“If I had only known, | would have been a locksmith.”

ALBERT EINSTEIN

A comparison of the jet acceleration mechanisms in
young stellar objects and active galactic nuclel

2.1 Introduction

Astrophysical jets were first discovered when Curtis (19it8erved a ‘curious straight ray’ emanating
from the nucleus of the M87 nebula. Such jets are now commalmdgrved in a wide variety of astro-
physical environments, including Active Galactic NuclagN), Young Stellar Objects (YSOs), stellar
and compact binary systems and their presence is everadfirthe violent supernovae which manifest
as Gamma-Ray Bursts. Despite an ever-growing mountain sergation$, many of the fundamental
questions regarding the basic processes which governabeieration and high degree of collimation
over substantial length scales remain a mystery.

Since the relativistic AGN jets were discovered first, preably powered by accretion onto the cen-
tral black hole (Rees, 1984), it was natural that early n®fti®ljet formation were inherently relativistic
(Ferrari, 1998). For example, the oft-cited mechanism ahBford and Znajek (1977) involves tapping
the rotational energy of a spinning black hole. The meretenee of jets in classes of object where
black holes are not present clearly indicates that suchepsas cannot provide a universal explanation
of jet origins. Similarly, mechanisms invoking a star rotgtat near break-up speed (Shu et al., 1988)
or accretion disc boundary layers (Pringle, 1989) mustladgsexcluded (although in the latter case there
may be some analogy in black hole accretion discs), unlesaguee that different processes operate in
each separate class of object, despite the ubiquity of @ymtion. Since it was clear from the lack
of substantial thermal emission that the jet acceleratimegss was not purely hydrodynamic in nature
(see e.g. Blandford and Rees, 1974; Konigl, 1982), neakigtaproduction mechansisms invoke some
kind of magnetic field, whether large- (Blandford and Payi$82; Pudritz and Norman, 1986) or small-

for example a search of the NASA ADS for papers with ‘jet’ ir tiitle produces 390 hits for 2003 alone.
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(Heinz and Begelman, 2000) scale. Of these the most popudbibyafar the most successful mechanism
for explaining both the acceleration and collimation o§jet the magneto-centrifugal model of Bland-
ford and Payne (1982) which has been demonstrated in a nushbemerical simulations (Ouyed and
Pudritz 1997, 1999; Ouyed et al. 1997; Kudoh et al. 1998; &aidal. 2000).

In this model a large scale vertical field threading the d@eumelisc causes material to be centrifugally
accelerated along the magnetic field lines, analogous td$%en wires’. Blandford and Payne (1982)
demonstrated that such acceleration could take place #igée of inclination between the field lines
and the disk was> 30°. Although it might be claimed that some form of consensuslees reached
on magnetocentrifugal acceleration forming the the hefath® jet production process, these models
suffer from several problems. The first of these is the origfiihe large-scale field which must be
invoked for the model to work, in particular whether suchd#etan be either advected inwards from
the environment from which the disc formed (see Lubow etl@94) or produced spontaneously from a
dynamo operating in the disc itself (Tout and Pringle, 19986). The second problem is that large-scale
magnetic fields dominated by toroidal components are foarftetunstable (Spruit et al., 1997; Lucek
and Bell, 1996; Begelman, 1998) (where the instabilitiess similar to those observed in a wound-up
rubber band, which begins to bend and kink as it becomes a@aetrby toroidal stresses). For this
reason the role of collimation is now generally assigned dominant poloidal component of the field
(e.g. Lucek and Bell 1997).

A further problem, and the issue we focus on in the presenkwsithat the Blandford and Payne
(1982) model is scale-free (ie. self-similar). The probbeith this is the fairly general observation that
jet velocities appear to be very close to the escape velfwty the central gravitating object (Livio,
1999), suggesting that jets are somehow aware of the strexighe gravitational potential close to
the central object itself. This would seem to indicate that jet originates from the inner part of the
accretion disc (ie. close to the central object) and is stpgdiy observations such as those of HH30
showing a jet clearly emanating from the centre of the amratisc (Burrows et al., 1996) and variability
in the u—quasar system GRS1915+105, where dips in the X-ray flux aserebd immediately prior
to the observation of a blob of plasma being ejected into ¢heiiterpreted as the inner edge of the
accretion disc dropping away prior to the ejection eventrélidel et al., 1998; Mirabel and Rodriguez,
1999). Similar observations have been made over longerstiates in the active galaxy 3C120 by
Marscher et al. (2002). Intrinsic jet velocities in bothatelistic and non-relativistic jets are somewhat
difficult to measure because in order to be visible the jeentmust be interacting with the surrounding
medium in some way (and therefore decelerating). In the Y&@ get velocities are typically inferred
from measurements of the proper motions of features tiagedilong the jet (such as the Herbig-Haro
objects which are interpreted as shocks within the jet duméterial travelling at different speeds) or by
mapping the velocity structure around such features (Résipand Bally, 2001). Typical jet velocities
thus measured lie in the rangg;w 300— 500 km/s (Eisloffel and Mundt 1998; Micono et al. 1998; Ball
et al. 2001; Hartigan et al. 2001; Reipurth et al. 2002; Batlpl. 2002; Pyo et al. 2002) which may be
compared to the escape velocity from a typical young stas¢ma\., radius 5 R); Tout et al. 1999) of
Vesc~ 270 km/s. In the AGN case, jet velocities are observed to bg slese to the speed of light, in
keeping with the escape velocity from the central black hélghough estimates vary, observationally
typical Lorentz factors for AGN jets lie in the rangg; ~ 5— 10 (Urry and Padovani 1995; Biretta et al.
1999), although arguments for higher valugg; ¢~ 10— 20) have been made on theoretical grounds
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(Ghisellini and Celotti, 2001).

