PLANET FORMATION DSC EVOLUTON

Daniel Price Monash University Melbourne, Australia

Olympian Symposium "Star formation in the era of JWST", 29th May - 2nd June 2023, Katerini, Greece

Australian Research Council

HOW DO YOU FORM A SOLAR SYSTEM LIKE OURS?

Trans-Neptunian objects are highly inclined and eccentric

Solar system is sharply truncated at ~47 au

Chrondrules everywhere: Dust has been melted

7° Solar obliquity

Radioactive elements: nearby massive stars?

Chrondrules fall into two families: late infall?

Credit: wikipedia/CactiStaccingCrane

PROBLEM 1: HOW TO MAKE THE SUN?

I. Need to make a SINGLE star II. Need to accrete 1Msun of gas

IS STAR FORMATION EVER ISOLATED?

THE ASTROPHYSICAL JOURNAL, 859:150 (16pp), 2018 June 1 © 2018. The American Astronomical Society. All rights reserved.

Credit: NASA/ESA/N Orion Treasury Project

Credit: Adam Block/wikipedia

Credit: Nicolás Cuello (in prep)

Credit: DP using dustmaps Python package (Green 2018 JOSS)

1. HOW TO MAKE A SINGLE STAR

A star like the Sun

Bate (2012, 2018)

- ► Form single stars by ejecting them from unstable multiple systems
- Almost every star has multiple infall events or stellar flybys in the Class 0 stage
- ► Naturally explains misalignment between disc and stellar spin axes

See Elsender talk

DISC SIZES ARE SET BY TIDAL TRUNCATION

- Disc size distribution in cluster formation simulations matches the observed (mm-continuum) size distributions
- \blacktriangleright How can the distribution in Taurus, Ophiuchus & Orion be the same if dynamical interaction is important?

Ans: dynamical interaction occurs in small groups independent of large-scale stellar density (Bate 2018)

Stars with no interactions do not match the observed population

HOW DID THE SOLAR SYSTEM GET ITS SIZE?

- Distribution of minor bodies sharply truncated at ~47 au
- Very difficult to explain in standard models
- Would be naturally explained by a stellar flyby, like every other disc (Ida+2000; Kenyon & Bromley 2004)

Dones 1997; Jewitt et al. 1998; Chiang & Brown 1999; Trujillo & Brown 2001; Allen et al. 2001; Gladman et al. 2001; Petit et al. 2006, Larsen et al, 2007

100

A FLYBY IN THE OUTER SOLAR SYSTEM?

Kenyon & Bromley (2004) See also Pfalzner et al. (2018)

Naturally truncate the (dust) disc

 Stir particles beyond 50 au into inclined and eccentric orbits, matching those of the trans-Neptunian objects

EVIDENCE FOR LATE FLYBYS

Flybys are (relatively) rare for t > 1 Myr, but ubiquitous during the early phase of star formation

Cuello, Ménard & Price (2023)

Z CMa

2. CAN WE GROW A STAR TO 1 SOLAR MASS BY DISC ACCRETION?

rate

etion

Mass

The best accretion discs can offer: $1M_{\odot}$ in 3Myr ~ c_s^3/G

Typical discdriven \dot{M}

Low mass stars have even lower *M*, they are not growing!

Aka: Protostellar luminosity problem

SOLUTION: EPISODIC ACCRETION VIA FU ORIONIS-TYPE OUTBURSTS?

Bae + (2014)

1.0

Radial distance (AU)

Padoan + (2014); Inutsuka + (2010); Stamatellos + (2011,2012); Kuffmeier + (2019)

SOLUTION: EPISODIC ACCRETION?

