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Abstract
We present Phantom, a fast, parallel, modular and low-memory smoothed particle hydrodynamics and
magnetohydrodynamics code developed over the last decade for astrophysical applications in three dimen-
sions. The code has been developed with a focus on stellar, galactic, planetary and high energy astrophysics
and has already been used widely for studies of accretion discs and turbulence, from the birth of planets to
how black holes accrete. Here we describe and test the core algorithms as well as modules for magnetohy-
drodynamics, self-gravity, sink particles, dust-gas mixtures, H2 chemistry, physical viscosity, external forces
including numerous galactic potentials, Lense-Thirring precession, Poynting-Robertson drag and stochastic
turbulent driving. Phantom is hereby made publicly available.

Keywords: hydrodynamics — methods: numerical — magnetohydrodynamics (MHD) — accretion, accre-
tion discs — ISM: general

1 Introduction

Numerical simulations are the ‘third pillar’ of astro-
physics, standing alongside observations and analytic
theory. Since it is difficult to perform laboratory ex-
periments in the relevant physical regimes and over the
correct range of length and time-scales involved in most
astrophysical problems, we turn instead to ‘numerical
experiments’ in the computer for understanding and in-
sight. As algorithms and simulation codes become ever
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more sophisticated, the public availability of simulation
codes has become crucial to ensure that these experi-
ments can be both verified and reproduced.
Phantom is a smoothed particle hydrodynamics

(SPH) code developed over the last decade. It has been
used widely for studies of turbulence (e.g. Kitsionas
et al., 2009; Price & Federrath, 2010; Price et al., 2011),
accretion (e.g. Lodato & Price, 2010; Nixon et al.,
2012a; Rosotti et al., 2012), star formation including
non-ideal magnetohydrodynamics (e.g. Wurster et al.,
2016, 2017), star cluster formation (Liptai et al., 2017),
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and for studies of the Galaxy (Pettitt et al., 2014; Dobbs
et al., 2016) as well as for simulating dust-gas mixtures
(e.g. Dipierro et al., 2015; Ragusa et al., 2017; Tricco
et al., 2017). Although the initial applications and some
details of the basic algorithm were described in Price
& Federrath (2010), Lodato & Price (2010) and Price
(2012a), the code itself has never been described in de-
tail and, until now, has remained closed-source.

One of the initial design goals of Phantom was to
have a low memory footprint. A secondary motivation
was the need for a public SPH code that is not primarily
focused on cosmology, as in the highly successful Gad-
get code (Springel et al., 2001; Springel, 2005). The
needs of different communities produce rather different
outcomes in the code. For cosmology, the main focus
is on simulating the gravitational collapse of dark mat-
ter in large volumes of the universe, with gas having
only a secondary effect. This is reflected in the ability
of the public Gadget-2 code to scale to exceedingly
large numbers of dark matter particles, yet neglecting
elements of the core SPH algorithm that are essential
for stellar and planetary problems, such as the Mor-
ris & Monaghan (1997) artificial viscosity switch (c.f.
the debate between Bauer & Springel 2012 and Price
2012b), the ability to use a spatially variable gravita-
tional force softening (Bate & Burkert, 1997; Price &
Monaghan, 2007) or any kind of artificial conductivity,
necessary for the correct treatment of contact disconti-
nuities (Chow & Monaghan, 1997; Price & Monaghan,
2005; Rosswog & Price, 2007; Price, 2008). Almost all of
these have since been implemented in development ver-
sions of Gadget-3 (e.g. Iannuzzi & Dolag 2011; Beck
et al. 2016; see recent comparison project by Sembolini
et al. 2016) but remain unavailable or unused in the
public version. Likewise, the implementation of dust,
non-ideal MHD and other physics relevant to star and
planet formation is unlikely to be high priority in a code
designed for studying cosmology or galaxy formation.

Similarly, the sphng code (Benz et al., 1990; Bate,
1995) has been a workhorse for our group for simula-
tions of star formation (e.g. Price & Bate, 2007, 2009;
Price et al., 2012; Lewis et al., 2015) and accretion discs
(e.g. Lodato & Rice, 2004; Cossins et al., 2009), contains
a rich array of physics necessary for star and planet for-
mation including all of the above algorithms, but the
legacy nature of the code makes it difficult to modify or
debug and there are no plans to make it public.
Gasoline (Wadsley et al., 2004) is another code that

has been widely and successfully used for galaxy forma-
tion simulations, with its successor, Gasoline 2 (Wad-
sley et al., 2017), recently publicly released. Hubber
et al. (2011) have developed Seren with similar goals to
Phantom, focused on star cluster simulations. Seren
thus presents more advanced N -body algorithms com-

pared to what is in Phantom but does not yet include
magnetic fields, dust or H2 chemistry.

A third motivation was the need to distinguish be-
tween the ‘high performance’ code used for 3D sim-
ulations from simpler codes used to develop and test
algorithms, such as our already-public ndspmhd code
(Price, 2012a). Phantom is designed to ‘take what
works and make it fast’, rather than containing options
for every possible variation on the SPH algorithm. Ob-
solete options are actively deleted.

The initial release of Phantom has been developed
with a focus on stellar, planetary and Galactic astro-
physics as well as accretion discs. In this first paper, co-
inciding with the first stable public release, we describe
and validate the core algorithms as well as some exam-
ple applications. Various novel aspects and optimisation
strategies are also presented. This paper is an attempt
to document in detail what is currently available in the
code, which include modules for magnetohydrodynam-
ics, dust-gas mixtures, self-gravity and a range of other
physics. The paper is also designed to serve as guide to
the correct use of the various algorithms. Stable releases
of Phantom are posted on the web1, while the devel-
opment version and wiki documentation are available
on the Bitbucket platform2.

The paper is organised as follows: We describe the
numerical methods in Section 2 with corresponding nu-
merical tests in Section 5. We cover SPH basics (§2.1),
our implementation of hydrodynamics (§2.2; §5.1), the
timestepping algorithm (§2.3), external forces (§2.4,
§5.2), turbulent forcing (§2.5, §6.1), accretion disc vis-
cosity (§2.6, §5.3), Navier-Stokes viscosity (§2.7, §5.4),
sink particles (§2.8, §5.5), stellar physics (§2.9), MHD
(§2.10, §5.6), non-ideal MHD (§2.11, §5.7), self-gravity
(§2.12, §5.8), dust-gas mixtures (§2.13, §5.9), ISM chem-
istry and cooling (§2.14, §5.10) and particle injection
(§2.15). We present the algorithms for generating ini-
tial conditions in Section 3. Our approach to software
engineering is described in Section 4. We give five exam-
ples of recent applications highlighting different aspects
of Phantom in Section 6. We summarise in Section 7.

2 Numerical method

Phantom is based on the Smoothed Particle Hydrody-
namics (SPH) technique, invented by Lucy (1977) and
Gingold & Monaghan (1977) and the subject of numer-
ous reviews (Benz, 1990; Monaghan, 1992, 2005, 2012;
Rosswog, 2009; Springel, 2010; Price, 2012a).

In the following we adopt the convention that a, b
and c refer to particle indices; i, j and k refer to vector
or tensor indices and n and m refer to indexing of nodes
in the treecode.

1https://phantomsph.bitbucket.io/
2https://bitbucket.org/danielprice/phantom
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2.1 Fundamentals

2.1.1 Lagrangian hydrodynamics

SPH solves the equations of hydrodynamics in La-
grangian form. The fluid is discretised onto a set of
‘particles’ of mass m that are moved with the local fluid
velocity v. Hence the two basic equations common to
all physics in Phantom are

dr

dt
= v, (1)

dρ

dt
= −ρ(∇ · v), (2)

where r is the particle position and ρ is the density.
These equations use the Lagrangian time derivative,
d/dt ≡ ∂/∂t+ v · ∇, and are the Lagrangian update of
the particle position and the continuity equation (ex-
pressing the conservation of mass), respectively.

2.1.2 Conservation of mass in SPH

The density is computed in Phantom using the usual
SPH density sum,

ρa =
∑
b

mbW (|ra − rb|, ha), (3)

where a and b are particle labels, m is the mass of the
particle, W is the smoothing kernel, h is the smoothing
length and the sum is over neighbouring particles (i.e.
those within Rkernh, where Rkern is the dimensionless
cutoff radius of the smoothing kernel). Taking the La-
grangian time derivative of (3), one obtains the discrete
form of (2) in SPH

dρa
dt

=
1

Ωa

∑
b

mb(va − vb) · ∇aWab(ha), (4)

where Wab(ha) ≡W (|ra − rb|, ha) and Ωa is a term re-
lated to the gradient of the smoothing length (Springel
& Hernquist, 2002; Monaghan, 2002) given by

Ωa ≡ 1− ∂ha
∂ρa

∑
b

mb
∂Wab(ha)

∂ha
. (5)

Equation (4) is not used directly to compute the den-
sity in Phantom, since evaluating (3) provides a time-
independent solution to (2) (see e.g. Monaghan 1992;
Price 2012a for details). The time-dependent version
(4) is equivalent to (3) up to a boundary term (see
Price, 2008) but is only used in Phantom to predict
the smoothing length at the next timestep in order to
reduce the number of iterations required to evaluate the
density (see below).

