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Abstract—In recent years several key advances have been made
in modelling both magnetic fields and turbulence in smoothed
particle hydrodynamics. Solving the equations of magnetohydro-
dynamics (MHD) has proved an ongoing challenge over the last
35 years, but we have recently made a key breakthrough by
developing a robust and safe method for enforcing the divergence-
free condition on the magnetic field, enabling smoothed particle
magnetohydrodynamics simulations with control of divergence
errors and no restrictions on the field geometry. Modelling
turbulence in SPH has benefited from faster algorithms allowing
high resolution calculations capable of resolving the inertial
range, particularly in supersonic flow, though SPH is most
efficient when studying statistics of the density field, suchas
the density PDF. In subsonic flow use of viscosity switches iskey
to reaching high Reynolds numbers, which has been the source
of recent controversy.

I. I NTRODUCTION

Magnetic fields and turbulence are important physical pro-
cesses not only in many areas of astrophysics but also in
Earth-bound applications of smoothed particle hydrodynamics
(SPH). Both of these processes are thought to play a key
role during the formation of stars from the gravitational
collapse of interstellar clouds [17], a problem that SPH was
originally designed for [10], [16] and is very well suited to
modelling because of the ability to adaptively resolve the
many orders of magnitude change in length and timescales
involved. Turbulence itself is a ubiquitous phenomenon that
defies analytic solution, so from the outset requires a numerical
approach in order to model any system it occurs in. Recently
we have made great strides in modelling both magnetic fields
and turbulence using SPH, both of which I will attempt to
outline in this paper.

II. M AGNETIC FIELDS

A. Magnetohydrodynamics

Magnetic fields are usually modelled in the magnetohydro-
dynamics (MHD) approximation, where the equations of fluid
dynamics adopt the form

dρ

dt
= −ρ∇ · v, (1)

dv
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= −1

ρ
∇ ·
[(
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du
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= −P

ρ
∇ · v, (3)

dB

dt
= (B · ∇)v −B(∇ · v), (4)

whereρ is the density,v is the velocity,P is the gas pressure,u
is the specific thermal energy,B is the magnetic field, infinite
electrical conductivity has been assumed,d/dt ≡ ∂/∂t+ (v ·
∇) refers to the comoving (Lagrangian) derivative, and the
equation set is closed by adopting an appropriate equation of
state (e.g.P = (γ − 1)ρu).

B. Smoothed Particle Magnetohydrodynamics

Although an early attempt was made by Gingold & Mon-
aghan [10] to model magnetic stars, Phillips and Monaghan
[25] represented the first systematic attempt to formulate
the MHD equations in SPH, later coined ‘Smoothed Particle
Magnetohydrodynamics’ (SPMHD) by Joe Morris [22]. In
their most basic form the equations are very similar to the
usual SPH equations and, like the SPMHD equations, can
be derived in a self-consistent manner using a variational
principle [37]. Taking full account of a spatially variable
smoothing lengthh, the equations on a given particlea are
given by

ρa =
∑

b

mbWab(ha), (5)

dvia
dt

=
∑

b

mb

[

Sij
a

Ωaρ2a

∂Wab(ha)

∂xja
+

Sij
b

Ωbρ2b

∂Wab(hb)

∂xja

]

,(6)
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where the summations are over neighbouring particles,b =
1..Nneigh, within the kernel radius, the MHD stress tensor is
defined according to

Sij ≡ −
(

P +
1

2

B2

µ0

)

δij +
BiBj

µ0

, (8)

andΩ is a dimensionless correction term resulting from the
smoothing length gradients (see [19], [39]).