In recent years it has been suggested that small scalegtantgnetic fields could perhaps both
accelerate (Heinz and Begelman, 2000) and collimate (lO22@=ts, without invoking any large-scale
field. These ideas are attractive theoretically as theyrateéping with the turbulent magnetic fields
known to drive accretion in discs via the magneto-rotatidnatability (Balbus and Hawley, 1991).
Collimation via small scale fields does not suffer from thelgdem of instabilities and since acceleration
via small scale fields is an inherently local process, théesgssociated with the acceleration regions
would be naturally reflected in the velocity of the resultogflow.

In this chapter we take an extremely simplified approach ¢opttoblem of jet acceleration, paying
particular attention to the observation that jet velositiee of order the escape velocity from the central
object. We pose the guestion of whether or not a simple grakists between jets accelerated in
non-relativistic environments and those acceleratedlativestic environments by considering a highly
simplified model of the jet acceleration process. Since veecancerned only with acceleration, not
collimation, we examine the driving of a spherically symritebutflow by injecting energy into an
initially hydrostatic gas reservoir at a fixed radius closdhe central object. The gas is treated in a
simple manner as having a purely thermal pressBreand internal energy), and a ratio of specific
heatsy which we take to bey = 4/3. The exact value of is not particularly critical to the arguments
developed in this chapter, provided tlyat 5/3 so that the outflow becomes supersonic. Takirgd/3,
however, is in fact appropriate to the case of an opticaligktihadiation-pressure dominated flow, and
to the case in which the dominant pressure within the gasusethby a tangled magnetic field (Heinz
and Begelman, 2000). It should therefore, despite the siiptreatment, allow us to draw some quite
general conclusions.

If the same acceleration process is at work in both relaiivad non-relativistic jets, then the same
(appropriately scaled) energy input rate should accounthf® observed jet velocities in both classes
of object. Specifically, the energy input rate required teegiise to a final jet velocity s ~ 2Vesc
in the non-relativistic case should also be able to produt#ows with Lorentz factors ofjet ~ 7 in
the relativistic case. We therefore undertake the follgaéomputations: 11$2.2 we examine the non-
relativistic case, appropriate to YSO jets. Energy is iigdcat a steady rate over a small volume into
an initially hydrostatic gas reservoir, following the tinegolution of the gas as it expands. Since we
cannot follow the time evolution for an infinite time, once tijas has reached a large enough radius the
time-dependent solution is matched to a steady state wiludig®o in order to determine the terminal
velocity of the outflow. In§2.3 exactly the same computations are performed usingwvistat fluid
dynamics, appropriate to AGN (and-quasar) jets. The final jet velocity is then plotted as a fionct
of the (dimensionless) energy input rate (heating rate)pth the relativistic and non-relativistic cases.
Results and conclusions are presentegRid.

2.2 Non-reativistic (YSO) jets

2.2.1 Fluid equations

For YSO jets we expect the gravitational field to be well appnated by a non-relativistic (Newtonian)
description. In one (radial) dimension the equations dieiscy such a fluid including the effects of
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energy input are expressed by the conservation of mass,
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wherep, V', P andu are the fluid density, radial velocity, pressure and intleemergy per unit mass
respectivelyM is the mass of the gravitating object (in this case the cksiiag), and
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is the heat energy input per unit mass per unit time (wfiel@nds are the temperature and specific
entropy respectively). The equation set is closed by thatamuof state for a perfect gas in the form

P=(y—1)pu. (2.5)

Scaling

To solve (2.1)-(2.5) numerically we scale the variableseimis of a typical length, mass and timescale.
These we choose to be the inner radius of the gas reséhjeir R,, the mass of the gravitating body
[M] = M, and the dynamical timescale at the the inner radius R,), [1] = (GM, /R®)~Y2. In these
unitsGM = 1 and the density, pressure, velocity and internal eneegpeactively, have units of density,
[p] = M../R®, pressure|P] = M../(R,1?), circular velocity atR., [v] = \/GM. /R, and gravitational
potential energy aR., [u) = GM,/R.. Note that the net heating rate per unit mAsis therefore given

in units of gravitational potential energ@M. /R, per dynamical timescale &, (GM*/Rf)‘l/Z. We
point out that this scaling is simply to ensure that the nucaésolution is of order unity and that when
comparing the results to the relativistic simulations walesdhe solution in terms of dimensionless
variables.

2.2.2 Numerical solution

We solve (2.1)-(2.5) in a physically intuitive way using aggered grid where the fluid velocity is defined
on the half grid points whereas the density, pressure,riatemergy and heating rate are specified on
the integer points. This allows for physically appropridundary conditions and allows us to treat
the different terms in a physical way by applying upwind @liffncing to the advective terms but using
centred differencing on the gradient terms. The schememsrarised in Figure 2.1 with the discretized
form of the equations given in appendix A. The staggeredmedns that only three boundary conditions
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Figure 2.1: Schematic diagram of numerical method: density and intexnergy are defined on the
integer points while velocity is calculated on the half gsinThe solution requires one inner boundary
condition on v and two outer boundary conditions foand pu. Updated velocities (V1) are used
to calculatep"! and pu™!. The scheme allows centred differencing on terms invohdtaggered
quantities (top panel) while upwind differencing is usediom advective terms (bottom panel).

are required, as shown in Figure 2.1. We set 0 at the inner boundary and the density and internal
energy equal to their initial values (effectively zero) st buter boundary.

2.2.3 Initial conditions
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Figure 2.2: The initial conditions for the non-relativistic case, Wetgbrofiles of density, pressure and
internal energy per unit mass (or temperature) as functbredius. The quantities here are dimension-
less and the units are as describegar.1.

