
Visualisation of SPH data using

SUPERSPHPLOT - v1.0.1

Daniel Price

May 12, 2005

Contents

1 Introduction 4
1.1 What it does . 4
1.2 What it doesn’t do . 5
1.3 Version History . 6
1.4 Licence . 6

2 Getting started 6
2.1 Compiling the code . 6

2.1.1 Fortran 90/95 compilers 7
2.1.2 PGPLOT . 7
2.1.3 Reading your data . 7
2.1.4 Compiling and linking with PGPLOT 8

2.2 Environment variables . 9
2.3 System dependent routines . 9

3 A brief tour... 9

4 Menu options 11
4.1 set (m)ultiplot . 11
4.2 (d)ata options . 11
4.3 (i)nteractive mode . 12
4.4 (p)age options . 12
4.5 particle plot (o)ptions . 13
4.6 plot (l)imits . 15
4.7 (r)endering options . 15
4.8 (v)ector plot options . 16

1

4.9 (x) cross section/rotation options 17
4.10 (s)ave, (h)elp, (q)uit . 17

5 Interpolations 17
5.1 Rendering of 2D data . 17

5.1.1 Interpolation to pixels 17
5.1.2 Cross sections of 2D data 18

5.2 Rendering of 3D data . 19
5.2.1 Projections . 19
5.2.2 Cross sections of 3D data 20

6 Other features 21
6.1 Rotation . 21
6.2 Plot titles . 21
6.3 Plot legends . 21
6.4 Power spectrums (1D only) 21

7 FAQS: How do I... 22
7.1 Read/process my data into images without having to answer

prompts? . 22
7.2 Calculate additional quantities? 23
7.3 What about boundaries? How does the rendering work near

a boundary? . 23
7.4 Use special characters in the plot labels? 23
7.5 Make movies? . 24

8 User contributions / Wishlist for future improvements 25

A Source code overview 27

B Exact solutions 28
B.1 Shock tubes (Riemann problem) 28

B.1.1 Riemann solver . 29
B.2 Polytrope . 29
B.3 Linear wave . 30
B.4 Sedov blast wave . 30
B.5 Toy stars . 30

B.5.1 Static structure . 30
B.5.2 Linear solutions . 31
B.5.3 Non-linear solution . 31

B.6 MHD shock tubes . 31
B.7 h vs ρ . 32

2

C Writing your own read data subroutine 33

3

1 Introduction

Whilst many wonderful commercial software packages exist for visualising
scientific data (such as the widely used Interactive Data Language), I found
that such packages could be somewhat cumbersome for the manipulation and
visualisation of my SPH data. The main problem was that much of what I
wanted to do was fairly specific to SPH (such as interpolation to an array
of pixels using the kernel) and whilst generic routines exist for such tasks, I
could not explain how they worked, nor were they particularly fast and whilst
interactive gizmos are handy, it can prove more difficult to perform the same
tasks non-interactively, as required for the production of animations. In fact
I have found that the major work in the visualisation of SPH data is not the
image production itself but the manipulation of data prior to plotting. Much
of this manipulation makes sense within an SPH framework (for example
the interpolation provided by the kernel and rotation of the particles for
perspective).

SUPERSPHPLOT is designed for this specific task - to use SPH tools to
analyse SPH data and to make this a straightforward task such that publish-
able images and animations can be obtained as efficiently as possible from the
raw data with a minimum amount of effort from the user. I have found in the
process that the development of powerful visualisation tools has enabled me
to pick up on effects present in my simulation results that I would not oth-
erwise have noticed (in particular the difference between a raw particle plot
and a rendered image can be substantial). Part of the goal of SUPERSPH-
PLOT is to eliminate the over use of particle plots as a means of representing
SPH data!

1.1 What it does

SUPERSPHPLOT is a utility for visualisation of output from (astrophysical)
simulations using the Smoothed Particle Hydrodynamics (SPH) method in
one, two and three dimensions. It is written in Fortran 90/95 and utilises
PGPLOT subroutines to do the actual plotting. In particular the following
features are included:

• Rendering of particle data to an array of pixels using the SPH kernel

• Cross-sections through 2D and 3D data (as both particle plots and
rendered images).

• Fast projections through 3D data (ie. column density plots, or integra-
tion of other quantities along the line of sight)

4

• Vector plots of the velocity (and other vector quantities), including
vector plots in a cross section slice in 3D.

• Rotation and fly-throughs (multiple cross-section slices) of 3D data.

• Automatic stepping through timesteps, making animations simple to
produce.

• Interactive mode for detailed examination of timestep data (e.g. zoom-
ing, rotating, plotting particle labels, working out the gradient of a line,
stepping forwards/backwards through timesteps)

• Multiple plots on page, including option to automatically tile plots if
y− and x− limits are the same.

• Plot limits can be fixed, adaptive or particle tracking. Also simple to
change axes to log, invert, square root or absolute of a quantity.

• Exact solutions for common SPH test problems (e.g. hydrodynamic
shock tubes, polytropes).

• Calculation of quantities not dumped (e.g. pressure, entropy)

• Transformation to different co-ordinate systems (for both co-ordinates
and vector components).

• Straightforward production of GIF and Postscript images which can
then be converted into animations or inserted into LATEXdocuments.

1.2 What it doesn’t do

At the moment SUPERSPHPLOT is designed specifically for gas dynamics
simulations with SPH and has basically grown out of my visualisation needs.
However as other applications arise other features may be needed which have
not yet been included. In particular the following have not been addressed
specifically:

• Clever 3D plotting (isosurfaces, distortion etc). Visualisation in 3D
is achieved by taking cross-sections and projections through the SPH
data and using rotation to give the appropriate perspective (along with
plotting the rotated axes/box). Similarly 2D data is plotted by means
of rendered images. In the current version there are not yet capabilities
for surface plots or cubes with faces showing cross sections and the like
(although I regularly think about it!).