C. Removing the tensile instability in SPMHD

Phillips and Monaghan [25] discovered that the momentum-
conserving formulation of the equations of motion (Eq. 6) is
unstable when the magnetic pressure exceeds the gas pressure,
1
2
B2/µ0 > P . The reason for this is both numerical and

physical. The numerical explanation is that in this regime
the overall stress tensor is negative, resulting in a negative
total pressure, which when combined with the negative-definite
sign of the kernel gradient in Eq. 6, results in an attractive
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force between particles along magnetic field lines that causes
them to catastrophically clump together (see [31] for a more
detailed explanation). The physical reason that this occurs in
MHD is related to the presence of magnetic monopole (∇·B)
terms when the equations of motion for MHD are written in
a conservative form. That is, Eq. 2 can be expanded to give

dv

dt
= −∇P

ρ
+

J×B

ρ
+

B∇ ·B
µ0ρ

, (9)

which contains both the physical Lorentz force (whereJ =
(∇ × B)/µ0 is the current density) and anunphysicalterm
proportional to the divergence of the magnetic field. This
‘monopole force’ is attractive and directed along magnetic
field lines, is inevitably present in SPMHD when Eq. 6 is
employed, and is the physical source of the tensile instability
in Lagrangian MHD codes. Thus, the best way to remove the
tensile instability in SPMHD is to explicitly subtract thisterm,
as proposed by [3], [4] by adding a corrective ‘source term’
to Eq. 6 of the form

(

dv

dt

)

corr

= −B∇ ·B
µ0ρ

, (10)

where the key is to discretise∇ · B in the form that it is
used in the momentum equation, i.e., using the symmetric
SPH representation of a first derivative, which in the variable
smoothing length formulation of SPH is given by (e.g. [29],
[31])

∇ ·B
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(11)
With the correction applied in this form, the tensile instability
issue is resolved in SPMHD, with the trade-off being that
momentum is no longer exactly conserved to the extent to
which ∇ · B, discretised via Eq. (11) is non-zero. With the
correction term subtracted, the anisotropic part of the force
(that which produces tension perpendicular to magnetic field
lines) becomes
(
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)

aniso

=
∑

b

mb

[

Bi
aB
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, (12)

which is in the end very similar to the modified anisotropic
force proposed by Morris [22] to remove the SPMHD tensile
instability. This explains why the ‘Morris approach’ and
the ‘source term approach’ give essentially indistinguishable
results on test problems (c.f. [27], [31]).

D. Dissipation terms in SPMHD

The second issue, first considered by [36], was to formulate
artificial dissipation terms for SPMHD, generalising the artifi-
cial viscosity terms used for purely hydrodynamic simulations.
The main requirement for MHD is the addition of an artificial
resistivity term in the induction equation in order to deal with
discontinuities in the magnetic field, in the form

(

dBa

dt

)

diss

= ρa
∑

b

mb

αBv
B
sig

ρ̄2ab
(Ba −Bb) F̄ab, (13)

where

vBsig =
1

2

√

v2A,a + v2A,b; v2A =
B2

µ0ρ
. (14)

and whereαB can be evolved using a switch similar to that
proposed by [23], with [38] suggesting a source term that
responds to magnetic discontinuities of the form

S = max

( |∇ ×B|√
µ0ρ

,
|∇ ·B|√
µ0ρ

)

. (15)

The corresponding term in the thermal energy equation, as well
as the usual artificial viscosity and artificial conductivity terms
for dealing with the hydrodynamic discontinuities (shocksand
contact discontinuities, respectively) are given in [38] and [31].

E. The divergence constraint in SPMHD

The third and most difficult issue, is how to enforce the
∇·B = 0 ‘no monopoles’ constraint in the SPMHD evolution
of the MHD equations. Although one of Maxwell’s equations,
the constraint only enters the MHD equations implicitly as an
initial condition. That is, taking the divergence of the induction
equation in the form

∂B

∂t
= ∇× (v ×B), (16)

gives
∂

∂t
(∇ ·B) = 0, (17)

implying that, if the divergence of the magnetic field is initially
zero, it should remain so for all time. However, this will clearly
not remain true in any numerical code.

1) Source term approach:The 0th order approach is to
ensure that any divergence errors, though present, do not grow.
This is the essence of Powell et al.’s ‘source term approach’
[26], where the induction equation is modified by subtracting
the divergence term, i.e.