Since (3), (4) and (5) all depend on the kernel eval-
uated on neighbours within Rkern times ha, all three
of these summations may be computed simultaneously
using a single loop over the same set of neighbours. De-
tails of the neighbour finding procedure are given in
Section 2.1.7, below.

2.1.3 Setting the smoothing length

The smoothing length itself is specified as a function of
the particle number density, n, via

ha = hfactn
−1/3
a = hfact

(
ma

ρa

)1/3

, (6)

where hfact is the proportionality factor specifying the
smoothing length in terms of the mean local particle
spacing and the second equality holds only for equal
mass particles, which are enforced in Phantom. The
restriction to equal mass particles means that the reso-
lution strictly follows mass, which may be restrictive for
problems involving large density contrasts (e.g. Hutchi-
son et al., 2016). However, our view is that the potential
pitfalls of unequal mass particles (see e.g. Monaghan &
Price, 2006) are currently too great to allow for a robust
implementation in a public code.

As described in Price (2012a), the proportionality
constant hfact can be related to the mean neighbour
number according to

Nneigh =
4

3
π(Rkernhfact)

3, (7)

however this is only equal to the actual neighbour num-
ber for particles in a uniform density distribution (more
specifically, for a density distribution with no second
derivative), meaning that the actual neighbour number
varies. The default setting for hfact is 1.2, corresponding
to an average of 57.9 neighbours for a kernel truncated
at 2h (i.e. for Rkern = 2) in three dimensions. Table 1
lists the settings recommended for different choices of
kernel. The derivative required in (5) is given by

∂ha
∂ρa

= −3ha
ρa

. (8)

2.1.4 Iterations for h and ρ

The mutual dependence of ρ and h means that a
rootfinding procedure is necessary to solve both (3)
and (6) simultaneously. The procedure implemented in
Phantom follows Price & Monaghan (2004b) and Price
& Monaghan (2007), solving, for each particle, the equa-
tion

f(ha) = ρsum(ha)− ρ(ha) = 0, (9)

where ρsum is the density computed from (3) and

ρ(ha) = ma(hfact/ha)3, (10)

from (6). Equation (9) is solved with Newton-Raphson
iterations,

ha,new = ha −
f(ha)

f ′(ha)
, (11)

where the derivative is given by

f ′(ha) =
∑
b

mb
∂Wab(ha)

∂ha
− ∂ρa
∂ha

= −3ρa
ha

Ωa. (12)

PASA (2018)
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The iterations proceed until |ha,new − ha|/ha,0 < εh,
where ha,0 is the smoothing length of particle a at the
start of the iteration procedure and εh is the tolerance.
The convergence with Newton-Raphson is fast, with a
quadratic reduction in the error at each iteration, mean-
ing that no more than 2–3 iterations are required even
with a rapidly changing density field. We avoid further
iterations by predicting the smoothing length from the
previous timestep according to

h0
a = ha + ∆t

dha
dt

= ha + ∆t
∂ha
∂ρa

dρa
dt

, (13)

where dρa/dt is evaluated from (4).
Since h and ρ are mutually dependent, we store only

the smoothing length, from which the density can be ob-
tained at any time via a function call evaluating ρ(h).
The default value of εh is 10−4 so that h and ρ can be
used interchangeably. Setting a small tolerance does not
significantly change the computational cost, as the iter-
ations quickly fall below a tolerance of ‘one neighbour’
according to (7), so any iterations beyond this refer to
loops over the same set of neighbours which can be effi-
ciently cached. However, it is important that the toler-
ance may be enforced to arbitrary precision rather than
being an integer as implemented in the public version
of Gadget, since (9) expresses a mathematical rela-
tionship between h and ρ that is assumed throughout
the derivation of the SPH algorithm (see discussion in
Price, 2012a). The precision to which this is enforced
places a lower limit on the total energy conservation.
Fortunately floating point neighbour numbers are now
default in most Gadget-3 variants also.

2.1.5 Kernel functions

We write the kernel function in the form

Wab(r, h) ≡ Cnorm

h3
f(q), (14)

where Cnorm is a normalisation constant, the factor of
h3 gives the dimensions of inverse volume and f(q)
is a dimensionless function of q ≡ |ra − rb|/h. Various
relations for kernels in this form are given in Morris
(1996a) and in Appendix B of Price (2010). Those used
in Phantom are the kernel gradient

∇aWab = r̂abFab, where Fab ≡
Cnorm

h4
f ′(q), (15)

and the derivative of the kernel with respect to h,

∂Wab(r, h)

∂h
= −Cnorm

h4
[3f(q) + qf ′(q)] . (16)

Notice that the ∂W/∂h term in particular can be eval-
uated simply from the functions needed to compute the
density and kernel gradient and hence does not need to
be derived separately if a different kernel is used.

Kernel Rkern σ2/h2 σ/h hfact hd
fact Nneigh

M4 2.0 9/10 0.95 1.0–1.2 1.2 57.9
M5 2.5 23/20 1.07 1.0–1.2 1.2 113
M6 3.0 7/5 1.18 1.0–1.1 1.0 113
C2 2.0 4/5 0.89 ≥ 1.35 1.4 92
C4 2.0 8/13 0.78 ≥ 1.55 1.6 137
C6 2.0 1/2 0.71 ≥ 1.7 2.2 356

Table 1 Compact support radii, variance, standard deviation,
recommended ranges of hfact and recommended default hfact set-

tings (hdfact) for the kernel functions available in Phantom

2.1.6 Choice of smoothing kernel

The default kernel function in SPH for the last 30 years
(since Monaghan & Lattanzio 1985) has been the M4

cubic spline from the Schoenberg (1946) B-spline family,
given by

f(q) =

1− 3
2q

2 + 3
4q

3, 0 ≤ q < 1;
1
4 (2− q)3, 1 ≤ q < 2;
0. q ≥ 2,

(17)

where the normalisation constant Cnorm = 1/π in 3D
and the compact support of the function implies that
Rkern = 2. While the cubic spline kernel is satisfac-
tory for many applications, it is not always the best
choice. Most SPH kernels are based on approximat-
ing the Gaussian, but with compact support to avoid
the O(N2) computational cost. Convergence in SPH is
guaranteed to be second order (∝ h2) to the degree that
the finite summations over neighbouring particles ap-
proximate integrals (e.g. Monaghan, 1992, 2005; Price,
2012a). Hence the choice of kernel and the effect that a
given kernel has on the particle distribution are impor-
tant considerations.

In general, more accurate results will be obtained
with a kernel with a larger compact support radius,
since it will better approximate the Gaussian which has
excellent convergence and stability properties (Morris,
1996a; Price, 2012a; Dehnen & Aly, 2012). However,
care is required. One should not simply increase hfact

for the cubic spline kernel because even though this im-
plies more neighbours [via (7)], it increases the resolu-
tion length. For the B-splines it also leads to the on-
set of the ‘pairing instability’ where the particle distri-
bution becomes unstable to transverse modes, leading
to particles forming close pairs (Thomas & Couchman,
1992; Morris, 1996a,b; Børve et al., 2004; Price, 2012a;
Dehnen & Aly, 2012). This is the motivation of our
default choice of hfact = 1.2 for the cubic spline kernel,
since it is just short of the maximum neighbour number
that can be used while remaining stable to the pairing
instability.

PASA (2018)
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Figure 1. Smoothing kernels available in Phantom (solid lines)
together with their first (dashed lines) and second (dotted lines)

derivatives. Wendland kernels in Phantom (bottom row) are

given compact support radii of 2, whereas the B-spline kernels
(top row) adopt the traditional practice where the support radius

increases by 0.5. Thus, use of alternative kernels requires adjust-

ment of hfact, the ratio of smoothing length to particle spacing
(see Table 1).

