
“If I had only known, I would have been a locksmith.”

ALBERT EINSTEIN

2
A comparison of the jet acceleration mechanisms in

young stellar objects and active galactic nuclei

2.1 Introduction

Astrophysical jets were first discovered when Curtis (1918)observed a ‘curious straight ray’ emanating

from the nucleus of the M87 nebula. Such jets are now commonlyobserved in a wide variety of astro-

physical environments, including Active Galactic Nuclei (AGN), Young Stellar Objects (YSOs), stellar

and compact binary systems and their presence is even inferred in the violent supernovae which manifest

as Gamma-Ray Bursts. Despite an ever-growing mountain of observations1, many of the fundamental

questions regarding the basic processes which govern theiracceleration and high degree of collimation

over substantial length scales remain a mystery.

Since the relativistic AGN jets were discovered first, presumably powered by accretion onto the cen-

tral black hole (Rees, 1984), it was natural that early models for jet formation were inherently relativistic

(Ferrari, 1998). For example, the oft-cited mechanism of Blandford and Znajek (1977) involves tapping

the rotational energy of a spinning black hole. The mere existence of jets in classes of object where

black holes are not present clearly indicates that such processes cannot provide a universal explanation

of jet origins. Similarly, mechanisms invoking a star rotating at near break-up speed (Shu et al., 1988)

or accretion disc boundary layers (Pringle, 1989) must alsobe excluded (although in the latter case there

may be some analogy in black hole accretion discs), unless weargue that different processes operate in

each separate class of object, despite the ubiquity of jet production. Since it was clear from the lack

of substantial thermal emission that the jet acceleration process was not purely hydrodynamic in nature

(see e.g. Blandford and Rees, 1974; Konigl, 1982), nearly all jet production mechansisms invoke some

kind of magnetic field, whether large- (Blandford and Payne,1982; Pudritz and Norman, 1986) or small-

1for example a search of the NASA ADS for papers with ‘jet’ in the title produces 390 hits for 2003 alone.
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6 Chapter 2. Jet acceleration in YSOs and AGN

(Heinz and Begelman, 2000) scale. Of these the most popular and by far the most successful mechanism

for explaining both the acceleration and collimation of jets is the magneto-centrifugal model of Bland-

ford and Payne (1982) which has been demonstrated in a numberof numerical simulations (Ouyed and

Pudritz 1997, 1999; Ouyed et al. 1997; Kudoh et al. 1998; Koide et al. 2000).

In this model a large scale vertical field threading the accretion disc causes material to be centrifugally

accelerated along the magnetic field lines, analogous to ‘beads on wires’. Blandford and Payne (1982)

demonstrated that such acceleration could take place if theangle of inclination between the field lines

and the disk was> 30◦. Although it might be claimed that some form of consensus hasbeen reached

on magnetocentrifugal acceleration forming the the heart of the jet production process, these models

suffer from several problems. The first of these is the originof the large-scale field which must be

invoked for the model to work, in particular whether such fields can be either advected inwards from

the environment from which the disc formed (see Lubow et al.,1994) or produced spontaneously from a

dynamo operating in the disc itself (Tout and Pringle, 1992,1996). The second problem is that large-scale

magnetic fields dominated by toroidal components are found to be unstable (Spruit et al., 1997; Lucek

and Bell, 1996; Begelman, 1998) (where the instabilities are similar to those observed in a wound-up

rubber band, which begins to bend and kink as it becomes dominated by toroidal stresses). For this

reason the role of collimation is now generally assigned to adominant poloidal component of the field

(e.g. Lucek and Bell 1997).

A further problem, and the issue we focus on in the present work, is that the Blandford and Payne

(1982) model is scale-free (ie. self-similar). The problemwith this is the fairly general observation that

jet velocities appear to be very close to the escape velocityfrom the central gravitating object (Livio,

1999), suggesting that jets are somehow aware of the strength of the gravitational potential close to

the central object itself. This would seem to indicate that the jet originates from the inner part of the

accretion disc (ie. close to the central object) and is supported by observations such as those of HH30

showing a jet clearly emanating from the centre of the accretion disc (Burrows et al., 1996) and variability

in the µ−quasar system GRS1915+105, where dips in the X-ray flux are observed immediately prior

to the observation of a blob of plasma being ejected into the jet, interpreted as the inner edge of the

accretion disc dropping away prior to the ejection event (Mirabel et al., 1998; Mirabel and Rodrı́guez,

1999). Similar observations have been made over longer timescales in the active galaxy 3C120 by

Marscher et al. (2002). Intrinsic jet velocities in both relativistic and non-relativistic jets are somewhat

difficult to measure because in order to be visible the jet material must be interacting with the surrounding

medium in some way (and therefore decelerating). In the YSO case, jet velocities are typically inferred

from measurements of the proper motions of features travelling along the jet (such as the Herbig-Haro

objects which are interpreted as shocks within the jet due tomaterial travelling at different speeds) or by

mapping the velocity structure around such features (Reipurth and Bally, 2001). Typical jet velocities

thus measured lie in the range vjet ∼ 300−500 km/s (Eislöffel and Mundt 1998; Micono et al. 1998; Bally

et al. 2001; Hartigan et al. 2001; Reipurth et al. 2002; Ballyet al. 2002; Pyo et al. 2002) which may be

compared to the escape velocity from a typical young star (mass 1 M⊙, radius 5 R⊙; Tout et al. 1999) of

vesc∼ 270 km/s. In the AGN case, jet velocities are observed to be very close to the speed of light, in

keeping with the escape velocity from the central black hole. Although estimates vary, observationally

typical Lorentz factors for AGN jets lie in the rangeγjet ∼ 5−10 (Urry and Padovani 1995; Biretta et al.

1999), although arguments for higher values (γjet ∼ 10− 20) have been made on theoretical grounds
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(Ghisellini and Celotti, 2001).

In recent years it has been suggested that small scale, tangled magnetic fields could perhaps both

accelerate (Heinz and Begelman, 2000) and collimate (Li, 2002) jets, without invoking any large-scale

field. These ideas are attractive theoretically as they are in keeping with the turbulent magnetic fields

known to drive accretion in discs via the magneto-rotational instability (Balbus and Hawley, 1991).

Collimation via small scale fields does not suffer from the problem of instabilities and since acceleration

via small scale fields is an inherently local process, the scale associated with the acceleration regions

would be naturally reflected in the velocity of the resultingoutflow.