• It also doesn’t make cappucinos.

5

Figure 1: A wave equation solved on SPH particles. This simulation ac-
tually resulted from some experiments for cleaning the divergence of the
magnetic field in my MHD simulations. The figures show the divergence of
the magnetic field in a periodic, two dimensional SPMHD simulation using
a hyperbolic divergence cleaning.

1.3 Version History

Version 0.667 This version has been released to a limited number of people
who have specifically requested a copy.

Version 0.666 This version was released to one or two people and had
some bugs still buried.

1.4 Licence

SUPERSPHPLOT - a visualisation tool for SPH data c©2005 Daniel Price.
This program is free software; you can redistribute it and/or modify it un-
der the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your option) any
later version. This program is distributed in the hope that it will be use-
ful, but WITHOUT ANY WARRANTY; without even the implied warranty
of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details. You should have re-
ceived a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite
330, Boston, MA 02111-1307 USA.

2 Getting started

2.1 Compiling the code

The basic steps for installation are as follows:

6

1. make sure you have a Fortran 95 compiler (such as g95)

2. make sure you have the PGPLOT libraries installed

3. write a read data subroutine so that SUPERSPHPLOT can read your
data format

4. compile SUPERSPHPLOT with your read data subroutine and link
with PGPLOT

2.1.1 Fortran 90/95 compilers

By now, many Fortran 90/95 compilers exist. In terms of free ones, the
Intel compiler has a non-commercial version available for linux and the g95
compiler, downloadable from:

http://www.g95.org

successfully compiles SUPERSPHPLOT and if necessary the PGPLOT li-
braries.

2.1.2 PGPLOT

The PGPLOT graphics subroutine library is freely downloadable from

http://www.astro.caltech.edu/~tjp/pgplot/

or by ftp from

ftp://ftp.astro.caltech.edu/pub/pgplot/pgplot5.2.tar.gz

however check to see if it is already installed on your system (if so, the
libraries are usually located in /usr/local/pgplot). For details of the actual
plotting subroutines used by the SUPERSPHPLOT source code, you may
want to refer to the PGPLOT userguide:

http://www.astro.caltech.edu/~tjp/pgplot/contents.html

2.1.3 Reading your data

The most important part is getting SUPERSPHPLOT to read your data
format. If you are using a publically available code, it is reasonably likely
that I have already written a read data subroutine which will read your
dumps. If not it is best to look at some of the other examples and change
the necessary parts to suit your data files. Note that reading directly from

7

unformatted data files is *much* faster than reading from formatted (ascii)
output.

I have supplied subroutines for reading output from the publically avail-
able GADGET code (read_data_gadget.f90) and also for Matthew Bate’s
SPH code (read_data_mbate.f90) which is widely used in the UK. Another
example of a data read which I use is given in read_data_dansph.f90.

Further details on writing your own subroutine are given in appendix C

2.1.4 Compiling and linking with PGPLOT

In the Makefile, you will need to set the Fortran compiler and flags to your
local version, e.g..

F90C = g95

F90FLAGS = -O

Secondly the compiler must be able to link to the PGPLOT and X11 libraries
on your system. As a first attempt try using:

LDFLAGS = -lpgplot -lX11

If that works at a first attempt, take a moment to think several happy
thoughts about your system administrator. If these libraries are not found,
you will need to enter the library paths by hand. On most systems this is
something like:

LDFLAGS = -L/usr/local/pgplot -lpgplot -L/usr/X11R6/lib -lX11

(assuming the PGPLOT libraries are in the /usr/local/pgplot directory and
the X11 libraries are in /usr/X11R6/lib). If this does not work, try using
the locate command to find the libraries on your system:

locate libpgplot

locate libX11

If, having found the PGPLOT and X11 libraries, the program still won’t
compile, it is usually because the PGPLOT on your system has been compiled
with a different compiler to the one you are using. A first attempt is to try
using the g2c libraries

LDFLAGS = -L/usr/local/pgplot -lpgplot -L/usr/X11R6/lib -lX11 -lg2c

If the PNG drivers are incorporated into the PGPLOT installation, the -lpng
libraries must also be added. Failing that, ask your system administrator(!)
or simply download your own copy of the PGPLOT libraries and make sure
it is compiled with the same compiler as you are using to compile the SU-
PERSPHPLOT source code.

8

2.2 Environment variables

Several useful environment variables can be set for PGPLOT and several of
them are very useful for SUPERSPHPLOT. In a tcsh shell type:

setenv PGPLOT_DEV /xwin

setenv PGPLOT_BACKGROUND white

setenv PGPLOT_FOREGROUND black

The first command sets the default device to the X-window, rather than the
/null device. The latter two commands set the background and foreground
colours of the plotting page. Note that these environment variables should be
set before invoking supersphplot (it is simplest to set them upon starting the
shell by placing them in your .tcshrc or bash/sh equivalent file). For other
environment variables which can be set, refer to the PGPLOT user guide.

2.3 System dependent routines

System dependent subroutines are interfaced in a separate system module
in the file system_unix.f90. At present the only calls to these routines
are made from supersphplot.f90 which reads the run name(s) from the
command line. A standardised format for performing this task is included
in the standards for the next release of Fortran (Fortran 2003), however in
the meantime the calls in the system module may require some adjustment
depending on the particular system you are compiling the code on. The
program is still fully functional without this call working, but it does make
things convenient (in particular it means that SUPERSPHPLOT can be
invoked using wildcards (∗, ?) in filenames).

