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SMOOTHED PARTICLE HYDRODYNAMICS
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THINGS YOU MIGHT HAVE HEARD ABOUT SMOOTHED PARTICLE HYDRODYNAMICS

SPH can’t 
capture shocks

Credit: 
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MYTH 1:  
SPH DOES NOT SOLVE THE 

EQUATIONS OF FLUID 
DYNAMICS

Credit: 

SPH



ORIGIN OF THE MYTH: THE STICKY PARTICLE METHOD

Lin & Pringle (1976)
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TRUTH: DISCRETE HYDRODYNAMICS FROM THE FLUID LAGRANGIAN



WHAT THE LAGRANGIAN GIVES US
Noether’s theorem: “the most beautiful idea in physics”

Emmy Noether 1882-1935

➤ Conservation of both 
linear and angular 
momentum to machine 
precision (translational 
and rotational symmetry) 

➤ Conservation of energy in 
spatial discretisation 
(time symmetry)
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EXAMPLE: CONSERVATION OF ANGULAR MOMENTUM

Orbits are accurate… 
even when motions 
not aligned with any 
symmetry axis.

Warping of an accretion disc by a spinning, supermassive black hole 
Nixon, King & Price (2012), ApJL 757, L24 



EXAMPLE: GENERAL RELATIVISTIC HYDRODYNAMICS

Lagrangian

1st law of thermodynamicsdu =
P

�2
d�

+

density sumr�i =
X

j

mjrWij(h)

+

=

d

dt

✓
�L

�v

◆
� �L

�r
= 0

+
Euler-Lagrange equations

equations
of motion!

<latexit sha1_base64="MoVAR6RCRMj8Xb3fZqcq3j+1KTI="></latexit>✓
dp

dt
= �r(

p
�gP )

⇢⇤

◆<latexit sha1_base64="CTE5OoBi2qd0KA0B+mGKbREq8Tc="></latexit>

dpi

dt
= �

X

j

mj

 p
�giPi

⇢⇤2i
+

p�gjPj

⇢⇤2j

!
riWij(h)

<latexit sha1_base64="VAHgjcc/p6RiyxVXxScCFSNBvQM="></latexit>

Lgrsph = �
X

j

mj(1 + uj)
q
�gµ⌫v

µ
j v

⌫
j

Monaghan & Price (2001) 
Rosswog (2010) 

Liptai & Price (2019)



 

Liptai et al.  (2020)

TIDAL DISRUPTION OF STARS BY SUPERMASSIVE BLACK HOLES

➤ High speed flow, huge range of timescales 

➤ Most of domain is empty, immensely challenging problem!

http://GitHub.com/danieljprice/uvsph


MYTH 2:  
SPH CAN’T CAPTURE 

SHOCKS
SPH can’t 

capture shocks



ORIGIN OF THE MYTH: “HIGH RESOLUTION SHOCK CAPTURING” METHODS
Numerical Relativistic Hydrodynamics: HRSC Methods 
Luciano Rezzolla 
Olindo Zanotti 
DOI:10.1093/acprof:oso/9780198528906.003.0009 

This chapter is devoted to the analysis of those numerical 
methods based on the conservative formulation of the 
equations, as is the case of the relativistic-hydrodynamics 
equation.

du
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= −
∇ ⋅ F(u)

ρ
∂U
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+ ∇ ⋅ [F(U)] = 0

Eulerian conservation form:
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TRUTH: ADVECTION IS PERFECT IN LAGRANGIAN SCHEMES

first 25 crossings

In the following section, we present additional tests of these CT algorithms where wave modes other than
the contact mode play an important role in the solution. We note in passing that the source terms described
in Section 3.1 are absolutely essential to obtain the results presented here. If they had been omitted, the field
loop disintegrates in oscillations before completing a fraction of an orbital period.

