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Abstract—In recent years several key advances have been madewherep is the densityy is the velocity,P is the gas pressure,
in modelling both magnetic fields and turbulence in smoothed s the specific thermal energh is the magnetic field, infinite
particle hydrodynamics. Solving the equations of magnetojdro- electrical conductivity has been assumegdt = 9/9t + (v -

dynamics (MHD) has proved an ongoing challenge over the last . . L
35 years, but we have recently made a key breakthrough by V) refers to the comoving (Lagrangian) derivative, and the

developing a robust and safe method for enforcing the divergnce- €quation set is closed by adopting an appropriate equation o
free condition on the magnetic field, enabling smoothed paitle state (e.g.P = (v — 1)pu).

magnetohydrodynamics simulations with control of divergace

errors and no restrictions on the field geometry. Modelling B. Smoothed Particle Magnetohydrodynamics

turbulence in SPH has benefited from faster algorithms alloving . )
high resolution calculations capable of resolving the inefal Although an early attempt was made by Gingold & Mon

range, particularly in supersonic flow, though SPH is most aghan [10] to model magnetic stars, Phillips and Monaghan
efficient when studying statistics of the density field, sucras [25] represented the first systematic attempt to formulate
the density PDF. In subsonic flow use of viscosity switches key the MHD equations in SPH, later coined ‘Smoothed Particle
to reaching high Reynolds numbers, which has been the source Magnetohydrodynamics’ (SPMHD) by Joe Morris [22]. In
of recent controversy. their most basic form the equations are very similar to the
. INTRODUCTION usual SPH equations and, like the SPMHD equations, can
be derived in a self-consistent manner using a variational
plrr'\nciple [37]. Taking full account of a spatially variable

cesses not only in many areas of astrophysics but also thing lenaths. th i . ficle
Earth-bound applications of smoothed particle hydrodyinam Swgr? b;ng engtm, the equations on a given partideare

(SPH). Both of these processes are thought to play a k%y
role durmg-the formation of stars from the gravitational , — ZmbWab(ha), (5)
collapse of interstellar clouds [17], a problem that SPH was b

Magnetic fields and turbulence are important physical pr

originally designed for [10], [16] and is very well suited to v Sii Wy (ha) S oW (hs)
modelling because of the ability to adaptively resolve the—2 = Zmb ) s “bj 4 Qb 5 “bj b (6)
many orders of magnitude change in length and timescaleéit b aPa  Oxa bPy  Ora
involved. Turbulence itself is a ubiquitous phenomenort thadu, P, _

defies analytic solution, so from the outset requires a nisaler dt  Q,p?2 zb: mo(Va = V) - VWWa (), (")

approach in order to model any system it occurs in. Recently _ ) ) )

we have made great strides in modelling both magnetic fiely§€re the summations are over neighbouring partidies;,
and turbulence using SPH, both of which | will attempt td--Vucigh, Within the kernel radius, the MHD stress tensor is
outline in this paper. defined according to

2 i RJ
Il. MAGNETIC FIELDS S = _ (p+ lB_) 59 4 b BJ7 (8)
A. Magnetohydrodynamics 2 o

Ho
Magnetic fields are usually modelled in the magnetohydrgndQ i_S a dimensionlgss correction term resulting from the
dynamics (MHD) approximation, where the equations of quiamoOthIng length gradients (see [19], [39]).

dynamics adopt the form C. Removing the tensile instability in SPMHD

dp — _pV.-v ) Phillips and Monaghan [25] discovered that the momentum-
dt ’ conserving formulation of the equations of motion (Eg. 6) is
dv _lv . [(P n 13_2) I ﬁ] ) unstable when the magnetic pressure exceeds the gas gressur
a p 1o po |’ 1B?/uy > P. The reason for this is both numerical and
du P physical. The numerical explanation is that in this regime
ar ’;V'V’ (3) the overall stress tensor is negative, resulting in a negati
dB total pressure, which when combined with the negative-defin