3 A brief tour...

Once you have a read data file that will read your data format, SUPERSPH-
PLOT is invoked with the name of the data file(s) on the command line,
e.g.

supersphplot myrun*.dat

After a successful data read, the menu should appear as something like
the following:

You may choose from a delectable sample of plots

9

Figure 2: example plot

1) x 7) particle mass

2) y 8) u

3) z 9) \gr

4) v\dx 10) pressure

5) v\dy 11) entropy

6) v\dz 12) h

13) multiplot [4] m) set multiplot

d(ata) i(nteractive) p(age) o(pts) l(imits) h(elp)

r(ender) v(ector) x(sec/rotate) s(ave) q(uit)

Please enter your selection now (y axis or option):

The simplest plot is of two quantities where only one is a coordinate, for
example

Please enter your selection now (y axis or option): 9

(x axis) (<cr>=1): 1

Graphics device/type (? to see list, default /xwin): /xw

A full list of available graphics devices is given in the PGPLOT user guide.
Some of the most useful devices are given in table 1. In the above we have
selected the X-window driver which means that the output is sent to the
screen, producing the graph shown in Figure ??.

/xw, /xwin X-Window (interactive)
/ps Postscript (landscape)
/vps Postscript (portrait)
/cps Colour Postscript
/gif GIF
/png PNG (if installed)
/null null device (no output)

Table 1: Commonly used graphics devices available in PGPLOT

Plot settings are controlled via the menu options and are described below.

10

4 Menu options

The program options may be changed in a series of submenus. The defaults
for all of these options are initially set in the subroutine defaults set. The
options set using the submenus can be saved using the (s)ave option from the
menu. This saves all of the current options to a file called ‘defaults’ in the
current directory, which is automatically read upon starting supersphplot the
next time. This file is written using the namelist formatting option provided
by Fortran 90. An alternative way of setting options is to edit this file directly
prior to invoking the program.

4.1 set (m)ultiplot

The multiplot option enables plotting of several different plots on the same
physical page. Plots with the same x− and y− axes are tiled if the tiling op-
tion from the (p)age options menu (§ 4.4 on the following page) is set. Each
plot can have independent x− and y− axes as well as a different rendering
(cross section or projection) and/or vector plot. For rendered plots plotting
of contours can be turned on/off between plots and for cross sections the po-
sition of the cross section can also be changed between plots. An alternative
method for specifying a multiplot is to edit the defaults file directly prior
to starting SUPERSPHPLOT.

4.2 (d)ata options

These options relate to the data read and are as follows:

1. read new data. Read new data, using a different runname.

2. change number of timesteps read. Set timestep number to start
reading from, timestep number to stop reading from and the frequency
of timesteps to read (e.g. every two steps). This can also be changed
interactively in interactive mode.

3. plot selected steps only. Here you can choose to plot only a selected
few timesteps.

4. buffering of data on/off. Turn buffering of input data on/off. Buffer-
ing on means that all the timesteps are read into memory (good for
small data sets). Buffering off means that only one data file at a time
is read into memory. Default is off.

11

4.3 (i)nteractive mode

The menu option turns on/off interactive mode. With this option turned on
and an appropriate device selected (ie. the X-window, not /gif or /ps), after
each plot the program waits for specific commands from the user. With the
cursor positioned anywhere in the plot window (but not outside it!), many
different commands can be invoked. Some functions you may find useful are:
Move through timesteps by pressing the space bar (press ‘b’ to go back); zoom
in by selecting an area with the mouse; rotate the particles by using the <,
>,[,] and l, ; keys; log the axes by holding the cursor over the appropriate
axis and pressing the ‘o’ key. Press ‘q’ in the plot window to quit interactive
mode.

A full list of these commands is obtained by holding the cursor in the
plot window and pressing the ‘h’ key (h for help). Note that changes made
in interactive mode will only be saved by pressing the ‘s’ (for save) key.
Otherwise pressing the space bar (to advance to the next timestep) erases
the changes made whilst in interactive mode. A somewhat limited interactive
mode applies when there is more than one plot per page.

NB: If the multiplot option has been used, the timestep changing com-
mands only take effect on the last plot per timestep. Many more commands
could be added to the interactive mode, limited only by your imagination.
Please send me your suggestions!

4.4 (p)age options

This submenu contains options relating to the PGPLOT page setup. The
options are as follows:

1. change steps per page. (default=1) Allows multiple timesteps to be
plotted on the same page.

2. axes options. Changes the appearance of the axes. The variable is the
same as the AXIS variable used in the call to PGENV in the standard
PGPLOT routines, except that I have also added the −3 option. The
options are as follows:

12

-3 : same as AXIS=-1, but also draw tick marks;
-2 : draw no box, axes or labels;
-1 : draw box only;
0 : draw box and label it with coordinates;
1 : same as AXIS=0, but also draw the coordinate axes (X=0,

Y=0);
2 : same as AXIS=1, but also draw grid lines at major increments

of the coordinates;

3. change paper size. Sets the size of the plotting page.

4. change plots per page. Changes the number of plots on each physical
page.

5. toggle plot tiling. When set, plots with more than one plot on the
page and the same y− and x− axes are automatically tiled together.

6. title options. Adjusts the position of the title on each plot. To turn
off plot titling, set the position outside the viewport (ie. enter some
large numbers). For details of plot titling see § 6.2 on page 21

7. legend options. Adjusts the position of the legend on each plot.
Again, to turn off the legend, set the position outside of the viewport
(ie. enter some large numbers). To customise the legend see § 6.3 on
page 21

8. set foreground/background colours. Does what it says.