3.3.2. Circularly polarized Alfvén wave
In a recent paper Tóth [32] described a test problem involving the evolution of traveling and standing

circularly polarized Alfvén waves in a periodic domain. This test problem is interesting from the point
of view that the initial conditions are nonlinear solutions to the equations of ideal MHD. Unfortunately,

Fig. 2. Gray-scale images of the magnetic pressure ðB2
x þ B2

yÞ at t = 0.19 for an advected field loop ðv0 ¼
ffiffiffi
5

p
Þ using the Ea

z (top left), E%
z

(top right) and Ec
z (bottom) CT algorithm.

Fig. 3. Gray-scale images of the magnetic pressure ðB2
x þ B2

yÞ at t = 2 for an advected field loop ðv0 ¼
ffiffiffi
5

p
Þ using the Ea

z (top left), E%
z

(top right) and Ec
z (bottom) CT algorithm.
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the current density is initially singular. A more quantitative measure of the magnetic field dissipation rate is
given by the time evolution of the volume average of B2 as shown in Fig. 7. We find that the measured val-
ues (denoted by symbols) is well described by a power law (solid line) of the form B2 = A(1 ! (t/s)a) with
A = 3.463 · 10!8, s = 10.614 · 103 and a = 0.2914.

Another important indicator of the properties of the integration algorithm is the geometry of the mag-
netic field lines. Note that since the CT method evolves the interface magnetic flux (preserving $ Æ B = 0)
one may readily integrate to find the z-component of the magnetic vector potential. The magnetic field lines
presented in Fig. 8 are obtained by contouring Az. The same values of Az are used for the contours in both
the t = 0 and the t = 2 images. By t = 2 the inner most field line has dissipated. It is quite pleasing, however,
to note that the CTU + CT algorithm preserves the circular shape of the magnetic field lines, even at this
low resolution.

5.2. Circularly polarized Alfvén wave

The test problem involving the propagation of circularly polarized Alfvén waves at an oblique angle to
the grid was described in Section 3.3.2. In this subsection, we present a resolution study for both standing
and traveling Alfvén waves. The initial conditions are equivalent to those used in Section 3.3.2 only with
N = {4,8,16,32}.

As a diagnostic of the solution accuracy, we plot the in-plane component of the magnetic field, B2, per-
pendicular to the wave propagation direction, x1, in Fig. 9. These plots are constructed using the cell center
components of the magnetic field and each grid cell is included in the plots. Hence, the lack of scatter dem-
onstrates that the solutions retain their planar symmetry quite well. Fig. 9 includes the solutions at time

0 0.5 1 1.5 2
time

3.1e-08

3.2e-08

3.3e-08

3.4e-08

3.5e-08

B
p2

Mean Magnetic Energy Density

Fig. 7. Plot of the volume averaged magnetic energy density B2 as a function of time. The solid line is a power law curve fit to the data
points denoted by the symbols.

Fig. 8. Magnetic field lines at t = 0 (left) and t = 2 (right) using the CTU + CT integration algorithm.

530 T.A. Gardiner, J.M. Stone / Journal of Computational Physics 205 (2005) 509–539

(Gardiner & Stone 2005)

2 crossings (Gardiner & Stone 2005)1000 crossings (Rosswog & Price 2010)

Test problem: Advection of a magnetic current loop in a uniform flow



HIGH RESOLUTION SHOCK CAPTURING METHODS FOR SPH

➤ Finite volume method 

➤ SPH
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Godunov-type solution

Similar for SPH, but dissipation does NOT affect advection terms
c.f. Chow & Monaghan (1997), Inutsuka (2002), Cha & Whitworth (2003), Price (2008)

Monaghan (1997), Chow & Monaghan (1997)

U = [ρ, ρv, ρe]T



THE KEY IS A GOOD SWITCH
➤ Use shock detector to turn off 

shock dissipation where there are 
no shocks 

➤ Nearly undamped linear waves Inviscid SPH 3

Figure 2. As Fig. 1, but for SPH with standard (α = 1) or Morris & Mon-
aghan (1997) artificial viscosity, as well as our new method (only every fifth
particle is plotted). Also shown are the undamped wave (solid) and lower-
amplitude sinusoidals (dashed). Only with our method the wave propagates
undamped, very much like SPH without any viscosity, as in Fig. 1.