In this chapter we take an extremely simplified approach to the problem of jet acceleration, paying

particular attention to the observation that jet velocities are of order the escape velocity from the central

object. We pose the question of whether or not a simple scaling exists between jets accelerated in

non-relativistic environments and those accelerated in relativistic environments by considering a highly

simplified model of the jet acceleration process. Since we are concerned only with acceleration, not

collimation, we examine the driving of a spherically symmetric outflow by injecting energy into an

initially hydrostatic gas reservoir at a fixed radius close to the central object. The gas is treated in a

simple manner as having a purely thermal pressure,P, and internal energy,u, and a ratio of specific

heatsγ which we take to beγ = 4/3. The exact value ofγ is not particularly critical to the arguments

developed in this chapter, provided thatγ < 5/3 so that the outflow becomes supersonic. Takingγ = 4/3,

however, is in fact appropriate to the case of an optically thick radiation-pressure dominated flow, and

to the case in which the dominant pressure within the gas is caused by a tangled magnetic field (Heinz

and Begelman, 2000). It should therefore, despite the simplistic treatment, allow us to draw some quite

general conclusions.

If the same acceleration process is at work in both relativistic and non-relativistic jets, then the same

(appropriately scaled) energy input rate should account for the observed jet velocities in both classes

of object. Specifically, the energy input rate required to give rise to a final jet velocity vjet ∼ 2vesc

in the non-relativistic case should also be able to produce outflows with Lorentz factors ofγjet ∼ 7 in

the relativistic case. We therefore undertake the following computations: In§2.2 we examine the non-

relativistic case, appropriate to YSO jets. Energy is injected at a steady rate over a small volume into

an initially hydrostatic gas reservoir, following the timeevolution of the gas as it expands. Since we

cannot follow the time evolution for an infinite time, once the gas has reached a large enough radius the

time-dependent solution is matched to a steady state wind solution in order to determine the terminal

velocity of the outflow. In§2.3 exactly the same computations are performed using relativistic fluid

dynamics, appropriate to AGN (andµ−quasar) jets. The final jet velocity is then plotted as a function

of the (dimensionless) energy input rate (heating rate) in both the relativistic and non-relativistic cases.

Results and conclusions are presented in§2.4.

2.2 Non-relativistic (YSO) jets

2.2.1 Fluid equations

For YSO jets we expect the gravitational field to be well approximated by a non-relativistic (Newtonian)

description. In one (radial) dimension the equations describing such a fluid including the effects of
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energy input are expressed by the conservation of mass,

∂ρ
∂ t

+vr ∂ρ
∂ r

+
ρ
r2

∂
∂ r

(r2vr) = 0, (2.1)

momentum,

∂vr

∂ t
+vr ∂vr

∂ r
+

1
ρ

∂P
∂ r

+
GM
r2 = 0, (2.2)

and energy,

∂ (ρu)

∂ t
+vr ∂ (ρu)

∂ r
+

[

P+ ρu
r2

]

∂
∂ r

(r2vr) = ρΛ, (2.3)

whereρ , vr, P andu are the fluid density, radial velocity, pressure and internal energy per unit mass

respectively,M is the mass of the gravitating object (in this case the central star), and

Λ =
dQ
dt

= T
ds
dt

(2.4)

is the heat energy input per unit mass per unit time (whereT and s are the temperature and specific

entropy respectively). The equation set is closed by the equation of state for a perfect gas in the form

P = (γ −1)ρu. (2.5)

Scaling

To solve (2.1)-(2.5) numerically we scale the variables in terms of a typical length, mass and timescale.

These we choose to be the inner radius of the gas reservoir[L] = R∗, the mass of the gravitating body

[M] = M∗ and the dynamical timescale at the the inner radius (r = R∗), [τ ] = (GM∗/R3
∗)

−1/2. In these

unitsGM = 1 and the density, pressure, velocity and internal energy, respectively, have units of density,

[ρ ] = M∗/R3
∗, pressure,[P] = M∗/(R∗τ2), circular velocity atR∗, [v] =

√

GM∗/R∗ and gravitational

potential energy atR∗, [u] = GM∗/R∗. Note that the net heating rate per unit massΛ is therefore given

in units of gravitational potential energy,GM∗/R∗, per dynamical timescale atR∗, (GM∗/R3
∗)

−1/2. We

point out that this scaling is simply to ensure that the numerical solution is of order unity and that when

comparing the results to the relativistic simulations we scale the solution in terms of dimensionless

variables.

2.2.2 Numerical solution

We solve (2.1)-(2.5) in a physically intuitive way using a staggered grid where the fluid velocity is defined

on the half grid points whereas the density, pressure, internal energy and heating rate are specified on

the integer points. This allows for physically appropriateboundary conditions and allows us to treat

the different terms in a physical way by applying upwind differencing to the advective terms but using

centred differencing on the gradient terms. The scheme is summarised in Figure 2.1 with the discretized

form of the equations given in appendix A. The staggered gridmeans that only three boundary conditions
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Figure 2.1: Schematic diagram of numerical method: density and internal energy are defined on the
integer points while velocity is calculated on the half points. The solution requires one inner boundary
condition on v and two outer boundary conditions forρ andρu. Updated velocities (vn+1) are used
to calculateρn+1 and ρun+1. The scheme allows centred differencing on terms involvingstaggered
quantities (top panel) while upwind differencing is used onthe advective terms (bottom panel).

are required, as shown in Figure 2.1. We set v= 0 at the inner boundary and the density and internal

energy equal to their initial values (effectively zero) at the outer boundary.

2.2.3 Initial conditions

Figure 2.2: The initial conditions for the non-relativistic case, We plot profiles of density, pressure and
internal energy per unit mass (or temperature) as functionsof radius. The quantities here are dimension-
less and the units are as described in§2.2.1.