5 = BV)v-B(V.v), (4) sign of the kernel gradient in Eq. 6, results in an attractive
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force between particles along magnetic field lines that eauavhere
them to catastrophically clump together (see [31] for a more 2
. . . . . B 1 2 2 2 B
detailed explanation). The physical reason that this acour Usig = 5/ V4,a V4 VA = ﬂ' (14)
MHD is related to the presence of magnetic monop®leB) . . 0 o
terms when the equations of motion for MHD are written i@nd Whereaz can be evolved using a switch similar to that

a conservative form. That is, Eq. 2 can be expanded to giveroposed by [23], with [38] suggesting a source term that
dv vP JxB N BV.B o responds to magnetic discontinuities of the form

[ T § = max (LXB',—'V'B'). (15)
which contains both the physical Lorentz force (whdre= VvHop  /Hop

(V x B)/uo is the current density) and amphysicalterm The corresponding term in the thermal energy equation, #s we
proportional to the divergence of the magnetic field. Thigs the usual artificial viscosity and artificial conductivigrms
‘monopole force’ is attractive and directed along magnetigr dealing with the hydrodynamic discontinuities (shoeksl

field lines, is inevitably present in SPMHD when Eq. 6 igontact discontinuities, respectively) are given in [38J1§31].
employed, and is the physical source of the tensile instabil

in Lagrangian MHD codes. Thus, the best way to remove tife The divergence constraint in SPMHD
tensile instability in SPMHD is to explicitly subtract thisrm, The third and most difficult issue, is how to enforce the
as proposed by [3], [4] by adding a corrective ‘source ternv. B = 0 ‘no monopoles’ constraint in the SPMHD evolution
to Eq. 6 of the form of the MHD equations. Although one of Maxwell’'s equations,
dv BV B the constraint only enters the MHD equations implicitly as a
(5) o = wop (10) initial condition. That s, taking the divergence of theuration

ion in the f
where the key is to discretis¥ - B in the form that it is equation in the form
used in the momentum gquatjoi_ne.,_ using_the_ symmet_ric oB =V x (vxB), (16)
SPH representation of a first derivative, which in the vdeab ot
smoothing length formulation of SPH is given by (e.g. [29ives
[31]) 9

_ ot (V-B) =0, (17)
V. B B OWa(he) Bl 0Wa(hy)
- Z b 2 j 2 j
Pa 3 Qap? 02, Qp;, 02,

; implying that, if the divergence of the magnetic field isiislity
(11) zero, it should remain so for all time. However, this will @ity
. . o Lo not remain true in any numerical code.

With the correction applied in this form, the tensile insliab y

issue is resolved in SPMHD, with the trade-off being thait%l) Source term approachThe Oth order approach is to

) nsure that any divergence errors, though present, do owt gr
momentum is no longer exactly conserved to the extent y g gnp g

: : . . : ; is is th n f Powell I’s ‘sour rm roach
which V - B, discretised via Eqg. (11) is non-zero. With th S Is the essence of Powell et al.s source term approac

) . . 26], where the induction equation is modified by subtragtin
correction term subtracted, the anisotropic part of thae:efortpe divergence term, i.e.

(that which produces tension perpendicular to magnetid fie
lines) becomes 9B _ o, (v x B)— v(V-B), (18)

, o o ot
dv? B!BI — B!B} | 0Wa(h , . . .
(%) = E my | —2 ;2 5 b0 bg b), (12) which, when expanded out and written with the Lagrangian
aniso b bPh Ia time derivative, is identical to our Eq. 4. With this formtiéa,

which is in the end very similar to the modified anisotropidivergence errors evolve according to
force proposed by Morris [22] to remove the SPMHD tensile P
instability. This explains why the ‘Morris approach’ and a1

the ‘source term approach’ give essentially indistingaidh
bp g y g which is similar to the continuity equation (Eg. 1) but foeth

results on test problems (c.f. [27], [31)- monopole density,, = V - B. This implies monopoles are

D. Dissipation terms in SPMHD ‘conserved’ by the flow, and furthermore that magnetic flux
The second issue, first considered by [36], was to formuldtrough surfaces is conserved even in the presence of ron-ze

artificial dissipation terms for SPMHD, generalising théfar divergence errors, since

cial viscosity terms used for purely hydrodynamic simulas. d r d

The main requirement for MHD is the addition of an artificial 3 | (V- BV =4 }{B -dS =0. (20)