The form of the initial conditions is not particularly cratito the problem, as the wind eventually
reaches a quasi-steady state that is independent of tla g@tup. What the initial conditions do affect
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is the time taken to reach this steady state (by determinawg rhuch mass must initially be heated in
the wind). We proceed by setting up a body of gas (loosely tavoaphere’) above the ‘star’ (or rather,
an unspecified source of gravity) initially in hydrostatgudibrium, such that v= 0 everywhere and

dP GMp

PR (2.6)
The pressure is related to the density by a polytropic eguati state

P=KpY, (2.7)

whereK is some constant. Combining these two conditions we obtaggaation for the density gradient
as a function of radius

do(r) __p()""?GM

Integrating this equation fromto some upper bouni., we obtain
y—1/GM GM\1¥0 Y
N=|—»/_———= . 2.9
o= |2 (-] @29)

To ensure that pressure and density are finite everywherafoerical stability) we sdR, = . The
density is then given as a simple function of radius whererains to specify the polytropic constant
K. In scaled units we choog¢ = (y—1)/y such thato(R,) =1 (i.e. the central density equals the
mean density of the gravitating body — note that we neglectétf-gravity of the gas itself. Choosikg
effectively determines the amount of mass present in theshere and thus the strength of the shock
front which propagates into the ambient medium (in termsoe¥ much mass is swept up by this front).

We set the initial pressure distribution using (2.7). If we tthis, however, the slight numerical
imbalance of pressure and gravity results in a small spsriegponse in the initial conditions if we
evolve the equations with zero heating. In the non-relivicase the spurious velocity is kept to an
acceptably small level by the use of a logarithmic radiad gtfius increasing the resolution in the inner
regions). In the relativistic case however this slight dapa from numerical hydrostatic equilibrium is
more significant. This response is therefore eliminateddbyirsg for the pressure gradient numerically
using the same differencing that is contained in the evausicheme. That is we solve from the outer
boundary conditioP(rmax) = Kp(rmax)¥ according to
Pi-1/2

=
H_1/2

Roi=R—(ri—ri-1) (2.10)
Solving for the pressure in this manner reduces any spurggmonse in the initial conditions to below
round-off error. The internal energy is then given from J2.5he pressure calculated using (2.10) is
essentially indistinguishable from that found using (PP ~ 10~°). The initial conditions calculated
using equation (2.9), (2.10) and (2.5) are shown in Figu2ze\&/e use a logarithmic grid with 1001 radial
grid points, setting the outer boundaryr@R, = 10°. Using a higher spatial resolution does not affect
the simulation results.
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Figure 2.3: Results of a typical non-relativistic simulation at tirne- 1000 (where units of time are
the dynamical time at the innermost radihgéFé/GM). Quantities shown are the Mach numberdy),
velocity, heating rateX), internal energy per unit mass £ Uperm), log(density) and log(pressure).

Heating profile

The choice of the shape of the heating profilg) is fairly arbitrary since we wish simply to make a
comparison between the non-relativistic and relativistgults. We choose to heat the wind in a spherical
shell of a fixed width using a linearly increasing and therrelasing heating rate, symmetric about some
heating radiusea Which we place at = 2.1R,. The heating profile is spread over a radial zone of
width 2R, (that is the heating zone extends frare= 1.1R, to 3.1R,)(see Figure 2.3). We choose a
heating profile of this form such that it is narrow enough toalssociated with a particular radius of
heating (necessary since we are looking for scaling lawdlstMieing wide enough to avoid the need
for high spatial resolution or complicated algorithms @e&sary if the heat input zone is too narrow).
The important parameter is thus tloeation of the heating with respect to the Schwarzschild radius, so
long as the heating profiles are the same in both the relitigad non-relativistic cases. Provided that
the heating profile is narrow enough to be associated withrtecpkar radius and wide enough to avoid
numerical problems, the results do not depend on the adtapksof the profile used.

2.2.4 Results

The results of a typical non-relativistic simulation witihnr@derate heating rate are shown in Figure 2.3 at
t = 1000 (where has units of the dynamical time at the inner radius). We olestbre effect of the heating
propagating outwards in the atmosphere in the form of a sfrock. After several hundred dynamical



12 Chapter 2. Jet acceleration in YSOs and AGN

@
T
I

ES
T
I

Bernoulli Energy
N
T
I

1
1 10 100 1000

radius

Figure 2.4: Bernoulli energyE = 1v? + pu+ P — GM/r (top) and mass outflow ratél = 4rr2pv
(bottom) in the time-dependent wind solutiort at 1000. The profiles are approximately constant over
the region between the two circles. The sample point usedatahrthis flow to the appropriate steady
state solution is indicated by a cross.

times the wind structure approaches a steady state in #a ihonly a small change of the overall wind
structure due to the shock continuing to propagate outwiatdsthe surrounding medium. The small
disturbance propagating well ahead of the main shock israitrat resulting from the response of the
atmosphere to the instantaneous switch-on of the heatihg.v&locity of the gas begins to asymptote
to a constant value as the shock propagates outwards.ngltiiee mass outflow rateél = 4mr2pv and
the Bernoulli energye = %vz + pu+P—GM/r as a function of radius (Figure 2.4), we see that indeed
the wind structure is eventually close to that of a steadydveinove the heating zone (i& andE ~
constant). It is thus computationally inefficient and ingtigal to compute the time-dependent solution
for long enough to determine an accurate velocityr as o when the wind will continue to have a
steady structure. Instead we find the steady wind solutioa gven amount of energy input to the wind
corresponding to the energy plotted in Figure 2.4 (top panel

225 Steady wind solution

Non-relativistic, steady staté (dt = 0) winds with energy input have been well studied by manya@nsth
and the equations describing them can be found in Lamers assir@lli (1999), who credit the original
work to Holzer and Axford (1970). The reader is thus refetoeldamers and Cassinelli (1999) for details
of the derivation. As in the usual Bondi/Parker (Bondi 19Barker 1958) wind solution with no heat
input, we seb /dt = 0in (2.1)-(2.5) and combine these equations into one emuédr the Mach number
M? = v2/c2 as a function of radius, given by

dm? M2(2+ (y—1)M?) dQ GM (5-3y) 4e(r)

dr —  2(M2—1)[e(r) +GM/r] (1+MYy) G5+ 2 G-1 T | (2.11)
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Figure 2.5: Steady wind Mach number (top panel) and velocity (centreepaorofiles are compared to
the time-dependent solution (plotted every 100 dynamiocas). There is a small discrepancy between
the two solutions where we have taken the limit in approaghie singular point aM = 1, but an
otherwise excellent agreement between the two solutions.