by ᾱij = (αi + α j)/2, and set β ∝ ᾱij. The individual viscosities are
adapted according to the differential equation

α̇i = (αmin − αi)/τi + Si (7)

with the velocity-based source term

Si = max
{
− ∇·υi, 0

}
. (8)

and the decay time3

τi = hi/(2$ci). (9)

Here, αmin = 0.1 constitutes a lower limit for the artificial viscos-
ity such that αi = αmin for non-convergent flows. For a convergent
flow, on the other hand, αi grows above that value, guaranteeing the
proper treatment of shocks. In the post-shock region, the flow is no
longer convergent and αi decays back to αmin on the time scale τi
(typically $ = 0.1 − 0.2). This method reduces the artificial viscos-
ity away from shocks by an order of magnitude compared to stan-
dard SPH and gives equally accurate post and pre-shock solutions
(Morris & Monaghan 1997).

More recently, Rosswog, Davies, Thielemann & Piran (2000)
proposed to alter the adaption equation (7) to4

α̇i = (αmin − αi)/τi + (αmax − αi) Si (10)

with αmax = 1.5, while Price (2004) advocated αmax = 2. The effect
of this alteration is first to prevent αi to exceed αmax and second to
increase α̇i for small αi, which ensures a faster viscosity growth,
resulting in somewhat better treatment of shocks (Price 2004). This
method may also be combined with the Balsara switch by applying
the reduction factor (6) either to Πij (Rosswog et al. 2000) or to Si
(Morris & Monaghan 1997; Wetzstein et al. 2009).

The scheme of equations (8), (9) and (10) with αmin = 0.1,
αmax = 2 and $ = 0.1 is the current state of the art for SPH and
is implemented in the codes phantom (by Daniel Price) and vine
(Wetzstein et al. 2009). In sections 4 and 5, we will frequently com-
pare our novel scheme (to be described below) with this method and
refer to it as the ‘M&Mmethod’ or the ‘Price (2004) version of the
M&M method’ as opposed to the ‘original M&M method’, which
uses equation (7) instead of (10).

3 The factor 2 in the denominator of equation (9) accounts for the dif-
ference in the definition of the smoothing length h between us and
Morris & Monaghan (1997).
4 This is equivalent to keeping (7) but multiplying the source term (8) by
(αmax − α), which is what Rosswog et al. actually did.

2.4 Critique of the M&Mmethod

The M&M method certainly constitutes a large improvement over
standard SPH, but low-viscosity flows, typical for many astrophys-
ical fluids, are still inadequately modelled. After studying this and
related methods in detail, we identify the following problems.

First, any αmin > 0 results in unwanted dissipation, for example
of sound waves (see Fig. 2) or stellar pulsations (see §4.4), yet the
M&M method requires αmin ≈ 0.1. This necessity has been estab-
lished by numerous tests (most notably of Price 2004) and is under-
stood to originate from the requirement to ‘maintain order amongst
the particles away from shocks’ (Morris & Monaghan 1997).

Second, there is a delay between the peak in the viscosity α
and the shock front (see Fig. 3): the particle viscosities are still
rising when the shock arrives. One reason for this lag is that inte-
grating the differential equation (10) increases αi too slowly: the
asymptotic value

αs =
αmin + αmax Siτi

1 + Siτi
(11)

is hardly ever reached before the shock arrives (and Si decreases).
Third, the source term (8) does not distinguish between pre-

and post-shock regions: for a symmetrically smoothed shock it
peaks at the exact shock position (in practice the peak occurs one
particle separation in front of the shock, Morris & Monaghan 1997,
see also Fig. 3). However, immediately behind the shock (or more
precisely the minimum of ∇·υ), the (smoothed) flow is still con-
verging and hence α continues to increase without need. A further
problem is the inability of the source term (8) to distinguish be-
tween velocity discontinuities and convergent flows.