L ) ) ) o . dt
resistivity term in the induction equation in order to deéthw .
discontinuities in the magnetic field, in the form Powell et al. also proposed subtracting a source term fr@am th

momentum equation, identical to that which we have already

dBa 043123 — . i . -
( — ) _ Pazmb 9 (B, —By) Fy, (13) Subtracted in SPMHD to remove the tensile instability (see

(V-B)+V.(vV-B) =0, (19)

diss b Pab above).
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However, the source term approach proves insufficient fSPMHD equations, this was found by [29] to contain an
the long term evolution of dynamic, 3D problems such dastability related to the evolution oA (though the origin
star formation, where the non-conservation of momenturn theas not fully understood). Also, the source term approach
results from subtracting a large divergence error can r@sul should be unnecessary since the divergence constrainkdshou
severe numerical problems, such as stars that ‘explodeeratbe somehow ‘built-in’ to the equations. For this reason] [29
than collapse under gravity. derived a self-consistent formulation of the vector-ptitdn

2) Failure of cleaning and use of the Euler potentials: based SPMHD equations from a variational principle, where
Price & Monaghan [38] investigated various approaches tme uses the discrete operator for the curl and the discrete
‘cleaning’ the divergence error in SPMHD, including eliipt representation of Eq. 23 tderive the discrete equations of
projection methods (based on an approach similar to thabtion.
used for solving for the gravitational field) and the hyper- With the curl constructed using the differenced curl opera-
bolic/parabolic cleaning proposed by Dedner et al. [8]. M/hitor, i.e.
reasonable results were found on simple test problems, aione 1
these methods was later found to perform sufficiently well onB, = (V x A), = — Zmb(Aa —Ap) x VoWap, (24)
realistic, 3D problems. For this reason [32] and [41] turted Pa =

the ‘Euler potentials’ formulation initially considered f25], and with similar operators used to discretise Eq. 23, the

where the magnetic field is written in the form resultant equations of motion are given by
B =VaxVg, (21) v, a_% 2 _% 2
with the advantage that the induction equation (Eq. 4) adopdt zb:mb 02 2 ValWab
the trivial form d 45 1 B B,
« a
— =0 - = 22 - — m —+— ) [(As — A xV}VaWa
a0 w Y (22) Ko 5 b{<p3 p?) : )V '
corresponding physically to the advection of magnetic field A, A,
lines by Lagrangian particles [42]. Using Eq. 21 the divexge - Z my [p—QJa “VaWap + FJb : VaWab] ) (25)
b a b