The form of the initial conditions is not particularly crucial to the problem, as the wind eventually

reaches a quasi-steady state that is independent of the initial setup. What the initial conditions do affect
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is the time taken to reach this steady state (by determining how much mass must initially be heated in

the wind). We proceed by setting up a body of gas (loosely ‘an atmosphere’) above the ‘star’ (or rather,

an unspecified source of gravity) initially in hydrostatic equilibrium, such that v= 0 everywhere and

dP
dr

= −GMρ
r2 . (2.6)

The pressure is related to the density by a polytropic equation of state

P = Kργ , (2.7)

whereK is some constant. Combining these two conditions we obtain an equation for the density gradient

as a function of radius

dρ(r)
dr

= −ρ(r)−(γ−2)

γK
GM
r2 . (2.8)

Integrating this equation fromr to some upper boundR∞ we obtain

ρ(r) =

[

γ −1
γK

(

GM
r

− GM
R∞

)]1/(γ−1)

. (2.9)

To ensure that pressure and density are finite everywhere (for numerical stability) we setR∞ = ∞. The

density is then given as a simple function of radius where it remains to specify the polytropic constant

K. In scaled units we chooseK = (γ − 1)/γ such thatρ(R∗) = 1 (i.e. the central density equals the

mean density of the gravitating body – note that we neglect the self-gravity of the gas itself. ChoosingK

effectively determines the amount of mass present in the atmosphere and thus the strength of the shock

front which propagates into the ambient medium (in terms of how much mass is swept up by this front).

We set the initial pressure distribution using (2.7). If we do this, however, the slight numerical

imbalance of pressure and gravity results in a small spurious response in the initial conditions if we

evolve the equations with zero heating. In the non-relativistic case the spurious velocity is kept to an

acceptably small level by the use of a logarithmic radial grid (thus increasing the resolution in the inner

regions). In the relativistic case however this slight departure from numerical hydrostatic equilibrium is

more significant. This response is therefore eliminated by solving for the pressure gradient numerically

using the same differencing that is contained in the evolution scheme. That is we solve from the outer

boundary conditionP(rmax) = Kρ(rmax)
γ according to

Pi−1 = Pi − (ri − ri−1)
ρi−1/2

r2
i−1/2

. (2.10)

Solving for the pressure in this manner reduces any spuriousresponse in the initial conditions to below

round–off error. The internal energy is then given from (2.5). The pressure calculated using (2.10) is

essentially indistinguishable from that found using (2.7)(∆P/P ∼ 10−5). The initial conditions calculated

using equation (2.9), (2.10) and (2.5) are shown in Figure 2.2. We use a logarithmic grid with 1001 radial

grid points, setting the outer boundary atr/R∗ = 103. Using a higher spatial resolution does not affect

the simulation results.



2.2 Non-relativistic (YSO) jets 11

Figure 2.3: Results of a typical non-relativistic simulation at timet = 1000 (where units of time are
the dynamical time at the innermost radius,

√

R3∗/GM). Quantities shown are the Mach number (v/cs),
velocity, heating rate (Λ), internal energy per unit mass (u ≡ utherm), log(density) and log(pressure).

Heating profile

The choice of the shape of the heating profileΛ(r) is fairly arbitrary since we wish simply to make a

comparison between the non-relativistic and relativisticresults. We choose to heat the wind in a spherical

shell of a fixed width using a linearly increasing and then decreasing heating rate, symmetric about some

heating radiusrheat which we place atr = 2.1R∗. The heating profile is spread over a radial zone of

width 2R∗ (that is the heating zone extends fromr = 1.1R∗ to 3.1R∗)(see Figure 2.3). We choose a

heating profile of this form such that it is narrow enough to beassociated with a particular radius of

heating (necessary since we are looking for scaling laws) whilst being wide enough to avoid the need

for high spatial resolution or complicated algorithms (necessary if the heat input zone is too narrow).

The important parameter is thus thelocation of the heating with respect to the Schwarzschild radius, so

long as the heating profiles are the same in both the relativistic and non-relativistic cases. Provided that

the heating profile is narrow enough to be associated with a particular radius and wide enough to avoid

numerical problems, the results do not depend on the actual shape of the profile used.

2.2.4 Results

The results of a typical non-relativistic simulation with amoderate heating rate are shown in Figure 2.3 at

t = 1000 (wheret has units of the dynamical time at the inner radius). We observe the effect of the heating

propagating outwards in the atmosphere in the form of a shockfront. After several hundred dynamical
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Figure 2.4: Bernoulli energyE = 1
2v2 + ρu + P− GM/r (top) and mass outflow ratėM = 4πr2ρv

(bottom) in the time-dependent wind solution att = 1000. The profiles are approximately constant over
the region between the two circles. The sample point used to match this flow to the appropriate steady
state solution is indicated by a cross.

times the wind structure approaches a steady state in that there is only a small change of the overall wind

structure due to the shock continuing to propagate outwardsinto the surrounding medium. The small

disturbance propagating well ahead of the main shock is a transient resulting from the response of the

atmosphere to the instantaneous switch-on of the heating. The velocity of the gas begins to asymptote

to a constant value as the shock propagates outwards. Plotting the mass outflow ratėM = 4πr2ρv and

the Bernoulli energyE = 1
2v2 + ρu+ P−GM/r as a function of radius (Figure 2.4), we see that indeed

the wind structure is eventually close to that of a steady wind above the heating zone (ie.̇M andE ∼
constant). It is thus computationally inefficient and impractical to compute the time-dependent solution

for long enough to determine an accurate velocity asr → ∞ when the wind will continue to have a

steady structure. Instead we find the steady wind solution for a given amount of energy input to the wind

corresponding to the energy plotted in Figure 2.4 (top panel).

2.2.5 Steady wind solution

Non-relativistic, steady state (∂/∂ t = 0) winds with energy input have been well studied by many authors,

and the equations describing them can be found in Lamers and Cassinelli (1999), who credit the original

work to Holzer and Axford (1970). The reader is thus referredto Lamers and Cassinelli (1999) for details

of the derivation. As in the usual Bondi/Parker (Bondi 1952,Parker 1958) wind solution with no heat

input, we set∂/∂ t = 0 in (2.1)-(2.5) and combine these equations into one equation for the Mach number

M2 = v2/c2
s as a function of radius, given by

dM2

dr
= − M2(2+(γ −1)M2)

2(M2−1) [e(r)+ GM/r]

[

(1+ M2γ)
dQ
dr

+
GM
r2

(5−3γ)

(γ −1)
− 4e(r)

r

]

, (2.11)
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Figure 2.5: Steady wind Mach number (top panel) and velocity (centre panel) profiles are compared to
the time-dependent solution (plotted every 100 dynamical times). There is a small discrepancy between
the two solutions where we have taken the limit in approaching the singular point atM = 1, but an
otherwise excellent agreement between the two solutions.

wheredQ/dr is the local heating gradient ande(r) is the Bernoulli energy which is specified by integrat-

ing the Bernoulli equation

de(r)
dr

=
d
dr

[

1
2

v2 + ρu+ P− GM
r

]

=
dQ
dr

, (2.12)

to give

e(r) = e(r∞)−Q(r)

= e(r∞)−
∫ r∞

r

dQ
dr

, (2.13)

whereQ(r) is the total energy input to the wind. Since we are interestedin the terminal velocity of the

outflow we choose a point above the heating shell where the energy has reached its steady state value

(i.e. where the energy is constant in Figure 2.4, top panel) and integrate outwards using the energy and

Mach number at this point to solve (2.11) as an initial value problem. Note that in fact the terminal

velocity is determined by the (constant) value of the Bernoulli energy above the heating zone since as

r → ∞, e(r) → 1
2v2. However we compute the steady wind profiles both inwards andoutwards to show

the consistency between the time-dependent solution and the steady state version.