OBSERVED LUMINOSITY SPREAD IN YOUNG CLUSTERS AND FU Ori STARS: A UNIFIED PICTURE

¹ Astrophysics Group, University of Exeter, EX4 4QL Exeter, UK; i.baraffe@ex.ac.uk ² Institute of Astrophysics, The University of Vienna, Vienna A-1180, Austria; eduard.vorobiev@univie.ac.at ³ Research Institute of Physics, Southern Federal University, Rostov-on-Don, Russia ⁴ École Normale Supérieure, Lyon, CRAL (UMR CNRS 5574), Université de Lyon, F-69364 Lyon Cedex 7, France; gilles.chabrier@ens-lyon.fr Received 2012 February 22; accepted 2012 June 10; published 2012 August 21

> Can produce luminosity spread in HR diagram using non-steady accretion, but require a transition from "cold" to "hot" accretion above some threshold $(\sim 10^{-5} M_{\odot}/{\rm yr})$

I. BARAFFE¹, E. VOROBYOV^{2,3}, AND G. CHABRIER^{1,4}

BUT WHAT CAUSES FU ORIONIS OUTBURSTS?

- - *Livio 2014*)

► Disc thermal instability (Clarke et al. 1990; Bell & Lin 1994; Bell+1995; Kley & Lin 1999)

Binary-disc interaction? (Bonnell & Bastien 1992). Possibly triggering thermal instability?

> Planet-disc interaction triggering thermal instability (Clarke & Syer 1996; Lodato & Clarke 2004)

► Tidal disruption of young, massive planets (Nayakshin & Lodato 2012) > Pile-up of material due to dead zones/layered accretion (Martin, Lubow & Livio 2012; Martin & Livio 2014; Kadam+2020; Vorobyov+2020) Accretion outbursts in self-gravitating discs (Bae+2014)

Sudden increase in turbulence due to transition between gravitational instability and magnetic instability (Martin & Lubow 2013; Martin &

Cloud Capture (Dullemond et al. 2019)

FU ORIONIS

Reipurth & Aspin (2004); Malbet et al. (2005); Beck & Aspin (2012); Takami et al. (2018); Laws et al. (2020); Perez et al. (2020); Labdon et al. (2021)

BUT WHAT CAUSES FU ORIONIS OUTBURSTS?

► Disc thermal instability (Clarke et al. 1990; Bell & Lin 1994;

YOU ARE	92). Possibly triggeri
LOOKING AT	nility (Clarke & Sver
THE WRONG	h hin Cot day 20
STAR!	aksnin & Loaato 20 cretion (Martin, Lub
2012; Martin & Livio 2014; Kadam+2	2020; Vorobyov+20 e+2014)
LOW MASS object!	between gravitationa .ubow 2013; Martin

Cloud Capture (Dullemond et al. 2019)

FU ORI AS A FLYBY

Melted dust aka Chondrules

> High mass companion not in outburst

(c) 2021 Elisabeth Borchert

Borchert, DP et al. (2022a,b) See also Vorobyov+2021

HOW TO ACCRETE LIKE HELL

(c) 2021 Elisabeth Borchert

Episodic accretion: the interplay of infall and disc instabilities

¹Centre for Star and Planet Formation, Niels Bohr Institute and Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, DK-1350 Copenhagen K, Denmark ²Institut de Ciències del Cosmos, Universitat de Barcelona, IEEC-UB, Martí Franquès 1, E-08028 Barcelona, Spain

Michael Kuffmeier,^{1*} Søren Frimann,² Sigurd S. Jensen¹ and Troels Haugbølle¹

HYPOTHESIS-

Stars grow via misaligned flows

See Kuffmeier talk + papers (Kuffmeier +2017; 2018; 2021)

- 1. FU Orionis outbursts are misaligned flow accretion events 2. Accretion occurs this way during the entire Class 0/1 phase should be associated with jets/outflows
- 3. BY DEFINITION there is infalling envelope material when stars accrete in this "hot" mode

Corollaries:

GROWING STARS VIA MISALIGNED FLOWS: THEORY

Hot mode = misaligned infall producing direct cancellation of angular momentum

Bate (2018); see also Kuffmeier et al. (2017, 2018, 2021)

GROWING STARS VIA MISALIGNED FLOWS: L1527 WITH JWST

Credits: NASA, ESA, CSA, and STScl. Image processing: J. DePasquale, A. Pagan, and A. Koekemoer (STScl)

Parameter $\dot{\dot{M}}_{disk} (M_{\odot} \text{ yr}^{-1})$

This is how most of the mass accretion happens!