∂B

∂t
= ∇× (v ×B)− v(∇ ·B), (18)

which, when expanded out and written with the Lagrangian
time derivative, is identical to our Eq. 4. With this formulation,
divergence errors evolve according to

∂

∂t
(∇ ·B) +∇ · (v∇ ·B) = 0, (19)

which is similar to the continuity equation (Eq. 1) but for the
monopole densityρm ≡ ∇ · B. This implies monopoles are
‘conserved’ by the flow, and furthermore that magnetic flux
through surfaces is conserved even in the presence of non-zero
divergence errors, since

d

dt

∫

(∇ ·B)dV =
d

dt

∮

B · dS = 0. (20)

Powell et al. also proposed subtracting a source term from the
momentum equation, identical to that which we have already
subtracted in SPMHD to remove the tensile instability (see
above).
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However, the source term approach proves insufficient for
the long term evolution of dynamic, 3D problems such as
star formation, where the non-conservation of momentum that
results from subtracting a large divergence error can result in
severe numerical problems, such as stars that ‘explode’ rather
than collapse under gravity.

2) Failure of cleaning and use of the Euler potentials:
Price & Monaghan [38] investigated various approaches to
‘cleaning’ the divergence error in SPMHD, including elliptic
projection methods (based on an approach similar to that
used for solving for the gravitational field) and the hyper-
bolic/parabolic cleaning proposed by Dedner et al. [8]. While
reasonable results were found on simple test problems, noneof
these methods was later found to perform sufficiently well on
realistic, 3D problems. For this reason [32] and [41] turnedto
the ‘Euler potentials’ formulation initially considered by [25],
where the magnetic field is written in the form

B = ∇α×∇β, (21)

with the advantage that the induction equation (Eq. 4) adopts
the trivial form

dα

dt
= 0;

dβ

dt
= 0, (22)

corresponding physically to the advection of magnetic field
lines by Lagrangian particles [42]. Using Eq. 21 the divergence
constraint is satisfied by construction (meaning in practice to
truncation error once the gradient operators are represented by
their SPMHD equivalents). This means that ‘exploding stars’
and the like do not occur, and as a result this formulation
was successfully applied to several problems in star formation
(e.g. [32], [33]) and elsewhere (e.g. [13]). However, the for-
mulation via Euler potentials is overly restrictive, limiting the
geometry of the field to topologically simple forms, excluding
from the outset any dynamo processes and preventing the
inclusion of non-ideal MHD effects such as resistivity in a
self-consistent manner [5]. This means that it is useful only
for a limited range of problems (strictly, where a one-to-one
mapping exists between the initial and final particle distribu-
tion, since Eqs. 21–22 are essentially based on reconstructing
the field at any time based on the initial conditions and the
particle trajectories).

3) The vector potential and other disasters:Price [29]
performed an extensive investigation of the vector potential
B = ∇×A as an alternative to the Euler potentials, containing
similar preventative properties but with no restriction onthe
field geometry and allowing non-ideal MHD effects to be
incorporated in a straightforward manner. The first problem
with this approach is that the evolution equation for the vector
potential in 3D is much more complicated than for the Euler
potentials, given, with an appropriate choice of gauge, by

dA

dt
= −A× (∇× v)− (A · ∇)v,

= −Aj∇vj . (23)

While a simple approach is simply to discretise this equation,
solve B = ∇ × A and use the resultingB in the standard

SPMHD equations, this was found by [29] to contain an
instability related to the evolution ofA (though the origin
was not fully understood). Also, the source term approach
should be unnecessary since the divergence constraint should
be somehow ‘built-in’ to the equations. For this reason, [29]
derived a self-consistent formulation of the vector-potential
based SPMHD equations from a variational principle, where
one uses the discrete operator for the curl and the discrete
representation of Eq. 23 toderive the discrete equations of
motion.

With the curl constructed using the differenced curl opera-
tor, i.e.