A better approach to reducing kernel bias is to keep
the same resolution length3 but to use a kernel that
has a larger compact support radius. The traditional
approach (e.g. Morris, 1996a,b; Børve et al., 2004; Price,
2012a) has been to use the higher kernels in the B-spline
series, i.e. the M5 quartic which extends to 2.5h

f(q) =


(

5
2 − q

)4 − 5
(

3
2 − q

)4
+ 10

(
1
2 − q

)4
, 0 ≤ q < 1

2 ,(
5
2 − q

)4 − 5
(

3
2 − q

)4
, 1

2 ≤ q < 3
2 ,(

5
2 − q

)4
, 3

2 ≤ q < 5
2 ,

0, q ≥ 5
2 ,
(18)

3This leads to the question of what is the appropriate definition
of the ‘smoothing length’ to use when comparing kernels with
different compact support radii. Recently it has been shown con-
vincingly by Dehnen & Aly (2012) and Violeau & Leroy (2014)
that the resolution length in SPH is proportional to the stan-
dard deviation ofW . Hence the Gaussian has the same resolution
length as the M6 quintic with compact support radius of 3h with
hfact = 1.2. Setting the number of neighbours, though related,
is not a good way of specifying the resolution length.

where Cnorm = 1/(20π), and the M6 quintic extending
to 3h,

f(q) =


(3− q)5 − 6(2− q)5 + 15(1− q)5, 0 ≤ q < 1,
(3− q)5 − 6(2− q)5, 1 ≤ q < 2,
(3− q)5, 2 ≤ q < 3,
0, q ≥ 3,

(19)
where Cnorm = 1/(120π) in 3D. The quintic in partic-
ular gives results virtually indistinguishable from the
Gaussian for most problems.

Recently, there has been tremendous interest in the
use of the Wendland kernels (Wendland, 1995), partic-
ularly since Dehnen & Aly (2012) showed that they are
stable to the pairing instability at all neighbour num-
bers despite having a Gaussian-like shape and compact
support. These functions are constructed as the unique
polynomial functions with compact support but with
a positive Fourier transform, which turns out to be a
necessary condition for stability against the pairing in-
stability (Dehnen & Aly, 2012). The three dimensional
Wendland kernels scaled to a radius of 2h are given by
C2,

f(q) =

{(
1− q

2

)4
(2q + 1) , q < 2,

0, q ≥ 2,
(20)

where Cnorm = 21/(16π); the C4 kernel,

f(q) =

{(
1− q

2

)6 ( 35q2

12 + 3q + 1
)
, q < 2,

0, q ≥ 2,
(21)

where Cnorm = 495/(256π), and the C6 kernel,

f(q) =

{(
1− q

2

)8 (
4q3 + 25q2

4 + 4q + 1
)
, q < 2,

0, q ≥ 2,

(22)
where Cnorm = 1365/(512π). Figure 1 graphs f(q) and
its first and second derivative for each of the kernels
available in Phantom.

Several authors have argued for use of the Wendland
kernels by default. For example, Rosswog (2015) found
best results on simple test problems using the C6 Wend-
land kernel. However ‘best’ in that case implied using
an average of 356 neighbours in 3D (i.e. hfact = 2.2 with
Rkern = 2.0) which is a factor of 6 more expensive than
the standard approach. Similarly, Hu et al. (2014) rec-
ommend the C4 kernel with 200 neighbours which is
3.5× more expensive. The large number of neighbours
are needed because the Wendland kernels are always
worse than the B-splines for a given number of neigh-
bours due to the positive Fourier transform, meaning
that the kernel bias (related to the Fourier transform)
is always positive where the B-spline errors oscillate
around zero (Dehnen & Aly, 2012). Hence whether or
not this additional cost is worthwhile depends on the
application. A more comprehensive analysis would be

PASA (2018)
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Figure 2. Example of the kd-tree build. For illustrative purposes

only we have constructed a two dimensional version of the tree on

the projected particle distribution in the x-y plane of the particle
distribution from a polytrope test with 13,115 particles. Each

level of the tree recursively splits the particle distribution in half,

bisecting the longest axis at the centre of mass until the number
of particles in a given cell is < Nmin. For clarity we have used

Nmin = 100 in the above example, while Nmin = 10 by default.

valuable here, as the ‘best’ choice of kernel remains an
open question (see also the kernels proposed by Cabezón
et al. 2008; Garćıa-Senz et al. 2014). An even broader
question regards the kernel used for dissipation terms,
for gravitational force softening and for drag in two-fluid
applications (discussed further in Section 2.13; Laibe &
Price 2012a found that double-hump shaped kernels led
to more than an order of magnitude improvement in ac-
curacy when used for drag terms).

A simple and practical approach to checking that ker-
nel bias does not affect the solution that we have used
and advocate when using Phantom is to first attempt
a simulation with the cubic spline, but then to check the
results with a low resolution calculation using the quin-
tic kernel. If the results are identical then it indicates
that the kernel bias is not important, but if not then
use of smoother but costlier kernels such as M6 or C6

may be warranted. Wendland kernels are mainly useful
for preventing the pairing instability and are necessary
if one desires to employ a large number of neighbours.

2.1.7 Neighbour finding

Finding neighbours is the main computational expense
to any SPH code. Earlier versions of Phantom con-
tained three different options for neighbour-finding: A
Cartesian grid, a cylindrical grid and a kd-tree. This
was because we wrote the code originally with non-self-

gravitating problems in mind, for which the overhead
associated with a treecode is unnecessary. Since the im-
plementation of self-gravity in Phantom the kd-tree
has become the default, and is now sufficiently well opti-
mised that the fixed-grid modules are more efficient only
for simulations that do not employ either self-gravity or
individual particle timesteps, which are rare in astro-
physics.

A key optimisation strategy employed in Phantom
is to perform the neighbour search for groups of par-
ticles. The results of this search (i.e. positions of all
trial neighbours) are then cached and used to check for
neighbours for individual particles in the group. Our kd-
tree algorithm closely follows Gafton & Rosswog (2011),
splitting the particles recursively based on the centre of
mass and bisecting the longest axis at each level (Fig-
ure 2). The tree build is refined until a cell contains less
than Nmin particles, which is then referred to as a ‘leaf
node’. By default, Nmin = 10. The neighbour search is
then performed once for each leaf node. Further details
are given in Appendix A.3.1.

2.2 Hydrodynamics

2.2.1 Compressible hydrodynamics

The equations of compressible hydrodynamics are
solved in the form

dv

dt
=− ∇P

ρ
+ Πshock + aext(r, t)

+ asink−gas + aselfgrav, (23)

du

dt
=− P

ρ
(∇ · v) + Λshock −

Λcool

ρ
, (24)

where P is the pressure, u is the specific internal energy,
aext, asink−gas and aselfgrav refer to (optional) accelera-
tions from ‘external’ or ‘body’ forces (Section 2.4), sink
particles (Section 2.8) and self-gravity (Section 2.12),
respectively. Πshock and Λshock are dissipation terms re-
quired to give the correct entropy increase at a shock
front, and Λcool is a cooling term.

2.2.2 Equation of state

The equation set is closed by an equation of state relat-
ing the pressure to the density and/or internal energy.
For an ideal gas this is given by

P = (γ − 1)ρu, (25)

where γ is the adiabatic index and the sound speed cs
is given by

cs =

√
γP

ρ
. (26)
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The internal energy, u, can be related to the gas tem-
perature, T , using

P =
ρkBT

µmH
, (27)

giving

T =
µmH

kB
(γ − 1)u, (28)

where kB is Boltzmann’s constant, µ is the mean molec-
ular weight and mH is the mass of a hydrogen atom.
Thus to infer the temperature one needs to specify a
composition, but only the internal energy affects the
gas dynamics. Equation (25) with γ = 5/3 is the de-
fault equation of state in Phantom.

In the case where shocks are assumed to radiate
away all of the heat generated at the shock front (i.e.
Λshock = 0) and there is no cooling (Λcool = 0), (24) be-
comes simply, using (2)

du

dt
=
P

ρ2

dρ

dt
, (29)

which, using (25) can be integrated to give

P = Kργ , (30)

where K is the polytropic constant. Even more simply,
in the case where the temperature is assumed constant,
or prescribed as a function of position, the equation of
state is simply

P = c2sρ. (31)

In both of these cases, (30) and (31), the internal energy
does not need to be stored. In this case the temperature
is effectively set by the value of K (and the density if
γ 6= 1). Specifically,

T =
µmH

kB
Kργ−1. (32)

2.2.3 Code units

For pure hydrodynamics physical units are irrelevant
to the numerical results since (1)–(2) and (23)–(24) are
scale free to all but the Mach number. Hence setting
physical units is only useful when comparing simula-
tions with nature, when physical heating or cooling
rates are applied via (24), or when one wishes to in-
terpret the results in terms of temperature using (28)
or (32).

In the case where gravitational forces are applied, ei-
ther using an external force (Section 2.4) or using self-
gravity (Section 2.12), we adopt the standard procedure
of transforming units such that G = 1 in code units, i.e.

utime =

√
u3

dist

Gumass
, (33)

where utime, udist and umass are the units of time, length
and mass, respectively. Additional constraints apply

when using relativistic terms (Section 2.4.5) or mag-
netic fields (Section 2.10.3).