4.5 particle plot (o)ptions

These options relate to pure ‘particle plots’. The options are as follows:

1. toggle plot line. When set, this option plots a line connecting the par-
ticles in the order that they appear in the data array. Useful mainly in
one dimension, although can give an indication of the relative closeness
of the particles in memory and in physical space in higher dimensions.

2. toggle label particles. This option prints the number of each particle
next to its position on the plot (for all particles). Primarily useful for
debugging neighbour finding routines. An alternative is to use the ‘p’
option in interactive mode.

3. plot circles of interaction. On coordinate plots this option plots a
circle of radius 2h around selected particles. This is primarily useful

13

in debugging neighbour finding routines. Where only one of the axes
is a coordinate this function plots an error bar of length 2h in either
direction is plotted in the direction of the coordinate axis.

4. toggle plot particles by type. Enables particles of certain types
only to be plotted (e.g. dark matter particles only, gas particles only
etc.).

5. change graph markers for each type. This option sets the PG-
PLOT marker used for each type of particle in the particle plots. The
list of markers is given in the PGPLOT user guide and is also listed in
Appendix ??.

6. change co-ordinate systems. This feature transforms the particle
co-ordinates and vector components into non-cartesian co-ordinate sys-
tems. Note that renderings can only be done in the base co-ordinate
system so that the interpolation using the SPH kernel and h is correct.

7. plot exact solution. The following exact solutions are provided

• Hydrodynamic shock tubes (Riemann problem)

• Spherically-symmetric sedov blast wave problem. This

• Polytropes (with arbitrary γ)

• One dimensional toy stars. This is a particularly simple test prob-
lem for SPH codes described in Monaghan and Price (2004).

• Linear wave. This simply plots a sine wave of a specified ampli-
tude, period and wavelength on the plot specified.

• MHD shock tubes (tabulated). These are tabulated solutions for
7 specific MHD shock tube problems.

• Exact solution from a file. This option reads in an exact solution
from the filename input by the user, assuming the file contains
two columns containing the x− and y− co-ordinates of an exact
solution to be plotted as a line on the plot specified.

Details of the calculation of the exact solutions and examples of their
output are given in Appendix B. Note that the PGPLOT call to plot
the line is included in the exact solution subroutine so as to provide
flexibility should an exact solution require multiple lines on the page /
different line styles etc. (although none of those provided do).

8. exact solution options. These options allow you to change the colour
and line style of the exact solution plot.

14

4.6 plot (l)imits

The options for plot limits are as follows:

1. set adaptive/fixed limits. With limits set to adaptive, plot limits
are minimum and maximum of quantities at current timestep. With
fixed limits, the plot limits retain their default values for all timesteps.
An independent setting applies to the particle co-ordinates.

2. set manual limits. Manually set the limits for each column of data.

3. x-y limits track particle. Co-ordinate limits are centred on the
selected particle for all timesteps, with offsets as input by the user.
This effectively gives the ‘Lagrangian’ perspective.

4. zoom in/out.

5. apply transformations (log,1/x). Allows you to apply transforma-
tions such as log, 1/x, sqrt etc. to selected data columns.

6. save current limits to file. Saves the current values of the limits
calculated from the data read or set manually using option 2 to a file
(default name is ‘filename.limits’) where filename is the name of the
first data file read. If using the default filename, this limits file is
automatically read upon the next invocation of supersphplot with the
same filename. Otherwise the limits file can be read by choosing option
7 from this submenu. The limits apply only when fixed limits are set.

7. re-read limits file. Re-reads the plot limits from the limits file. Note
that these limits will only apply if fixed plot limits are set.

8. reset limits for all plots. Recalculates the limits for all columns
based on the data currently in memory.

4.7 (r)endering options

1. change number of pixels. Set the number of pixels along the x−axis.
Pixels are assumed to be square such that the number of pixels along
the y−axis is determined by the aspect ratio of the current plot.

2. change colour scheme. Changes the colour scheme used on rendered
images. A demonstration of all the colour schemes can be also be
invoked from this menu option. Setting the colour scheme to zero plots

15

only the contours of the rendered quantity (assuming that plot contours
is set to true). The colour schemes given are as follows:

0 : contours only
1 : greyscale
2 : red
3 : ice blue
4 : rainbow
5 : frog monster

User contributed colour schemes are eagerly invited (see the subroutine
‘colour set’ for details on how to do this).

3. toggle plot contours. Determines whether or not to plot contours in
addition to the rendered quantity.

4. change number of contours. Sets the number of contours to be
plotted.

5. colour bar options. Sets options relating to the colour bar on ren-
dered images.

6. use particle colours not pixels. With this option set, rendered plots
are simply plotted by colouring the particles according to the rendered
field. This is somewhat cruder but can be a good indication of where
individual particles might be affecting results. Note that any colouring
of the particles set in interactive mode will be overwritten.

4.8 (v)ector plot options

1. change number of pixels. Set the number of pixels along the x−axis
to be used in the vector plots. As in the rendered images, pixels are
assumed to be square such that the number of pixels along the y−axis
is determined by the aspect ratio of the current plot.

2. toggle background/foreground colour. Determines whether or not
to plot the vector arrows in the current background or foreground colour
(by default these are white and black respectively). This must be user
determined to give the best contrast between the vector arrows and the
rendered image.

3. vector plot legend settings. Not yet implemented.

16

4.9 (x) cross section/rotation options

1. toggle cross section/projection. For 3D data, toggles whether to
plot the rendered quantity integrated along the line of sight (projec-
tion) or in a particular cross section along the line of sight. For 2D
data setting the cross section option gives arbitrary 1D cross sections
through 2D data. Also applies to vector and plots.

