“Part of the inhumanity of the computer is that, once it is petently
programmed and working smoothly, it is completely honest.”

ISAAC ASIMOV

Multidimensional Smoothed Particle
Magnetohydrodynamics

5.1 Introduction

In more than one spatial dimension errors associated wétiméim-zero divergence of the magnetic field
need to be taken into account in any numerical MHD schemereTae two distinct issues to be ad-
dressed. The first is the treatment of terms proportional 1B in the MHD equations (in particular in
the formulation of the induction equation and the magneticd). The second is the maintenance of the
- B = 0 constraint. Note that a solution to the latter problem dumshecessarily resolve the former,
since maintaining]- B = 0 in a particular numerical discretisation does not guaeuthat it is zero in
all discretisations.

Perhaps the first to address these issues in a numericaktardee Brackbill and Barnes (1980),
where it was noted that using a conservative formulatiorhefrhagnetic force could cause a supposed
steady state setup to change because of the small but norc@eponent of magnetic force directed
along the field lines due to the monopole term. This error @ lserious consequences even though
the proportional error in the magnetic field is small. As disged irg4.4, in SPMHD the force parallel to
the field can have catastrophic consequences, leading terieatinstability under some circumstances.
Brackbill and Barnes (1980) approached the problem by piefea non-conservative formulation of
the momentum equation which guarantees that the magnetie i® exactly perpendicular to the field.
Such an approach has also been used successfully in an SPhhtExicby several authors (e.g. Benz,
1984; Meglicki et al., 1995; Byleveld and Pongracic, 1996rdlieira and de Gouveia Dal Pino, 2001),
however the numerical simulations of shocks seems to red@ exact conservation of momentum in
order to provide the correct jump conditions at shock frgmisich means, at the very least, the discrete
formulation should be based on continuum equations whicts@we momentum exactly even with a
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124 Chapter 5. Multidimensional Smoothed Particle Magmedcodynamics

non-zero magnetic divergeride This issue of neglect or inclusion of divergence termsmats further

to the formulation of the induction and energy equationshénformulation used by Brackbill and Barnes
(1980), magnetic flux and energy are conserved exactlyhbutdnservation of momentum is sacrificed.
More recently, this question has been re-addressed by Petvedl (1999) in the light of the second issue,
namely how best to maintain the divergence constraint withesorting to expensive divergence cleaning
procedures. The approach taken by Powell et al. (1999) wakhaede source terms in the equations
which allow the divergence errors to be propagated appatabyi by the flow. In the Powell et al. (1999)
approach, momentum, energy and magnetic flux conservatianlume sense) are sacrificed, although
it seems that this does not have too severe consequencetheigiwave’ Riemann solver Powell et al.
used for the simulation of shocks (however we do not find thise the case in SPMHD). The equation
set used by Powell et al. (1999) and its effect on the propayaf divergence errors is discussed below
(8§5.2.1). More recently, however, it has been pointed out kilt Banhunen (2000) (by considering the
presence of monopoles in Maxwell’'s equations) and Della@12 (from relativistic considerations) that
a consistent formulation of the MHD equations in the presesicmagnetic monopoles should retain
both the conservation of momentum and energygdr8.2 we were able to verify that the set of MHD
equations derived by Janhunen (2000) and Dellar (2001)ethderm a consistent set by deriving the
SPMHD equations from a variational principle which uses$f form of the induction equation as a
constraint in order to derive the momentum and energy empgtiSimilarly it can also be shown that
the formalism used by Brackbill and Barnes (1980), in whiwd ¢onservation of flux is retained but the
conservation of momentum and energy are not, is also censi@lthough undesirable due to both the
non-conservation and the effects on the propagation ofgkvee errors). Furthermore the derivation
given in§4.3.2 was for the discrete SPMHD equations, ensuring cemsig in both the continuum and
discrete forms. This consistent set of equations and theecprences for the propagation of divergence
errors has already been discussed (albeit briefly) in ChdptEurther discussion and comparison with
the Powell et al. (1999) approach is giverth 2.1 and examined numerically §6.3.2.

Many other approaches to the second issue are also possiblatenance of constraints similar to
the divergence-free condition for the magnetic field is intgat not only for MHD problems, but also
for incompressible flows (wherd - v = 0) and especially in algorithms for numerical relativitince
Einstein’s equations can be written in a form correspondiagely to the Maxwell equatioAs Many
possible methods have been proposed for dealing with tbidgum, each with their own advantages and
disadvantages. Perhaps the simplest is to explicitly evalvector potentiah, from which the magnetic
field is derived by taking the curl, guaranteeing that thejence is zero. The major disadvantage of this
approach is that the computation of the force terms invobszond derivatives of the evolved variable
(A), which in general can be significantly less accurate. Owaratdge of using the vector potential is
that the conservation of magnetic helicRy B can be monitored;@.2.2), which is particularly important
for dynamo and reconnection problems often encounteredlar $hysics (e.g. Brandenburg, 2001).

Brackbill and Barnes (1980) proposed a simple projectidreste to ‘clean up’ the magnetic field at

1For example, none of the results obtained on the shock tute ggven in§4.6.3 could be obtained tany degree of
satisfaction using a formalism based on a non-conservatm@entum equation (such as those givef4r8.5), although the
formalism proposed by Morris (1996§4.4.2) can be made to give reasonable results since firs¢lypésed on a conservative
form of the continuum equations and secondly at least caasenomentum exactly for isotropic forces

2|n the case of the Einstein equations, there are six evoligipiations and four constraint equations, similar to the tw
evolution equations and two constraint equations in thewddbequations.
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each timestep, an approach which is now commonly used in géabased MHD codes (e.g. Balsara,
1998). Similar schemes have been used in SPH for incomplegkiws (e.g. Cummins and Rudman,
1999). The disadvantage of this approach is that it invottessolution of a Poisson equation which
is computationally expensive. Another approach used idrlgaised MHD codes is the so-called ‘con-
strained transport’ method pioneered by Evans and Haw88)lin which differences of the magnetic
field across the grid cell are constructed in such a way as iotaia the divergence free condition ex-
actly. Such methods work very well, however cannot be us&PiH because of the absence of a spatial
grid (although perhaps some divergence-free interpalatimuld be devised). A comparison between
several of these schemes with the source term approach a@lRaval. (1999) and a projection method
for finite difference codes has been recently presenteddby (R000). Although not all of the schemes
are applicable in an SPH context, many of the numerical f@sisented in this chapter are taken from
this paper. More recently Dedner et al. (2002) have propasedthod for cleaning the magnetic field
which is significantly faster than the projection method bpliitly adding a constraint propagation
equation which is coupled to the evolution equation for tregnetic field. This equation propagates the
divergence error in a hyperbolic (ie. wave-like) manneryaam its source. Adding a small diffusion
term means that the error is rapidly reduced to zero.

In §5.2 we investigate several of these approaches to maimgaihe[] - B = 0 constraint which are
applicable in an SPH context, namely the source term appmiacussed in the previous chapi§s.2.1),
projection methods:6.2.2) and the Dedner et al. approagh.2.3). The algorithm is then benchmarked,
as in the one dimensional case, against a wide range of mmudtisional test problems used to test
recent grid-based MHD code$5(3). The tests involve the propagation of an initially re@re magnetic
divergence 45.3.2), nonlinear Alfvén wave$%.3.3), two dimensional shock tubg(3.5), interacting
shocks and the transition to turbuleng&.8.7) and two dimensional spherically symmetric blastegav
(85.3.6).