In order to perform the inward integration, we must determine the energy at every point for our steady

solution by subtracting the heat input from the steady stateenergy as we integrate inwards through the

heating shell (2.13). To determine this however we must also determine the local (steady state) heating

gradientdQ/dr, which is related to the (time dependent) heating rateΛ by setting∂/∂ t = 0 in the time

dependent version, ie.

Λ =
dQ
dt

=
∂Q
∂ t

+v
dQ
dr

= v
dQ
dr

. (2.14)
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We therefore calculatedQ/dr from the time dependent solution using

dQ
dr

=
Λ(r)
v(r)

, (2.15)

where v(r) is the wind velocity at each point in the heating shell from the time-dependent solution. The

problem with this is that at the inner edge of the heating shell the heating rate is finite while the velocity

is very close to zero, resulting in a slight overestimate of the total energy input near the inner edge of

the shell in the steady wind solution. Care must also be takenin integrating through the singular point

in equation (2.11) atM2 = 1. Most authors (e.g. Lamers and Cassinelli 1999) solve the steady wind

equations starting from this point but for our purposes it isbetter to start the integration outside of the

heating shell where the energy is well determined. We integrate through the critical point by using a first

order Taylor expansion and appropriate limit(s), althoughthis introduces a small discrepancy between

the steady state and time-dependent results in this region (Figure 2.5).

Having determined the energy and heating gradient at each point in the wind we integrate (2.11) both

inwards and outwards from the chosen point above the heatingshell using a fourth order Runge-Kutta

integrator (scaling (2.11) to the units described in§2.2.1). The velocity profile is then given by v2 = M2c2
s

where

c2
s (r) =

2(γ −1)

2+ M2(r)(γ −1)

[

e(r)+
GM

r

]

. (2.16)

The resulting steady wind solution is shown in Figure 2.5 along with the time-dependent solution. The

two profiles are in excellent agreement, proving the validity of our time-dependent numerical solution

and the assumption that the wind is in a steady state. The steady solution thus provides an accurate

estimate of the velocity at arbitrarily large radii (although as pointed out previously this is set by the

value of the steady state Bernoulli energy).

2.2.6 Terminal wind velocities as a function of heating rate

Using the steady wind extrapolation of the time-dependent solution, we can determine the relationship

between the heating rate and the terminal wind velocities. In order to make a useful comparison between

the heating rates used in both the Newtonian and the relativistic regimes, we need to define a local

canonical heating rateΛc(r) valid in both sets of regimes. In dimensional terms the heating rateΛ(r)

corresponds to an input energy per unit mass per unit time. Thus we need to define the local canonical

heating rate as

Λc(r) =
∆E
∆t

, (2.17)

for some relevant energy∆E and some relevant timescale∆t.

Although there are many different ways in which we might define a canonical heating rate, we find

that the results are not sensitive to the particular choice made. Ideally we wish to choose a heating rate

which reflects the physical processes inherent in the jet acceleration process. Although these processes

remain obscure, the fundamental source of the energy available for jet acceleration is the rotational
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energy present in the accretion disc. For this reason we takethe canonical energy per unit mass,∆E, to

be the energy released locally by bringing to rest a particleof unit mass which is orbiting in a circular

orbit at radiusr. In the Newtonian regime this is simply the kinetic energy ofa circular orbit

∆E =
1
2

v2
φ =

GM
2r

. (2.18)

(An alternative possibility, for example, would be to take∆E to be the energy released by dropping a

particle from infinity and bringing it to rest at radiusr, which would correspond to the escape energy

from that radius,GM/r.) By similar reasoning, we take the canonical timescale on which the energy is

released to be the orbital timescale at radiusr, that is∆t = Ω−1
o , where

Ωo = (GM/r3)1/2. (2.19)

Using this, the local canonical heating rate is given by

Λc(r) = ∆E ×Ωo =
(GM)3/2

2r5/2
. (2.20)

This definition of a local canonical heating rate thus enables a direct comparison between the results of

the Newtonian and relativistic calculations. In practice we must take an appropriate average heating rate

〈Λ〉 in each case since heat is added over a range of radii. We average across the volume of the heating

shell, using

〈Λ〉 =

∫ r2
r1

Λ(r)r2dr

Λc(rmax)
∫ r2

r1
r2dr

, (2.21)

wherermax is the radius at which the heating rateΛ(r) takes its maximum value andr1 andr2 are the

lower and upper bounds of the heating shell respectively.

The relation between this average dimensionless heating rate 〈Λ〉 and the terminal wind velocity

is shown in Figure 2.6. The wind velocities are plotted in units of the escape velocity vesc at R∗ and

solutions are computed for wind velocities of up to∼ 3vesc. The important point in the present analysis

is that the heating rate can be meaningfully compared to the relativistic results (see below).

2.3 Relativistic jets

Having determined the heating rates required to produce theobserved velocities in YSO jets we wish to

perform exactly the same calculation within a relativisticframework. We proceed in precisely the same

manner as in the non-relativistic case. We adopt the usual convention that Greek indices run over the

four dimensions 0,1,2,3 while Latin indices run over the three spatial dimensions 1,2,3. Repeated indices

imply a summation and a semicolon refers to the covariant derivative. The densityρ refers to the rest

mass density only, that isρ = nm0 wheren is the number density of baryons andm0 is the mass per

baryon.
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Figure 2.6: Terminal wind velocities plotted as a function of the average dimensionless heating rate
〈Λ〉. Wind velocities are plotted in units of the escape velocityat the inner radius (ie.r = R∗ = 1),
vesc= (2GM/R∗)1/2. We compute solutions corresponding to velocities typically observed in YSO jets
(with a fairly generous upper limit of v/vesc∼ 3).