2. set cross section position. Sets the position of the cross section
slice.

3. rotation on/off. Turns rotation on/off.

4. change rotation options. Set angles of rotation.

5. set axes for rotated plots. Allows you to plot rotated axes, boxes
and planes in two and three dimensions.

4.10 (s)ave, (h)elp, (q)uit

The (s)ave option saves the default options to a file called ‘defaults’ in the
current directory which is read automatically upon the next invocation of
supersphplot. The (h)elp option simply expands the text for the options
menus (I may add to this soon). (q)uit, unsurprisingly, quits. Typing a
number greater than the number of data columns also exits the program
(e.g. I often simply type 99 to exit).

5 Interpolations

5.1 Rendering of 2D data

5.1.1 Interpolation to pixels

For a contour or rendered plot of a scalar quantity φ we interpolate from the
particles to an array of pixels using the SPH summation interpolant. In two
dimensions the interpolant is simply

φ(x, y) =
∑

b

mb
φb

ρb
W (x − xb, y − yb, hb) (1)

17

where the summation is over contributing particles and W is the standard
cubic spline kernel, given by

W (q) =
σ

hν







1 − 3
2
q2 + 3

4
q3, 0 ≤ q < 1;

1
4
(2 − q)3, 1 ≤ q < 2;

0 q ≥ 2
(2)

where q = |ra − rb|/h, ν is the number of spatial dimensions and the normal-
isation constant σ is given by 2/3, 10/(7π) and 1/π in 1, 2 and 3 dimensions
respectively.

5.1.2 Cross sections of 2D data

The cross-sectioning algorithm for 2D data (giving a 1D line) is slightly
different, in that it also works for oblique cross sections. The cross-sectioning
is done in the subroutine interpolate2D xsec. The cross section is defined by
two points (x1,y1) and (x2,y2) through which the line should pass. These
points are converted to give the equation of the line in the form

y = mx + c (3)

This line is then divided evenly into pixels to which the particles may con-
tribute. The contributions along this line from the particles is computed as
follows:

For each particle, the points at which the cross section line intersects
the smoothing circle are calculated (illustrated in Figure 3). The smoothing
circle of particle i is defined by the equation

(x − xi)
2 + (y − yi)

2 = (2h)2 (4)

The x-coordinates of the points of intersection are the solutions to the quadratic
equation

(1 + m2)x2 + 2(m(c − yi) − xi)x + (x2
i + y2

i − 2cyi + c2 − (2h)2) = 0 (5)

For particles which do not contribute to the cross section line, the deter-
minant is negative. For the particles that do, it is then a simple matter
of looping over the pixels which lie between the two points of intersection,
calculating the contribution using the SPH summation interpolant

φ =
∑

b

mb
φb

ρb
W (x − xb, hb) (6)

18

� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �

(x1,y1)

2hi (x2,y2)

i

Figure 3: Computation of a one dimensional cross section through 2D data

An example of a 1D cross section through 2D data is shown in Figure ??.

In principle a similar method could be used for oblique cross sections
through 3D data. In this case we would need to find the intersection between
the smoothing sphere and the cross section plane. However in 3D it is simpler
just to rotate the particles first and then take a straight cross section as
described above.

5.2 Rendering of 3D data

In three dimensions we must take either a projection through the whole
domain or a cross section slice.

5.2.1 Projections

In the projection case the interpolation is similar to the 2D case, that is the
interpolant is given by

φ(x, y) =
∑

b

mb
φb

ρb
Y (x − xb, y − yb, hb). (7)

In this case, however, the kernel (denoted Y) is the usual cubic spline but in-
tegrated through one spatial dimension. This results in a map of the rendered

19

2hi

i

Figure 4: Computation of a two dimensional cross section through 3D data

quantity integrated along the line of sight. In the case of vector quantities
each component is interpolated separately, giving a vector map which is also
integrated along the line of sight.

5.2.2 Cross sections of 3D data

A cross section can be taken of SPH data by summing the contributions to
each pixel in the cross section plane from all particles within 2h of the plane.
In the implementation used in SUPERSPHPLOT the cross section is always
at a fixed value of the third co-ordinate (ie. for xy plots the cross section is
in the z direction). Oblique cross sections can be taken by rotating the par-
ticles first. Vector cross sections are taken by interpolating each component
separately.

Note that the cross section position can be moved up (towards the ob-
server) or down (away from the observer) through the data interactively using
the ’d’ (for down) and ’u’ (for up) keys in interactive mode.

Flythru With the cross section option chosen in 3D, a flythru may be
chosen at the plotting prompt. This plots multiple slices through the data.

20

6 Other features

6.1 Rotation

Rotation is achieved by tranforming to cylindrical co-ordinates about each
axis, incrementing the azimuthal angle appropriately and transforming back
to cartesians. Rotated axes or boxes can be plotted using the rotation options
in the x)sec/rotate submenu, giving 3D perspective. Rotation can also be
set interactively (press ’h’ in interactive mode to see the exact keystrokes).

6.2 Plot titles

Plots may be titled individually by creating a file called titlelist in the
current directory, with the title on each line corresponding to the position
of the plot on the page. Thus the title is the same between timesteps unless
the steps are plotted together on the same physical page. Leave blank lines
for plots without titles. For example, creating a file called titlelist in the
current directory, containing the text:

plot one

plot two

plot three

and positioning the title using the default options, produces the titles shown
on the graph in Figure ?? (where there are 6 plots on the physical page).

6.3 Plot legends

The text (e.g. ‘t=’) used in the legend can be changed via the legend options
in the (p)age submenu. The numerical value is taken from the time array in
the data read.