5.2 Divergence correction techniques

5.2.1 Source term approach

As discussed i1§4.2.1 the induction equation can be written in the ‘congirgaform

0B

5 —0Ox (vxB), (5.1)

= [O-(vB—Buv). (5.2)
which explicitly conserves the volume integral of the fluxi(4). In Lagrangian form this is given by

?j—? =-B(O-v)+(B-O)v+v(O-B) (5.3)
Taking the divergence of this equation, we have

~(0-B)=0, (5.4)
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showing that the constraift-B = 0 enters the MHD equations as an initial condition. Howellemdng
magnetic monopoles resulting frdm B # 0 to evolve appropriately within the flow can prevent theduil
up of unphysical numerical effects associated with thedéispnce and can therefore reduce the need for
computationally expensive divergence cleaning procexdurbus Powell (1994) (see Powell et al. 1999)
suggested that the conservative forms of the MHD equatibosld contain source terms to ensure that
these errors are propagated out by the flow. With this in mftmyell (1994) added source terms to the
momentum, energy and induction equations, which take thgréngian) form
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® T poan pox -9
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where as in the previous chapter the stress tensor is defined a
§i— _pail 4+ = (BiBj—}825”>. (5.8)
Ho 2

Taking the divergence of (5.7) shows that the divergenca®in this formalism evolve according to

17}
E(D-B)JFD-(VD-B):O, (5.9)
which has the same form as the continuity equation for theitle(where in this case we have a density
of magnetic monopoleg,] - B). This therefore implies that the total volume integrallofB across the
simulation is conserved and hence thatdtsdace integral of the flux (4.18) is conserved. As discussed
in §4.2.2 the conservation of this quantity is a far more impurgdysically than the conservation of the

volume integral (4.17).

The disadvantage of using (5.5)-(5.7) is that exact coasierv of momentum and energy is sacri-
ficed, which proves to be important for shock-type proble@srrespondingly it can lead to incorrect
jump conditions at shock fronts (Toth, 2000). More recgiithas been shown by Janhunen (2000) and
Dellar (2001) that the correct formulation of the MHD equas in the presence of monopoles should
not violate the conservation of momentum and energy, giving

av' 199!

de - 10(vi91)

T - oo (5.11)
dB' oV oV

- = I _gZ——

d ~ ox oxi’ (5.12)

Note that the induction equation (5.12) is the same as in Peweethod and therefore the manner in
which the divergence errors evolve (5.9) is exactly the sawile have shown i§4.3.2 that equations
(5.10) and (5.12) are indeed consistent with each other byindg the SPH form of (5.10) from a
variational principle which uses the SPH form of (5.12) agmastraint.
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5.2.2 Projection methods

A common approach to the divergence problem is to clean umtgmnetic field at regular intervals via
the projection method (e.g. Brackbill and Barnes, 1980). The basic idea is to deos® the magnetic
field into a curl and a gradient (which can be done unambidudasany vector field) according to

B*=0OxA+00g. (5.13)
Taking the divergence of this expression results in theddoigquation

D2 — 0B, (5.14)
which can then be solved for the scalar quangitylThe magnetic field is then corrected according to
B=B"—o. (5.15)

The major disadvantage with this approach is that the swoluif the Poisson equation (5.14) is compu-
tationally expensive, scaling a&(N?). In an astrophysical SPH context this may be offset somewhat
by the fact that the Poisson equation for the gravitatioredl fis usually solved using a tree code (e.g.
Hernquist and Katz 1989; Benz et al. 1990) which scaleg @$ogN). However there are some subtle
difficulties with this approach, which we outline below.

Projection schemes for incompressible flow in SPH have be@hemented by Cummins and Rud-
man (1999), the results of which are applicable to the ptessse. The important point, also discussed
by To6th (2000) is that for the projection step to reduce tlhverdence to zero (ie. to provide @wact
projection) requires that the discrete version of (5.14assfied exactly. This means that the operator
used to evaluate the divergence term on the right hand si@elaf) should be the same as the divergence
operator used in the evaluation of thé on the left hand side and that the gradient operator useain th
evaluation ofzJ2 should be the same as that used in 5.15. Cummins and Rudnm@®) @proach this
problem by calculating th&l? using SPH operators, solving the Poisson equation by miatrécsion.
Good results were also obtained using an approximate piaje@e. where the divergence operators on
the left and right hand side differ). In this scheme CummirgRudman (1999) used the SPH evaluation
of the Laplacian given i§3.2.4, similar to that used in the artificial dissipationmesr(4.80)-(4.85). The
Poisson equation is then solved by inverting the resultiagrimnequation.

The solution of (5.14) by direct summation (of which the toeele is an approximation), uses the
exact solution to the Poisson equation (5.14) given by

(p(r):/G(|r—r’|)D-B(r’)dV(r’), (5.16)
whereG(|r —r’|) is the Green’s function, given by
G(r) = iInr+consi;
2
1

G = —27 (5.17)
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in two and three dimensions respectively. The gradient edéu the correction step can be calculated
directly, giving (in three dimensions)

Dw(r)=—%/

In SPH we replace the volume elemertV with the mass per SPH particle and write the integral as a
summation according to

|Dr'_B:f|/3) (r —r)av(r'). (5.18)

_ (0-B)p (ra—rp)
Og, = %mb 27y ra—Tol® (5.19)

Since we still retain the freedom to choose the discreteatpetsed to evaluaté - B at each particle, it
becomes clear that the solution by direct summation wily gmbvide anapproximate projection, since
(5.14) is not discretely satisfied. This approximate sofutvill be degraded further when implemented
using a tree code. A further disadvantage of the projectiethod for many of the problems considered
in this paper is that it is somewhat complicated to impleneitite case of periodic boundary conditions.
Despite these subtleties the projection method based d@résen’s function solution is found to give a
substantial reduction in the divergence errors in a single §5.3.2).

The projection step is implemented in this thesis as folldwe a given magnetic field on the parti-
cles, the divergence is calculated using (5.31). The ctoreto the field is then calculated by a direct
summation using (5.19) (with the Green’s function appraterio the number of spatial dimensions) and
subtracted accordingly. Using the timestepping schemeritbesl in§3.6 the correction is made to the
magnetic fieldB° at the beginning of the timestep. This means that the diveryés calculated in a
separate loop to the usual force calculation.

An alternative projection scheme can be implemented byireplfor the vector potentiad. That is,
we take the curl of (5.13) to obtain

OxB*=0(0-A) — O%A. (5.20)

Choosing the Gauge conditian- A = 0, we obtain a Poisson equation for the vector potentialrimse
of the current density = [0 x B*/ g

[2A = — ipJ (5.21)
with solution
A(r) = /G(|r — IV, (5.22)

Taking the curl, we obtain an equation for the corrected retigriield in terms of the current density,
which in three dimensions is given by

- 3(r! o /
B:DxA:_Z‘—;’T/ %dV(r ) (5.23)
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which is simply Biot-Savart’s Law. In SPH form this is givey b

(D X B*)b X (ra— rb)
B.— _
a %mb ATIEp|ra —p|3

(5.24)

This method could be useful in an SPH context in situationsrevtseveral disconnected regions exist
containing strong magnetic currents (such as in two isdlatutron stars). By solving (5.23), the cor-
rected magnetic field is determined from the current densssulting in a knowledge of the magnetic
field at any point in space. This approach was in fact usedeabahis for the very first SPMHD algo-
rithm implemented by Gingold and Monaghan (1977). As a deece cleaning method, we find that
the results are very similar to those obtained using (5.48)pugh at a slightly higher computational
cost since the Poisson equation (5.21) is solved for a vectantity rather than a scalar, giving (up to)
three summations in (5.24) as opposed to just one in (5.19).

Finally it is worth commenting on the possibility of usingfiative methods for solving the Poisson
equation (5.14), although there is not the time or spacdadnlaito investigate these ideas further in this
thesis. The main point is that divergence errors usualbedri a simulation as short wavelength errors,
typically of opposite sign. Obtaining the full solution teetPoisson equation (using the Green’s function
or otherwise) is computationally expensive because betloting and short wavelength components must
be accounted for. This is perhaps best illustrated by theignid methods which explicitly tackle the
problem in this manner by using simple iterative schemeh siscthe Jacobi or Gauss-Seidel methods
(which are good at removing the short wavelength errors) progressively coarser heirarchy of grids
(thus acting on progressively longer wavelength errorkg Jolution by direct summation (5.19) is slow
because the (small) contribution from distant neighbouustrbe accounted for (which is accelerated in
the tree code by treating groups of distant particles adesimgtities). However, since for the purposes
of divergence cleaning we are interested in eliminatingnfyethe short wavelength errors, performing
simple iterations on the Poisson equation expressed usthdperators may give satisfactory results
with a much lower computational expense. Furthermore aroappate solution to a specified accuracy
(which may be achieved in just a few iterations) is all thaeglly required from the cleaning procedure,
rather than the full, exact solution. A similar point hasmegade by Toth (2000). An iterative solution
to the Poisson equation (5.14) can be obtained by solvinffusidin equation of the form
e

Y _%p—0-B 2
ot ® (5.25)

via a relaxation method (Press et al., 1992). Methods forrspldiffusion equations implicitly using
iterative procedures have been recently developed forruS&H by Whitehouse and Bate (2004) and
Monaghan (1997a) and it may be possible to apply these iddhs tivergence cleaning problem.