2.3.1 Fluid equations

The equations describing a relativistic fluid are derived from the conservation of baryon number,

(ρU µ);µ = 0, (2.22)

the conservation of energy-momentum projected along a direction perpendicular to the four velocityU µ

(which gives the equation of motion),

hµα T αν
;ν = (gµα +UµUα)T αν

;ν = 0, (2.23)

and projected in the direction of the four-velocity (which gives the energy equation),

Uα T αν
;ν = 0. (2.24)

Here the quantityT µν is the energy momentum tensor, which for a perfect fluid is given by

c2T µν = ρhU µUν + Pgµν , (2.25)

whereh is the specific enthalpy,

h = c2 + u+
P
ρ

= c2 +
γP

(γ −1)ρ
. (2.26)

As in the non-relativistic caseu is the internal energy per unit mass,P is the gas pressure and we have

used the equation of state given by equation (2.5). The energy equation may also be derived from the

first law of thermodynamics using equation (2.22), which is amore convenient way of deriving an energy
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equation in terms of the internal energy (rather than the total energy) and in this case ensures that the

meaning of the heating term is clear. The metric tensor is given by the Schwarzschild (exterior) solution

to Einstein’s equations, that is

ds2 = −c2dτ2 = −
(

1− 2GM
c2r

)

c2dt2 +

(

1− 2GM
c2r

)−1

dr2 + r2(dθ2 +sin2θdφ2). (2.27)

We consider radial flow such thatUθ = Uφ = 0. The four velocity is normalised such that

UµU µ = −c2, (2.28)

and we define

U t ≡ dt
dτ

=

(

1− 2GM
c2r

)−1[(

1− 2GM
c2r

)

+
(U r)2

c2

]1/2

, (2.29)

which we denote as

U t =
Γ

α2 (2.30)

where we set for convenience

Γ =

[(

1− 2GM
c2r

)

+
(U r)2

c2

]1/2

, (2.31)

and

α2 =

(

1− 2GM
c2r

)

. (2.32)

Note that whileα corresponds to the lapse function in the 3+ 1 formulation of general relativity, the

quantityΓ is not the Lorentz factor of the gas (which we denote asW ) as it is usually defined in numerical

relativity (e.g. Banyuls et al. 1997) but is related to it byW = Γ/α . From (2.29) we also have the relation

∂U t

∂ t
=

U r

α2Γc2

∂U r

∂ t
(2.33)

From (2.22), (2.23) and (2.24) using (2.25), (2.27), (2.29)and (2.33) we thus derive the continuity

equation,

∂ρ
∂ t

+vr ∂ρ
∂ r

+
α2ρ

Γ

[

1
r2

∂
∂ r

(r2U r)+
U r

α2Γc2

∂U r

∂ t

]

= 0, (2.34)

the equation of motion,

∂U r

∂ t
+vr ∂U r

∂ r
+

Γα2c2

ρh
∂P
∂ r

+
U r

ρh
∂P
∂ t

+
α2

Γ
GM
r2 = 0, (2.35)
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and the internal energy equation,

∂ (ρu)

∂ t
+vr ∂ (ρu)

∂ r
+

α2

Γ
(P+ ρu)

[

1
r2

∂
∂ r

(r2U r)+
U r

α2Γc2

∂U r

∂ t

]

=
α2

Γ
ρΛ, (2.36)

where

vr ≡ U r

U t ≡ dr
dt

(2.37)

is the velocity in the co-ordinate basis. We define the heating rate per unit mass as

Λ ≡ T
ds
dτ

, (2.38)

whereT is the temperature,s is the specific entropy anddτ refers to the local proper time interval (Λ is

therefore a local rate of energy input, caused by local physics). A comparison of (2.34), (2.35) and (2.36)

with their non-relativistic counterparts (2.1), (2.2) and(2.3) shows that they reduce to the non-relativistic

expressions in the limit asc → ∞, and to special relativity asM → 0.

The ‘source terms’ containing time derivatives ofU r and P are then eliminated between the three

equations using the equation of state (2.5) to relate pressure and internal energy. Substituting for pressure

in (2.36) and substituting this into (2.35) we obtain the equation of motion in terms of known variables,

∂U r

∂ t
+

vr

X

(

1− γP
ρh

)

∂U r

∂ r
= − c2α4

ρhΓX
∂P
∂ r

− α2

ΓX
GM
r2 +

vr

X
γP
ρh

2U r

r
− vr

hX
(γ −1)Λ, (2.39)

where for convenience we define

X ≡ 1−
(

γP
ρh

)

U rU r

Γ2c2 , (2.40)

and we have expanded the1r2
∂
∂ r (r

2U r) terms in order to combine the spatial derivatives ofU r into one

term. We then substitute (2.39) into (2.34) and (2.36) to obtain equations for the density

∂ρ
∂ t

+vr ∂ρ
∂ r

= −α2

Γ

[

ρA− vr

hΓX
∂P
∂ r

− U rU r

Γ2c2X
(γ −1)

h
ρΛ

]

, (2.41)

and internal energy,

∂ (ρu)

∂ t
+vr

(

1− γP
ρh

α2

Γ2X

)

∂ (ρu)

∂ r
= −α2

Γ

[

(P+ ρu)A−
(

1+
U rU r

Γ2c2X
γP
ρh

)

ρΛ
]

. (2.42)

where for convenience we have defined

A ≡
[

1− U rU r

Γ2c2X

(

1− γP
ρh

)]

∂U r

∂ r
+

[

1+
U rU r

Γ2c2X

(

γP
ρh

)]

2U r

r
− U r

Γ2c2X
GM
r2 (2.43)

From the solution specifyingU r we calculate the velocity measured by an observer at rest with respect
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to the time slice (referred to asEulerian observers), which is given by

v̄r =
U r

αU t =
vr

α
, (2.44)

since there are no off-diagonal terms (ie. zero shift vector) in the Schwarzschild solution. For these

observers the Lorentz factor is given by

W =

(

1− v̄r v̄r
c2

)−1/2

, (2.45)

where v̄r v̄r = grr v̄r v̄r, such thatU r = W v̄r.

2.3.2 Scaling

The usual practice in numerical relativity is to scale in so-called geometric units such thatG = M = c = 1.

