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Key revision points

1. Star formation is a competition between gravity and pressure

2. Timescale associated with gravity is the ‘freefall time’, involves only density

3. The Jeans length is the critical wavelength below which a small perturbation

to gas is unstable to collapse under it’s own gravity. Jeans mass gives a critical

mass (mass within a sphere of radius the Jean’s length).

4. Jeans length and mass increase with temperature but decrease with density

5. Jeans length decreasing with increasing density implies break-up of an isother-

mal cloud during collapse — ‘fragmentation’

1 The physics of star formation

1.1 How long does it take to form a star?

The main physical process involved in star formation is gravity. We can work out the

typical timescale on which gravity acts by a simple dimensional analysis. Consider the

gravitational constant G,

G = 6.673× 10−8cm3s−2g−1. (1)

This tells us the strength of the gravitational field in some units. An equivalent way of

stating the strength of gravity is to ask “how long does it take gravity to pull something of

length L and mass M to the origin?”. Hence we want to phrase the gravitational constant

in terms of a timescale, T. From (1) we see that the dimensions of G are

[G] =
[L]3

[T ]2[M ]
. (2)
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Rearranging this to obtain a timescale, we find

[T ] =

√

[L]3

G[M ]
, (3)

and so we can estimate a timescale associated with gravity using

tff ∼

√

L3

GM
∼

√

1

Gρ
, (4)

where ρ ≡ M/L3 is a density. This is known as the free-fall timescale, since it is the time

it takes for material to collapse freely under it’s own gravity.

A more rigorous definition of the free-fall time is the time taken for material at a given

radius in a uniform density, self-gravitating medium to collapse to the origin. Using this

definition (see the problem sheet) we arrive at the expression

tff =

√

3π

32Gρ
. (5)

Notice that the dependence on density and the gravitational constant is the same as in

our dimensional analysis, the only thing that has changed is that we know the factor out

the front. Our estimate (4) was just a dimensional guess, but correct to within a factor

of two from the precise definition — such precision is pointless anyway because molecular

clouds are not uniform density spheres. Dimensional analysis is a powerful way to get a

rough handle on the timescales involved.

A typical molecular cloud has a mean density of 103 – 104 molecules per cm−3, equiva-

lent to a mass density ρ ∼ 10−21 to 10−20g/cm3 assuming the mass is mostly molecular

hydrogen (H2). Hence we can evaluate the free fall time for a typical molecular cloud as

tff ∼

√

1

6.673× 10−8 × 10−20
= 3.9× 1013s ≈ 106yr. (6)

This is the fastest timescale on which star formation could possibly take place, since it

is the timescale on which the cloud would collapse if there was nothing to resist collapse

against gravity. Hence when we talk about fast or slow star formation, we mean fast or

slow with respect to the free-fall time.

Notice that the free-fall time has nothing to do with the size of the cloud, only

it’s density. Why is this so, and what does it tell us about gravity? Which would

collapse faster, a large cloud or a small cloud of the same density?
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1.2 Jeans length and Jeans mass

The main way gas can resist gravitational collapse is with pressure, more specifically a

pressure gradient (this is how stars hold themselves together, as you will learn in the

stellar evolution lectures). Again, we can get a long way with dimensional analysis.

Communication of pressure disturbances occurs at the sound speed, cs, so we can estimate

the sound crossing time, ts, as the time for a sound wave to travel a particular distance,

i.e.

ts ∼
L

cs
(7)

Comparing this to the free-fall timescale we can define a critical lengthscale on which

pressure and gravity are communicated equally fast. We find

LJ ∼
cs

√
Gρ

. (8)

This lengthscale is known as the Jeans length, after Jeans (1902). Again, dimensional anal-

ysis gives us the right combination of variables but not the coefficient out the front. A more

rigorous analysis involves a perturbation analysis of the equations of self-gravitating fluid

dynamics, with the precise definition of the Jeans length being the critical wavelength at

which a small perturbation to a self-gravitating, uniform density medium becomes unstable

to gravitational collapse, giving

LJ =

√

πc2
s

Gρ
. (9)

On length scales L < LJ pressure can support the gas against collapse, but on scales

L > LJ, gravity wins. The Jeans length defines the minimum size ‘chunk’ that a cloud

can break up into. We can also define a critical mass, the Jeans mass, as the mass

contained within a volume bounded by LJ, i.e.