5.2.3 Hyperbolic divergence cleaning

Dedner et al. (2002) examine alternative divergence abggpiocedures. In their paper (see also Munz
et al., 2000), they derive a general constrained formuiatibthe MHD equations, from which for-
malisms can be derived to give divergence cleaning whichijsie (involving the solution of a Poisson
equation), parabolic (in which the divergence errors difasid away) and hyperbolic (where the diver-
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gence errors are propagated away from their source at acthastic speed). The projection method
described above is an elliptic approach, the main disadganio which is the substantial computational
cost involved in the solution of the Poisson equation. Thalpalic approach was found to be severely
limited in scope due to the timestep restrictions imposedheyCourant conditich The hyperbolic
approach was found to be particularly effective, espgciathen combined with a parabolic term such
that divergence errors are both transported and diffugdd.this approach that we outline below in an
SPH context.

The basic idea is to introduce an additional scalar figldvhich is coupled to the magnetic field by
a gradient term in the induction equation,

dB
5 = ~BO-V)+(B-Ov-0y. (5.26)
Note that our induction equation maintains the consisteatinent of divergence terms discussed above.
The variabley is then calculated by adding an additional constraint egoatvhich for the combined

hyperbolic/parabolic approach is given by

%—Lf =—c?(0-B)— % (5.27)
Neglecting the second term on the right hand side of (5.2@sgan equation fogy which is purely
hyperbolic. This implies that divergence errors are praped in a wave-like manner away from their
source with characteristic speeg(for more details we refer the reader to the Dedner et al.Zpp8per).
The second term on the right hand side is a parabolic termhrziases) to decay exponentially to zero
with e-folding time T (this is easily seen by neglecting the hyperbolic term ardirsp the resulting
ordinary differential equation fap(t)). Since it is desirable for the divergence errors to be pyafed at
the maximum possible rate (within the timestep constrantdsed by the Courant conditiorm), should
be set equal to the maximum signal propagation speed. Folisity we calculate this as

P 1B

1
Ch= +=-—, (5.28)
P 2Hop
where the maximum value over all of the particles is used. dduay timescalé is given by
1 OCh
—=— 5.29
Ta ha ) ( )

where g is a dimensionless parameter which determines the decagdaie. Settingr = 0 gives a
purely hyperbolic correction. A value @ = 0.2 would imply thaty will have decayed significantly
after the divergence errors have propagated approximétsiyoothing lengths. 185.3.2 we examine
in detail the effects of varying the value of We find that values off in the range @5— 0.2 generally
give the best results, giving a good balance between theltie (fast but non-diffusive) and parabolic
(diffusive but slow-acting) effects. In practise some whibn is also added by the artificial resistivity
terms §4.5).

3an equivalent approach in SPMHD is to use an artificial riegtigin order to diffuse away divergence errors. This has
been used, for example, by Morris (1996) and Hosking (2002)
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The gradient term in the induction equation is calculatedgua simple SPH estimaté3.2.3)
1
Oa = — % n\)((.Ub - ‘-I—’a) HaWap. (5-30)
Pa
Similarly the divergence of the magnetic field is calculaisihg

(0-B)a= % M (Ba — Bp) - HaWab. (5.31)

Superfast cleaning

This type of divergence cleaning is most effective when teadhics in the simulation occur at speeds
lower than the fastest wave speed. In this case the divezgdeaning is able to propagate and diffuse the
divergence errors faster than they are created in the flowtheasame reason this method is also more
effective for codes using a single timestep rather tharviddal particle timesteps, since the divergence
cleaning can take advantage of the ‘slack’ in the timestigrin (using individual particle timestejogs
would be different for each particle). For simulations wehdivergence errors are generated very quickly
(e.g. for problems involving strong shocks) the timescalerémoval of the error using the cleaning
described above can be too slow to prevent significant eimdige dynamics. One possibility for such
problems is to use ‘superfast’ cleaning, that is to incrahgewave speed;, beyond the maximum
imposed by the timestep condition. An operator splittinggedure could then be used to solve the
constraint propagation separately between timestepsexaonple, having determined the need for extra
cleaning by some error criterion, we would then solve thiofahg system of equations in a series of
smaller steps which are fractions of the full timestep:

dB
dl/—’ (k2 . _ﬂ
5 = —(@AOB) - (5-33)

In the abovec;, is some multiple oty (where the multiplication factor determines the numberudd-s
steps necessary — for example using twice the fastest waes spould require two substeps) aridis

the corresponding decay timescale. Note that during thetepb the particles are fixed, such that the
neighbour lists do not have to be reconstructed. All thatdgiired is to find the updated estimate$igf
and(- B at each substep. The usual induction equation would therdbeeel through the full timestep,
adding the result to the magnetic field which has been evdlwedigh the constraint substeps.

5.3 Numerical tests

The main issue to be addressed in 2D and 3D problems is theerordivergence of the magnetic field.
In the SPH context it also allows us to estimate the extenthizlwthe artificial dissipation spuriously
affects the numerical results. Again there is a substalitéaature of multi-dimensional MHD problems
which have been used to test grid-based MHD codes (e.g. DaiMoodward 1994; Ryu et al. 1995;
Balsara 1998; Dai and Woodward 1998; Toth 2000) and we denskveral of these problems here.
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5.3.1 Implementation

The implementation of the SPMHD equations used for the diniénsional tests is almost identical to
that used in the one dimensional cagé.§). The density is calculated by summation, the totalggner
equation is used (although results are indistinguishabieguthe thermal energy equation in nearly all
cases) and the magnetic field is evolved using (4.20) (ogy5ir26) when using the hyperbolic cleaning).
In the shock tube tests we use unsmoothed initial conditioftse artificial dissipative terms, except
where otherwise indicated are implemented using the juntptal magnetic energy4.5.1) but as in
the one dimensional case the viscosity term uses only tleeiyelcomponent along the line joining the
particles (4.80). Artificial viscosity and thermal conduity are applied using the switches discussed in
§3.5.2 whilst the artificial resistivity term is applied umifly usingag = 1. A major difference between
the simulations presented here and those in the previopserhia that the anticlumping approach was not
found to be uniformly successful in eliminating the tengilstability for all of the problems considered
(in particular for the Alfvén wave test only a narrow randgparameters would produce stable results).
Furthermore this term was found to result in spurious extnaerical noise, particularly in the shock
tube tests. For this reason we have eliminated the tenstalitity by simply subtracting the constant
component of the magnetic field from the gradient tefd4.4). However all of the test cases have
also been run using the stable Morris formulation of the netigrforce §4.4.2) and show very little
difference in the results.

Error estimates

Various estimates can be made of the error produced in thdaion by any non-zero magnetic diver-
gence. Monitoring these quantities over the course of alation thereby gives some measure of the
magnitude of the error produced by B. The most common approach in SPH implementations to date
has been to monitor the dimensionless quantity

h(J-B

?\ (5.34)
and ensure that it remains small (typically0.01) over most of the simulation, wheheis the SPH
smoothing length and the divergence is calculated usir@fl)5. This provides some measure of the
relative error in the magnetic field but no indication of howaeh influence this error has in the dynamics.
For this reason it is also useful to measure the relativer énrthe total force caused by a non-zero
divergence,

frrag - B
Etorce = 29— .
force |f||B| (5 35)

wherefygg is the magnetic component of the SPH force (4.33), whiistthe total force on the particle.
It is also useful to simply monitor the evolution in the maxim, minimum and average ¢fl - B| with
time as well as the conserved quantities givegdir2.2.
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Visualisation

In order to make a direct comparison of our results with trafsgrid-based MHD codes, we interpolate
the results from the particles to an array of pixels using2Rél kernel. That is, for a contour or rendered
plot of a scalar quantityp we interpolate to the pixels using

p(xy) = %%%W(X_Xbay_Ymhb) (5.36)
Po

whereW is the cubic spline kernel used in the calculatio§&Z.5) and the summation is over contribut-
ing particles. Note that in practise this is quite simplertpliement, as it involves only one loop over
the particles, during which the contributions from the eutrparticle to all pixels within a smoothing

radius () are calculated. For a vector quantity a similar interpotatan be performed for each com-
ponent, however since in this case the interpolation isllysteaa coarser grid, it is simpler just to bin

the particles into grid cells and take the average of theovexximponents in each cell.