Finally, in strong shear flows the estimation of the velocity di-
vergence ∇·υ, needed in (8), often suffers from substantial errors
(see Appendix B1 for the reason), driving artificial viscosity with-
out need. This especially compromises simulations of differentially
rotating discs even when using the Balsara switch.

3 A NOVEL ARTIFICIAL VISCOSITY SCHEME

Our aim is a method which overcomes all the issues identified in
§2.4 above and in particular gives αi → 0 away from shocks. To this
end, we introduce a new shock indicator in §3.1, a novel technique
for adapting αi in §3.2, and a method to suppress false compression
detections due to the presence of strong shear in §3.3.

3.1 A novel shock indicator

We need a shock indicator which not only distinguishes shocks
from convergent flows, but, unlike ∇·υ, also discriminates between
pre- and post-shock regions. This requires (at least) a second-order
derivative of the flow velocity and we found the total time deriva-
tive of the velocity divergence, ∇̇·υ ≡ d(∇·υ)/dt, to be most useful.
As is evident from differentiating the continuity equation,

−∇̇·υ = d2 ln ρ/dt2, (12)

∇̇·υ < 0 indicates an non-linear density increase and a steepen-
ing of the flow convergence, as is typical for any pre-shock region.
Conversely, in the post-shock region ∇̇·υ > 0. This suggests to
consider only negative values and, in analogy with equation (8), we
define the new shock indicator

Ai = ξi max
{
− ∇̇·υi, 0

}
. (13)

c.f. Cullen & Dehnen (2010), Price et al. (2018)

6 Lee Cullen &Walter Dehnen

Figure 6. Steepening of a 1D sound wave: velocity and viscosity param-
eter vs. position for standard SPH, the M&M method, our new scheme,
and Godunov particle hydrodynamics of first and second order (GPH,
Cha & Whitworth 2003), each using 100 particles per wavelength. The solid
curve in the top panel is the solution obtained with a high-resolution grid
code.

4 VISCOSITY SUPPRESSION TESTS

We now present some tests of low-Mach-number flows, where pre-
vious methods give too much unwanted dissipation.

4.1 Sound-wave steepening

The steepening of sound waves is a simple example demonstrat-
ing the importance of distinguishing between converging flows and
shocks. As the wave propagates, adiabatic density and pressure os-
cillations result in variations of the sound speed, such that the den-
sity peak of the wave travels faster than the trough, eventually try-
ing to overtake it and forming a shock.

In our test, a 1D sound wave with a velocity amplitude 10% of
the sound speed is used (ideal gas with γ = 1.4). Fig. 6 compares
the velocity field at the moment of wave steepening for various SPH
schemes, each using 100 particles, with a high-resolution grid sim-
ulation. The new method resolves the shock better than the M&M
scheme, let alone standard SPH.

In Fig. 6, we also show results from GPH (Godunov-type par-
ticle hydrodynamics, Cha & Whitworth 2003), which differs from
SPH by using the pressure P∗, found by solving the Riemann prob-
lem between particle neighbours, in the momentum and energy
equations and avoids the need for explicit artificial viscosity. This
substitution does not affect the energy or momentum conservation
(Cha 2002), and indeed we find that both are well conserved. While
the first-order GPH scheme is comparable to standard SPH and also
to an Eulerian Godunov grid code using the same Riemann solver
without interpolation (not shown), the second-order GPH scheme
resolves the discontinuity almost as well as our novel method.

4.2 1D converging flow test

Similar to sound-wave steepening, this test requires good treatment
of convergent flows and weak shocks. The initial conditions are
uniform pressure and density and a continuous flow velocity

υ =




4(1 + x)υa −1.00 < x < −0.75,
υa −0.75 < x < −0.25,
−4xυa −0.25 < x < 0.25,
−υa 0.25 < x < 0.75,
4(1 − x)υa 0.75 < x < 1.00.