wheredQ/dr is the local heating gradient ae() is the Bernoulli energy which is specified by integrat-
ing the Bernoulli equation

de(r) d[1, GM] dQ
ar —a[iv +P“+P‘T}—W (212)
to give
er) = e(re)—Q(r)
= €fe)— " dQ (2.13)

poodr’

whereQ(r) is the total energy input to the wind. Since we are interestetle terminal velocity of the
outflow we choose a point above the heating shell where theemas reached its steady state value
(i.e. where the energy is constant in Figure 2.4, top panel) aegjiiate outwards using the energy and
Mach number at this point to solve (2.11) as an initial valuebfem. Note that in fact the terminal
velocity is determined by the (constant) value of the Belihenergy above the heating zone since as
r—oo, er) — %vz. However we compute the steady wind profiles both inwardsocamgards to show
the consistency between the time-dependent solution anstélady state version.

In order to perform the inward integration, we must detemariite energy at every point for our steady
solution by subtracting the heat input from the steady stat¥gy as we integrate inwards through the
heating shell (2.3). To determine this however we must also determine tre [gteady state) heating
gradientdQ/dr, which is related to the (time dependent) heating fatey settingd /ot = 0 in the time
dependent version, ie.

_dQ_oQ dQ _ dQ
N= at — ot +Vdr_vdr' (2.14)
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We therefore calculatéQ/dr from the time dependent solution using

dQ r

O %r))’ (2.15)
where \(r) is the wind velocity at each point in the heating shell frora time-dependent solution. The
problem with this is that at the inner edge of the heatingl shelheating rate is finite while the velocity
is very close to zero, resulting in a slight overestimatehef total energy input near the inner edge of
the shell in the steady wind solution. Care must also be takémtegrating through the singular point
in equation (2.11) aM? = 1. Most authors (e.g. Lamers and Cassinelli 1999) solve ttedg wind
equations starting from this point but for our purposes hegter to start the integration outside of the
heating shell where the energy is well determined. We iateghrough the critical point by using a first
order Taylor expansion and appropriate limit(s), althotlghk introduces a small discrepancy between
the steady state and time-dependent results in this regigarg 2.5).

Having determined the energy and heating gradient at ednhipdhe wind we integrate (2.11) both
inwards and outwards from the chosen point above the hestial) using a fourth order Runge-Kutta
integrator (scaling (2.11) to the units describegr2.1). The velocity profile is then given by ¥ M?2c2
where

c2(r) = 2+I\3I(2¥r_)(1y)— 0 |:e(r)+¥:| . (2.16)

The resulting steady wind solution is shown in Figure 2.5glwith the time-dependent solution. The
two profiles are in excellent agreement, proving the validit our time-dependent numerical solution
and the assumption that the wind is in a steady state. Thdyssgdution thus provides an accurate
estimate of the velocity at arbitrarily large radii (altlygbuas pointed out previously this is set by the
value of the steady state Bernoulli energy).

2.2.6 Terminal wind velocities asa function of heating rate

Using the steady wind extrapolation of the time-dependsehition, we can determine the relationship
between the heating rate and the terminal wind velocitiesrder to make a useful comparison between
the heating rates used in both the Newtonian and the rativiegimes, we need to define a local
canonical heating ratA.(r) valid in both sets of regimes. In dimensional terms the hgatate/(r)
corresponds to an input energy per unit mass per unit times We need to define the local canonical
heating rate as

Aelr) = 5 (2.17)

for some relevant energyE and some relevant timescak.

Although there are many different ways in which we might defncanonical heating rate, we find
that the results are not sensitive to the particular choiademIdeally we wish to choose a heating rate
which reflects the physical processes inherent in the jatlation process. Although these processes
remain obscure, the fundamental source of the energy hiaifar jet acceleration is the rotational
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energy present in the accretion disc. For this reason wetlekeanonical energy per unit masag, to
be the energy released locally by bringing to rest a parti€lgnit mass which is orbiting in a circular
orbit at radiug. In the Newtonian regime this is simply the kinetic energyaircular orbit

1, GM
AE = qu, =5 (2.18)
(An alternative possibility, for example, would be to takE to be the energy released by dropping a
particle from infinity and bringing it to rest at radius which would correspond to the escape energy
from that radiusGM /r.) By similar reasoning, we take the canonical timescale bithvthe energy is

released to be the orbital timescale at radiubat isAt = Q51, where
Qo = (GM/r3)Y/2, (2.19)
Using this, the local canonical heating rate is given by

(GM)3/2

Ac(r) — AE X QO — W

(2.20)
This definition of a local canonical heating rate thus ermhbléirect comparison between the results of
the Newtonian and relativistic calculations. In practioe must take an appropriate average heating rate
(N\) in each case since heat is added over a range of radii. Wegavacaoss the volume of the heating
shell, using

A = JE2N(r)r2dr

= 2.21
Nc(Mmax) rrf r2dr’ (221)

wherermax is the radius at which the heating rai¢r) takes its maximum value arg andr; are the
lower and upper bounds of the heating shell respectively.

The relation between this average dimensionless heatieg(Aa and the terminal wind velocity
is shown in Figure 2.6. The wind velocities are plotted intaimif the escape velocityey at R, and
solutions are computed for wind velocities of up~tBvese The important point in the present analysis
is that the heating rate can be meaningfully compared toefladivistic results (see below).