5.3.2 [J-B advection

The first problem we examine is a simple test used by Dednér(@082) in which a non-zero magnetic
divergence is introduced into the simulation as an initiahdition. This is a particularly good test
for comparing various divergence cleaning procedures. iiiti@l conditions are a uniform density
distribution (o = 1) in the domain-0.5 < x < 1.5,—-0.5 < y < 1.5 with a constant initial velocity field

v =[1,1]. The initial gas pressure B= 6 with y=5/3 and the magnetic field has a constant component
perpendicular to the plar®, = 1/v/4m. The divergence is introduced as a peak intheomponent of
the field in the form

Bx = 4096r2)* — 128r?)%2 +1 r2=x24+y? (5.37)

the contours of which are shown in the left column of Figuré. 5The particles are arranged on a

cubic lattice for simplicity and periodic boundary condits are enforced using ghost particles. Since
the density is uniform throughout the simulation the resalte insensitive to whether (4.20) or (4.22)

is used and also to the anticlumping term since the simulationot unstable to negative stress. The
artificial dissipation terms are turned off for this problamorder to isolate the effects of the divergence

cleaning procedures.

The results of this test using four different divergenceciag techniques are shown in Figure 5.1.
The plots show contours of the-component of the magnetic field as it evolves in each casedi@ors
are plotted, evenly spaced between the minimum and maxinfuBy over all the simulations). The
results using the consistent formulationldfB terms discussed in the previous chapter aribi@.1 are
shown in the top row. In this case the divergence error isiyelgsadvected by the flow and both the
field and the divergence error remain unchanged (relatitbedlow) att = 1, demonstrating that the
formalism is indeed consistent in the presence of magneditopoles. In order to compare these results
with a conservative formulation of the MHD equations, weédhaerformed a simulation using an SPH
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consistent div B terms

1L t=0.5 ] ]

Figure 5.1: Results of thel- B advection problem. An initially non-zero divergence isugets a
peak in thex—component of the magnetic field (leftmost figures), with soe#y field v(x,y) = [1,1]
and periodic boundaries. The plots show contouB,imt various times throughout the simulation for
various divergence cleaning procedures. The consistathtent of 1- B terms (top row) is clearly seen
to advect the divergence without change, which is an imprere over a conservative formulation of
the MHD equations in which the divergence is smeared througthe simulation volume (second row).
With the use of hyperbolic cleaning in addition to the cotesis[] - B terms, the divergence error is
spread rapidly (middle row), whilst with a mixed hyperbdbiarabolic cleaning (fourth row) this error is
also diffused away, resulting in a divergence-free fieldfigomation (compare the bottom row with the
results using the projection method in Figure 5.3).

induction equation of the form

d Bia> B i Vh i i ] oW
[ Za) = =V —v)+ 2B —-B)| —= 5.38
ot <Pa gnb[pg( b~ Va) pg( b— Ba) oxd ( )
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Figure 5.2: Divergence of the magnetic field in thie B advection problem at the times shown in Figure
5.1 using the hyperbolic divergence cleaning discussé8.a3. The divergence error is rapidly spread
in a wavelike manner throughout the simulation volume @litih in the absence of diffusion the overall
error does not decrease in magnitude. Periodic boundadjtgmms are used, resulting in the interference
patterns seen at later times.

Figure 5.3: Divergence cleaning using the approximate projection ogktthescribed irg5.2.2. The
plot shows 30 contours @y in the [1- B advection problem after a single projection step-at0. The
results may be compared to those shown in Figure 5.1. Thegisal magnetic field adopts an essentially
divergence-free configuration in a single step.

which is an SPH form of the conservative (in a volume sensi#)dtion equation

209

The results using this formalism are shown in the second ffdwigure 5.1. The peak iBy is distorted
by the flow and the divergence error is smeared throughougithelation.

The third row in Figure 5.1 shows the results using the disecg correction discussedsi.2.3 using
only the hyperbolic term in (5.27)(ie. witth = 0) in conjunction with the usual monopole formulation
of the induction equation (4.22). The divergence error ieag@ rapidly in a wavelike manner by the
constraint equation (5.27)(this is graphically illusé@tin Figure 5.2 which shows the propagation of
the divergence error in this simulation). However, the nilagie does not decrease in this case. Using
the mixed hyperbolic/parabolic cleaning with a small antaefrdiffusion (using the parabolic term in
(5.27), in this case witlo = 0.1), this error is rapidly diffused away, resulting in a diyence-free field
configuration (Figure 5.1, bottom row). For comparison, rémults of a single projection steptat 0
are shown in Figure 5.3, showing the divergence-free cordtgun adopted by the field. The projection
step is calculated as describec$2.2.

The time evolution of various quantities throughout thessutations are shown in Figure 5.4. The
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left panels show the evolution of the maximum (top) and ayer@ottom) of|d- B|. In conservative
form (solid line) the maximum divergence varies slightlydanitially becomes larger than the initial
value. The bottom panel shows that the average value indbkis steadily increases over time, due to the
smearing effect of the divergence propagation (5.4). Tmsistent formulation of]- B terms (dashed
line) maintains a steady value of both the maximum and aeerag observed in Figure 5.1. With
hyperbolic cleaning (dot-dashed) the maximum divergema & quickly reduced (although increases
at later times as the divergence waves cross the periodi@aidaand interact) whilst the average climbs
as the divergence error is spread throughout the domaimgliise mixed hyperbolic/parabolic cleaning
as described above (dotted line), both the maximum and geedvergence is swiftly reduced. For
comparison, results using the projection method where jegion step is taken every 10 timesteps are
also plotted (dashed-dot-dashed). Note however that thedaoy conditions are assumed to be open
for this problem which means that the periodicity is not acted for. At early times this is a valid
assumption as the source term for the Poisson equatiori(i®) is non-zero in only a finite region
of the simulation volume. However as the divergence is spbyathe cleaning this assumption breaks
down and a fully periodic treatment should be used.

The magnitude of the volume integral of the flux (4.17) anchefdross helicity (4.16) are shown in
the right hand panels of Figure 5.4. Although (as discussed.2.2) the conservation of the volume
integral of the flux is not particularly important physigalihis plot demonstrates that this quantity is con-
served more accurately using a conservative formulatidghefnduction equation than when using the
monopole-consistent formulatich However, the opposite is true in the conservation of crusisity
(which measures the preservation of the flux-frozennesdition, c.f. §4.2.2). With any kind of di-
vergence cleaning, the flux integral is conserved to a mughehnidegree of accuracy and the same is
true for the cross-helicity except in the case of the pra@ectmethod. The projection method does not
conserve the cross-helicity invariant since the divergasieaning is done without any knowledge of the
velocity field. In the hyperbolic/parabolic cleaning thelirction equation is still explicitly evolved and
therefore the flux-frozenness condition is still maintaine

Finally the effect of varying the strength of the parabotidf(ision) term in (5.27) is examined. In
Figure 5.5 the time evolution of the maximum|&f- B| over the particles is shown, varying the diffusion
parametera. A small amount of diffusion is necessary to remove the dieace error, however as
o is increased the cleaning becomes less effective as theasltimg parabolic effects dominate. The
fastest reduction il - B is obtained usingr ~ 0.1— 0.2, giving a good balance between the slow-acting
diffusion and the spreading produced by the hyperbolic term

“Note that using the conservative induction equation in trenf(5.38) does not exactly conserve the volume integral of
the flux (4.17) since the gradient terms are not symmetriwéen the particle pairs. A formalism which does conserve thi
integral is simple to construct based on (5.39). For example

l
( ) %%(Bg 'b+—g )a;Nj‘b (5.40)
b

explicitly conserves the integral (4.17) since

d (Ba\
Zma (pa) 0, (5.41)

although the interpolation provided by the terms in (5.40)at a particularly good one (c§3.2.2).
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Figure 5.4: Time evolution of various quantities in thé B advection test. The left hand panels show the
maximum (top) and average (bottom) valueg®fB| over the particles. With a conservative formulation
of the induction equation the divergence error increasels tivhe (solid line) whereas the errors are
conserved using a formulation which is consistent in the@mee of magnetic monopoles (dashed line).
With hyperbolic cleaning (dot-dashed) the maximum is glyickduced although the average increases,
however with the parabolic term included the error is rapdiffused away (dotted line), giving results
comparable to the projection method (dashed-dot-dashid)tight hand panels show the conservation
of the volume integral of the flux (top) and the cross-heliditvariant (bottom), which in all cases is
improved by the divergence cleaning except in the case gfrthjection method which does not conserve
the cross-helicity.