6.4 Power spectrums (1D only)

In one dimension an extra plot item appears in the data menu which takes a
power spectrum (in space) of a particular variable defined on the particles.
Upon selection the user is prompted for various settings before plotting the
power spectrum. For data defined on irregularly distributed particles, there
are two methods for taking the power spectrum: Either to interpolate to an
even grid and use a Fourier transform or to use a method for calculating a
periodogram of irregularly sampled data which can have significant advan-
tages over interpolation. Algorithms for both of these methods have been

21

Figure 5: Example of one dimensional power spectrum using the Lomb peri-
odogram

implemented. For the first, the SPH data is interpolated to a one dimensional
grid using the kernel via the interpolate1D subroutine before calculating
the (slow!) fourier transform in powerspectrum_fourier. For the second,
an algorithm due to Lomb and ? described in Press et al. (1992) is used1, lo-
cated in the subroutine powerspectrum_lomb. The actual plotting is done in
the subroutine plot_powerspectrum. An example of this feature is shown in
Figure 5, where a power spectrum of a given spectral index has been defined
on the particles as an initial condition. The plot shows the velocity variable
given the initial power spectrum and the power spectrum calculated via the
Lomb periodogram.

It should be stressed, however, that neither of the subroutines for calcu-
lating the power spectrum is particularly fast and have only been included as
a preliminary feature since I have used them once or twice in one dimensional
simulations where speed is not an issue. The algorithms are fairly simple to
extend to multidimensional data, although faster implementations would be
needed (such as a Fast Fourier Transform routine).

7 FAQS: How do I...

7.1 Read/process my data into images without having

to answer prompts?

Firstly edit the settings in the defaults file in the current directory (created
by doing a ‘save defaults’ from the main menu) before invoking SUPERSPH-
PLOT.

Having edited the defaults file, the simplest way of running SUPER-
SPHPLOT non-interactively is to write a small shell script which runs SU-
PERSPHPLOT and answers the prompts appropriately. Something like the
following should work:

#!/usr/bin/tcsh

cd plot

supersphplot myrun* << ENDINPUT

2

1Note that the subroutines given in Press et al. (1992) have not been used as they are
not free software.

22

1

8

0

mypostcript.ps/ps

q

ENDINPUT

which would plot the data in columns 2 and 1 and render the data in column
8 with output to file mypostscript.ps.

7.2 Calculate additional quantities?

Additional quantities are calculated in the subroutine calc_quantities, in
which it should be a simple matter to add your own. If the calculated quantity
is to be used elsewhere (for example in an exact solution), an indicator should
be created for its position in the data array (e.g. the integer variable ih refers
to the position of the smoothing length in the data array). It is also preferable
to indicate those quantities from which the new quantity is calculated, so that
no error will occur if they are not present.

7.3 What about boundaries? How does the rendering

work near a boundary?

Usual practise in SPH simulations near boundaries is to introduce ghost par-
ticles which mirror the real particles. SUPERSPHPLOT does not explicitly
setup any ghost particles but will use any that are present in the data (spec-
ified using labeltype = ’ghost’ in the read_data subroutine and then
specifying the number of particles of this type). Ghost particles contribute
to the rendering calculations but not to the determination of the plot lim-
its. Note, however, that SUPERSPHPLOT does not set up ghost particles
itself, as this may depend on the type and location of the boundary. Thus if
your simulation uses ghost particle boundaries, the ghost particles should be
dumped alongside the gas particles in the output file so that their positions,
masses, densities and smoothing lengths can be read into SUPERSPHPLOT
and used to render the image appropriately.

7.4 Use special characters in the plot labels?

Several of the examples shown in this manual use special characters (such as
the

∫

character) in the plot labels. The PGPLOT user guide explains how

23

to do this, but the basic idea is that PGPLOT uses escape sequences to plot
special characters. For example to plot the greek letter ρ we would use

label = ’this would print the greek letter \gr’

where \gr is the PGPLOT escape sequence for ρ. For other characters the
escape sequence is given by a number. For example for the integral

∫

vxdx (8)

we would use

label = ’\(2268) v\d x \u dx’

where \(2268) is the escape sequence for the integral sign. The \d indicates
that what follows should be printed as subscript and \u correspondingly
indicates a return to normal script (or from normal script to superscript).
All of the escape sequences for special characters are listed in the appendix
to the PGPLOT user guide.

WARNING: Note that the use of escape characters can be com-
piler dependent and may not therefore work on all compilers.

7.5 Make movies?

At the PGPLOT device prompt

Graphics device/type (? to see list, default /xwin):

choose /gif or /vgif (some installations of PGPLOT may also have /png

installed). The images will then be written as .gif files which can then be
easily compiled together to form an animation. Under unix the gifmerge

command (if installed) is a simple way of making a single animated gif file out
of a series of gif images. Animated gifs are robust but require large amounts
of memory to run at any reasonable speed. However many software pack-
ages exist for converting animated gifs into other, more compressed formats
(such as the windows .avi format or under unix the .fli format2). One such
package is the convert command included as part of the GIMP (Gnu Image
Manipulation Package) toolkit. For presentations the windows .avi format is
a good choice, although codecs for conversion are a little harder to come by.
Under windows the commercially available videomach program is one such
tool as well as several Microsoft products.

2Note that MPEG is a particularly poor choice for simulation data

24

Another tool under unix is the fbm2fli package, which will take a series
of .gif or .png files and convert them into a .fli animation (which can be
played, for example by the xanim tool). This format is great for animations
of simulations but as yet does not import into powerpoint and the like.