constraint is satisfied by construction (meaning in practe
truncation error once the gradient operators are repreddayt whereJ is the magnetic current computed using the symmetric
their SPMHD equivalents). This means that ‘exploding $targurl operator (the conjugate to 24),
and the like do not occur, and as a result this formulation (V x B) B B
was successfully applied to several problems in star fdonat J, = ~———’¢ = _pe Zmb [_2‘1 + _2”} X VaWap.
(e.g. [32], [33]) and elsewhere (e.g. [13]). However, the fo Ho Ho = a b
mulation via Euler potentials is overly restrictive, limnig the (26)
geometry of the field to topologically simple forms, excigli T hese equations are remarkable in showing that it is passibl
from the outset any dynamo processes and preventing tReself-consistently derive SPMHD equations even in this
inclusion of non-ideal MHD effects such as resistivity in &uite complicated case, and revealing the symmetry between
self-consistent manner [5]. This means that it is usefuy onihe differencing and symmetric operators in SPH, since the
for a limited range of problems (strictly, where a one-teonSymmetric operator in Eq. 26 directly follows from having
mapping exists between the initial and final particle distsi €mPployed the differencing operator in Eq. 24. This is simila
tion, since Egs. 21-22 are essentially based on recorisguct© the usual SPH equations, where the appearance of the
the field at any time based on the initial conditions and tilifferencing operator forv - v in the continuity equation
particle trajectories). (i.e., taking the time derivative of Eq. 5) directly leadsth®
3) The vector potential and other disasterrice [29] Symmetric operator for the pressure gradient in the egusitio
performed an extensive investigation of the vector poantiof motion (Eg. 6).
B = Vx A as an alternative to the Euler potentials, containing Unfortunately, Eq. 25 was found to be highly unstable to
similar preventative properties but with no restriction tie  the tensile instability as soon gs3% /o > P, a much harsher
field geometry and allowing non-ideal MHD effects to pé&riterion than for the usual SPMHD equations, and one that
incorporated in a straightforward manner. The first probleRfoves difficult to stabilise. Thus [29] concluded that tieetor
with this approach is that the evolution equation for thetwec Potential was not a viable approach to SPMHD.
potential in 3D is much more complicated than for the Euler 4) Cleaning revisited:Meanwhile, Florian Burzle and col-
potentials, given, with an appropriate choice of gauge, by leagues [6], [7] found that simply using the standard SPMHD
dA equations Egs. 5-7 with source term correction (Eq. 9) and
il —A X (Vxv)—(A-V)v, artificigl resistivity (Eqg. 1_3) cogld be sufficier_n for evenitg
L Aivy (23) complicated problems (including the formation of stararfro
' magnetised clouds), in effect using the artificial resistivo
While a simple approach is simply to discretise this equmatiocontrol the divergence errors. However, the divergencererr
solve B = V x A and use the resultin@ in the standard remain uncomfortably high (of order unity or higher) and can
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Fig. 1. Star formation simulation, showing the gravitatiboollapse of a magnetised, rotating gas cloud to form aoptat. As the collapse proceeds, the
magnetic field is wound up by the flow and a ‘jet’ of gas is lawtthat high speed (2-7 km/s). This is the first time we have beknta simulate such
complicated magnetic phenomena with Smoothed Particlenktagydrodynamics, made possible by our recent developofenrobust method for cleaning
divergence errors associated with the magnetic field.

still present a problem in highly dynamic regions. This, andhere« is a new scalar field that is evolved according to
the tragic experience of the vector potential, motivatedaus g "
revisit the formulation of hyperbolic/parabolic cleanibg[8], — = (V-B)— =, (28)
. . dt T

found to be rather ineffective and somewhat dangerous dy [38 . ) ,

since it could lead under some circumstances to growth ratiféich combine to produce a damped wave equation/fdor
than decay of divergence errors. In this scheme, an adeltiofauivalentlyV - B),
term is added to the MHD induction equation given by 1 9%y

— -V +

1 0p
=P Y, (29)

it ot

dB . 27) meaning that divergence errors will both be propagated in
dt / ean o ’ a wavelike manner at speeq (typically chosen to be the
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maximum speed allowed by the timestep constraint) and ded&ay Supersonic turbulence with SPH

on a timescalg (chosen to balance spreading and cleaning in Many of the early numerical studies of turbulence in the
some appropriate manner). interstellar medium (e.g. [1], [12], [45]) used SPH, mainly
Although the details can be found in Tricco (this proceegrecause of the ease with which studies that include selfitgra
ings) and in [43], the key idea we employed was to formulatgu|d be performed. However, these simulations employed a
the cleaning equations Egs. 27-28 in a conservative manng[atively low resolution £ 200,000 particles in 3D, c.f. [1],
This was found to require use of conjugate SPH operators|is]) making it difficult to make definitive statements re-
the discrete formulation of the cleaning equations, i.¢hd garding statistical properties of turbulence such as theepo
differencing operator was used to represénB in Eq. 28then gpectra or Probability Density Functions (PDFs). With the
the symmetric operator was found to be required¥ap in  advent of high resolution grid-based simulations of supsirs
Eqg. 27. With this constraint, and with an appropriate choiGggthermal turbulence at0243 and beyond [14] (without
of decay timescale, the cleaning was found to be both safgf.gravity), the SPH studies came in for some criticism.

and effective, effectively solving the divergence problém por example [24], commenting on the non-self-gravitating
SPMHD in a very simple way. Furthermore, applying thigimylations of [1], wrote that

cleaning was found to improve momentum conservation by
two orders of magnitude compared to the artificial-resistiv
only approach on one of the main problems of interest,
involving the launch of protostellar jets [43].