5.3.3 Circularly polarized Alfv én wave

This test is described by Téth (2000) where it is used toaestriety of multidimensional MHD schemes
in grid based codes. The test involves a circularly polariaévén wave propagating in a two dimen-
sional domain. The advantage of using a circularly (as ogds linearly) polarized wave is that it
turns out to be an exact, non-linear solution to the MHD eguat which means that the solution after
one period should exactly match the initial conditions,haiit the effects of nonlinear steepening (as
observed, for example, in the magnetosonic wave testsideddn §4.6.4). This also means that the
wave can be setup with a much larger amplitude than would &e fas purely linear waves.

In T6th (2000), the wave is setup to propagate at an afigte80° with respect to the—axis. In SPH
the orientation of the wave vector with respect to the caratgs is not particularly important because
there is no spatial grid. However, we have retained theedtabnfiguration as firstly it ensures that there
are no spurious effects resulting from the initial arrangetrof the particles and secondly enables a fair
comparison with the results shown in Téth (2000). The plmsgi are setup on a hexagonal close packed
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Figure 5.5: Time evolution of the average valueldf B in the divergence advection problem, varying the
diffusion parameteo. A small amount of diffusion is necessary to remove the djgeace error, however
aso is increased the reduction in the divergence lessens atothi@sting diffusion dominates over the
rapid spreading produced by the hyperbolic term. The fastesiction is obtained using ~ 0.1 —0.2.
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Figure 5.6: Circularly polarized Alfvén wave test. The left figure shethe particle setup in the lowest
resolution run. On the right the vertical component of thgneic field is plotted as a rendered image
from the 32x 64 particle run at = 5, showing the propagation of the wave with respect to theallom
and the particle setup.
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Figure 5.7: Results of the circularly polarized Alfvén wave testtat 5 (corresponding to 5 wave
periods). The plots show the perpendicular component ofrthgnetic field vectoB; = Bycosf —
Bxsin® for all of the particles, projected against a vector patratighe direction of wave propagation
r| = xcosf +ysin@ (where8 = 30° in this case). The SPMHD results are shown at five different
resolutions which are, from bottom to topx8L6, 16x 32, 32x 64, 64x 128 and 128 256. Initial
conditions are indicated by the solid line. The numericauiles should match these initial conditions at
the time shown. The left panel shows the results in the alesehdissipative terms and demonstrates
that the SPMHD algorithm contains very little intrinsic nerital dissipation even at low resolutions,
although there is a small phase error present even in theeoged higher resolution runs. The right
hand panel shows the results using the dissipative termecasred in the shock tube problems. In
this case the wave amplitude is damped by the artificial treitysterm and exhibits somewhat slow
convergence.

lattice (ie. such that particles are equispaced) in a rgatandomain 0< x < 1/c0s0;0 <y < 1/sin6.
This positioning of the boundaries means that periodic Hannconditions can be used, although some
care is required to ensure the continuity of the lattice s&tbe boundaries. This is achieved by stretching
the lattice slightly in they—direction to ensure that the boundaries lie at exactly halfspacing of the
rows in the lattice. The particle setup at the lowest regmiuts shown in the left hand side of Figure 5.6.

The wave is setup with a unit wavelength along the directibpropagation (ie. in this case along
the line at an angle of 30with respect to the x-axis). The initial conditions @re=1,P =0.1, v =0,
By =1,v. =B, =0.1sin(2mm) andv; = B, = 0.1cos(2rmr ) with y = 5/3 (wherer | = xcos6 +ysin6).
Thex— andy— components of the magnetic field are therefore giverBpy- B cos6 — B, sin6 and
By = By sinf + B, cos6 (and similarly for the velocity). Converselg = Bysin6 + Bycosf andB, =
Bycosf — BysinB. Note that this setup means that B = 0 holds as a combination of th#By/dx
anddBy/dy terms, rather than both components being zero individud@e vertical component of the
magnetic field after 5 periods is plotted as a rendered imatgeiright hand side of Figure 5.6, showing
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the direction of wave propagation with respect to the doraaith the particle setup.

We have performed this test at five different resolutions: 15, 16x 32, 32x 64, 64x 128 and
128x 256 particles. In each case the number of particles in theagtibn is determined by the hexagonal
lattice arrangement. The results are shown in Figure 5¢er &ftvave periods (correspondingtte- 5).
The plots show the perpendicular component of the magnelat B plotted against for all of the
particles in the simulation, with the results from the bottt top panels shown in order of increasing
resolution. In each case the initial conditions are indiddiy the solid line which is identical to the exact
solution at the time shown. The left hand side of Figure 5oinsthe results in the absence of dissipative
terms (that is with the artificial viscosity, resistivity gthermal conductivity turned off). In this case the
amplitude agrees very well with the exact solution eveneatdivest resolutions. This demonstrates that
SPH has a very low intrinsic numerical dissipation (comparexample with the damping of the wave at
lower resolutions in the plots shown in Toth 2000). Howethere is a small phase error which remains
even in the highest resolution run. This is similar to theggharror observed in the one dimensional
sound wave tests presentedsB17.2 and in the one dimensional magnetosonic waves te§tsari. In
these cases the phase error was found to be essentiallyedrmpaccounting for the variable smoothing
length terms §3.3.4$4.3.6). The results shown in Figure 5.7 incorporate theatéei smoothing length
terms, however in this case the phase error is not completetpved (although is still an improvement
over the results using simple averages of the smoothingHer kernel gradients). The right hand
side of Figure 5.7 shows the results of this test using th&itive terms as required in the shock tube
problems. In this case the wave is severely damped and genee of the amplitude towards the exact
solution is quite slow. The damping is largely caused by thifotm application of artificial resistivity
(ie. usingag = 1 everywhere) resulting in a somewhat large dissipatiom @véhe absence of shocks.
Substantially improved results could be obtained usingebistivity switch discussed k#.5.2, however
for the shock tube problems it was found that use of such aBwibuld result in too little dissipation
at rotational discontinuities in the absence of a sheagigcterm. The divergence error remains very
small [(O- B)max ~ 10~3] in all of the simulations shown.

5.3.4 2.5D shock tube

The next two tests are simply two dimensional versions obtieedimensional shock tube tests described
in §4.6.3 and demonstrate the effects of divergence erroristibck capturing scheme. In two dimen-
sions we setup the particles on a cubic lattice indhdirection in the domaim = [—0.5— Vy )tmax, 0.5~
Vy(r)tmax), Where y ) and y g are the initial velocities assigned to the left and rightestaThis means
that at the timeyay the particles are contained in the domaia [—0.5,0.5]. The domain has a width of 4
particle spacings in the—direction for computational efficiency. Boundary conditscare implemented
by fixing the particle properties in two buffer regions at &uges of th&—domain, in which particles are
evolved with a fixed velocity but copy their propertigs P, B) from the nearest ‘active’ particle. Periodic
boundary conditions are used in thedirection, implemented using ghost particles. The exasition
of the y—boundary is chosen to ensure periodicity of the latticergement, ie. at half the spacing of
the initial rows of particles in the y-direction. The initishock is setup as a discontinuity in the fluid
guantities ak = 0 to which no smoothing is applied.