2.3 Relativisticjets

Having determined the heating rates required to produceliberved velocities in YSO jets we wish to
perform exactly the same calculation within a relativi§teamework. We proceed in precisely the same
manner as in the non-relativistic case. We adopt the usumdettion that Greek indices run over the
four dimensions 0,1,2,3 while Latin indices run over theéhspatial dimensions 1,2,3. Repeated indices
imply a summation and a semicolon refers to the covariantvatere. The densityp refers to the rest
mass density only, that {8 = nmy wheren is the number density of baryons ang is the mass per
baryon.



16 Chapter 2. Jet acceleration in YSOs and AGN

0 T T S T T T S S SO S N |

0 10 20 30 40 50 60

Average dimensionless heating rate < A >

Figure 2.6: Terminal wind velocities plotted as a function of the averalimensionless heating rate
(N). Wind velocities are plotted in units of the escape veloaityhe inner radius (ier = R, = 1),
Vesc= (2GM/R.)%2. We compute solutions corresponding to velocities typyaabserved in YSO jets
(with a fairly generous upper limit of &vesc~ 3).

2.3.1 Fluid equations
The equations describing a relativistic fluid are derivedrfithe conservation of baryon number,
(PUH).y =0, (2.22)

the conservation of energy-momentum projected along atebreperpendicular to the four velocity
(which gives the equation of motion),

hua T, = (Qua +UpUa) T, =0, (2.23)
and projected in the direction of the four-velocity (whidkes the energy equation),

Ug T, =0. (2.24)
Here the quantityl #V is the energy momentum tensor, which for a perfect fluid isgiby

c2THY = phUHUY + PgHY, (2.25)

whereh is the specific enthalpy,

VP

P
h=c?+u+—=c+—"———.
p (y=21p

(2.26)

As in the non-relativistic case is the internal energy per unit massjs the gas pressure and we have
used the equation of state given by equation (2.5). The gregfgation may also be derived from the
first law of thermodynamics using equation (2.22), whichnsae convenient way of deriving an energy
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equation in terms of the internal energy (rather than thal rnergy) and in this case ensures that the
meaning of the heating term is clear. The metric tensor isrghw the Schwarzschild (exterior) solution
to Einstein’s equations, that is

ds? = —c?dr? = (1— @> c2dt> + (1— @) dr? +r2(d6? +sirf0de?). (2.27)
We consider radial flow such thet? = U? = 0. The four velocity is normalised such that
U Uk = —c?, (2.28)

and we define

e () )
which we denote as
Ut — % (2.30)
where we set for convenience
[ )
and

(1— 2%:") . (2.32)

Note that whilea corresponds to the lapse function in the-2 formulation of general relativity, the
quantityrl” is not the Lorentz factor of the gas (which we denot&\gsas it is usually defined in numerical
relativity (e.g. Banyuls et al. 1997) but is related to itWy=I"/a. From (2.29) we also have the relation

out  UT U’
ot  a2lc? ot

(2.33)

From (2.22), (2.23) and (2.24) using (2.25), (2.27), (2.28) (2.33) we thus derive the continuity
equation,

dp ,dp a*p[1l9 ur au’
— — 4+ — ———| = 2.34
0t+v rJr r rzar(ru)+azrc2 ot ' (2.34)
the equation of motion,

r r 2 r 2
ou n OU" Ta?c?gP U'9gP  a?GM _o, (2.35)

ot "V ar T poh ar Tphat T 2
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and the internal energy equation,

d(pu) ,d(pu) a? o it u" ou"] a?
ot TV oar T PHPY g Ut Gara o | = RN (2.36)
where
u" dr
r = - =
Vv = 0t = dt (2.37)
is the velocity in the co-ordinate basis. We define the hgatite per unit mass as
ds
AN=T— 2.38
dT? ( )

whereT is the temperaturesis the specific entropy ardir refers to the local proper time interval (s
therefore a local rate of energy input, caused by local g8ysA comparison of (2.34), (2.35) and (2.36)
with their non-relativistic counterparts (2.1), (2.2) g2d3) shows that they reduce to the non-relativistic
expressions in the limit as— oo, and to special relativity ag — 0.

The ‘source terms’ containing time derivativesf and P are then eliminated between the three
equations using the equation of state (2.5) to relate presswd internal energy. Substituting for pressure
in (2.36) and substituting this into (2.35) we obtain theatgpn of motion in terms of known variables,

our v yP\ ouU’ ca* 0P a’GM Vv yP2U" V'
at +Y<1—E> ar ~ phrXar X2 TXphr XY TUA (2.39)

where for convenience we define

L, (P\UY
X=1- (E) o (2.40)

and we have expanded tlﬁg%(rzur) terms in order to combine the spatial derivativedJéfinto one
term. We then substitute (2.39) into (2.34) and (2.36) taiobéquations for the density

dp 00 o[V IP UL (y-1)
ot VT T “hrxor rZex n PR (2.41)
and internal energy,
dpu) (. yPa®\du o’ uru” P
o +Vvi(1 ohizX ) ar ~ T (P+pu)A 1+|'2c2x oh pA| . (2.42)

where for convenience we have defined

B Uy’ yP\ 1 oU’ U'ur /yP\T20"  U" GM
A= [l_—r2c2x (1_ﬁ>] o " [“m <E>} T PeX (243)

From the solution specifying" we calculate the velocity measured by an observer at relstraspect
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to the time slice (referred to &ulerian observers), which is given by

UI’ Vr
— == 2.44
IRE (2.44)

since there are no off-diagonal terms (ie. zero shift vgdtothe Schwarzschild solution. For these
observers the Lorentz factor is given by

Vv —-1/2
W (1_?> , (2.45)

where Vv =g, V V, such thal" =WV.

2.3.2 Scaling

The usual practice in numerical relativity is to scale ircatled geometric units such that=M =c= 1.