Ba = (∇×A)a =
1

ρa

∑

b

mb(Aa −Ab)×∇aWab, (24)

and with similar operators used to discretise Eq. 23, the
resultant equations of motion are given by
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[
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ρ2a
Ja · ∇aWab +

Ab

ρ2b
Jb · ∇aWab

]

, (25)

whereJ is the magnetic current computed using the symmetric
curl operator (the conjugate to 24),

Ja ≡ (∇×B)a
µ0

≡ −ρa
µ0

∑

b

mb

[

Ba

ρ2a
+

Bb

ρ2b

]

×∇aWab.

(26)
These equations are remarkable in showing that it is possible

to self-consistently derive SPMHD equations even in this
quite complicated case, and revealing the symmetry between
the differencing and symmetric operators in SPH, since the
symmetric operator in Eq. 26 directly follows from having
employed the differencing operator in Eq. 24. This is similar
to the usual SPH equations, where the appearance of the
differencing operator for∇ · v in the continuity equation
(i.e., taking the time derivative of Eq. 5) directly leads tothe
symmetric operator for the pressure gradient in the equations
of motion (Eq. 6).

Unfortunately, Eq. 25 was found to be highly unstable to
the tensile instability as soon as3

2
B2/µ0 > P , a much harsher

criterion than for the usual SPMHD equations, and one that
proves difficult to stabilise. Thus [29] concluded that the vector
potential was not a viable approach to SPMHD.

4) Cleaning revisited:Meanwhile, Florian Bürzle and col-
leagues [6], [7] found that simply using the standard SPMHD
equations Eqs. 5–7 with source term correction (Eq. 9) and
artificial resistivity (Eq. 13) could be sufficient for even quite
complicated problems (including the formation of stars from
magnetised clouds), in effect using the artificial resistivity to
control the divergence errors. However, the divergence errors
remain uncomfortably high (of order unity or higher) and can
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Fig. 1. Star formation simulation, showing the gravitational collapse of a magnetised, rotating gas cloud to form a protostar. As the collapse proceeds, the
magnetic field is wound up by the flow and a ‘jet’ of gas is launched at high speed (2–7 km/s). This is the first time we have been able to simulate such
complicated magnetic phenomena with Smoothed Particle Magnetohydrodynamics, made possible by our recent development of a robust method for cleaning
divergence errors associated with the magnetic field.

still present a problem in highly dynamic regions. This, and
the tragic experience of the vector potential, motivated usto
revisit the formulation of hyperbolic/parabolic cleaningby [8],
found to be rather ineffective and somewhat dangerous by [38],
since it could lead under some circumstances to growth rather
than decay of divergence errors. In this scheme, an additional
term is added to the MHD induction equation given by

(

dB

dt

)

clean

= −∇ψ, (27)

whereψ is a new scalar field that is evolved according to

dψ

dt
= c2h(∇ ·B)− ψ

τ
, (28)

which combine to produce a damped wave equation forψ (or
equivalently∇ ·B),

1

c2h

∂2ψ

∂t2
−∇2ψ +

1

c2hτ

∂ψ

∂t
= 0, (29)

meaning that divergence errors will both be propagated in
a wavelike manner at speedch (typically chosen to be the
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maximum speed allowed by the timestep constraint) and decay
on a timescaleτ (chosen to balance spreading and cleaning in
some appropriate manner).

Although the details can be found in Tricco (this proceed-
ings) and in [43], the key idea we employed was to formulate
the cleaning equations Eqs. 27–28 in a conservative manner.
This was found to require use of conjugate SPH operators in
the discrete formulation of the cleaning equations, i.e. ifthe
differencing operator was used to represent∇·B in Eq. 28 then
the symmetric operator was found to be required for∇ψ in
Eq. 27. With this constraint, and with an appropriate choice
of decay timescale, the cleaning was found to be both safe
and effective, effectively solving the divergence problemin
SPMHD in a very simple way. Furthermore, applying this
cleaning was found to improve momentum conservation by
two orders of magnitude compared to the artificial-resistivity-
only approach on one of the main problems of interest,
involving the launch of protostellar jets [43].