The first shock test is the adiabatic shock tube problemwnglseven different discontinuities given
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Figure 5.8: Results of the 2.5D shock tube test using an initial smogthingth ofh = 1.2(m/p)%? and
the dissipative terms as implemented for the one dimenkétioak tube problems. In two dimensions at
this value of smoothing length small oscillations in thentnaerse velocity components appear primarily
as a result of the non-zero magnetic divergence.

in §4.6.3 (Figure 4.15). Strictly this is aéz dimensional problem since the transverse velocity and
magnetic field also have components in thalirection. Conditions to the left of the discontinuity (the
left state) are given byp, P, vy, Vy,Vz, By, B;) = [1.08,0.95,1.2,0.01,0.5,3.6/(4m)Y/?,2/(4m)*/?] whilst

to the right (the right state) the conditions #peP, vy, vy, vy, By, B;) = [1,1,0,0,0,4/(4m)Y/2,2/(4m)Y/?]

with By = 2/(4m)%/2 everywhere ang = 5/3. The problem has been studied by in one dimension by
many authors (e.g. Ryu and Jones, 1995; Balsara, 1998) ambidimensions by To6th (2000) and
Dedner et al. (2002).

The problem is computed using 3% particleS which corresponds to particle being uniformly
spaced on a cubic lattice with separation 0.004, althoughltseare similar using a hexagonal close
packed lattice arrangement. Note that this resolutionsis flean half of that used in the one dimensional
case §4.6.3) but is comparable to, if slightly lower than, the tatons used in Toth (2000). The small
density difference between the left and right states in piiblem is setup by changing the particle
masses. The solution using an initial smoothing length ef 1.2(m/p)%/? is shown in Figure 5.8 at
tmax = 0.2 and may be compared with the exact solution taken from Rygulanes (1995) (solid line)

5Note that this is the number of particles in the domah5 < x < 0.5 attyax = 0.2 and that the resolution in this domain
is correspondingly lower at earlier times due to the inflowrodary condition.
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Figure 5.9: The parallel component of the magnetic field in the 2.5D shiode problem using the
dissipative terms as implemented for the 1D problems (lefihg the total magnetic energy (centre) and
using the total magnetic and kinetic energies (right). gshe total magnetic energy in the dissipative
terms means that jumps in the parallel field components aoetrad in addition to the jumps in trans-
verse field. Using the total kinetic energy smooths jump$i@ttansverse (as well as parallel) velocity
components, however this explicitly adds an undesiratdaistomponent to the artificial viscosity term.
Details of these formalisms are givengi#.5.
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Figure 5.10: Results of the 2.5D shock tube test using an initial smogthéngth ofh = 1.2(m/p)%/?
and using the total magnetic and kinetic energies in thdpdisge terms as described §#.5. The
oscillations in the transverse velocity components olestiv Figure 5.8 are damped in this case by the
presence of an additional shear term in the artificial viggos
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Figure 5.11: Results of the 2.5D shock tube test using a slightly largéialnsmoothing length of
h= 1.5(m/p)l/2 and the total magnetic energy in the artificial resistivétgnt but using the usual artificial
viscosity term. The results are a substantial improvemarthose presented in Figure 5.8 for a very
modest increase in the number of neighbours.

and with the one dimensional results shown in Figure 4.15héntwo dimensional case the transverse
velocity components exhibit small oscillations near thetaot discontinuity. It should be noted first of
all that these oscillations are quite small and do not apfeeaffect the dynamics significantly (mainly
because the jumps in the transverse velocity componentnarader of magnitude less than the jump in
Vyx). However, the oscillations appear to result from a comntimneaof three factors: the unsmoothed initial
conditions, the fact that we do not explicitly apply any siidg to the transverse velocity components
and the effects of the small jumps in thke component of the magnetic field.

To remove these oscillations two approaches can be takenfirhapproach is to modify the artificial
viscosity terms slightly in order to smooth the transversiecity profiles. The dissipative terms used in
order to capture shocks were discussed at leng§B.B §4.5 and in the one dimensional shock tube tests
described ir§4.6.3. In the one dimensional case the dissipation term8IKD (comprising an artificial
viscosity, artificial thermal conductivity and artificiasistivity) were derived assuming that jumps would
only occur in components of the magnetic field transverseedibe joining the particles that jumps in
velocity would only occur parallel to this line. Neither bietse assumptions strictly hold in the shock tube
problem shown in Figure 5.8 since the transverse velocitgpmments clearly jump and there is also a
small jump in the parallel field component due to the diveogegrrors. A reformulation of the dissipative
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terms relaxing both of these assumptions was presentéd.5nl, deriving the artificial viscosity and
artificial resistivity terms from jumps in the total kinetamd magnetic energies respectively in the total
energy equation. The effects of using these formulationthemprofile of the parallel component of the
magnetic field are shown in Figure 5.9. From the centre paredeg that using the total magnetic energy
formulation for the artificial resistivity has clear advagés in preventing oscillations in the parallel
component of the field at shock fronts. Using the total kinetiergy version of the artificial viscosity
(in order to smooth out jumps in the transverse velocitygaffely adds an explicit shear component
to the viscosity term. Ir$4.5.1 it was noted that discontinuities in the transverdecity components
can only occur at corresponding jumps in the magnetic fiettitharefore that such discontinuities are
already smoothed somewhat by the application of artifiealstivity there. For this reason the total
kinetic energy formalism wasot used in one dimension. The results using this formalismHertivo
dimensional problem are shown in Figure 5.10 in which we Batthe oscillations are quite effectively
damped. In this case the shear viscosity term has been @ppli& minimal way by using the usual
artificial viscosity switch §3.5.2) which responds to—)O - v (although since the jumps in transverse
velocity are small even the minimum level af= 0.1 away from the shocks is sufficient to damp the
oscillations seen). Adding an explicit shear viscosityhiswever, highly undesirable since it increases
the spurious transport of angular momentum caused by tifieiattviscosity term.

The second approach is to simply increase the number oftn@igh slightly for each particle to give a
more accurate interpolation. The results using an initibathing length oh = 1.5(m/p)/? are shown
in Figure 5.11 using the total magnetic energy formulatibthe artificial resistivity but retaining the
usual artificial viscosity formulation. In this case the juin the parallel field component is much lower
and the oscillations in the transverse velocity componéatsot appear, although there is a small glitch
at the contact discontinuity similar to that observed indhe dimensional cas§4.6.3). Increasing the
smoothing length froth = 1.2(m/p)*/? to h = 1.5(m/p)*/? corresponds to an increase in the number of
neighbours from= 20 to~ 28 on a uniform cubic lattice in two dimensions. This quiterah increase
in computational expense for a substantial gain in accui@oy stability). It therefore seems much more
desirable to increase the smoothing length slightly fortidinhensional problems rather than to explicit
add a shear viscosity term.

Finally, although this problem is not unstable to the clumgghstability we have also investigated the
effects of various instability correction methods on thedhprofile. In particular use of the anticlump-
ing term §4.4.1) was found to produce additional noise in the shockilproUsing either the Morris
formalism for the anisotropic forcg4.4.2) or subtracting the constant component of the magfietd
(84.4.4) both give results very similar to those shown in Fégus.8-5.11.

5.3.5 Two dimensional shock tube

The second shock tube test is used by both Toth (2000) anddded al. (2002) in two dimensions to
compare the results of various divergence cleaning schettkesugh the one dimensional version of this
test has been used by many authors (e.g Dai and Woodward, R994nd Jones, 1995). The results of
the one dimensional test using the SPMHD algorithm weregptesl in§4.6.3 (Figures 4.18 and 4.19).
Although this is a purely two dimensional test we presenttérahe 2.5D shock tube since it presents a
much more challenging problem with regards to the non-zesergence of the magnetic field due to the
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stronger shocks.