(20)

Figure 7. A 1D converging flow test with initially constant density and
pressure and velocities given by equation (20) using an adiabatic equation
of state with γ = 1.4. Top: run for υa = 1 at t = 0.3; bottom: run for
υa = 2 at t = 0.1. The solid lines are the result of a high-resolution Eulerian
grid-code simulation.

As there is no analytical solution, we compare the results to a high-
resolution grid-code simulation. We run tests for υa = 1 and υa = 2
as shown in the top and bottom panels of Fig. 7.

While the M&M switch certainly improves upon standard
SPH, it still over-smoothes the velocity profile as the viscosity is
increased before a shock has formed. This is particularly evident in
the velocity profile of the υa = 2 case (bottom) near x = 0. The
new switch keeps the viscosity low, in the υa = 2 case an order
of magnitude lower than the M&M method. In fact, the agreement
between our method and the high-resolution grid code is as good
as one can possibly expect at the given resolution, in particular the
velocity plateau and density amplitude around x = 0 in the υa = 2
case (bottom) are correctly modelled.

<latexit sha1_base64="8rYgOSx3VADxHCL9PppvX0pUy24="></latexit>

A = ⇠max


� d

dt
(r · v), 0

�



MACH 10, SUPERSONIC TURBULENCE: SPH VS GRID

SPH 

phantomsph.
bitbucket.io

FLASH 

flash.uchicago.edu

Price & Federrath (2010) 
Tricco, Price & Federrath (2016)

Main advantage of SPH: resolution follows mass

SPH can’t 
capture shocks

http://phantomsph.bitbucket.io
http://phantomsph.bitbucket.io
http://flash.uchicago.edu


PARTICLE-LADEN SUPERSONIC TURBULENCE AT MACH 10
Tricco, Price & 
Laibe (2017), 
MNRAS 471, L52

c.f. special sessions on particle-laden flows

On the dust-to-gas ratio in molecular clouds L53

regions. Furthermore, for two fluid dust and gas mixtures at high
drag (small grains), Laibe & Price (2012) proved that it is necessary
that the gas resolve the ‘stopping length’ of the grains, l ∼ csts, to
correctly predict the dust dynamics (where cs is the sound speed
and ts the dust stopping time). The smallest grain simulations of
Hopkins & Lee (2016), equivalent to our molecular clouds with
0.3 µm grains, would require 16003 gas resolution elements. If this
spatial resolution requirement is not satisfied (as it was not in their
paper), then spuriously high dust concentrations are produced as
dust particles become trapped on scales below the gas resolution
length.

In this Letter, we investigate dynamical variations of the dust-
to-gas ratio in molecular clouds caused by the finite stopping time
of the dust grains using three-dimensional numerical calculations
of dust–gas mixtures in non-self-gravitating, turbulent molecular
clouds. Importantly, we use the single fluid dust/gas model of Laibe
& Price (2014a,b) and Price & Laibe (2015), which avoids the
spatial resolution requirement of dust tracer particles or a two-fluid
method. The one-fluid equations and our numerical method are
described in Section 2. Simulation results are presented in Section 3
and discussed in Section 4. We summarize in Section 5.

2 SIMULATION D ETAILS

2.1 Dust physics

We model the dust/gas fluid mixture as a single fluid, with each
element of fluid representing a combination of dust and gas (Laibe
& Price 2014a,b; Price & Laibe 2015). We solve the equations

dρ

dt
= −ρ(∇ · v), (1)

dv

dt
= −∇Pg

ρ
, (2)

dε

dt
= − 1

ρ
∇ · (εts∇Pg), (3)

where d/dt ≡ ∂/∂t + v · ∇ is the material derivative, Pg is the
thermodynamic gas pressure, ρ is the sum of gas and dust densities,
ρ = ρg + ρd, where subscripts g and d represent the gas and dust,
respectively, and ε ≡ ρd/ρ is the dust fraction. The mixture moves
at the barycentric velocity

v = ρgvg + ρdvd

ρg + ρd
. (4)

Gas and dust densities may be obtained according to ρg = (1 − ε)ρ
and ρd = ερ. This means the dust-to-gas ratio may be expressed
solely in terms of the dust fraction as ρd/ρg = ε/(1 − ε). Finally,
we adopt an isothermal equation of state

P = c2
s ρg = c2

s (1 − ε)ρ, (5)

where the back reaction of the dust on the gas modifies the sound
speed in the dust/gas mixture according to c̃s = cs(1 + ρd/ρg)−1/2.