2.2.4 Equation of motion in SPH

We follow the variable smoothing length formulation
described by Price (2012a), Price & Federrath (2010)
and Lodato & Price (2010). We discretise (23) using

dva
dt

=−
∑
b

mb

[
Pa + qaab
ρ2
aΩa

∇aWab(ha) +
Pb + qbab
ρ2
bΩb

∇aWab(hb)

]
+ aext(xa, t) + aasink−gas + aaselfgrav, (34)

where the qaab and qbab terms represent the artificial vis-
cosity (discussed in Section 2.2.7, below).

2.2.5 Internal energy equation

The internal energy equation (24) is discretised using
the time derivative of the density sum (c.f. 29), which
from (4) gives

dua
dt

=
Pa
ρ2
aΩa

∑
b

mbvab · ∇aWab(ha) + Λshock −
Λcool

ρ
.

(35)
where vab ≡ va − vb. Indeed, in the variational formu-
lation of SPH (e.g. Price, 2012a), this expression is used
as a constraint to derive (34), which guarantees both the
conservation of energy and entropy (the latter in the ab-
sence of dissipation terms). The shock capturing terms
in the internal energy equation are discussed below.

By default we assume an adiabatic gas, meaning that
PdV work and shock heating terms contribute to the
thermal energy of the gas, no energy is radiated to
the environment, and total energy is conserved. To ap-
proximate a radiative gas one may set one or both
of these terms to zero. Neglecting the shock heating
term, Λshock, gives an approximation equivalent to a
polytropic equation of state (30), as described in Sec-
tion 2.2.2. Setting both shock and work contributions to
zero implies that du/dt = 0, meaning that each particle
will simply retain its initial temperature.

2.2.6 Conservation of energy in SPH

Does evolving the internal energy equation imply that
total energy is not conserved? Wrong! Total energy in
SPH, for the case of hydrodynamics, is given by

E =
∑
a

ma

(
1

2
v2
a + ua

)
. (36)

Taking the (Lagrangian) time derivative, we find that
conservation of energy corresponds to

dE

dt
=
∑
a

ma

(
va ·

dva
dt

+
dua
dt

)
= 0. (37)

Inserting our expressions (34) and (35), and neglecting
for the moment dissipative terms and external forces,
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we find

dE

dt
= −

∑
a

∑
b

mamb

[
Pavb
ρ2
aΩa

· ∇aWab(ha)

+
Pbva
ρ2
bΩb
· ∇aWab(hb)

]
= 0.

(38)

The double summation on the right hand side equals
zero because the kernel gradient, and hence the over-
all sum, is antisymmetric. That is, ∇aWab = −∇bWba.
This means one can relabel the summation indices ar-
bitrarily in one half of the sum, and add it to one half
of the original sum to give zero. One may straightfor-
wardly verify that this remains true when one includes
the dissipative terms (see below).

This means that even though we employ the inter-
nal energy equation, total energy remains conserved to
machine precision in the spatial discretisation. That is,
energy is conserved irrespective of the number of parti-
cles, the number of neighbours or the choice of smooth-
ing kernel. The only non-conservation of energy arises
from the ordinary differential equation solver one em-
ploys to solve the left hand side of the equations. We
thus employ a symplectic time integration scheme in
order to preserve the conservation properties as accu-
rately as possible (Section 2.3.1).

2.2.7 Shock-capturing: momentum equation

The shock capturing dissipation terms are implemented
following Monaghan (1997), derived by analogy with
Riemann solvers from the special relativistic dissipa-
tion terms proposed by Chow & Monaghan (1997).
These were extended by Price & Monaghan (2004b,
2005) to magnetohydrodynamics (MHD) and recently
to dust-gas mixtures by Laibe & Price (2014b). In a
recent paper, Puri & Ramachandran (2014) found this
approach, along with the Morris & Monaghan (1997)
switch (which they referred to as the ‘Monaghan-Price-
Morris’ formulation) to be the most accurate and robust
method for shock-capturing in SPH when compared to
several other approaches, including Godunov SPH (e.g.
Inutsuka, 2002; Cha & Whitworth, 2003).

The formulation in Phantom differs from that given
in Price (2012a) only by the way that the density and
signal speed in the q terms are averaged, as described in
Price & Federrath (2010) and Lodato & Price (2010).
That is, we use

Πa
shock ≡ −

∑
b

mb

[
qaab
ρ2
aΩa
∇aWab(ha) +

qbab
ρ2
bΩb
∇aWab(hb)

]
,

(39)
where

qaab =

{
− 1

2ρavsig,avab · r̂ab, vab · r̂ab < 0

0 otherwise
(40)

where vab ≡ va − vb, r̂ab ≡ (ra − rb)/|ra − rb| is the
unit vector along the line of sight between the particles,
and vsig is the maximum signal speed, which depends
on the physics implemented. For hydrodynamics this is
given by

vsig,a = αAV
a cs,a + βAV|vab · r̂ab|, (41)

where in general αAV
a ∈ [0, 1] is controlled by a switch

(see Section 2.2.9, below), while βAV = 2 by default.
Importantly, α does not multiply the βAV term. The

βAV term provides a second order Von Neumann &
Richtmyer-like term that prevents particle interpenetra-
tion (e.g. Lattanzio et al., 1986; Monaghan, 1989) and
thus βAV ≥ 2 is needed wherever particle penetration
may occur. This is important in accretion disc simula-
tions where use of a low α may be acceptable in the
absence of strong shocks, but a low β will lead to parti-
cle penetration of the disc midplane, which is the cause
of a number of convergence issues (Meru & Bate, 2011,
2012). Price & Federrath (2010) found that βAV = 4 was
necessary at high Mach number (M & 5) to maintain a
sharp shock structure, which despite nominally increas-
ing the viscosity was found to give less dissipation over-
all because particle penetration no longer occurred at
shock fronts.

2.2.8 Shock-capturing: internal energy equation

The key insight from Chow & Monaghan (1997) was
that shock capturing not only involves a viscosity term
but involves dissipating the jump in each component
of the energy, implying a conductivity term in hydro-
dynamics and resistive dissipation in MHD (see Sec-
tion 2.10.5). The resulting contribution to the internal
energy equation is given by (e.g. Price, 2012a)

Λshock ≡ −
1

Ωaρa

∑
b

mbvsig,a
1

2
(vab · r̂ab)2Fab(ha)

+
∑
b

mbαuv
u
sig(ua − ub)

1

2

[
Fab(ha)

Ωaρa
+
Fab(hb)

Ωbρb

]
+ Λartres, (42)

where the first term provides the viscous shock heating,
the second term provides an artificial thermal conduc-
tivity and Fab is defined as in (15) and Λartres is the
heating due to artificial resistivity (Equation 182). The
signal speed we use for conductivity term differs from
the one used for viscosity, as discussed by Price (2008)
and Price (2012a). In Phantom we use

vusig =

√
|Pa − Pb|
ρab

, (43)

for simulations that do not involve self-gravity or exter-
nal body forces (Price, 2008), and

vusig = |vab · r̂ab|, (44)
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for simulations that do (Wadsley et al., 2008). The im-
portance of the conductivity term for treating contact
discontinuities was highlighted by Price (2008), explain-
ing the poor results found by Agertz et al. (2007) in
SPH simulations of Kelvin-Helmholtz instabilities run
across contact discontinuities (discussed further in Sec-
tion 5.1.4). With (44), we have found there is no need
for further switches to reduce conductivity (e.g. Price
2004; Price & Monaghan 2005; Valdarnini 2016), since
the effective thermal conductivity κ is second order in
the smoothing length (∝ h2). Phantom therefore uses
αu = 1 by default in (42) and we have not yet found a
situation where this leads to excess smoothing.

It may be readily shown that the total energy remains
conserved in the presence of dissipation by combining
(42) with the corresponding dissipative terms in (34).
The contribution to the entropy from both viscosity and
conductivity is also positive definite (see the appendix
in Price & Monaghan 2004b for the mathematical proof
in the case of conductivity).

2.2.9 Shock detection

The standard approach to reducing dissipation in SPH
away from shocks for the last 15 years has been the
switch proposed by Morris & Monaghan (1997), where
the dimensionless viscosity parameter α is evolved for
each particle a according to

dαa
dt

= max(−∇ · va, 0)− (αa − αmin)

τa
, (45)

where τ ≡ h/ (σdecayvsig) and σdecay = 0.1 by default.
We set vsig in the decay time equal to the sound speed
to avoid the need to store dα/dt, since ∇ · v is already
stored in order to compute (4). This is the switch used
for numerous turbulence applications with Phantom
(e.g. Price & Federrath, 2010; Price et al., 2011; Tricco
et al., 2016b) where it is important to minimise nu-
merical dissipation in order to maximise the Reynolds
number (e.g. Valdarnini, 2011; Price, 2012b).