The particle setup is as described in the previous sectiaepe that the initial left state is given by
(p,P,vx, vy, By) = [1,20,10,0,5/(4m)2] and the right state i§, P, vy, vy, By) = [1,1,—10,0,5/(4m)/?]
with By = 5.0/(4m)%? andy = 5/3. The boundaries are correspondingly adjusted inxthgirection to
allow the particles to fill the domair-0.5 < x < 0.5 attn.x = 0.08. Particles are arranged initially on
a cubic lattice with particle spacing 0.004, giving 660 jzd&t in thex—direction and a total particle
number of 660< 4 = 2640. As in the previous test, the results using an initiabatiming length of
h=1.2(m/p)*/? exhibit significant oscillations in the transverse velp¢it,). In this case the oscillations
are substantially worse because the jump in the paralléel ¢i@nponent is much larger. Hence we have
performed this test using= 1.5(m/p)Y/2. However, even in this case the oscillations remain presseht
so we have also added the shear viscosity term, using (4i82hw= 1 everywhere (that is, not using the
viscosity switch). The results using these settings arevshn Figure 5.12 and may be compared with
the exact solution taken from Dai and Woodward (1994) (doie) and with the one dimensional results
shown in Figure 4.18. Even in this case some oscillationsvisible in the y profile, corresponding
exactly with a spike iri- B. In theh = 1.2(m/p)%? case this spike is much largef]- B)max ~ 40],
causing significantly more disruption to the velocity pmfilThus despite the various tweaks we have
attempted for this test, the oscillations appear to be pgilyneaused by the divergence errors generated
at the shocks.

The effects of increasing the number of neighbours and éhgrtlge strength of the dissipation terms
may be summarised as follows: Increasing the number of beigis reduces the jumps in the parallel
field component (for example with= 1.2(m/p)/? the jump is given byAB, = [Bx(max) — Bx(min)] /Bxo ~
18% whilst forh = 1.5(m/p)%? we haveAB, ~ 3% and forh = 1.6(m/p)*/? this reduces further still to
ABy ~ 1%). On the other hand, adding dissipation at the jumps ialleafield means that although such
jumps may be present, the discontinuities (causing stroveygence errors) are smoothed. The effect
of adding the shear viscosity term is to increase the disipat these discontinuities, thus reducing to
some extent the associated spike in the magnetic divergence

In Toth (2000) the results of this test were presented usiagource term approach of Powell et al.
(1999) (discussed i1§5.2.1), showing similar jumps in the parallel magnetic fie@mponent which
were unchanged even in the converged numerical resultstath#hat the jumps in parallel field reduce
with an increasing number of neighbours indicates that tBMI3D algorithm converges to the exact
solution in the limit ofh — co andN — oo whereN is the number of particles. Toth (2000) attributes the
errors in the parallel field components in the Powell metlwthé non-conservative source terms in the
induction equation. We have also performed this simulatising the ‘conservative’ induction equation
(5.38), however we find that the jumpsky are not changed significantly by including thig - B term
(although contain substantially more numerical noise). aftigbute this difference to the fact that we
use a non-conservatfdormulation only in the induction equation, unlike in theviRdl method where
non-conservative forms are also used in the momentum anmgdyeegquations.

The shock tube tests presented above have been computeitwising any form of divergence
cleaning (other than the consistent formulation of the MHiuations in the presence of magnetic
monopoles discussed k5.2.1). Thus a way of eliminating both the jumps in paralleldiand the

6where ‘non-conservative’ means that the volume integraheffux (4.17) is not conserved exactly.
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Figure 5.12: Results of the two dimensional shock tube tegt-at0.08 usingh = 1.5(m/p)Y/2 and the
shear viscosity term. The results may be compared with tleedimensional results shown in Figure
4.18 and the exact solution given by the solid line. In thisrsger shock tube problem the jumps in the
parallel field can cause significant oscillations in the skeamse velocity components due to the non-zero
divergence terms. Increasing the number of neighbourd@ctsiuce the jumps in thg, component of
the magnetic field, whilst increasing the dissipation sgsehese discontinuities such that the resulting
divergence errors are lower.

resulting oscillations in the transverse velocity compusés to clean up the divergence error. Using the
hyperbolic/parabolic cleaning discussed;i2.3 is not particularly effective for this problem, sirtbe
divergence errors are propagated away from their sourte dastest wave speed which is similar to the
rate at which they are created by the shocks. Thus the diffusitroduced by the parabolic term does
not have time to eliminate the divergence error before lagicihs in the velocity components are pro-
duced. This is illustrated in Figure 5.13 which shows theltesising this type of cleaning withi = 0.1

on the parabolic term (c.f§5.3.2). The divergence errors are reduced by a factes dfcompared to
the results shown in Figure 5.12. In order to eliminate thverjence errors from problems such as this
one where divergence errors are created rapidly it wouldeliebto use the projection methdib(2.2).
The projection method is somewhat complicated to impleriretitis case, however, because of the pe-
riodic boundary conditions (although this would not be thsecusing an iterative scheme as discussed
in §5.2.2). An alternative would be to use the ‘superfast’ hpppic cleaning discussed §b.2.3.
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Figure 5.13: Results of the two dimensional shock tube test at0.08 computed as in Figure 5.12
but using the hyperbolic/parabolic divergence cleanfitg.3). The exact solution is given by the solid
line. The hyperbolic divergence cleaning does not havege leffect on this problem since the divergence
errors are propagated at the fastest wave speed which isusimthe rate at which they are generated in
the shocks.

5.3.6 Spherical blast waves

Balsara (1998) gives a test involving an adiabatic blasiewmepagating in a magnetic medium. Initially
the pressure is set to 1000 in a spherical region of radit®.05 around the origin in a uniform density
box with P = 1 elsewhere. The density is initially unity and in the sintiola shown we use/ = 1.4.

A constant, uniform field of strength 10G (in code uriis= 10/+/4) is setup in the x-direction. We
setup this problem using 100100 particles initially arranged on a cubic lattice in therdin —0.5 <

X < 0.5,—0.5 <y < 0.5. The results at = 0.02 are shown in Figure 5.14 and may be compared with
the numerical solution given in Balsara (1998). The SPMHults compare very well with the Balsara
(1998) solution. In particular the contours of density arespure show very little scatter, although there
are some small effects visible due to the regularity of thitgalrparticle setup.

5.3.7 Orszag-Tang vortex

The final two dimensional test is the compressible OrszamgTartex problem which was first investi-
gated by Orszag and Tang (1979) in order to study incompnessiHD turbulence. The problem was
later extended to the compressible case by Dahlburg and®{d®89) and Picone and Dahlburg (1991).
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Figure 5.14: Spherical adiabatic MHD blast wave in two dimensions. P&htew: a) logarithm to
base 10 of the density; b) logarithm to base 10 of the presshutegarithm to base 10 of the magnetic
pressure; d) specific kinetic energy. All plots show 30 cargespaced evenly between the minimum
and maximum values of the quantity shown. The results coengeiremely well with those shown in
Balsara (1998)

More recently it has been widely used as a test problem fotidimakensional MHD algorithms (e.g. Ryu
et al., 1995; Balsara, 1998; Dai and Woodward, 1998; Loladaihd Del Zanna, 2000; To6th, 2000).

The setup consists of an initially uniform density, per@dix 1 box given an initial velocity per-
turbationv = vo[—sin(2ny),sin(2nx)] where y = 1. The magnetic field is given a doubly periodic
geometryB = By[— sin(2ny), sin(4mx)] whereBg = 1/+/41. The flow has an initial average Mach num-
ber of unity, a ratio of magnetic to thermal pressure of3l@nd we use/ = 5/3. The initial gas state
is thereforeP = 5/3B3 = 5/(12m) andp = yP/vo = 25/(36m). Note that the choice of length and time
scales differs slightly between various implementationthe literature. The setup used above follows
that of Ryu et al. (1995) and Londrillo and Del Zanna (2000).