In these units the length scale would be the geometric radiusGM/c2 and the velocity would have units

of c. Instead for the current problem, we adopt a scaling analogous to that of the non-relativistic case,

that is we choose the length scale to be the radius of the central object,R∗, whereR∗ is given as some

multiple of the geometric radius, ie.

[L] = R∗ = n
GM∗

c2 , (2.46)

with n ≥ 2.0. The mass scale is again the central object mass[M] = M∗ and the timescale is given by

[τ ] =

(

GM∗
R3∗

)−1/2

= n3/2 GM∗
c3 (2.47)

In these units, velocity is measured in units of[v] = n−1/2c (or equivalentlyc2 = n). The scaled equations

are thus given simply by settingG = M = 1 andc2 = n everywhere.

This scaling ensures that the relativistic terms tend to zero whenc (or n) is large and that the numerical

values ofρ , ρu andU r are of order unity. We thus specify the degree to which the gravity/gas dynamics

is relativistic by specifying the value ofn (i.e. the proximity of the innermost radius, and thus the heating,

to the Schwarzschild radius,RSch= 2GM/c2). We compute solutions corresponding to gas very close to

a black hole (highly relativistic,n = 2.0, or R∗ = RSch), neutron star (moderately relativistic,n = 5, or

R∗ = RNS = 5GM/c2, which is equivalent to heating further out and over a wider region around a black

hole) and white dwarf/non-relativistic star (essentiallynon-relativistic,n = 5000, orR∗ = 2500RSch).

Note that in the highly relativistic case although we scale the solution ton = 2.0 such that the mass, length

and time scales (and therefore the units of heating rate, energy etc.) correspond to those atr = RSch, our

numerical grid cannot begin atR∗ as it does in the other cases. We therefore set the lower boundon the

radial grid to slightly below the heating shell (typicallyr = 1.01R∗ where the heating begins at 1.1R∗).

Note that the above scaling is merely to ensure that the numerical solution is of order unity, since we

scale in terms of dimensionless variables to compare with the non-relativistic solution.
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Figure 2.7: The initial conditions for the gas reservoir for the relativistic cases of a neutron star (dashed
line) (R∗/RSch = 2.5) and black hole (solid line)(R∗/RSch = 1.0). Note, however, that the innermost
radius is atr = 1.01R∗ in the latter case. We plot profiles of internal energy per unit mass (or temperature),
density and pressure, as functions of radius. These quantities are given in units ofGM/R∗, M/R3

∗ and
M∗/(R∗t2

∗) respectively. Note that steeper gradients are required to hold the gas in hydrostatic equilibrium
as the gravitational field becomes more relativistic. The black hole reservoir is of lower density than the
neutron star version because of the choice of the polytropicconstant (chosen such that the central density
is of order unity).

2.3.3 Numerical Solution

In order to solve the relativistic fluid equations numerically we use a method analogous to that used in

the non-relativistic case (Figure 2.1). That is, we first computeU r on the staggered (half) grid and use

this to solve forρ andρu on the integer grid points. Again the advective terms are discretized using

upwind differences (where the ‘upwindedness’ is determined from the sign of the co-ordinate velocity

vr) and other derivatives are calculated using centred differences. As in the non-relativistic case, where

a centred difference is used, the quantities multiplying the derivative are interpolated onto the half grid

points if necessary. In equation (2.41) we evaluate the∂P/∂ r term using upwind differences.

2.3.4 Initial Conditions

We determine initial conditions for the relativistic case by settingU r = 0 and∂/∂ t = 0 in (2.39), from

which we have

dP
dr

= −ρh
c2

GM
r2

(

1− 2GM
c2r

)−1

. (2.48)

The pressure is thus calculated as a function ofρ , u andP (whereP = (γ −1)ρu). We solve (2.48) using

the same assumptions as in the non-relativistic case (§2.2.3), that is an adiabatic atmosphere such that

P = Kργ . (2.49)

We therefore have

dρ
dr

= − 1
γKα2

[

ρ (2−γ) +
γKρ

c2(γ −1)

]

GM
r2 , (2.50)
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which we solve using a first order (Euler) discretization to obtain a density profile. The pressure may

then be calculated using (2.49), however to ensure that hydrostatic equilibrium is enforced numerically

we solve (2.48) using the same discretization as in the fluid equations, integrating inwards from the outer

boundary conditionP(rmax) = Kρ(rmax)
γ . However in this case the pressure gradient also depends on

the pressure, so we use the pressure calculated from (2.49) to calculate the initial value of the specific

enthalpyh and iterate the solution until converged ([Pn+1 −Pn]/Pn < 10−10). In the black hole case

the resulting pressure differs from that found using (2.49)by ∆P/P ∼ 10−2. We chooseK such that

the central density is of order unity – typically we useK = 10γ/(γ − 1) in the black hole case. Note

that changingK simply changes the amount of matter present in the atmosphere but does not affect the

temperature scaling and does not affect the final results (although it significantly affects the integration

time since it determines the strength of the shock front and the amount of mass to be accelerated).

Initial conditions calculated in this manner for the black hole (R∗/RSch= n/2 = 1.0) and neutron star

(R∗/RSch= 2.5) atmospheres are shown in Figure 2.7. The initial setup reduces to that of Figure 2.2 in

the non-relativistic limit when the same value ofK is used. We set the outer boundary atr/R∗ = 104,

using 1335 radial grid points (again on a logarithmic grid).

2.3.5 Results

The results of a typical (n=2.0) relativistic simulation are shown in Figure 2.8 att = 1000. Again we

observe that the wind structure reaches a quasi-steady state, with the velocity approaching a steady value

at large radii. Note that because the steady state density ishigher than that of the surrounding medium

no wide shock front is observed.

Plotting the mass outflow ratėM = 4πr2ρU r and the relativistic Bernoulli energyErel =
1
2Γ2h2/c2−

1
2c2 (see e.g. Shapiro and Teukolsky 1983) as a function of radius(Figure 2.9), we see that indeed the

structure approaches that of a steady (relativistic) wind (that is, the energy anḋM profiles are flat above

the heating zone). We may thus apply a relativistic steady wind solution with this Bernoulli energy as an

initial value to determine the final velocity and Lorentz factor asr → ∞. Note that we cannot apply a non-

relativistic steady wind solution because although the gravity is non-relativistic, the outflow velocities

are not. As in the non-relativistic case the final wind velocity is determined by the steady Bernoulli

energy, since in this case asr → ∞, Erel → 1
2[(U r)2− c2].