More recently, Cullen & Dehnen (2010) proposed a
more advanced switch using the time derivative of the
velocity divergence. A modified version based on the
gradient of the velocity divergence was also proposed
by Read & Hayfield (2012). We implement a variation
on the Cullen & Dehnen (2010) switch, using a shock
indicator of the form

Aa = ξa max

[
− d

dt
(∇ · va), 0

]
, (46)

where

ξ =
|∇ · v|2

|∇ · v|2 + |∇ × v|2 (47)

is a modification of the Balsara (1995) viscosity limiter
for shear flows. We use this to set α according to

αloc,a = min

(
10h2

aAa
c2s,a

, αmax

)
, (48)

where cs is the sound speed and αmax = 1. We use
cs in the expression for αloc also for magnetohydrody-
namics (Section 2.10) since we found using the magne-
tosonic speed led to a poor treatment of MHD shocks.
If αloc,a > αa we set αa = αloc,a, otherwise we evolve
αa according to

dαa
dt

= − (αa − αloc,a)

τa
, (49)

where τ is defined as in the Morris & Monaghan (1997)
version, above. We evolve α in the predictor part of the
integrator only, i.e. with a first order time integration, to
avoid complications in the corrector step. However, we
perform the predictor step implicitly using a backward
Euler method, i.e.

αn+1
a =

αna + αloc,a∆t/τa
1 + ∆t/τa

, (50)

which ensures that the decay is stable regardless of
the timestep (we do this for the Morris & Monaghan
method also).

We use the method outlined in Appendix B3 of Cullen
& Dehnen (2010) to compute d(∇ · va)/dt. That is, we
first compute the gradient tensors of the velocity, v, and
acceleration, a (used from the previous timestep), dur-
ing the density loop using an SPH derivative operator
that is exact to linear order, that is, with the matrix
correction outlined in Price (2004, 2012a), namely

Rija
∂vka

∂xja
=
∑
b

mb

(
vkb − vka

) ∂Wab(ha)

∂xi
, (51)

where

Rija =
∑
b

mb

(
xib − xia

) ∂Wab(ha)

∂xj
≈ δij , (52)

and repeated tensor indices imply summation. Finally,
we construct the time derivative of the velocity diver-
gence according to

d

dt

(
∂via
∂xia

)
=
∂aia
∂xia
− ∂via

∂xja

∂vja
∂xia

, (53)

where, as previously, repeated i and j indices imply
summation. In Cartesian coordinates the last term in
(53) can be written out explicitly using

∂via

∂xja

∂vja
∂xia

=

(
∂vx

∂x

)2

+

(
∂vy

∂y

)2

+

(
∂vz

∂z

)2

+ 2

[
∂vx

∂y

∂vy

∂x
+
∂vx

∂z

∂vz

∂x
+
∂vz

∂y

∂vy

∂z

]
. (54)
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2.2.10 Cooling

The cooling term Λcool can be set either from detailed
chemical calculations (Section 2.14.1) or, for discs, by
the simple ‘β-cooling’ prescription of Gammie (2001),
namely

Λcool =
ρu

tcool
, (55)

where

tcool =
Ω(R)

βcool
, (56)

with βcool an input parameter to the code specifying
the cooling timescale in terms of the local orbital time.
We compute Ω in (56) using Ω ≡ 1/(x2 + y2 + z2)3/2,
i.e. assuming Keplerian rotation around a central object
with mass equal to unity, with G = 1 in code units.

2.2.11 Conservation of linear and angular
momentum

The total linear momentum is given by

P =
∑
a

mava, (57)

such that conservation of momentum corresponds to

dP

dt
=
∑
a

ma
dva
dt

= 0. (58)

Inserting our discrete equation (34), we find

dP

dt
=
∑
a

∑
b

mamb

[
Pa + qaab
ρ2
aΩa

∇aWab(ha)

+
Pb + qbab
ρ2
bΩb

∇aWab(hb)

]
= 0. (59)

where, as for the total energy (Section 2.2.6), the dou-
ble summation is zero because of the antisymmetry of
the kernel gradient. The same argument applies to the
conservation of angular momentum,∑

a

mara × va, (60)

(see e.g. Price 2012a for a detailed proof). As with to-
tal energy, this means linear and angular momentum
are exactly conserved by our SPH scheme to the accu-
racy with which they are conserved by the timestepping
scheme.

In Phantom, linear and angular momentum are
both conserved to round-off error (typically ∼ 10−16 in
double precision) with global timestepping, but exact
conservation is violated when using individual particle
timesteps or when using the kd-tree to compute grav-
itational forces. The magnitude of these quantities, as
well as the total energy and the individual components
of energy (kinetic, internal, potential and magnetic),

should thus be monitored by the user at runtime. Typ-
ically with individual timesteps one should expect en-
ergy conservation to ∆E/E ∼ 10−3 and linear and an-
gular momentum conservation to ∼ 10−6 with default
code settings. The code execution is aborted if conser-
vation errors exceed 10%.

2.3 Time integration

2.3.1 Timestepping algorithm

We integrate the equations of motion using a generalisa-
tion of the Leapfrog integrator which is reversible in the
case of both velocity dependent forces and derivatives
which depend on the velocity field. The basic integrator
is the Leapfrog method in ‘Kick-Drift-Kick’ or ‘Veloc-
ity Verlet’ form (Verlet, 1967), where the positions and
velocities of particles are updated from time tn to tn+1

according to

vn+ 1
2 = vn +

1

2
∆tan, (61)

rn+1 = rn + ∆tvn+ 1
2 , (62)

an+1 = a(rn+1), (63)

vn+1 = vn+ 1
2 +

1

2
∆tan+1, (64)

where ∆t ≡ tn+1 − tn. This is identical to the formula-
tion of Leapfrog used in other astrophysical SPH codes
(e.g. Springel, 2005; Wadsley et al., 2004). The Ver-
let scheme, being both reversible and symplectic (e.g.
Hairer et al., 2003), preserves the Hamiltonian nature
of the SPH algorithm (e.g. Gingold & Monaghan, 1982b;
Monaghan & Price, 2001). In particular, both linear and
angular momentum are exactly conserved, there is no
long-term energy drift, and phase space volume is con-
served (e.g. for orbital dynamics). In SPH this is com-
plicated by velocity-dependent terms in the acceleration
from the shock-capturing dissipation terms. In this case
the corrector step, (64), becomes implicit. The approach
we take is to notice that these terms are not usually
dominant over the position-dependent terms. Hence we
use a first-order prediction of the velocity, as follows

vn+ 1
2 = vn +

1

2
∆tan, (65)

rn+1 = rn + ∆tvn+ 1
2 , (66)

v∗ = vn+ 1
2 +

1

2
∆tan, (67)

an+1 = a(rn+1,v∗), (68)

vn+1 = v∗ +
1

2
∆t
[
an+1 − an

]
. (69)

At the end of the step we then check if the error in
the first order prediction is less than some tolerance ε
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according to

e =
|vn+1 − v∗|
|vmag| < εv, (70)

where vmag is the mean velocity on all SPH particles (we
set the error to zero if |vmag| = 0) and by default εv =
10−2. If this criterion is violated, then we recompute the
accelerations by replacing v∗ with vn+1 and iterating
(68) and (69) until the criterion in (70) is satisfied. In
practice this happens rarely, but occurs for example in
the first few steps of the Sedov problem where the initial
conditions are discontinuous (Section 5.1.3). As each
iteration is as expensive as halving the timestep, we also
constrain the subsequent timestep such that iterations
should not occur, i.e.

∆t = min

(
∆t,

∆t√
emax/ε

)
, (71)

where emax = max(e) over all particles. A caveat to the
above is that velocity iterations are not currently im-
plemented when using individual particle timesteps.

Additional variables such as the internal energy, u,
and the magnetic field, B, are timestepped with a pre-
dictor and trapezoidal corrector step in the same man-
ner as the velocity, following (67) and (69).

Velocity-dependent external forces are treated sepa-
rately, as described in Section 2.4, below.

2.3.2 Timestep constraints

The timestep itself is determined at the end of each
step, and is constrained to be less than the maximum
stable timestep. For a given particle, a, this is given by
(e.g. Lattanzio et al., 1986; Monaghan, 1997),

∆tC,a ≡ Ccour
ha
vdt

sig,a

, (72)

where Ccour = 0.3 by default (Lattanzio et al., 1986)
and vdt

sig is taken as the maximum of (41) over the parti-

cle’s neighbours assuming αAV = max(αAV, 1). The cri-
terion above differs from the usual Courant-Friedrichs-
Lewy condition used in Eulerian codes (Courant et al.,
1928) because it depends only on the difference in ve-
locity between neighbouring particles, not the absolute
value.