MJ ∼ L3

Jρ = G−3/2c3/2s ρ−1/2. (10)

Equivalently, we could define this as the mass contained within a sphere of radius LJ , i.e.

MJ =
4

3
π

(

LJ

2

)3

ρ, (11)
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1.3 The sound speed in molecular clouds

For an ideal gas the equation of state relating pressure (P ) to density (ρ) and temperature

(T ) is given by

P =
ρkBT

µmH

, (12)

where kB = 1.38×10−16 erg/K is the Boltzmann constant, mH = 1.67×10−24g is the mass

of a Hydrogen atom and µ is the mean molecular weight. If the temperature is constant

then the sound speed is given by

c2s ≡
∂P

∂ρ
=

kBT

µmH

. (13)

Here’s the interesting bit: Molecular clouds cool very efficiently (molecules are good at

jiggling!) — so efficiently that the temperature is constant at ≈ 10K to a very good

approximation across a huge range in density. This has profound implications for star

formation, as we shall see.

To get the sound speed from the temperature we need to know the composition. Molecular

clouds are mostly molecular hydrogen with a sprinkling of heavier molecules like water

and carbon monoxide (these are important coolants but not important by mass), so the

mean molecular weight is close to that of molecular hydrogen (µ = 2), or µ ≈ 2.4. From

(13) the sound speed is

cs =

√

kBT

µmH

= 0.2km/s. (14)

This is similar to the sound speed in air (330 m/s), but for a very different reason — the

temperature in air is higher by a factor of ∼ 30, but so is the mean molecular weight.
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Mean Jeans length and Jeans mass in a molecular cloud
Molecular clouds are not uniform density. Nevertheless, evaluating the mean Jeans

length and Jeans mass is interesting. Assuming typical sound speed (from 14) and

mean density (10−20 g/cm3) we have

LJ ∼
2× 104cm/s

√

6.673× 10−8cm3s−2g−1 × 10−20gcm−3
≈ 7.7× 1017cm ∼ 0.25pc, (15)

and

MJ ∼ L3

Jρ ∼ (7.7× 1017cm)3 × 10−20g/cm3 ≈ 4.6× 1033g = 2.3M⊙. (16)

It is interesting that this is ‘close to’ the typical mass of stars (∼ 0.5M⊙), but it is

not terribly meaningful since the assumption of uniform density is very poor. The

precise value is also very sensitive to the assumed density, for example what is the

mean Jeans mass if you use 10−21 g/cm3 instead?

1.4 Fragmentation

More interesting is how the Jeans length and Jeans mass depend on density and temper-

ature. We have

LJ ∝
cs
√
ρ
∝ T 1/2ρ−1/2. (17)

So the Jeans length increases with temperature but decreases with density. Similarly, for

the Jeans mass we have

MJ ∝ T 3/2ρ−1/2, (18)

so if the temperature goes up, so does the minimum mass and size that can resist the pull

of gravity (obvious, since there is more pressure), leading to bigger, more massive stars.

As the density goes up, the critical mass and size both decrease, leading to smaller, less

massive stars.

Now what happens inside a real molecular cloud? In molecular clouds T ≈ 10K over a

huge range of density (they cool very efficiently!), implying P ∝ ρ. So as gravity starts

to collapse a region of the cloud, what will happen to the Jeans length and Jeans mass if

T=const?

The fact that the Jeans length and Jeans mass become ever smaller as the density in-

creases leads to the idea of fragmentation, first put forward by Hoyle (1953), in other

words the idea that a molecular cloud will ‘fragment’ into ever smaller pieces.
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In practice, fragmentation occurs because molecular clouds are turbulent, with motions

that are highly supersonic (observed motions are ∼1–2 km/s, or 5–10 times the sound

speed). The effect of this turbulence is to produce a spectrum of density fluctuations on

which the Jeans instability can act.

When does fragmentation stop?
Fragmentation cannot go on for ever, otherwise one would end up breaking up

the cloud into infinitely small pieces, giving infinitely small and infinitely low mass

stars. So before next lecture, try to answer this: What physical change causes

fragmentation to stop?
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