2.3.6 Steady wind solution

Relativistic, steady state (∂/∂ t = 0) winds were first studied by Michel (1972) and extended to include

energy deposition by Flammang (1982). The problem has recently received attention in the context of

neutrino-driven winds in gamma-ray burst models by Pruet etal. (2001) and Thompson et al. (2001). We

proceed in a manner analogous to that of the non-relativistic solution. Setting∂/∂ t = 0 the continuity

(2.22) and momentum (2.23) equations become

1
ρ

∂ρ
∂ r

+
1

U r

∂U r

∂ r
+

2
r

= 0 (2.51)

U r ∂U r

∂ r
+

Γ2c2

ρh
∂P
∂ r

+
GM
r2 = 0 (2.52)
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Figure 2.8: Results of a typical black hole relativistic simulation at t=1000 (where units of time are
the dynamical time at the central object). Quantities shownare the Mach number (v/cs), velocity for
Eulerian observers ( v̄r), heating rate (Λ), internal energy per unit mass (u ≡ utherm), log(density) and
log(pressure). Units of velocity are such thatc =

√
2 and as in the non-relativistic case energy has units

of GM/R∗.

where (2.51) is equivalent to

r2ρU r = const. (2.53)

Combining (2.52) and (2.51) we obtain

1
U r

[

(U r)2− c2Γ2c2
s

hγ

]

∂U r

∂ r
= −c2Γ2

hγ
dc2

s

dr
+

c2Γ2

hγ
2c2

s

r
− GM

r2 , (2.54)

wherec2
s = γP/ρ and(U r)2 ≡ U rU r. From the first law of thermodynamics and (2.52) we derive the

relativistic Bernoulli equation in the form

d
dr

(

1
2

Γ2h2

c2

)

=
hΓ2

c2

dQ
dr

, (2.55)



2.3 Relativistic jets 23

Figure 2.9: The relativistic Bernoulli energyErel = 1
2Γh/c2 − 1

2c2(top) and mass outflow ratėM =

4πr2ρU r (bottom) in the time-dependent relativistic wind solutionwith a reasonably high heating rate
are shown as functions of radius at timet = 1000. In order to match this solution to a steady outflow
solution, the Bernoulli energy is assumed to be constant over the region indicated by the two circles, and
the steady wind solution is computed using initial values atthe point indicated by a cross.

Figure 2.10: The radial profiles of the steady wind r-component of four velocity U r (top panel) and of
the velocity for Eulerian observers v̄r (centre panel) are compared to the time-dependent solution(plotted
every 100 dynamical times) for a typical relativistic calculation for the black hole (n=2.0) case. Units
are such thatc =

√
2 on the velocity plots. Note the excellent agreement between the two solutions.

such that both sides reduce to their non-relativistic expressions asc → ∞. The quantitydQ/dr is the

local heating gradient as in the non-relativistic case. Expanding this equation we find

dc2
s

dr
= (γ −1)

[

dQ
dr

− h
c2Γ2

d
dr

(

1
2
(U r)2

)

− h
c2Γ2

GM
r2

]

. (2.56)
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Combining (2.56) and (2.54) and manipulating terms, we obtain an equation for(U r)2,

d
dr

(U r)2 =
2(U r)2

[(U r)2− c2Γ2c2
s /h]

[

c2Γ2

h
2c2

s

r
− (γ −1)

c2Γ
h

(

Γ
dQ
dr

)

− GM
r2

]

, (2.57)

wherec2
s andh = c2 + c2

s/(γ −1) are given functions of known variables by integration of theBernoulli

equation (2.55), in the form

d
dr

(Γh) = Γ
dQ
dr

, (2.58)

to ensure thath does not appear in the heating term on the right hand side. Theintegration is then

e(r) = Γh = e(r∞)−
∫ r∞

r

{

Γ
dQ
dr

}

dr, (2.59)

and hence

h =
e(r)

Γ
, c2

s = (γ −1)(h− c2). (2.60)

The ‘heating gradient’,ΓdQ/dr, is calculated from the time-dependent solution using

Γ
dQ
dr

(r) =
α(r)Λ(r)

v̄r(r)
, (2.61)

since

Λ ≡ T
ds
dτ

≡ dQ
dτ

= U t
(

∂Q
∂ t

+vr dQ
dr

)

, (2.62)

whereτ is the proper time andU t = Γ/α2. The velocity profile for an Eulerian observer is then calculated

using (2.44) and the final Lorentz factorW∞ using equation (2.45). As in the non-relativistic case we

choose a starting point for the integration above the heating shell and integrate outwards from this point

using a fourth order Runge-Kutta integrator in order to determine the terminal Lorentz factor. The inward

integration (and thus the determination of the steady stateheating gradientΓdQ/dr) is computed only for

consistency. We integrate through the singular point in equation (2.57) by taking a low order integration

with larger steps as this point is approached.

The solution calculated using (2.57) is shown in Figure 2.10plotted against the evolving time-

dependent solution. The profiles are in excellent agreement, verifying the accuracy of the relativistic

calculation and showing that the wind may indeed be described by the steady state solution.

2.3.7 Terminal wind velocities and Lorentz factors as a function of heating rate

In order to compare the relativistic results to those in the Newtonian regime, we define the local canonical

heating rate in a similar manner to the non-relativistic case, that is

Λc(r) =
∆E
∆t

, (2.63)
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Figure 2.11: The terminal r-component of four velocityU r (top panel) and Lorentz factor (bottom panel)
of the wind in the non-relativistic (◦, solid), white dwarf (×, dot-dashed), neutron star (+, dotted) and
black hole (∗, dashed) cases, is plotted as a function of the dimensionless heating rate defined in §2.2.6.
The top panel may be compared with Figure 2.6 in the non-relativistic case.

for some relevant energy∆E and some relevant timescale∆t. As in Section 2.2.6 we take the canonical

energy per unit mass,∆E, to be the energy released locally by bringing to rest a particle of unit mass

which is orbiting in a circular orbit at radiusr. For a particle orbiting in the Schwarzschild metric this

is the difference,∆E, between the energy constants (defined by the timelike Killing vector) of a circular

geodesic at radiusr, and a radial geodesic with zero velocity at radiusr. This implies (see, for example,

Schutz 1985, Chapter 11)