Tobin+2013:

Description	Paper I Model	Best-fit Mo
Disk accretion rate	3.0×10^{-7}	1.5×10^{-1}

PROBLEM 2: HOW TO MAKE THE PLANETS?

Not enough dust or gas mass to form observed exoplanet systems (or the solar system)

> Miotello+2017for discs in Lupus

PROTOPLANETARY DISCS ARE NOT PROTO-PLANETARY...

Letter to the Editor

Why do protoplanetary disks appear not massive enough to form the known exoplanet population?

C. F. Manara^{1,*}, A. Morbidelli², and T. Guillot²

- European Southern Observatory, Karl-Schwarzschild-Strasse 2, 85748 Garching bei München, Germany
- European Southern Observatory, Kan-Schwarzschind-Strasse 2, 85748 Garching ber Munchen, Germany
 e-mail: cmanara@eso.org
 ² Laboratoire Lagrange, Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Boulevard de l'Observatoir
 O6304 Nice Cedex 4, France

Planets must be already made!

Manara et al. (2018); Mulders et al. (2021)

MULTIPLICITY IS PRINTED ALL OVER THE DISC POPULATION: TRANSITION DISCS

PLANETS REVEALED BY KINEMATIC PERTURBATIONS . . .

Cycle 1 JWST follow up scheduled for August 2023 (PI: Cugno)

Planet

Kink in flow caused by planet

Observations

Pinte et al. (2018)

Pinte, DP et al. (2018)

Kink in flow caused by planet

Best match with models using $M \approx 2 - 3 M_{\rm Ir}$

Computer model

PLANETS REVEALED BY KINEMATIC PERTURBATIONS...

Pinte et al. (2019)

PLANETS REVEALED BY KINEMATIC PERTURBATIONS...

Pinte, DP et al. (2020) Verrios, DP et al. (2022)

See PPVII review by Pinte *et al. (2023)*

... AND ALSO DIRECT IMAGING

PDS 70

Benisty et al. (2021)

Also Müller et al. (2018); Keppler et al. (2018, 2019), Haffert et al. (2019); Christiaens et al. (2019a,b)

HD 169142

Credit: ESO VLT/SPHERE - Monash University - Iain Hammond et al., adapted and mixed by Meli_thev

Hammond et al. (2023 incl. DP)

Direct evidence for circumplanetary discs

HOW DO YOU FORM A SOLAR SYSTEM LIKE OURS?

Trans-Neptunian objects are highly inclined and eccentric

Naturally explained by late flyby

Solar system is sharply truncated at ~47 au

All disc sizes may be set by their last flyby?

Uranus rolls along its orbit

Chrondrules everywhere: Dust has been melted

Chrondrules fall into two families: late infall?

Natural in accretion bursts caused by misaligned flows

Fresh infall / late flyby

7° Solar obliquity

Formation in cluster

Radioactive elements: nearby massive stars?

> 1 solar mass can only be accreted via misaligned flows

> > Credit: wikipedia/CactiStaccingCrane

CONCLUSION: THIS IS THE ENVIRONMENT IN WHICH STARS AND PLANETS FORM

Disc observations tell us that:

- ► Stars grow via misaligned flows, NOT by disc accretion
- > Planets form readily, even at large orbital separations
- > The solar system reveals hints of the same processes, indicating universal formation process

Credits: NASA, ESA, CSA, and STScl. Image processing: J. DePasquale, A. Pagan, and A. Koekemoer (STScl)

> Planets form early, when disturbances, fresh infall and flybys are common