“The complete absence of an inertial range with a
reasonable slope, or with a reasonable dependence
of the slope on the Mach number, makes their
SPH simulations totally inadequate for testing the
F. Protostellar jets with SPMHD .turb.u-le-nt fragmentation mgdel”. ] o
) .. Their criticism was based mainly on comparing the kinetic

A spectacular demonstration of our newfound ability 1@erqy power spectra obtained in the SPH calculations with
robustly simulate complicated magnetic phenomena by adopi,qe of the grid based calculations performed by [24], @her
ing the new cleaning scheme in SPMHD was given by [40}, 45 found that the SPH calculations produced much steeper
modelling the collapse of a magnetised, rotating gas cloud Bower spectra than the grid-based codB&k) o« k—* where

a preliminary stage of star formation (that is, to the foriorat 3 = 2.7-2.9 was found from the SPH results compared to
of the “first core’, an initial stall phase during the forn@ati o 4 5 9 in the grid based results).

of a protostar). The results of the calculation, showing the

integrated density along the line of sight, are shown in Ejg. B. Simulating turbulence at high resolution in SPH

and clearly demonstrate the launching of a ‘jet’ of gas due toSince it seemed that the main limitation in the SPH calcu-
the winding up of the magnetic field in the rotating, collaygsi |ations was simply the numerical resolution employed (giou
flow. This is the first time that we have been able to reprodugifis was by no means clear in the debate between the above
such phenomena with SPMHD simulations, despite collimatggthors), the key element was to develop a new SPH code,
jets and outflows being widely observed in nature, and opepsanTom, designed to run this kind of problem efficiently

the door to a huge range of future possibilities. Thus, &fer and at high resolution [15], [34]. The main design choices in
years of trying, it seems we finally have a robust and genetgvelopingPHANTOM were to:

approach to solving the equations of MHD in SPH. 1) Use a simple fixed-grid neighbour finding scheme in
place of a treecode for these kind of problems

2) Rewrite the basic SPH algorithm so that it can be
Modelling turbulence is also of key importance for star performed with one global loop over the particles

formation, since motions in the molecular clouds from which 3) Use a cache of trial neighbour positions and neighbour

stars are born are observed to exceed the speed of sound lists, shared between all particles in a cell

in these clouds with Mach numbers of up to 20 on the |mplementing (2) simply involves a slight modification to
largest scales. Furthermore, the statistics of the supersothe artificial viscosity terms, such that the SPH equations o
weakly magnetised (super-Alfvénic) turbulence is thaumh motion could be written in the form

determine, amongst other thlngs, the eventual mass digtib dv, Pyt qo OWa(ha) Py + gy OWas(h)

of stars, the morphology of interstellar clouds and perhapscg = Zmb { a2 3 0.7 3 ,
even the star formation rate (see review by [17]). Thus, in b aPa Ta bPp Ta
astrophysics the main interest is in understanding turtogle ) e . . (.30)

at high Mach number, which has received relatively lityd/hereq. is the artificial viscosity between the pair using the
attention theoretically and is difficult to address with ded- density and other quantities evaluated at pariclgiven by
tory experiments on Earth. Furthermore, Reynolds numbers B %aapavsiwwab “Tapl, Vap - Tap <0
in the interstellar medium are estimated to be 10°-10° a { 0 Vb - Tap > 0
9], meaning that direct numerical simulations that resolv _ : ; o
Eh]e dissipa’fci]on scale are as beyond the reach of currgvn erevay = va — v, and the signal velocity at is given by
computational power. Usig,a = Cs,a + Buvisc|Vab - Fab] (32)

IIl. TURBULENCE

(31)
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with the corresponding expressions at partiéle This is o ’F L ' I_
essentially the same as the formulation of artificial visgos 2 15F — SPH, 512} .
given in [18] but with a different symmetrisation of the dips Lgo : - gid, 512} =
and signal velocity terms. - , . ,
With this minor modification to the SPH algorithm, it is ir - ‘ ‘ ‘f
possible to compute the density and equations of motion in a§ 1sE SPH. 2567 E
single, global loop over the particles (but with severalpso L;,J E grid, 256 TNl 3
over the neighbour list for each particle). This proceeds as = ! o D ‘\ﬁf:
follows: L2F T T A
1) The loop proceeds over all grid cells or ‘nodes’, finding é 15E SPH, 1283 3
and caching a shared trial neighbour list for each cell L;:o - grid, 128° }
2) For each particle in the cell, the density is calculated =~ ' T\ E