∆E/c2 =
1−2GM/rc2

[1−3GM/rc2]1/2
− [1−2GM/rc2]1/2. (2.64)

In the Newtonian limit, this reduces to the expected value∆E = 1
2v2

φ = GM/2r. We again take the

canonical timescale on which the energy is released to be theorbital timescale at radiusr as measured by

a local stationary observer. For a circular geodesic in the Schwarzschild metric, the azimuthal velocity is
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given in terms of coordinate time,t, by

dφ/dt = Ω = (GM/r3)1/2. (2.65)

This is the same expression as for the angular velocity of an orbiting particle in the Newtonian limit. But

in terms of the proper time,τ , of a local stationary observer we have, from the metric,

dτ/dt = (1−2GM/rc2)1/2, (2.66)

and thusdφ/dτ = Ωo, where

Ω2
o =

GM
r3

[

1− 2GM
rc2

]−1

. (2.67)

Using this, the local canonical heating rate is therefore given by

Λc = ∆E ×Ωo. (2.68)

In the Newtonian limit,r ≫ 2GM/c2, this becomes as expectedΛc ≃ (GM)3/2/2r5/2. As in the non-

relativistic case we use the canonical heating rate derivedabove to define a dimensionless heating rate

〈Λ〉 as an appropriate volume average using equation (2.21).

The final Lorentz factor of the wind plotted as a function of this dimensionless heating rate is given

in the bottom panel of Figure 2.11 in the highly relativistic(black hole), moderately relativistic (neutron

star, equivalent to a broader heating shell further away from a black hole) and non-relativistic (white

dwarf) cases.

We would also like to make a meaningful comparison of the finalwind velocities in units of the

escape velocity from the star. Note that we cannot simply compare the scaled velocities since we are in

effect introducing a ‘speed limit’ in the relativistic solution such that the (scaled) relativistic velocity will

always be slower than in the equivalent non-relativistic solution. Rather, we compare the ‘momentum

per unit mass’, which in the relativistic case is given by thefour velocityU r = dr/dτ (in special relativity

this is given byU r = γvr, whereγ is the Lorentz factor). Scaling this in units of the (Newtonian) escape

velocity from the central object(2GM/R∗)1/2 we can make a useful comparison with the non-relativistic

results in terms of the actual energy input. This velocity isplotted in the top panel of Figure 2.11 against

the dimensionless heating rate and is clearly higher in the relativistic case. The non-relativistic results

correspond to those shown in Figure 2.6.

2.4 Discussion and Conclusions

In this chapter we have considered the injection of energy ata fixed radius into an initially hydrostatic

atmosphere as a simple model of the acceleration process in both non-relativistic and relativistic jets. The

problem is inherently time-dependent since the velocity iszero at the base of the atmosphere. We have

therefore used time-dependent gas dynamics. In order to determine the terminal velocity of the resulting

outflow we have used the fact that if the mass in the outflow is small compared to the initial mass reservoir

then the outflow will reach an approximate steady state. Oncethe gas in the time-dependent solution has
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evolved to a sufficiently large radius we are therefore able to match the solution to a steady-state wind

profile (with a heating term) in order to determine the solution at infinity. The resulting terminal velocities

and corresponding Lorentz factors are shown in Figures 2.6 and 2.11.

The first point to note, from the top panel of Figure 2.11 is that the dimensionless energy (or mo-

mentum) imparted to the gas is clearly larger in the relativistic case. The resulting outflow velocities also

scale linearly with heating rate in this case, whereas in thenon-relativistic case the relative increase in the

outflow velocity becomes smaller as the heating rate becomeslarger. These effects can be understood by

considering the effect of the relativity in imposing a speed-limit on the gas as it travels through the (fixed)

heating shell. In the non-relativistic case, as the gas is accelerated to higher velocities the time spent in

the heating zone also becomes smaller, resulting in the tail-off in the terminal velocity with increasing

heating rate. In the relativistic case, once the gas has beenaccelerated to close to the speed of light, the

time spent in the heating zone remains constant (∼ c) and consequently the total energy imparted to the

outflow scales linearly with dimensionless heating rate〈Λ〉.
From Figure 2.6 we see that a dimensionless heating rate of〈Λ〉 ≃ 17 gives rise to a terminal outflow

velocity of vjet ≃ 2vesc in a Newtonian potential. For the same heating rate, in Figure 2.11, we see that

the ‘neutron star’ wind, for which the heating rate peaks at about 5.2RSch becomes mildly relativistic

(γjet ∼ 2), whereas the ‘black hole’ wind, for which the heating ratepeaks at about 2.1RSch, leads to an

outflow withγjet ≃ 11. Similarly a dimensionless heating rate of〈Λ〉 ≃ 55 gives rise to a terminal velocity

of vjet ≃ 3vesc in the Newtonian case, to an outflow withγjet ∼ 4 in the mildly relativistic case, and to

an outflow withγjet ≃ 31 in the strongly relativistic case. We have already noted (§2.2.6) that although

the exact numerical values here do depend slightly on the exact definition of the dimensionless heating

rate, the basic results remain unchanged. For example, using the Newtonian dimensionless heating rate

(§2.2.6) in the strongly relativistic case gives a Lorentz factor of γjet ≃ 5 for the rate which corresponds

to vjet ≃ 2vesc in the non-relativistic case.

It must be cautioned that this analysis does not assume that all of the physical processes in the jet

acceleration process have been properly represented (for example the process by which the energy is

transferred from rotational energy in the disk into kineticenergy in the outflow is clearly magnetic in

nature), nor that all of these physical processes should be identical between the various classes of jet.

It is evident that more detailed physical models need to be developed before further conclusions can

be drawn. Nevertheless, the generic nature of the analysis presented in this chapter suggests that some

conclusions into the physical processes involved in the jetacceleration process can be drawn.

On the basis of the simple physical models constructed in this chapter, therefore, it seems not un-

reasonable to suggest that the relativistic jets observed in AGN are simply scaled-up versions of their

non-relativistic (YSO) counterparts and that the intrinsic acceleration process is the same in both classes

of object. For this to be the case, two further conditions must also hold. The first is that jet acceleration

must occur close to the central gravitating object, in orderto make use of the speed of light as a limiting

velocity in the black hole case. The second is that, since thedimensionless heating rates required are

much larger than unity, the energy released in the outflow must be imparted to only a small fraction of

the available accreting material.