An additional constraint is applied from the acceler-
ations (the ‘force condition’), where

∆tf,a ≡ Cforce

√
ha
|aa|

, (73)

where Cforce = 0.25 by default. A separate timestep con-
straint is applied for external forces

∆text,a ≡ Cforce

√
h

|aext,a|
, (74)

and for accelerations to SPH particles to/from sink par-
ticles (Section 2.8, below)

∆tsink−gas,a ≡ Cforce

√
ha

|asink−gas,a|
. (75)

For external forces with potentials defined such that
Φ→ 0 as r →∞ an additional constraint is applied us-
ing (Dehnen & Read, 2011)

∆tΦ,a ≡ CforceηΦ

√
|Φa|
|∇Φ|2a

, (76)

where ηΦ = 0.05 (see Section 2.8.5).
The timestep for particle a is then taken to be the

minimum of all of the above constraints, i.e.

∆ta = min (∆tC,∆tf ,∆text,∆tsink−gas,∆tΦ)a , (77)

with possible other constraints arising from additional
physics as described in their respective sections. With
global timestepping the resulting timestep is the mini-
mum over all particles,

∆t = min
a

(∆ta). (78)

2.3.3 Substepping of external forces

In the case where the timestep is dominated by any
of the external force timesteps, i.e. (74)–(76), we im-
plement an operator splitting approach implemented
according to the reversible reference system propaga-
tor algorithm (RESPA) derived by Tuckerman et al.
(1992) for molecular dynamics. RESPA splits the ac-
celeration into ‘long range’ and ‘short range’ contribu-
tions, which in Phantom are defined to be the SPH
and external/point-mass accelerations, respectively.

Our implementation follows Tuckerman et al. (1992)
(see their Appendix B), where the velocity is first pre-
dicted to the half step using the ‘long range’ forces,
followed by an inner loop where the positions are up-
dated with the current velocity and the velocities are
updated with the ‘short range’ accelerations. Thus the
timestepping proceeds according to

v = v +
∆tsph

2
ansph, (79)

over substeps



v = v +
∆text

2
amext,

r = r + ∆textv,

get aext(r),

v = v +
∆text

2
am+1

ext ,

(80)

(81)

(82)

(83)

get asph(r),

v = v +
∆tsph

2
ansph.

(84)

(85)
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where aSPH indicates the SPH acceleration evaluated
from (34) and aext indicates the external forces. The
SPH and external accelerations are stored separately
to enable this. ∆text is the minimum of all timesteps
relating to sink-gas and external forces (equations 74–
76) while ∆tsph is the timestep relating to the SPH
forces (equations 72, 73 and 288). ∆text is allowed
to vary on each substep, so we take as many steps
as required such that

∑m−1
j ∆text,j + ∆text,f = ∆tSPH,

where ∆text,f < ∆text,j is chosen so that the sum will
identically equal ∆tSPH. The number of substeps is
m ≈ int(∆text,min/∆tSPH,min) + 1, where the minimum
is taken over all particles.

2.3.4 Individual particle timesteps

For simulations of stiff problems with a large range in
timestep over the domain, it is more efficient to allow
each particle to evolve on its own timestep indepen-
dently (Bate, 1995; Springel, 2005; Saitoh & Makino,
2010). This violates all of the conservation properties
of the Leapfrog integrator (see Makino et al. 2006 for
an attempt to solve this), but can speed up the calcula-
tion by an order of magnitude or more. We implement
this in the usual block-stepped manner by assigning
timesteps in factor-of-two decrements from some maxi-
mum timestep ∆tmax, which for convenience is set equal
to the time between output files.

We implement a timestep limiter where the timestep
for an active particle is constrained to be within a fac-
tor of 2 of its neighbours, similar to condition employed
by Saitoh & Makino (2009). Additionally, inactive par-
ticles will be woken up as required to ensure that their
timestep is within a factor of 2 of its neighbours.

The practical side of individual timestepping is de-
scribed in Appendix A.6.

2.4 External forces

2.4.1 Point mass potential

The simplest external force describes a point mass, M ,
at the origin, which yields gravitational potential and
acceleration,

Φa = −GM
ra

; aext,a = −∇Φa = −GM|ra|3
ra, (86)

where ra ≡ |ra| ≡
√
ra · ra. When this potential is used,

we allow for particles within a certain radius, Racc, from
the origin to be accreted. This allows for a simple treat-
ment of accretion discs where the mass of the disc is as-
sumed to be negligible compared to the mass of the cen-
tral object. The accreted mass in this case is recorded
but not added to the central mass. For more massive
discs, or when the accreted mass is significant with re-
spect to the central mass, it is better to model the cen-
tral star using a sink particle (Section 2.8) where there
are mutual gravitational forces between the star and the

disc, and any mass accreted is added to the point mass
(Section 2.8.2).

2.4.2 Binary potential

We provide the option to model motion in binary sys-
tems where the mass of the disc is negligible. In this
case the binary motion is prescribed using

r1 = [(1−M) cos(t), (1−M) sin(t), 0], (87)

r2 = [−M cos(t),−M sin(t), 0], (88)

where M is the mass ratio in units of the total mass
(which is therefore unity). For this potential, G and Ω
are set to unity in computational units, where Ω is the
angular velocity of the binary. Thus only M needs to
be specified to fix both m1 and m2. Hence the binary
remains fixed on a circular orbit at r = 1. The binary
potential is therefore

Φa = − M

|ra − r1|
− (1−M)

|ra − r2|
, (89)

such that the external acceleration is given by

aext,a = −∇Φa = −M (ra − r1)

|ra − r1|3
− (1−M)

(ra − r2)

|ra − r2|3
.

(90)
Again, there is an option to accrete particles that fall
within a certain radius from either star (Racc,1 or Racc,2,
respectively). For most binary accretion disc simula-
tions (e.g. planet migration) it is better to use ‘live’ sink
particles to represent the binary so that there is feed-
back between the binary and the disc (we have used a
live binary in all of our simulations to date, e.g. Nixon
et al. 2013; Facchini et al. 2013; Martin et al. 2014a,b;
Doğan et al. 2015; Ragusa et al. 2016, 2017), but the
binary potential remains useful under limited circum-
stances — in particular when one wishes to turn off the
feedback between the disc and the binary.

Given that the binary potential is time-dependent,
for efficiency we compute the position of the binary only
once at the start of each timestep, and use these stored
positions to compute the accelerations of the SPH par-
ticles via (90).

2.4.3 Binary potential with gravitational wave decay

An alternative binary potential including the effects of
gravitational wave decay was used by Cerioli, Lodato &
Price (2016) to study the squeezing of discs during the
merger of supermassive black holes. Here the motion of
the binary is prescribed according to

r1 =

[
− m2

m1 +m2
a cos(θ),− m2

m1 +m2
a sin(θ), 0

]
,

r2 =

[
m1

m1 +m2
a cos(θ),

m1

m1 +m2
a sin(θ), 0

]
, (91)
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where the semi-major axis, a, decays according to

a(t) = a0

(
1− t

τ

) 1
4

. (92)

The initial separation is a0, with τ defined as the time
to merger, given by the usual expression (e.g. Lodato
et al., 2009)

τ ≡ 5

256

a4
0

µ12(m1 +m2)2
, (93)

where

µ12 ≡
m1m2

m1 +m2
. (94)

The angle θ is defined using

Ω ≡ dθ

dt
=

√
G(m1 +m2)

a3
. (95)

Inserting the expression for a and integrating gives (Ce-
rioli et al., 2016)

θ(t) = −8τ

5

√
G(m1 +m2)

a3
0

(
1− t

τ

)
. (96)

The positions of the binary, r1 and r2, can be inserted
into (89) to obtain the binary potential, with the ac-
celeration as given in (90). The above can be used as a
simple example of a time-dependent external potential.

2.4.4 Galactic potentials

We implement a range of external forces represent-
ing various galactic potentials, as used in Pettitt
et al. (2014). These include arm, bar, halo, disc and
spheroidal components. We refer the reader to the pa-
per above for the actual forms of the potentials.

For the non-axisymmetric potentials a few impor-
tant parameters that determine the morphology can be
changed at run-time rather than compile time. These
include the pattern speed, arm number, arm pitch an-
gle and bar axis lengths (where applicable). In the case
of non-axisymmetric components, the user should be
aware that some will add mass to the system, whereas
others simply perturb the galactic disc. These potentials
can be used for any galactic system, but the various de-
fault scale lengths and masses are chosen to match the
Milky Way’s rotation curve (Sofue, 2012).