L L L L L P
on a particlea by finding all neighbours withina, 10 102
(c.f. Eq. 5). This may need to be iterated several times in
order to solve forh, andp, self-consistently (c.f. [39]) Fig. 2. Time-averaged kinetic energy power spectra, cosgied byk?,

but this is computationally efficient since since thgom a comparison between grid and SPH codes on the statistidriven,
ersonic, isothermal turbulence at Mach 10 [34]. For papectra, similar

. . . .S
neighbour list can be cached and re-used while Semngtﬁults are obtained when the number of particles is sirtlahe number of
(to avoid multiple neighbour finds when h increases orggd cells.

can simply search to a slightly larger radius than strictly
necessary in the first instance). e B I S S T
3) Using the same neighbour list, the first term in Eq. 30 03 - A
(involving P, /p?) can be computed, with the force term

simultaneoushgivento all neighbouring particles, thus — SPH, 512}

i ; ; — — SPH, 256}

mcrem_entally computing the second term in Eq. 30 on ~ 02l T SpH g ]

the neighbours. g r — grid, 5123 ]
The advantage of the above is that only one neighbour finding £ L - gijfggj ]

procedure is invoked, which is the key bottleneck in most SPH &
codes. Also, parallelisation is relatively straightfordiasince
it simply involves splitting the main loop into chunks to be
handled by each processor.

With the algorithm abovepHANTOM was benchmarked to 0F —
around an order of magnitude faster than standard treatbase S

. -10 -5 0 5

SPH codes for turbulence problems [11], thus solving one of In (0/00)
the main issues with studying turbulence using SPH.

Fig. 3. Time-averaged density PDFs from the Mach 10 turlmdecom-

. . parison. SPH obtains converged results in the PDF ugjr2f6° particles,
C. A comparison between SPH and grid-based methods @&biving maximum densities at this resolution that woutdlyde resolved

driven, supersonic, isothermal turbulence by the grid code at this Mach number usiagl10243 grid cells.

In [34] we set out to perform a detailed comparison
study between SPH (usirgHANTOM) and a grid-based code
(FLASH) on the statistics of supersonic, isothermal turbulence, The main outcome of the study in [34] was that, for
driven artificially in Fourier space and supplying energy-co volumetric quantities like the kinetic energy power spectr
tinuously on large scales, such that a statistical steaalg stcomparable results were obtained between codes when the
would develop. The advantage of performing a comparison fimber of particles is similar to the number of grid cells
driven turbulence is that the initial conditions are congle (Fig. 2). This indicated that, indeed, the disagreementeen
trivial for both codes, unlike for decaying turbulence waer[1] and [24] was simply because the SPH calculations were
it is necessary to start from a pre-evolved initial conditioperformed at a much lower resolution than the grid-based sim
computed with one of the codes [11]. The comparison involvedations. In this respect, SPH is not the most efficient temins
performing calculations at 3 different resolutiongg?, 256 for studying power spectra, since even withiANTOM the
and 5123 particles with both grid and SPH codes. Since th8PH simulations were around an order of magnitude slower
physical Reynolds numbers are high and supersonic turbelethan the grid simulations with,.,: = nceiis-
is in any case dominated by shock dissipation rather thanThe advantage of SPH, however, is that the resolution is
Navier-Stokes viscosity, the calculations were perfornmed automatically placed in the density field. This means that th
both codes applying only shock viscosity (i.e., artificialher density PDF is much better sampled with SPH than with a
than physical viscosity in SPH). grid-based code, particularly at the high density end wisch
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most relevant to star formation. In particular, the maximum
density resolved by SPH usin@s? particles was found to be

similar to that resolved by the grid usirig 23 grid cells, and .
the time-averaged PDF is converged in SPH usi@56> 10 |
particles but remains unconverged in the grid code even at i
5123 (Fig. 3), implying that for studying the PDF that SPH 2
is around an order of magnitude more efficient in terms of E:
computational cost. This means that SPH is a useful tool 102 |
for studying the statistics of the density field in supersoni :
turbulence, e.g. studying the relationship between theitden

variance and the Mach number in supersonic flow that is
assumed in several analytic star formation models [35]. 0% \ Vo