In these units the length scale would be the geometric ra@igc? and the velocity would have units
of ¢. Instead for the current problem, we adopt a scaling analdgo that of the non-relativistic case,
that is we choose the length scale to be the radius of theataftject,R,, whereR, is given as some

multiple of the geometric radius, ie.

GM,

with n > 2.0. The mass scale is again the central object rfl&s- M,. and the timescale is given by

~1/2
1] = (GFI%?) = n3/2623/|* (2.47)

In these units, velocity is measured in unitg\f= n—1/%c (or equivalentlyc® = n). The scaled equations
are thus given simply by settif§ = M = 1 andc? = n everywhere.

This scaling ensures that the relativistic terms tend to wérenc (or n) is large and that the numerical
values ofp, puandU" are of order unity. We thus specify the degree to which theitygas dynamics
is relativistic by specifying the value of(i.e. the proximity of the innermost radius, and thus the heating,
to the Schwarzschild radiuBsch = 2GM /c?). We compute solutions corresponding to gas very close to
a black hole (highly relativisticn = 2.0, or R, = Rsgp), neutron star (moderately relativistic,= 5, or
R. = Rys = 5GM/c?, which is equivalent to heating further out and over a wiggion around a black
hole) and white dwarf/non-relativistic star (essentiallyn-relativistic,n = 5000, orR, = 250Rsch).
Note that in the highly relativistic case although we sclaéedolution tah = 2.0 such that the mass, length
and time scales (and therefore the units of heating rateggméc.) correspond to thoserat Rscp, our
numerical grid cannot begin &, as it does in the other cases. We therefore set the lower bmuiite
radial grid to slightly below the heating shell (typically= 1.01R, where the heating begins atlR,).
Note that the above scaling is merely to ensure that the ricahesolution is of order unity, since we
scale in terms of dimensionless variables to compare wimtm-relativistic solution.
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Figure 2.7: The initial conditions for the gas reservoir for the relaiic cases of a neutron star (dashed
line) (R./Rsch= 2.5) and black hole (solid linelR. /Rsch = 1.0). Note, however, that the innermost
radiusis at = 1.01R, in the latter case. We plot profiles of internal energy petmnaiss (or temperature),
density and pressure, as functions of radius. These giesndite given in units oM /R., M/R® and

M. /(R.t?) respectively. Note that steeper gradients are requireoltithe gas in hydrostatic equilibrium
as the gravitational field becomes more relativistic. Tleekhole reservoir is of lower density than the
neutron star version because of the choice of the polytigristant (chosen such that the central density
is of order unity).

2.3.3 Numerical Solution

In order to solve the relativistic fluid equations numelicale use a method analogous to that used in
the non-relativistic case (Figure 2.1). That is, we first pateU" on the staggered (half) grid and use
this to solve forp and pu on the integer grid points. Again the advective terms arereized using
upwind differences (where the ‘upwindedness’ is deterhifiem the sign of the co-ordinate velocity
v") and other derivatives are calculated using centred diffegs. As in the non-relativistic case, where
a centred difference is used, the quantities multiplyiregydbrivative are interpolated onto the half grid
points if necessary. In equation (2.41) we evaluatedffgdr term using upwind differences.

2.3.4 Initial Conditions

We determine initial conditions for the relativistic cagedettingU" = 0 andd/dt = 0 in (2.39), from
which we have

dr — ¢ r2

dP  phGM ( zelv|>1
- 1-= .
cer

(2.48)

The pressure is thus calculated as a functiop,af andP (whereP = (y — 1)pu). We solve (2.48) using
the same assumptions as in the non-relativistic ci&€.Q8), that is an adiabatic atmosphere such that

P=Kp". (2.49)

We therefore have

dp_ 1 1oy, YKp |GM

dr ~  yKa?2 Aly—1)] r2’ (2.50)
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which we solve using a first order (Euler) discretization bain a density profile. The pressure may
then be calculated using (2.49), however to ensure thabkiatic equilibrium is enforced numerically
we solve (2.48) using the same discretization as in the flgjigions, integrating inwards from the outer
boundary conditiorP(rmax) = Kp(rmax)¥. However in this case the pressure gradient also depends on
the pressure, so we use the pressure calculated from (2.48)dulate the initial value of the specific
enthalpyh and iterate the solution until convergelP{™* — P"|/P" < 1071°). In the black hole case
the resulting pressure differs from that found using (2@@NP/P ~ 10-2. We chooseK such that
the central density is of order unity — typically we use= 10y/(y — 1) in the black hole case. Note
that changingK simply changes the amount of matter present in the atmosghwgrdoes not affect the
temperature scaling and does not affect the final resulisof@h it significantly affects the integration
time since it determines the strength of the shock front hacaitnount of mass to be accelerated).

Initial conditions calculated in this manner for the blacdkten(R. /Rsch= n/2 = 1.0) and neutron star
(R./Rsch= 2.5) atmospheres are shown in Figure 2.7. The initial setupoesito that of Figure 2.2 in
the non-relativistic limit when the same value Kfis used. We set the outer boundaryr AR, = 104,
using 1335 radial grid points (again on a logarithmic grid).

2.35 Reaults

The results of a typical (n=2.0) relativistic simulatioreahown in Figure 2.8 dat= 1000. Again we
observe that the wind structure reaches a quasi-stea@y si#it the velocity approaching a steady value
at large radii. Note that because the steady state denditghier than that of the surrounding medium
no wide shock front is observed.

Plotting the mass outflow ratd = 4rr2pU" and the relativistic Bernoulli energse = 32h?/c? —
%02 (see e.g. Shapiro and Teukolsky 1983) as a function of rgéfiigeire 2.9), we see that indeed the
structure approaches that of a steady (relativistic) wihdt(is, the energy anill profiles are flat above
the heating zone). We may thus apply a relativistic steaaylwolution with this Bernoulli energy as an
initial value to determine the final velocity and Lorentzttacasr — . Note that we cannot apply a non-
relativistic steady wind solution because although theitras non-relativistic, the outflow velocities
are not. As in the non-relativistic case the final wind vdlps determined by the steady Bernoulli
energy, since in this case Bs> o, Ere — 3[(U")? — 2.