Equations (1)–(3) make use of the ‘terminal velocity approxima-
tion’. This is valid when the stopping time of dust grains is short
compared to the dynamical time, occurring when the drag coeffi-
cient is large, i.e. when dust grains are small. We assume an Epstein
drag prescription, appropriate for small grains. Assuming compact,
spherical dust grains, the dust stopping time is

ts = ρgrainsgrain

(ρd + ρg)cs

√
πγ

8
, (6)

where ρgrain is the intrinsic density of the dust grains, sgrain is the
dust grain size, cs is the speed of sound and γ is the adiabatic index.
Expressed in a manner appropriate for molecular clouds, this is

ts = 3 × 103 yr
(

ρgrain

3 g cm−3

) (
sgrain

0.1 µm

)

×
(

cs

0.2 km s−1

)−1 (
ρ

10−20 g cm−3

)−1

. (7)

This time-scale is shorter than the dynamical time for all grain sizes
we consider, with the terminal velocity approximation becoming
marginal only in the lowest density gas for our largest grain size
(10 µm).

2.2 Numerical method

We use the PHANTOM smoothed particle hydrodynamics (SPH) code
(Price et al. 2017). Dust is modelled using the ‘one-fluid’ method of
Laibe & Price (2014a,b) and Price & Laibe (2015), which is accurate
and explicit for small dust grains (high drag) in the terminal veloc-
ity approximation. Our dust scheme exactly conserves gas, dust and
total mass, along with linear momentum, angular momentum and
energy to the accuracy of the time stepping. The scheme has been
extensively benchmarked against the analytic solutions for linear
waves and dusty shocks (Laibe & Price 2012, 2014b). Furthermore,
both the one- and two-fluid dust algorithms in PHANTOM have been
previously used to simulate dust in protoplanetary discs (e.g. Dip-
ierro et al. 2015; Ragusa et al. 2017). We have also used PHANTOM for
previous studies of supersonic turbulence in both hydrodynamics
and magnetohydrodynamics, including quantitative comparisons to
results obtained with the grid-based code FLASH (Price & Federrath
2010; Tricco, Price & Federrath 2016). Price et al. (2017) give full
details of the dust–gas algorithm, turbulence driving routine (Fed-
errath et al. 2010) and SPH algorithms in PHANTOM. This is the first
application of our one-fluid dust algorithm to molecular clouds.

2.3 Initial conditions

We assume a uniform, periodic box x, y, z ∈ [0, L] with L =
3 pc per side, adopting an isothermal sound speed cs = 0.2 km s−1

corresponding to a temperature of ≈11.5 K. The mean total density
(gas plus dust) is ρ0 = 10−20 g cm−3. For these calculations, the
maximum density produced by the turbulence is ≈10−17 g cm−3, so
it is reasonable to assume the gas remains isothermal. We neglect
the self-gravity of the mixture. Turbulence is initiated and sustained
at rms velocity Mach 10 (M = 10), with a corresponding turbulent
crossing time of τ = L/(2Mcs) ≈ 0.733 Myr. Dusty shocks at this
Mach number are expected to be of ‘J-type’, with a sharp jump in
the gas properties (Lehmann & Wardle 2016). Dust properties also
undergo a sharp jump since the stopping length is short. We evolve
the calculations for 20 dynamical times or about 14.66 Myr. This
may be longer than expected lifetimes for molecular clouds, but is
necessary to ensure statistically meaningful results.