D. SPH—grid comparisons at low Mach number 10 M

For subsonic flow no equwale_nt comparison has be%&. 4. Time-averaged kinetic energy power specira (cosgied byk3/3)
performed, although recent work in 2D has compared SRicalculations of subsonicl( ~ 0.3) isothermal, compressible turbulence,
results to both analytic theory and experimental resultg, [2 Compufﬁ_dhusmg SPE at 3 %iffeferf:t fesowti?fgls UISinlg a ViECGTIN_itCh _tOI

. tain higher Reyno S numbers than in the calculatignsmall inertial
[44]' To th'_s end [2] attempted (unsucceSSfu”y) _tO eXt_e nge with a Kolmogorow—5/3 slope is clearly evident (horizontal in this
the comparison performed in [34] to the subsonic regimgyure). See [30].
However, they found strong disagreement in the subsonic
regime, finding that the SPH power spectra showed essgntiall

no power-law inertial range and were far too steep even at

low &, implying that “SPH fails quite badly in the subsonic®ne should not expecmr_1 i_nertial_range at such low Reynold_s
regime”. In the initial preprint posted on the arXiv servepumbers. Fortunately it is straightforward to reduce the vi

this was attributed to “large errors in SPH's gradient eatén cosity since there are no strong shocks in t.he calculatior)s.
and associated subsonic velocity noise”. The fatal flaw HUS [30] demonstrates that a Kolmogorov-like spectrum is
their initial study, pointed out in a refereed response [3§PSIY recoverable by simply using standard viscosity civeis
(that, somewhat backwardly, appeared in print before tred fit23] (Fig. 4). Nevertheless, in the published version ofithe

version of the paper itself) was that no attempt was mafaper, responding in_turn_ to [30], the authors maintainrthei
to control the viscosity in their SPH calculations, simpl;"ilrgument that SPH s still somehow fundamentally flawed,

using a standard artificial viscosity with = 1. Worse still, ﬂgshplte thel fact that, once the Reylnolcfs number is sufflgient
for a comparison of subsonic turbulence, the initial pregpriigh. @ Kolmogorov-spectrurnan clearly be reproduced in

contained no mention whatsoever of the Reynolds numbﬁp,'te of such ‘fundamental’ difficulties. The argument ig ye

neither to estimate it nor fix its value, somewhat criticattie to be resolved.

subsonic regime since it is the main dimensionless paramete

characterising the flow. IV. CONCLUSION
It is straightforward to estimate the Reynolds number in | h " de k d .

SPH calculations, since the artificial viscosity terms ca&n b N summary, we have recently made key advances in

directly translated into their physical equivalents, giyia modelling both magnetic fields and turbulence in SPH. For

shear and bulk viscosities coefficients of (e.g. [15], [20]) magnetic fields, the most important advance is the recent
g ' development of a robust divergence cleaning algorithm for

U~ iavsigh; ¢ lavsigh, (33) SPMHD [43], enabling for the first time simulations of com-
10 6 plex magnetically-driven phenomena such as the launch of
where o is the artificial viscosity parameter and;, is collimated jets during the formation of stars. In modelling
the signal velocity used in the artificial viscosity term.eThturbulence, the most important aspects appear to be emgloyi
corresponding Reynolds number is thus given by a high numerical resolution (current simulations employ up
VL 10 L to 5123 particles) together with viscosity switches in order
Re=— = —M~—, (34) to reach sufficiently high Reynolds numbers that a scale-fre
v a h inertial range can develop.
where M is the Mach number[/h is the ratio of the box
size to the smoothing length antlis the number of spatial ACKNOWLEDGMENT
dimensions.

It is easy to show that naively employirg= 1 will lead DJP would like to thank Joe Monaghan for getting me into
to very low Reynolds numbers in the subsonic regime eventhats game in the first place. Figures have been produced with
high resolution (Eq. 34 give®. ~ 600 with 256 particles SPLASH [28], a publicly available visualisation tool for SPH
at the Mach number employed by [2]). The result is thavailable from http://users.monash.edu-alptice/splash/.
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