2.3.6 Steady wind solution

Relativistic, steady stat@(dt = 0) winds were first studied by Michel (1972) and extended ttuithe
energy deposition by Flammang (1982). The problem has tigaeteived attention in the context of
neutrino-driven winds in gamma-ray burst models by Pruat.¢2001) and Thompson et al. (2001). We
proceed in a manner analogous to that of the non-relativéstiution. Setting/dt = 0 the continuity
(2.22) and momentum (2.23) equations become
r

%‘;—%&0; 12 =0 (2.51)
rdU ' + E @ + %
or ph or = r2

=0 (2.52)
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Figure 2.8: Results of a typical black hole relativistic simulation aL®00 (where units of time are
the dynamical time at the central object). Quantities shaventhe Mach number (&), velocity for
Eulerian observers ()y heating rate &), internal energy per unit mass £ Ugerm), log(density) and
log(pressure). Units of velocity are such tkat /2 and as in the non-relativistic case energy has units
of GM/R..

where (2.51) is equivalent to
r’pU" = const (2.53)

Combining (2.52) and (2.51) we obtain

2r2-~2 r 2 2 2r2
1 [yrp STP] U7 cTPde | @T%2c GM (2.54)
ur hy or hy dr hy r r2

wherecZ = yP/p and (U")2 =U'U". From the first law of thermodynamics and (2.52) we derive the
relativistic Bernoulli equation in the form
d (1 F2h2> ~ hr2dq

r\2 @ )T Fa (2.55)
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Figure 2.9: The relativistic Bernoulli energ¥e = 3rh/c? — 1c2(top) and mass outflow ratel =
41r2pUT (bottom) in the time-dependent relativistic wind solutieith a reasonably high heating rate
are shown as functions of radius at tile- 1000. In order to match this solution to a steady outflow
solution, the Bernoulli energy is assumed to be constanttbeaegion indicated by the two circles, and
the steady wind solution is computed using initial valuethatpoint indicated by a cross.
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Figure 2.10: The radial profiles of the steady wind r-component of fouoeély U" (top panel) and of
the velocity for Eulerian observers (gentre panel) are compared to the time-dependent soligiotied
every 100 dynamical times) for a typical relativistic cdétion for the black hole (n=2.0) case. Units
are such that = /2 on the velocity plots. Note the excellent agreement betviee two solutions.

such that both sides reduce to their non-relativistic esgioas ax — . The quantitydQ/dr is the
local heating gradient as in the non-relativistic case.aexjing this equation we find

-0 [ R g (Gur) - (256)

dr dr  c2r2dr\2 o2 g2
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Combining (2.56) and (2.54) and manipulating terms, weink#a equation fofU")?,

2(U")? cr22c2 1<:2r< Q) GM}’ (2.57)

—tue—erzagm | o Y UR e ) T
wherecZ andh = ¢ +cZ/(y— 1) are given functions of known variables by integration of Benoulli
equation (2.55), in the form

d rmord@
g M=rg (2.58)

to ensure thah does not appear in the heating term on the right hand sideintdgration is then

e(r) :Fh:e(rm)—/r { zQ}dr (2.59)
and hence
=2 2= (- (2.60)

FdQ a(r)A(r)
dr (= V() ’ (2.61)
since
ds dQ 0Q Q
N= TE_E:U (WJF dr) (2.62)

wherer is the proper time and! =T /a?. The velocity profile for an Eulerian observer is then caited
using (2.44) and the final Lorentz factdt, using equation (2.45). As in the non-relativistic case we
choose a starting point for the integration above the hgairell and integrate outwards from this point
using a fourth order Runge-Kutta integrator in order to aeiee the terminal Lorentz factor. The inward
integration (and thus the determination of the steady kidting gradientdQ/dr) is computed only for
consistency. We integrate through the singular point iraéqo (2.57) by taking a low order integration
with larger steps as this point is approached.

The solution calculated using (2.57) is shown in Figure Zidited against the evolving time-
dependent solution. The profiles are in excellent agreemenifying the accuracy of the relativistic
calculation and showing that the wind may indeed be desttilyehe steady state solution.

2.3.7 Terminal wind velocitiesand Lorentz factors as a function of heating rate
In order to compare the relativistic results to those in tegddnian regime, we define the local canonical
heating rate in a similar manner to the non-relativisticecéisat is

Ne(r) = %, (2.63)
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Figure2.11: The terminal r-component of four velocity (top panel) and Lorentz factor (bottom panel)
of the wind in the non-relativistico| solid), white dwarf &, dot-dashed), neutron sta+ (dotted) and
black hole ¢, dashed) cases, is plotted as a function of the dimens®hksting rate defined in §26.
The top panel may be compared with Figuré i the non-relativistic case.

for some relevant energdE and some relevant timescale. As in Section 2.2.6 we take the canonical
energy per unit mas#&\E, to be the energy released locally by bringing to rest a gartf unit mass
which is orbiting in a circular orbit at radius For a particle orbiting in the Schwarzschild metric this
is the differenceAE, between the energy constants (defined by the timelikenigiNiector) of a circular
geodesic at radius and a radial geodesic with zero velocity at radiu3 his implies (see, for example,
Schutz 1985, Chapter 11)

1-2GM/rc?