We set the initial dust fraction assuming an initial dust-to-gas
mass ratio of 1 per cent everywhere. We assume an intrinsic density
of 3 g cm−3 for the dust grains, representing a combination of
carbonaceous (2.2 g cm−3) and silicate grains (3.5 g cm−3) (Draine
2003). Simulations were performed with 0.1, 1 and 10 µm sized
grains, with a separate simulation for each grain size.
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Using “one fluid” model for 
dust-gas mixtures 
 
Laibe & Price (2014a,b,c) 
MNRAS 440, 2136

ρ = ρg + ρd

ϵ =
ρd

ρ

v =
ρgvg + ρdvd

ρ



MYTH 3:  
SPH CAN’T SIMULATE KELVIN-

HELMHOLTZ INSTABILITIES
Kelvin-Helmholtz 

instabilities



ORIGIN OF THE MYTH

➤ Apparent problems with K-H 
instability in SPH when 
simulations performed with 2:1 
density contrast 

➤ Manifests as numerical “surface 
tension”



THE RIGHT WAY TO THINK ABOUT IT

1D Sod shock tube with artificial viscosity

➤ Shock capturing 
dissipation terms 
required at 
discontinuities 

➤ Artificial viscosity 
applied at shock 

➤ What about the 
contact 
discontinuity?



ANALOGY WITH GODUNOV-TYPE SOLVERS

➤ Godunov-type solvers 
imply conductivity at the 
contact discontinuity 
(Monaghan 1997) 

➤ Use analogous dissipation 
terms to ensure smooth 
pressure across 
discontinuous jumps in 
density and temperature 
(Chow & Monaghan 
1997, Price 2008)

1D Sod shock tube with artificial conductivity



MUST TREAT DISCONTINUITIES PROPERLY Price (2008)

Previous Fixed

This issue has nothing to do with the Kelvin-Helmholtz instability!



MYTH 4:  
SPH CAN’T DO 

MAGNETIC FIELDS
Magnetic fields in SPH

are 
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@t
+ (v ·r)⇢ = �⇢(r · v)

@v

@t
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⇢
+
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⇢
@u

@t
+ (v ·r)u = �P

⇢
(r · v)

@B

@t
= r⇥ (v ⇥B)

?

ORIGIN OF THE MYTH I: HOW DO YOU EVEN DO THAT?

∇ ⋅ B = 0



TRUTH: SMOOTHED PARTICLE MAGNETOHYDRODYNAMICS

Price, Tricco & Bate (2012)
Magnetic jet launched from gravitational collapse of a rotating, magnetised cloud
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➤ Use the Lagrangian! 

➤ Obtain discretised 
MHD equations 

➤ Better to think in terms 
of partial differential 
equations, not particles
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ORIGIN OF THE MYTH II: THE TENSILE INSTABILITY IN SPMHD

2D circularly polarised Alfvén wave

➤ Particles attract each 
other along magnetic field 
lines when stress tensor is 
negative (tension forces) 

➤ Fixed by subtracting 
spurious  term 
from the numerical force 
(Børve et al. 2001)

B(∇ ⋅ B)

Phillips & Monaghan (1985), Børve, Omang & Trulsen (2001), Price & Monaghan (2004a,b), Price (2012)

dv
dt

= −
∇P
ρ

+
J × B

ρ
+

B(∇ ⋅ B)
μ0ρ



 IN SPMHD∇ ⋅ B = 0

➤ Constrained hyperbolic/
parabolic divergence cleaning 
based on original scheme by 
Dedner et al. (2002) 

➤ Formulated so that change in 
magnetic energy is negative 
definite Author's personal copy

servative formulation remains stable and continues to reduce the divergence error throughout the domain (bottom row of
Fig. 4 and right panel of Fig. 5).

5.3. Static cleaning test: free boundaries

A further variant of the divergence advection test we consider replaces the periodic boundaries by a free boundary, since
many applications of SPMHD involve free boundaries (e.g. the merger of two neutron stars [36], or studies of galaxy inter-
actions [15,16]).

