and compare this to observed disc lifetimes (∼ 10 Myr). Since [ν] = L2/T , to

get a time we need an area divided by ν, i.e.

tν ∼
R2

ν
, (16)
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Figure 2: Disc and jet around the young stellar object HH30, imaged with the Hubble
Space Telescope. The disc itself is obscured by dust, the green emission shows the starlight
scattered off the disc surface. The flared profile of the disc is seen in silhouette.

If we assume R = 10AU and an estimate of the microscopic viscosity in the gas (see box),

Are discs like honey?
If ν was an actual, microscopic viscosity then to order of magnitude we’d have

ν ∼ λcs, (17)

where λ is the mean free path of the gas and cs is the sound speed (around 500 m/s

in typical protostellar discs). We can estimate λ using

λ =
1

nσmol

, (18)

where n is the number density of molecules (ρ ≈ 10−13 g/cm3 gives n ≈ 1010 cm−3)

and σmol is the collision cross section between the molecules (around 2 × 10−15cm2

for H2). Hence λ ≈ 5 × 104 cm (i.e. 500m) and ν ≈ 2× 109 cm2/s.

we have

tν ∼
(10AU× 1.5× 1013cm/AU)2

2× 109cm/s
= 3× 1011yr, (19)

which is longer than the age of the universe! Hence whatever is causing the disc to accrete

cannot be actual viscosity. The low microscopic viscosity provides a clue, since it implies

a large Reynolds number

Re ≡
LV

ν
, (20)
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where L is a typical length scale and V is a typical velocity. Using L = H ∼ 0.05× 1AU

and V = cs ∼ 5× 104 cm/s, we have

Re ≈
0.05× 1.5× 1013 × 5× 104

2.5× 109
≈ 1.5× 107. (21)

High Reynolds numbers are usually an indication of turbulence. Then we can understand

ν as an effective turbulent viscosity.

2.4.1 The Shakura-Sunyaev prescription

For turbulence in disc we would expect motions with V . cs and ‘eddies’ that are smaller

than H in size. Hence it makes sense to express ν according to

ν = αcsH, (22)

where α ∈ [0, 1] is a dimensionless parameter. This is known as the Shakura-Sunyaev

prescription, or simply the alpha model after Shakura and Sunyaev (1973) and is the

bedrock of much of our theoretical understanding of accretion discs.

What causes turbulence in discs?
Despite the high Reynolds numbers, hydrodynamical Keplerian discs are stable to

small perturbations and hence do not spontaneously become turbulent. Our current

understanding is that turbulence arises in most accretion discs due to an instability

caused by magnetic fields in differentially rotating flows, the magneto-rotational in-

stability (Balbus and Hawley, 1991). However this is problematic in protoplanetary

discs due to the low ionisation fraction. How protostellar discs actually accrete is

therefore an open question.
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