The most basic potential in Phantom is a simple
logarithmic potential from Binney & Tremaine (1987),
which allows for the reproduction of a purely flat ro-
tation curve with steep decrease at the galactic centre,
and approximates the halo, bulge and disc contribu-
tions. Also included is the standard flattened disc po-
tential of Miyamoto-Nagai (Miyamoto & Nagai, 1975)
and an exponential profile disc, specifically the form
from Khoperskov et al. (2013). Several spheroidal com-
ponents are available, including the potentials of Plum-
mer (1911), Hernquist (1990) and Hubble (1930). These

can be used generally for bulges and halos if given suit-
able mass and scale-lengths. We also include a few halo-
specific profiles; the NFW (Navarro et al., 1996), Bege-
man et al. (1991), Caldwell & Ostriker (1981) and the
Allen & Santillan (1991) potentials.

The arm potentials include some of the more compli-
cated profiles. The first is the potential of Cox & Gómez
(2002), which is a relatively straightforward superpo-
sition of three sinusoidal-based spiral components to
damp the potential “troughs” in the inter-arm minima.
The other spiral potential is from Pichardo et al. (2003),
and is more complicated. Here the arms are constructed
from a superposition of oblate spheroids whose loci are
placed along a standard logarithmic spiral. As the force
from this potential is computationally expensive it is
prudent to pre-compute a grid of potential/force and
read it at run time. The python code to generate the
appropriate grid files is distributed with the code.

Finally, the bar components: We include the bar po-
tentials of Dehnen (2000a), Wada & Koda (2001), the
“S” shaped bar of Vogt & Letelier (2011), both biaxial
and triaxial versions provided in Long & Murali (1992),
and the boxy-bulge bar of Wang et al. (2012). This fi-
nal bar is contains both a small inner non-axisymmetric
bulge and longer bar component, with the forces calcu-
lated by use of Hernquist-Ostriker expansion coefficients
of the bar density field. Phantom contains the coeffi-
cients for several different forms of this bar potential.

2.4.5 Lense-Thirring precession

Lense-Thirring precession (Lense & Thirring, 1918)
from a spinning black hole is implemented in a
Post-Newtonian approximation following Nelson & Pa-
paloizou (2000), which has been used in Nixon et al.
(2012b) and Nealon et al. (2015, 2016). In this case the
external acceleration consists of a point mass potential
(Section 2.4.1) and the Lense-Thirring term,

aext,a = −∇Φa + va ×Ωp,a, (97)

where Φa is given by (86) and va ×Ωp,a is the gravito-
magnetic acceleration. A dipole approximation is used,
yielding

Ωp,a ≡
2S

|ra|3
− 6(S · ra)ra

|ra|5
, (98)

with S = aspin(GM)2k/c3, where k is a unit vector in
the direction of the black hole spin. When using the
Lense-Thirring force, geometric units are assumed such
that G = M = c = 1, as described in Section 2.2.3, but
with the additional constraints on the unit system from
M and c.

Since in this case the external force depends on ve-
locity, it cannot be implemented directly into Leapfrog.
The method we employ to achieve this is simpler than
those proposed elsewhere (c.f. attempts by Quinn et al.
2010 and Rein & Tremaine 2011 to adapt the Leapfrog
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integrator to Hill’s equations). Our approach is to split
the acceleration into position and velocity-dependent
parts, i.e.

aext = aext,x(r) + aext,v(r,v). (99)

The position dependent part (i.e. −∇Φ(r)) is integrated
as normal. The velocity dependent Lense-Thirring term
is added to the predictor step, (66)–(67), as usual, but
the corrector step, (69), is written in the form

vn+1 = vn+ 1
2 +

1

2
∆t
[
an+1

sph + an+1
ext,x + aext,v(rn+1,vn+1)

]
.

(100)

where vn+ 1
2 ≡ vn + 1

2∆tan as in (65). This equation is
implicit but the trick is to notice that it can be solved
analytically for simple forces4. In the case of Lense-
Thirring precession, we have

vn+1 = ṽ +
1

2
∆t
[
vn+1 ×Ωp(r

n+1)
]
, (101)

where ṽ ≡ vn+ 1
2 + 1

2∆t(an+1
sph + an+1

ext,x). We therefore
have a matrix equation in the form

Rvn+1 = ṽ, (102)

where R is the 3× 3 matrix given by

R ≡

 1 −∆t
2 Ωzp

∆t
2 Ωyp

∆t
2 Ωzp 1 −∆t

2 Ωxp
−∆t

2 Ωyp
∆t
2 Ωxp 1

 . (103)

Rearranging (102), vn+1 is obtained by using

vn+1 = R−1ṽ, (104)

where R−1 is the inverse of R and can be computed
analytically.

2.4.6 Generalised Newtonian potential

The generalised Newtonian potential described by
Tejeda & Rosswog (2013) is implemented, where the
acceleration terms are given by

aext,a = −GMra
|ra|3

f2 +
2Rgva(va · ra)

|ra|3f
− 3Rgra(va × ra)2

|ra|5
,

(105)
with Rg ≡ GM/c3 and f ≡ (1− 2Rg/|ra|). See Bon-
nerot et al. (2016) for a recent application. This po-
tential reproduces several features of the Schwarzschild
(1916) spacetime, in particular reproducing the orbital
and epicyclic frequencies to better than 7 per cent
(Tejeda & Rosswog, 2013). As the acceleration involves
velocity-dependent terms, it requires a semi-implicit so-
lution like Lense-Thirring precession. Since the matrix
equation is rather involved for this case, the corrector

4The procedure for Hill’s equations would be identical to our
method for Lense-Thirring precession. The method we use is
both simpler and more direct than any of the schemes proposed
by Quinn et al. (2010) and Rein & Tremaine (2011), and is time-
reversible unlike the methods proposed in those papers.

step is iterated using fixed point iterations until the ve-
locity of each particle is converged to a tolerance of 1
per cent.

2.4.7 Poynting-Robertson drag

The radiation drag from a central point-like, gravitat-
ing, radiating, and non-rotating object may be applied
as an external force. The implementation is intended to
be as general as possible. The acceleration of a particle
subject to these external forces is

aext,a =
(k0βPR − 1)GM

|ra|3
ra

− βPR

(
k1
GM

|ra|3
vr
c
ra − k2

GM

|ra|2
va
c

)
, (106)

where vr is the component of the velocity in the radial
direction. The parameter βPR is the ratio of radiation to
gravitational forces, supplied by a separate user-written
module. Relativistic effects are neglected because these
are thought to be less important than radiation forces
for low (βPR < 0.01) luminosities, even in accreting neu-
tron star systems where a strong gravitational field is
present (e.g., Miller & Lamb 1993).

The three terms on the right side of (106) corre-
spond respectively to gravity (reduced by outward ra-
diation pressure), redshift-related modification to radi-
ation pressure caused by radial motion, and Poynting-
Robertson drag against the direction of motion. These
three terms can be scaled independently by changing
the three parameters k0, k1 and k2, whose default values
are unity. Rotation of the central object can be crudely
emulated by changing k2.

As for Lense-Thirring precession, the an+1 term of
the Leapfrog integration scheme can be expanded into
velocity-dependent and non velocity-dependent compo-
nent. We obtain, after some algebra,

vn+1 = −T −Qk1(vn+1 · r̂)r̂

1 +Qk2
, (107)

where

T = vn +
1

2
∆tan − (1− k0βPR)GM∆t

2r3
r (108)

and

Q =
GMβPR∆t

2cr2
. (109)

Equation (107) yields a set of simultaneous equations
for the three vector components that can be solved
analytically. A detailed derivation is given in Worpel
(2015).

2.4.8 Coriolis and centrifugal forces

Under certain circumstances it is useful to perform cal-
culations in a corotating reference frame (e.g. for damp-
ing binary stars into equilibrium with each other). The
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resulting acceleration terms are given by

aext,a = −Ω× (Ω× ra)− 2(Ω× va), (110)

which are the centrifugal and Coriolis terms, re-
spectively, with Ω the angular rotation vector. The
timestepping algorithm is as described above for Lense-
Thirring precession, with the velocity dependent term
handled by solving the 3× 3 matrix in the Leapfrog
corrector step.

2.5 Driven turbulence

Phantom implements turbulence driving in periodic
domains via an Ornstein-Uhlenbeck stochastic driving
of the acceleration field, as first suggested by Eswaran &
Pope (1988). This is an SPH adaptation of the module
used in the grid-based simulations by Schmidt et al.
(2006) and Federrath et al. (2008) and many subse-
quent works. This module was first used in Phantom
by Price & Federrath (2010) to compare the statistics
of isothermal, supersonic turbulence between SPH and
grid methods. Subsequent applications have been to the
density variance-Mach number relation (Price et al.,
2011), subsonic turbulence (Price, 2012b), supersonic
MHD turbulence (Tricco et al., 2016b), and supersonic
turbulence in a dust-gas mixture (Tricco et al., 2017).
Adaptations of this module have also been incorporated
into other SPH codes (Bauer & Springel, 2012; Val-
darnini, 2016).