F. Protostellar jets with SPMHD

A spectacular demonstration of our newfound ability to
robustly simulate complicated magnetic phenomena by adopt-
ing the new cleaning scheme in SPMHD was given by [40],
modelling the collapse of a magnetised, rotating gas cloud in
a preliminary stage of star formation (that is, to the formation
of the ‘first core’, an initial stall phase during the formation
of a protostar). The results of the calculation, showing the
integrated density along the line of sight, are shown in Fig.1,
and clearly demonstrate the launching of a ‘jet’ of gas due to
the winding up of the magnetic field in the rotating, collapsing
flow. This is the first time that we have been able to reproduce
such phenomena with SPMHD simulations, despite collimated
jets and outflows being widely observed in nature, and opens
the door to a huge range of future possibilities. Thus, after35
years of trying, it seems we finally have a robust and general
approach to solving the equations of MHD in SPH.

III. T URBULENCE

Modelling turbulence is also of key importance for star
formation, since motions in the molecular clouds from which
stars are born are observed to exceed the speed of sound
in these clouds with Mach numbers of up to 20 on the
largest scales. Furthermore, the statistics of the supersonic,
weakly magnetised (super-Alfvénic) turbulence is thought to
determine, amongst other things, the eventual mass distribution
of stars, the morphology of interstellar clouds and perhaps
even the star formation rate (see review by [17]). Thus, in
astrophysics the main interest is in understanding turbulence
at high Mach number, which has received relatively little
attention theoretically and is difficult to address with labora-
tory experiments on Earth. Furthermore, Reynolds numbers
in the interstellar medium are estimated to be∼ 105–106

[9], meaning that direct numerical simulations that resolve
the dissipation scale are as beyond the reach of current
computational power.

A. Supersonic turbulence with SPH

Many of the early numerical studies of turbulence in the
interstellar medium (e.g. [1], [12], [45]) used SPH, mainly
because of the ease with which studies that include self-gravity
could be performed. However, these simulations employed a
relatively low resolution (∼ 200, 000 particles in 3D, c.f. [1],
[45]), making it difficult to make definitive statements re-
garding statistical properties of turbulence such as the power
spectra or Probability Density Functions (PDFs). With the
advent of high resolution grid-based simulations of supersonic,
isothermal turbulence at10243 and beyond [14] (without
self-gravity), the SPH studies came in for some criticism.
For example [24], commenting on the non-self-gravitating
simulations of [1], wrote that

“The complete absence of an inertial range with a
reasonable slope, or with a reasonable dependence
of the slope on the Mach number, makes their
SPH simulations totally inadequate for testing the
turbulent fragmentation model”.

Their criticism was based mainly on comparing the kinetic
energy power spectra obtained in the SPH calculations with
those of the grid based calculations performed by [24], where
it was found that the SPH calculations produced much steeper
power spectra than the grid-based codes (P (k) ∝ k−β where
β = 2.7–2.9 was found from the SPH results compared to
2.0–2.2 in the grid based results).

B. Simulating turbulence at high resolution in SPH

Since it seemed that the main limitation in the SPH calcu-
lations was simply the numerical resolution employed (though
this was by no means clear in the debate between the above
authors), the key element was to develop a new SPH code,
PHANTOM, designed to run this kind of problem efficiently
and at high resolution [15], [34]. The main design choices in
developingPHANTOM were to:

1) Use a simple fixed-grid neighbour finding scheme in
place of a treecode for these kind of problems

2) Rewrite the basic SPH algorithm so that it can be
performed with one global loop over the particles

3) Use a cache of trial neighbour positions and neighbour
lists, shared between all particles in a cell

Implementing (2) simply involves a slight modification to
the artificial viscosity terms, such that the SPH equations of
motion could be written in the form

dva

dt
=
∑

b

mb

[

Pa + qa
Ωaρ2a

∂Wab(ha)

∂ra
+
Pb + qb
Ωbρ2b

∂Wab(hb)

∂ra

]

,

(30)
whereqa is the artificial viscosity between the pair using the
density and other quantities evaluated at particlea, given by

qa =

{

1
2
αaρavsig,a|vab · r̂ab|, vab · r̂ab < 0

0 vab · r̂ab ≥ 0
(31)

wherevab ≡ va − vb and the signal velocity ata is given by

vsig,a = cs,a + βvisc|vab · r̂ab| (32)
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with the corresponding expressions at particleb. This is
essentially the same as the formulation of artificial viscosity
given in [18] but with a different symmetrisation of the density
and signal velocity terms.