5.3.1. Setup
The setup is identical to the divergence advection problem (Section 5.1) with r0 ¼ 1=

ffiffiffi
8
p

, except that the domain is a cir-
cular area of fluid with q ¼ 1 for r 6 1 and q ¼ 0 (no particles) for r > 1, set up using a total of 1976 particles placed on a
cubic lattice. The divergence perturbation is introduced at the centre of the circle, and the velocity field is set to zero. Rather
than impose an external confining potential, we solve only Eqs. (16) and (17) without the full MHD equations, as in Section
5.2.

5.3.2. Results
Fig. 6 shows the results of purely hyperbolic cleaning (r ¼ 0) for this case. As in Fig. 4, the top row shows the uncon-

strained and non-conservative difference/difference formulation, while the bottom row shows results using the conservative
difference/symmetric combination. Similar results are also found in this case, with divergence errors piling up at the free
boundary in the non-conservative formulation leading to numerical instability, but our constrained formulation remaining
stable.

5.4. 2D Blast wave in a magnetised medium

We now turn to tests that are more representative of the dynamics encountered in typical astrophysical simulations,
beginning with a blast wave expanding in a magnetised medium. In this case the initial magnetic field is divergence-free,
meaning that the only divergence errors are those created by numerical errors during the course of a simulation – rather
than the artificial errors we have induced in the previous tests. Based on the results from the previous tests, in this and sub-
sequent tests we apply cleaning only using constrained, energy-conserving formulations – that is, with conjugate operators
for r " B and rw. We use this problem to the examine the effectiveness of the divergence cleaning in the presence of strong
shocks, as well as to investigate whether cleaning should be performed using the difference or symmetric r " B operator. As
with the divergence advection test, a key goal is to find optimal values for the damping parameter r.

5.4.1. Setup
The implementation of the blast wave follows that of Londrillo and Del Zanna [18]. The domain is a unit square with peri-

odic boundaries, set up with 512# 590 particles on a hexagonal lattice with q ¼ 1. The fluid is at rest with magnetic field
Bx ¼ 10. The pressure of the fluid is set to P ¼ 1, with c ¼ 1:4, except a region in the centre of radius 0:125 has its pressure
increased by a factor of 100 by increasing its thermal energy. An adiabatic equation of state is used.

Fig. 5. Maximum values of r " B (difference) for the density jump test for the non-conservative formulation (left) and the new constrained divergence
cleaning (right). The interaction between the divergence waves and the density jump for the non-conservative formulation is unstable, for both damped and
undamped cleaning. Constrained divergence cleaning remains stable across the density jump, with damped cleaning reducing r " B as in previous tests.

7224 T.S. Tricco, D.J. Price / Journal of Computational Physics 231 (2012) 7214–7236

Price & Monaghan (2005), Tricco & Price (2012), Tricco, Price & Bate (2016)

✓
dB

dt

◆

clean

= �r 

d 
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= �c2(r ·B)�  

⌧

Constrained 
div B cleaning

Unconstrained 
div B cleaning



NON-IDEAL MAGNETOHYDRODYNAMICS
Wurster, Price & Ayliffe (2014), 
Wurster, Price & Bate (2016) 
Wurster et al. (2017,2018,2019)

➤ Partially ionised plasmas (ions, electrons, neutrals)
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STAR CLUSTER FORMATION WITH NON-IDEAL MHD
Price & Bate (2008, 2009), Wurster, Price & Bate (2019)

➤ Solves issue of how to form circumstellar discs and binary stars despite interstellar magnetic fields 

➤ That is, turbulence + non-ideal MHD solves the “magnetic braking catastrophe”



SUMMARY: THINGS YOU MIGHT HAVE HEARD ABOUT SMOOTHED PARTICLE HYDRODYNAMICS

SPH can’t 
capture shocks

Credit: 

SPH

Kelvin-Helmholtz 

instabilities

Magnetic fields in SPH

are 



SUMMARY
➤ SPH offers powerful solutions to problems that are difficult/

impossible with other methods 

➤ Main strength is in simulating flow with no preferred 
geometry or with large change in density 

➤ Just needs thought sometimes