AE/c* = [1— 3GM/rc2]i/2

—[1—2GM /rc?)Y/2, (2.64)

In the Newtonian limit, this reduces to the expected vale— %vé = GM/2r. We again take the
canonical timescale on which the energy is released to barltfital timescale at radiusas measured by
a local stationary observer. For a circular geodesic in tfev@rzschild metric, the azimuthal velocity is
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given in terms of coordinate timg, by
de/dt = Q = (GM/r3)Y/2, (2.65)

This is the same expression as for the angular velocity offitirmy particle in the Newtonian limit. But
in terms of the proper time;,, of a local stationary observer we have, from the metric,

dr/dt = (1—2GM /rc?)%/2, (2.66)

and thusdg/dt = Q,, where

GM 2GM]*
2 _
Using this, the local canonical heating rate is therefoveryby

In the Newtonian limitr > 2GM/c?, this becomes as expectéd ~ (GM)%/2/2r%2. As in the non-
relativistic case we use the canonical heating rate deabeye to define a dimensionless heating rate
(N\) as an appropriate volume average using equation (2.21).

The final Lorentz factor of the wind plotted as a function aéttlimensionless heating rate is given
in the bottom panel of Figure 2.11 in the highly relativigitack hole), moderately relativistic (neutron
star, equivalent to a broader heating shell further awam feoblack hole) and non-relativistic (white
dwarf) cases.

We would also like to make a meaningful comparison of the fimiald velocities in units of the
escape velocity from the star. Note that we cannot simplyparethe scaled velocities since we are in
effect introducing a ‘speed limit’ in the relativistic stilon such that the (scaled) relativistic velocity will
always be slower than in the equivalent non-relativistitson. Rather, we compare the ‘momentum
per unit mass’, which in the relativistic case is given byfthe velocityU" = dr /dt (in special relativity
this is given byU" = w', wherey is the Lorentz factor). Scaling this in units of the (Newtmi escape
velocity from the central obje¢2GM /R,)Y/? we can make a useful comparison with the non-relativistic
results in terms of the actual energy input. This velocitgl@ted in the top panel of Figure 2.11 against
the dimensionless heating rate and is clearly higher in¢kagivistic case. The non-relativistic results
correspond to those shown in Figure 2.6.

2.4 Discussion and Conclusions

In this chapter we have considered the injection of energyfated radius into an initially hydrostatic
atmosphere as a simple model of the acceleration procesthimbn-relativistic and relativistic jets. The
problem is inherently time-dependent since the velocizei® at the base of the atmosphere. We have
therefore used time-dependent gas dynamics. In order ¢éondiete the terminal velocity of the resulting
outflow we have used the fact that if the mass in the outflow &lstompared to the initial mass reservoir
then the outflow will reach an approximate steady state. @recgas in the time-dependent solution has



2.4 Discussion and Conclusions 27

evolved to a sufficiently large radius we are therefore ablamatch the solution to a steady-state wind
profile (with a heating term) in order to determine the solutat infinity. The resulting terminal velocities
and corresponding Lorentz factors are shown in Figuresrti®dl 1.

The first point to note, from the top panel of Figure 2.11 id the dimensionless energy (or mo-
mentum) imparted to the gas is clearly larger in the relstiivicase. The resulting outflow velocities also
scale linearly with heating rate in this case, whereas imtrerelativistic case the relative increase in the
outflow velocity becomes smaller as the heating rate bectargey. These effects can be understood by
considering the effect of the relativity in imposing a spdiedt on the gas as it travels through the (fixed)
heating shell. In the non-relativistic case, as the gasdslatated to higher velocities the time spent in
the heating zone also becomes smaller, resulting in theffaih the terminal velocity with increasing
heating rate. In the relativistic case, once the gas has dmmerated to close to the speed of light, the
time spent in the heating zone remains constant)(and consequently the total energy imparted to the
outflow scales linearly with dimensionless heating r@te

From Figure 2.6 we see that a dimensionless heating rai&)af 17 gives rise to a terminal outflow
velocity of Viet > 2Vescin a Newtonian potential. For the same heating rate, in EiQui1, we see that
the ‘neutron star’ wind, for which the heating rate peakshatua 5.2Rsch becomes mildly relativistic
(vet ~ 2), whereas the ‘black hole’ wind, for which the heating raéaks at about 2.Rscp, leads to an
outflow with yjet ~ 11. Similarly a dimensionless heating ratg 4 ~ 55 gives rise to a terminal velocity
of Vjet =~ 3Vesc in the Newtonian case, to an outflow wiffa; ~ 4 in the mildly relativistic case, and to
an outflow withyet ~ 31 in the strongly relativistic case. We have already no$@c2(6) that although
the exact numerical values here do depend slightly on thet eéedinition of the dimensionless heating
rate, the basic results remain unchanged. For exampleay tlsnNewtonian dimensionless heating rate
(§2.2.6) in the strongly relativistic case gives a Lorent2daof ye; ~ 5 for the rate which corresponds
to Viet ™ 2Vescin the non-relativistic case.

It must be cautioned that this analysis does not assume lthaftthe physical processes in the jet
acceleration process have been properly representedxdonme the process by which the energy is
transferred from rotational energy in the disk into kinegieergy in the outflow is clearly magnetic in
nature), nor that all of these physical processes shoulddrgical between the various classes of jet.
It is evident that more detailed physical models need to meldped before further conclusions can
be drawn. Nevertheless, the generic nature of the analyssepted in this chapter suggests that some
conclusions into the physical processes involved in thageeleration process can be drawn.

On the basis of the simple physical models constructed sahapter, therefore, it seems not un-
reasonable to suggest that the relativistic jets obsemnwedGN are simply scaled-up versions of their
non-relativistic (YSO) counterparts and that the intgretceleration process is the same in both classes
of object. For this to be the case, two further conditions tralso hold. The first is that jet acceleration
must occur close to the central gravitating object, in otdenake use of the speed of light as a limiting
velocity in the black hole case. The second is that, sincalifmensionless heating rates required are
much larger than unity, the energy released in the outflowt inei$mparted to only a small fraction of
the available accreting material.