With this minor modification to the SPH algorithm, it is
possible to compute the density and equations of motion in a
single, global loop over the particles (but with several loops
over the neighbour list for each particle). This proceeds as
follows:

1) The loop proceeds over all grid cells or ‘nodes’, finding
and caching a shared trial neighbour list for each cell

2) For each particle in the cell, the density is calculated
on a particlea by finding all neighbours withinha
(c.f. Eq. 5). This may need to be iterated several times in
order to solve forha andρa self-consistently (c.f. [39])
but this is computationally efficient since since the
neighbour list can be cached and re-used while setting h
(to avoid multiple neighbour finds when h increases one
can simply search to a slightly larger radius than strictly
necessary in the first instance).

3) Using the same neighbour list, the first term in Eq. 30
(involving Pa/ρ

2
a) can be computed, with the force term

simultaneouslygiven to all neighbouring particles, thus
incrementally computing the second term in Eq. 30 on
the neighbours.

The advantage of the above is that only one neighbour finding
procedure is invoked, which is the key bottleneck in most SPH
codes. Also, parallelisation is relatively straightforward, since
it simply involves splitting the main loop into chunks to be
handled by each processor.

With the algorithm above,PHANTOM was benchmarked to
around an order of magnitude faster than standard tree-based
SPH codes for turbulence problems [11], thus solving one of
the main issues with studying turbulence using SPH.

C. A comparison between SPH and grid-based methods on
driven, supersonic, isothermal turbulence

In [34] we set out to perform a detailed comparison
study between SPH (usingPHANTOM) and a grid-based code
(FLASH) on the statistics of supersonic, isothermal turbulence,
driven artificially in Fourier space and supplying energy con-
tinuously on large scales, such that a statistical steady state
would develop. The advantage of performing a comparison of
driven turbulence is that the initial conditions are completely
trivial for both codes, unlike for decaying turbulence where
it is necessary to start from a pre-evolved initial condition
computed with one of the codes [11]. The comparison involved
performing calculations at 3 different resolutions,1283, 2563

and 5123 particles with both grid and SPH codes. Since the
physical Reynolds numbers are high and supersonic turbulence
is in any case dominated by shock dissipation rather than
Navier-Stokes viscosity, the calculations were performedin
both codes applying only shock viscosity (i.e., artificial rather
than physical viscosity in SPH).
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Fig. 2. Time-averaged kinetic energy power spectra, compensated byk2,
from a comparison between grid and SPH codes on the statistics of driven,
supersonic, isothermal turbulence at Mach 10 [34]. For power spectra, similar
results are obtained when the number of particles is similarto the number of
grid cells.
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Fig. 3. Time-averaged density PDFs from the Mach 10 turbulence com-
parison. SPH obtains converged results in the PDF using& 2563 particles,
resolving maximum densities at this resolution that would only be resolved
by the grid code at this Mach number using& 1024

3 grid cells.

The main outcome of the study in [34] was that, for
volumetric quantities like the kinetic energy power spectrum,
comparable results were obtained between codes when the
number of particles is similar to the number of grid cells
(Fig. 2). This indicated that, indeed, the disagreement between
[1] and [24] was simply because the SPH calculations were
performed at a much lower resolution than the grid-based sim-
ulations. In this respect, SPH is not the most efficient technique
for studying power spectra, since even withPHANTOM the
SPH simulations were around an order of magnitude slower
than the grid simulations withnpart = ncells.