8 User contributions / Wishlist for future im-

provements

Please contribute!! Any user contributions and/or suggestions would be
greatly appreciated. The following in particular would be very useful:

• Exact solutions for your favourite test problem(s). It would be great
to build a library of user-contributed exact solutions.

• Data analysis tools (e.g. fourier transforms / statistical analysis / al-
gorithms for finding binary stars etc) which could be incorporated.

• New visualisation techniques (e.g. an isosurfacing routine for SPH,
better vortex line tracing).

• More colour schemes (see colours.f90 for how to do this)

• Pretty pictures! If you happen to plot some of your data and spend
the next several minutes marvelling at how astoundingly beautiful it
all looks, please send me a copy (either ps, gif or a movie) to add to
the gallery and a few lines describing the simulation.

If you wish to send me subroutines or snippets of (Fortran only!) code for
doing any of the above or more, please also send me a LATEXfile documenting
the subroutine similar to the documentation given in this user guide. Also,
please, please comment your code clearly so that others can figure out what
it does and try to catch as many errors as possible so that the whole program
is robust. One thing I have avoided doing is to use any SPH routines which
explicitly require finding neighbours, to avoid introducing treecodes and the
like and to keep the program independent of any particular implementation
of SPH. An example of a routine would be to find the div/curl of a vector
quantity using the SPH summation.

Contributions, comments and inevitable bug fixes should be sent to:

dprice@astro.ex.ac.uk

although check that this email address is current because I am still a postdoc!

25

Acknowledgements

Several of the routines were developed from ideas used by Matthew Bate. The
polytrope exact solution is from a routine by Joe Monaghan. I am indebted
to one Thomas S. Ullrich at the University of Heidelberg who wrote the
prompting module which is used throughout the program.

26

A Source code overview

Here is a brief description of all the files making up the code:

Filename Description
allocate.f90 allocates memory for main arrays
calc quantities.f90 calculates additional quantities from particle data
colours.f90 colour schemes for rendering
colourparts.f90 colours particles
danpgsch.f sets character height independent of page size
danpgtile.f my utility for tiling plots on the pgplot page
danpgwedg.f my very minor modification of pgwedg
defaults.f90 writes/reads default options to/from file
exact.f90 module handling exact solution settings
exact fromfile.f90 reads an exact solution tabulated in a file
exact mhdshock.f90 some tabulated solutions for mhd shocks
exact polytrope.f90 exact solution for a polytrope
exact rhoh.f90 exact relation between density and smoothing length
exact sedov.f90 exact solution for sedov blast wave
exact shock.f90 exact solution for hydrodynamic shocks
exact wave.f90 exact solution for a propagating sine wave
exact toystar.f90 exact solution for the toy star problem
exact toystar2D.f90 exact solution for the 2D toy star problem
get data.f90 wrapper for main data read
geometry.f90 module handling different coordinate systems
globaldata.f90 various modules containing ”global” variables
interactive.f90 drives interactive mode
interpolate1D.f90 interpolation of 1D SPH data to grid using kernel
interpolate2D.f90 interpolation of 2D SPH data to grid
interpolate3D xsec.f90 3D cross section interpolations
interpolate3D projection.f90 3D interpolation integrated through domain
legends.f90 plots (time) legend on plot
limits.f90 sets initial plot limits and writes to/reads from limits

file
menu.f90 main menu
options data.f90 sets options relating to current data
options limits.f90 sets options relating to plot limits
options page.f90 sets options relating to page setup
options particleplots.f90 sets options relating to particle plots
options powerspec.f90 sets options for power spectrum plotting

continued on next page

27

Filename Description
options render.f90 sets options for render plots
options vector.f90 sets options for vector plots
options xsecrotate.f90 sets options for cross sections and rotation
particleplot.f90 subroutines for particle plotting
plot powerspectrum.f90 calls powerspectrum and plots it
plotstep.f90 main subroutines which drive plotting of a single

timestep
powerspectrums.f90 calculates power spectrum of 1D data (2 methods)
read data dansph.f90 reads data from my format of data files
read data mbate.f90 reads data from matthew bate’s format of data files
read data xxx.f90 reads data from . . .
render.f90 takes array of pixels and plots render map/contours

etc
rotate.f90 subroutines controlling rotation of particles
setpage.f90 sets up the PGPLOT page (replaces call to

PGENV/PGLAB)
supersphplot.f90 main program, drives menu loop
timestepping.f90 controls stepping through timesteps
titles read.f90 reads a list of titles to be used to label each timestep
transform.f90 applies various transformations to data (log10, 1/x,

etc)

B Exact solutions

B.1 Shock tubes (Riemann problem)

The subroutine exact_shock plots the exact solution for a one-dimensional
shock tube (Riemann problem). The difficult bit of the problem is to deter-
mine the jump in pressure and velocity across the shock front given the initial
left and right states. This is performed in a separate subroutine (riemann-
solver) as there are many different methods by which this can be done (see
e.g. Toro 1992). The actual subroutine exact shock reconstructs the shock
profile (consisting of a rarefaction fan, contact discontinuity and shock, sum-
marised in Figure ??), given the post-shock values of pressure and velocity.

The speed at which the shock travels into the ‘right’ fluid can be computed
from the post shock velocity using the relation

vshock = vpost
(ρpost/ρR)

(ρpost/ρR) − 1
, (9)

28

where the jump conditions imply

ρpost

ρR
=

(Ppost/PR) + β

1 + β(Ppost/PR)
(10)

with

β =
γ − 1

γ + 1
. (11)

B.1.1 Riemann solver

The algorithm for determining the post-shock velocity and pressure is taken
from Toro (1992).