The particles are arranged initially on a uniform hexaganese packed lattice. This distribution
means that the particles are isotropically arranged arkislistribution towards which other arrange-
ments naturally settle. However, results are similar usirabic lattice arrangement. The simulation
is performed using 128 146 particles (where the number of particles in yhalirection is determined
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Figure 5.15: Results of the two dimensional Orszag-Tang vortex testwsiwpthe density (left) and
magnetic field (right) distribution at = 0.5. The simulation uses 128146 particles initially ar-
ranged on an isotropic hexagonal lattice with periodic lazum conditions. The initial velocity field

is a large vortew = [—sin(2mny),sin(2rx)] whilst the magnetic field has a doubly periodic geometry
B = Bp[—sin(2mny),sin(4rnx)]. The SPMHD results are in good qualitative agreement witisérpre-
sented in (e.g.) Dai and Woodward (1998) and To6th (2008paljh there are some small effects visible
in the SPMHD solution due to the distortion of the initial véay lattice arrangement.

by the isotropic lattice arrangement) and the periodic bdawy conditions are implemented using ghost
particles. Note that this is near the lowest resolution uesedai and Woodward (1998) (although in
SPH the resolution is concentrated preferentially towaedsns of high density). The dissipation terms
are applied using the artificial viscosity switch and apmdyihe artificial resistivity uniformly. However
the artificial thermal conductivity has been turned off tuistproblem to increase the density resolution.
The wall heating effect which the artificial thermal condvuity prevents are discussed §8.7.3 and are
very minor. No shear viscosity term has been used. Simukitdd this problem which have been run
with or without the variable smoothing length terms, using Morris formalism for the magnetic force
(84.4.2), evolving eitheB or B/p and either the thermal or total energy show essentially fierdnce

in the numerical results.

The results of the density and magnetic field evolution amvshin Figure 5.15 at = 0.5. At this
time four shocks are visible which have interacted in tharegénegions after having crossed the periodic
domain. The SPMHD results are in good qualitative agreemthtthose presented in (e.g.) Dai and
Woodward (1994, 1998) and Toth (2000). In particular thetize regions appear to be better resolved
than in the 128« 128 fixed-grid simulation of Dai and Woodward (1998), althbuhe lower density
regions are correspondingly less well resolved. The SPMélitisn shows some small residual effects
due to the distortion of the initial regular particle arrantent, noticeable as small ripples behind the
shock fronts in Figure 5.15 and a slightly mottled appeasandhe low density regions. In Figure 5.15
we have used a smoothing lengthioé 1.5(m/p)%? which was found, as in the previous test, to give
a substantial improvement in the numerical results overlsmaalues. In particular the effects from
the distortion of the initial lattice are much larger using- 1.2(m/p)¥2. With the artificial thermal
conductivity term included, the narrow ridges in the dgnsisible near the top and bottom of Figure
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Figure 5.16: Evolution of the average magnetic divergence over the glastin the two dimensional
Orszag-Tang vortex problem. Using the hyperbolic divecgerieaning (dashed line) produces only a
slight improvement over the results with no divergenceraleg (solid line). The single biggest factor
determining the magnitude of the divergence error is thebmrmof neighbours. The results shown are
for a smoothing length di = 1.5(m/p)Y/2.

5.15 are largely smoothed out.

The evolution of the average of the magnetic divergenceawslin Figure 5.16 for two runs with and
without divergence cleaning. The results using the hygerparabolic cleaning witto = 0.1 (dashed
line) show only a slight improvement(30% reduction in the average divergence) over the results wi
no divergence cleaning (solid line). In fact the single lesjgfactor which determines the magnitude
of the divergence error is the number of neighbouring plagic For example in a simulation using
h = 1.2(m/p)%? the divergence errors are approximately twice those shovigure 5.16.

5.4 Summary

In this chapter multidimensional aspects of the SPMHD atlgor have been discussed. In particular
several methods for maintaining the divergence-free caimstin an SPH context have been presented.
Firstly the source term approach of Powell et al. (1999) wdbkred and contrasted with the consistent
formulation of the MHD (and SPMHD) equations derivedsi.3.2. The major difference between
the two approaches is that our approach retains the cotisernva momentum and energy whereas
the Powell et al. approach does not. The conservation piepesf the induction equation were also
discussed, in which it was highlighted that using a ‘nonsssmative’ induction equation means that
the surface integral of the magnetic flux is conserved, ratien the volume integral. The effect of
using the consistent formulation of the MHD equations inghesence of magnetic monopoles (which
conserves the surface integral of the flux) is that divergesrcors are advected without change by the
flow (illustrated in Figure 5.1).
Projection methods for maintaining a divergence free fiadendiscussed in an SPH contex§h2.2.

In particular it was noted that using the Green'’s functiolitson to the Poisson equation (as is often used
for self-gravity in SPH) provides only an approximate potijgn. The results using this type of projection
on a problem where an initial magnetic divergence was inited into the simulation were nonetheless
very good §5.3.2). The disadvantages are the substantial compudhtiost introduced by the solution
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of a Poisson equation and for many of the test problems piexen this chapter, the complication
introduced by periodic boundary conditions. The potera@lantages of using an iterative solution to
the Poisson equation were also discussed briefly.

An alternative approach to divergence cleaning suggesieshtly by Dedner et al. (2002) was dis-
cussed i5.2.3. The method involves adding an additional constregpiation which is coupled to the
induction equation for the magnetic field. Chosen approglsiathe effect of this equation is to cause the
divergence errors to be propagated in a wave-like manney &am their source (Figure 5.2). Adding
a small diffusive term means that the divergence errorslacerapidly reduced to zero. This method is
extremely simple to implement and is computationally vergxpensive. The disadvantage is that the
error propagation is limited by the timestep condition aalithough much faster than using diffusion
alone to reduce the divergence, for some problems (for ebeathe shock tube tests given§b.3.4 and
65.3.5) the cleaning is still not fast enough. However, thethod is a substantial improvement over not
using any form of divergence cleaning at a negligible adddl computational cost.

The various approaches to divergence cleaning were conheij®.3.2 using a simple test problem in
which a non-zero divergence was introduced into the sinwulats an initial condition. It was found that
using the Dedner et al. (2002) cleaning on this problem cpudduce results similar to those obtained
by taking a projection step every 10 timesteps. It was alsechthat the projection method does not
conserve the cross-helicity invariant whereas the hypierparabolic cleaning does.

The SPMHD algorithm was also tested against a variety ofidimiensional test problems. A non-
linear circularly polarized Alfvén wave was studieds§if3.3. This test showed that SPMHD has a very
low intrinsic numerical dissipation compared to grid basedes, although this property is destroyed
by the addition of explicitly dissipative terms for shockpturing which can cause quite slow conver-
gence on problems where the physical dissipation timesealtcritical importance. Two of the shock
tube problems used in the one-dimensional case were exdnmneo dimensions ir$5.3.4 and 5.3.5.
For these problems jumps in the component of the magnetit fii@iallel to the shock front (causing
divergence errors) were found to result in oscillationshia transverse velocity profiles. The jumps in
the parallel field component were found to decrease as thd&wuai neighbours for each particle was
increased, unlike in the Powell et al. method in which thegamemain unchanged even in the numer-
ically converged results (T6th, 2000). The correspondiigrgence errors produced by these jumps
could be reduced by using a form of the dissipative termséérin§4.5.1 using the total jump in mag-
netic and kinetic energies. Modifying the artificial visitggerm in this manner results in the addition
of an explicit shear viscosity component. It is thereforenewhat undesirable to do so since this can
result in excess spurious angular momentum transport b&ew A better approach would be to use
divergence cleaning to prevent these errors from occurrihgvever, the hyperbolic cleaning was not
found to be particularly effective for this problem becaw$ehe restriction to the fastest wave speed
and implementation of the projection method is complicdtgthe periodic boundary conditions. These
difficulties are not, however, insurmountable. The singgest factor in determining the magnitude of
the divergence errors in the shock tube tests was found thésize of the smoothing region (ie. the
number of contributing neighbours). It therefore seemsaathgeous to use a slightly larger number of
neighbours for MHD problems (typically> 1.5(m/p)Y/V wherev is the number of spatial dimensions)
than might otherwise be used for hydrodynamics.

An initially spherical MHD blast wave test was given{hb.3.6, with good results. Finally the algo-
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rithm was tested on the Orszag-Tang vortex problgsri3;7) which has been widely used as a benchmark
for MHD codes. The SPMHD result were in good qualitative agrent with those presented elsewhere.
This test again highlighted the need for a slightly largember of neighbours, in this case to remove
spurious effects related to the initial lattice arrangen@m to reduce the magnitude of the divergence
errors. The hyperbolic/parabolic divergence cleaningfeasd to produce only a smak(30%) reduc-
tion in the divergence errors, again highlighting the nemdsbme form of sub-timestep cleaning (for
example using the projection method).

Unfortunately there was neither the time nor the space fthgsis to benchmark the SPMHD algo-
rithm against the many wonderful exact solutions which camlérived for multidimensional magnetic
toy stars.