The advantage of SPH, however, is that the resolution is
automatically placed in the density field. This means that the
density PDF is much better sampled with SPH than with a
grid-based code, particularly at the high density end whichis
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most relevant to star formation. In particular, the maximum
density resolved by SPH using1283 particles was found to be
similar to that resolved by the grid using5123 grid cells, and
the time-averaged PDF is converged in SPH using& 2563

particles but remains unconverged in the grid code even at
5123 (Fig. 3), implying that for studying the PDF that SPH
is around an order of magnitude more efficient in terms of
computational cost. This means that SPH is a useful tool
for studying the statistics of the density field in supersonic
turbulence, e.g. studying the relationship between the density
variance and the Mach number in supersonic flow that is
assumed in several analytic star formation models [35].

D. SPH—grid comparisons at low Mach number

For subsonic flow no equivalent comparison has been
performed, although recent work in 2D has compared SPH
results to both analytic theory and experimental results [21],
[44]. To this end [2] attempted (unsuccessfully) to extend
the comparison performed in [34] to the subsonic regime.
However, they found strong disagreement in the subsonic
regime, finding that the SPH power spectra showed essentially
no power-law inertial range and were far too steep even at
low k, implying that “SPH fails quite badly in the subsonic
regime”. In the initial preprint posted on the arXiv server
this was attributed to “large errors in SPH’s gradient estimate
and associated subsonic velocity noise”. The fatal flaw in
their initial study, pointed out in a refereed response [30]
(that, somewhat backwardly, appeared in print before the final
version of the paper itself) was that no attempt was made
to control the viscosity in their SPH calculations, simply
using a standard artificial viscosity withα = 1. Worse still,
for a comparison of subsonic turbulence, the initial preprint
contained no mention whatsoever of the Reynolds number,
neither to estimate it nor fix its value, somewhat critical inthe
subsonic regime since it is the main dimensionless parameter
characterising the flow.

It is straightforward to estimate the Reynolds number in
SPH calculations, since the artificial viscosity terms can be
directly translated into their physical equivalents, giving a
shear and bulk viscosities coefficients of (e.g. [15], [20])

ν ≈ 1

10
αvsigh; ζ ≈ 1

6
αvsigh, (33)

where α is the artificial viscosity parameter andvsig is
the signal velocity used in the artificial viscosity term. The
corresponding Reynolds number is thus given by

Re ≡
V L

ν
=

10

α
ML

h
, (34)

whereM is the Mach number,L/h is the ratio of the box
size to the smoothing length andd is the number of spatial
dimensions.

It is easy to show that naively employingα = 1 will lead
to very low Reynolds numbers in the subsonic regime even at
high resolution (Eq. 34 givesRe ≈ 600 with 2563 particles
at the Mach number employed by [2]). The result is that
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k
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)
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Fig. 4. Time-averaged kinetic energy power spectra (compensated byk5/3)
in calculations of subsonic (M ≈ 0.3) isothermal, compressible turbulence,
computed using SPH at 3 different resolutions using a viscosity switch to
obtain higher Reynolds numbers than in the [2] calculations. A small inertial
range with a Kolmogorovk−5/3 slope is clearly evident (horizontal in this
figure). See [30].

oneshould not expectan inertial range at such low Reynolds
numbers. Fortunately it is straightforward to reduce the vis-
cosity since there are no strong shocks in the calculations.
Thus [30] demonstrates that a Kolmogorov-like spectrum is
easily recoverable by simply using standard viscosity switches
[23] (Fig. 4). Nevertheless, in the published version of their
paper, responding in turn to [30], the authors maintain their
argument that SPH is still somehow fundamentally flawed,
despite the fact that, once the Reynolds number is sufficiently
high, a Kolmogorov-spectrumcan clearly be reproduced in
spite of such ‘fundamental’ difficulties. The argument is yet
to be resolved.

IV. CONCLUSION

In summary, we have recently made key advances in
modelling both magnetic fields and turbulence in SPH. For
magnetic fields, the most important advance is the recent
development of a robust divergence cleaning algorithm for
SPMHD [43], enabling for the first time simulations of com-
plex magnetically-driven phenomena such as the launch of
collimated jets during the formation of stars. In modelling
turbulence, the most important aspects appear to be employing
a high numerical resolution (current simulations employ up
to 5123 particles) together with viscosity switches in order
to reach sufficiently high Reynolds numbers that a scale-free
inertial range can develop.
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