B.2 Polytrope

The subroutine exact_polytrope computes the exact solution for a static
polytrope with arbitrary γ. From Poisson’s equation

∇2φ = 4πGρ, (12)

assuming only radial dependence this is given by

1

r2

d

dr

(

r2dφ

dr

)

= 4πGρ(r). (13)

The momentum equation assuming an equilibrium state (v = 0) and a
polytropic equation of state P = Kργ gives

dφ

dr
= −

γK

γ − 1

d

dr

[

ρ(γ−1)
]

(14)

Combining (13) and (14) we obtain an equation for the density profile

γK

4πG(γ − 1)

1

r2

d

dr

[

r2 d

dr

(

ργ−1
)

]

+ ρ(r) = 0. (15)

This equation can be rearranged to give

γK

4πG(γ − 1)

d2

dr2

[

rργ−1
]

+ rρ = 0. (16)

The program solves this equation numerically by defining a variable

E = rργ−1 (17)

and finite differencing the equation according to

E i+1 − E i + E i−1

(∆r)2
=

4πG(γ − 1)

γK
r

(

E

r

)1/(γ−1)

. (18)

29

λ wavelength
P period

Table 3: Input parameters for the linear wave exact solution

B.3 Linear wave

The subroutine exact_wave simply plots a sine function on a given graph.
The function is of the form

y = sin (kx − ωt) (19)

where k is the wavenumber and ω is the angular frequency. These parameters
are set via the input values of wavelength λ = 2π/k and wave period P =
2π/ω.

B.4 Sedov blast wave

The subroutine exact_sedov computes the self-similar Sedov solution for a
blast wave.

B.5 Toy stars

The subroutine exact_toystar1D computes the exact solutions for the ‘Toy
Stars’ described in Monaghan and Price (2004). The system is one dimen-
sional with velocity v, density ρ, and pressure P . The acceleration equation
is

dv

dt
= −

1

ρ

∂P

∂x
− Ω2x, (20)

We assume the equation of state is

P = Kργ , (21)

The exact solutions provided assume the equations are scaled such that
Ω2 = 1.

B.5.1 Static structure

The static structure is given by

ρ̄ = 1 − x2, (22)

30

B.5.2 Linear solutions

The linear solution for the velocity is given by

v = 0.05CsGn(x) cos ωt) (23)

density is
ρ = ρ̄ + η (24)

where
η = 0.1CsωPn+1(x) sin (ωt)) (25)

B.5.3 Non-linear solution

In this case the velocity is given by

v = A(t)x, (26)

whilst the density solution is

ργ−1 = H(t) − C(t)x2. (27)

where the parameters A, H and C are determined by solving the ordinary
differential equations

Ḣ = −AH(γ − 1), (28)

Ȧ =
2Kγ

γ − 1
C − 1 − A2 (29)

Ċ = −AC(1 + γ), (30)

The relation

A2 = −1 −
2σC

γ − 1
+ kC

2

γ+1 , (31)

is used to check the quality of the solution of the differential equations by
evaluating the constant k (which should remain close to its initial value).

B.6 MHD shock tubes

These are some tabulated solutions for specific MHD shock tube problems at
a given time taken from the tables given in Dai and Woodward (1994) and
Ryu and Jones (1995).

31

B.7 h vs ρ

The subroutine exact hrho simply plots the relation between smoothing length
and density, ie.

h = hfact

(

m

ρ

)1/ν

(32)

where ν is the number of spatial dimensions. The parameter hfact is output
by the code into the header of each timestep. For particles of different masses,
a different curve is plotted for each different mass value.

32

C Writing your own read data subroutine

The first ndim columns in the main data array must contain the particle
co-ordinates. After these columns the ordering of data is not important,
although vector quantities should always be listed with components in the
correct order (e.g. (∇ × v)x, followed by the y− and z− components) for
both vector plotting and for the correct co-ordinate transformation of the
vector quantities. Note that the co-ordinates and velocities can have different
numbers of dimensions (specified by ndim and ndimV) since this can occur,
for example, in MHD simulations.

Most important is that, for the rendering routines to work, the density,
particle masses and smoothing lengths for all of the (gas) particles must

be read in from the data file and their locations in the main data array
labelled using the integer parameters irho, ipmass and ih. Labelling of the
location of other particle quantities (e.g. iutherm for the thermal energy)
is used in order to plot the exact solutions on the appropriate graphs and
also for calculating additional quantities (e.g. calculation of the pressure uses
iutherm and irho).

The positions of vector components in the data columns are indicated by
setting the variable iamvec of that column equal to the first component of the
vector of which this component is a part. So if column 4 is a vector quantity
(say v in 3D), then iamvec(4) = 4, iamvec(5) = 4 and iamvec(6) = 4.
Similarly the string labelvec should be set, ie. labelvec = ’v’ for these
columns.

References

Dai, W. and P. R. Woodward: 1994, ‘Extension of the Piecewise Parabolic
Method to Multidimensional Ideal Magnetohydrodynamics’. J. Comp.

Phys. 115, 485–514.

Monaghan, J. J. and D. J. Price: 2004, ‘Toy stars in one dimension’. MNRAS

350, 1449–1456.

Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery: 1992,
Numerical recipes in FORTRAN. The art of scientific computing. Cam-
bridge: University Press, —c1992, 2nd ed.

Ryu, D. and T. W. Jones: 1995, ‘Numerical magetohydrodynamics in astro-
physics: Algorithm and tests for one-dimensional flow‘’. ApJ 442, 228–258.

33

Toro, E. F.: 1992, ‘The Weighted Average Flux Method Applied to the Euler
Equations’. Philosophical Transactions: Physical Sciences and Engineering

341, 499–530.

34