The amplitude and phase of each Fourier mode is
initialised by creating a set of six random numbers, zn,
drawn from a random Gaussian distribution with unit
variance. These are generated by the usual Box-Muller
transformation (e.g. Press et al., 1992) by selecting two
uniform random deviates u1, u2 ∈ [0, 1] and construct-
ing the amplitude according to

z =
√

2 log(1/u1) cos(2πu2). (111)

The six Gaussian random numbers are set up according
to

xn = σzn, (112)

where the standard deviation, σ, is set to the square
root of the energy per mode divided by the correlation
time, σ =

√
Em/tdecay, where both Em and tdecay are

user-specified parameters.
The ‘red noise’ sequence (Uhlenbeck & Ornstein,

1930) is generated for each mode at each timestep ac-
cording to (Bartosch, 2001)

xn+1 = fxn + σ
√

(1− f2)zn, (113)

where f = exp(−∆t/tdecay) is the damping factor. The
resulting sequence has zero mean with root-mean-
square equal to the variance. The power spectrum in
the time domain can vary from white noise (P (f) con-
stant) to “brown noise” (P (f) = 1/f2).

The amplitudes and phases of each mode are con-
structed by splitting xn into two vectors, Φa and Φb of
length 3, employed to construct divergence- and curl-
free fields according to

Am = w[Φa − (Φa · k̂)k̂] + (1− w)[(Φb · k̂)k̂], (114)

Bm = w[Φb − (Φb · k̂)k̂] + (1− w)[(Φa · k̂)k̂], (115)

where k = [kx, ky, kz] is the mode frequency. The pa-
rameter w ∈ [0, 1] is the ‘solenoidal weight’, specify-
ing whether the driving should be purely solenoidal
(w = 1) or purely compressive (w = 0) (see Federrath
et al. 2008, 2010a).

The spectral form of the driving is defined in Fourier
space, with options for three possible spectral forms

Cm =


1 uniform

4(amin − 1) (k−kc)2

(kmax−kmin)2 + 1 parabolic

k/k
−5/3
min Kolmogorov

(116)

where k =
√
k2
x + k2

y + k2
z is the wavenumber, with non-

zero amplitudes defined only for wavenumbers where
kmin ≤ k ≤ kmax, and amin is the amplitude of the
modes at kmin and kmax in the parabolic case (we use
amin = 0 in the code). The frequency grid is defined
using frequencies from kx = nx2π/Lx in the x direc-
tion, where nx ∈ [0, 20] is an integer and Lx is the
box size in the x−direction, while ky = ny2π/Ly and
kz = nz2π/Lz with ny ∈ [0, 8] and nz ∈ [0, 8]. We then
set up four modes for each combination of nx, ny and nz,
corresponding to [kx, ky, kz], [kx,−ky, kz], [kx, ky,−kz]
and [kx,−ky,−kz]. That is, we effectively sum from
[−(N − 1)/2, (N − 1)/2] in the ky and kz directions in
the discrete Fourier transform, where N = max(nx) is
the number of frequencies. The default values for kmin

and kmax are 2π and 6π, respectively, corresponding to
large scale driving of only the first few Fourier modes,
so with default settings there are 112 non-zero Fourier
modes. The maximum number of modes, defining the
array sizes needed to store the stirring information, is
currently set to 1000.

We apply the forcing to the particles by computing
the discrete Fourier transform over the stirring modes
directly, i.e.

aforcing,a = fsol

nmodes∑
m=1

Cm [Am cos(k · ra)−Bm sin(k · ra)] ,

(117)
where the factor fsol is defined from the solenoidal
weight, w, according to

fsol =

√
3

ndim

√
3

1− 2w + ndimw2
, (118)

such that the rms acceleration is the same irrespective of
the value of w. We default to purely solenoidal forcing
(w = 1), with the factor fsol thus equal to

√
3/2 by
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default. For individual timesteps, we update the driving
force only when a particle is active.

To aid reproducibility, it is often desirable to pre-
generate the entire driving sequence prior to perform-
ing a calculation, which can then be written to a file
and read back at runtime. This was the procedure used
in Price & Federrath (2010), Tricco et al. (2016b) and
Tricco et al. (2017).

2.6 Accretion disc viscosity

Accretion disc viscosity is implemented in Phantom
via two different approaches, as described by Lodato &
Price (2010).

2.6.1 Disc viscosity using the shock viscosity term

The default approach is to adapt the shock viscos-
ity term to represent a Shakura & Sunyaev (1973)
α-viscosity, as originally proposed by Artymowicz &
Lubow (1994) and Murray (1996). The key is to note
that (39) and (40) represent a Navier-Stokes viscosity
term with a fixed ratio between the bulk and shear vis-
cosity terms (e.g. Murray, 1996; Jubelgas et al., 2004;
Lodato & Price, 2010; Price, 2012b; Meru & Bate,
2012). In particular, it can be shown (e.g. Español &
Revenga, 2003) that

∑
b

mb

ρab
(vab · r̂ab)

∇aWab

|rab|
≈ 1

5
∇ (∇ · v) +

1

10
∇2v,

(119)
where ρab is some appropriate average of the density.
This enables the artificial viscosity term, (39), to be
translated into the equivalent Navier-Stokes terms. In
order for the artificial viscosity to represent a disc vis-
cosity, we make the following modifications (Lodato &
Price, 2010):

1. the viscosity term is applied for both approaching
and receding particles,

2. the speed in vsig is set equal to cs,
3. a constant αAV is adopted, turning off shock de-

tection switches (Section 2.2.9), and
4. the viscosity term is multiplied by a factor h/|rab|.

The net result is that (40) becomes

qaab =

{
− ρaha

2|rab|
(
αAVcs,a + βAV|vab · r̂ab|

)
vab · r̂ab, vab · r̂ab < 0

− ρaha

2|rab|α
AVcs,avab · r̂ab. otherwise

(120)
With the above modifications, the shear and bulk

coefficients can be translated using (119) to give (e.g.
Monaghan, 2005; Lodato & Price, 2010; Meru & Bate,

2012)

νAV ≈
1

10
αAVcsh, (121)

ζAV =
5

3
νAV ≈

1

6
αAVcsh. (122)

The Shakura-Sunyaev prescription is

ν = αSScsH, (123)

where H is the scale height. This implies that αSS may
be determined from αAV using

αSS ≈
αAV

10

〈h〉
H
, (124)

where 〈h〉 is the mean smoothing length on particles in
a cylindrical ring at a given radius.

In practice, this means that one must uniformly re-
solve the scale height in order to obtain a constant αSS

in the disc. We have achieved this in simulations to date
by choosing the initial surface density profile and the
power-law index of the temperature profile (when using
a locally isothermal equation of state) to ensure that
this is the case (Lodato & Pringle, 2007). Confirmation
that the scaling provided by (124) is correct is shown
in Figure 4 of Lodato & Price (2010) and is checked
automatically in the Phantom test suite.

In the original implementation (Lodato & Price,
2010) we also set the βAV to zero, but this is dangerous
if the disc dynamics are complex as there is nothing to
prevent particle penetration (see Section 2.2.7). Hence
in the current version of the code, βAV = 2 by default
even if disc viscosity is set, but is only applied to ap-
proaching particles (c.f. 120). Applying any component
of viscosity to only approaching particles can affect the
sign of the precession induced in warped discs (Lodato
& Pringle, 2007), but in general retaining the βAV term
is safer with no noticeable effect on the overall dissipa-
tion due to the second order dependence of this term
on resolution.

Using αAV to set the disc viscosity has two useful
consequences. First, it forces one to consider whether
or not the scale height, H, is resolved. Second, know-
ing the value of αAV is helpful, as αAV ≈ 0.1 represents
the lower bound below which a physical viscosity is not
resolved in SPH (that is, viscosities smaller than this
produce disc spreading independent of the value of αAV;
see Bate 1995; Meru & Bate 2012), while αAV > 1 con-
strains the timestep (Section 2.3.2).

2.6.2 Disc viscosity using the Navier-Stokes
viscosity terms

An alternative approach is to compute viscous terms di-
rectly from the Navier-Stokes equation. Details of how
the Navier-Stokes terms are represented are given be-
low (Section 2.7), but for disc viscosity a method for
determining the kinematic viscosity is needed, which in
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turn requires specifying the scale height as a function
of radius. We use

Ha ≡
cas

Ω(Ra)
, (125)

where we assume Keplerian rotation Ω =
√
GM/R3

and cs is obtained for a given particle from the equation
of state (which for consistency must be either isother-
mal or locally isothermal). It is important to note that
this restricts the application of this approach only to
discs where R can be meaningfully defined, excluding,
for example, discs around binary stars.

The shear viscosity is then set using

νa = αSSc
a
sHa, (126)

where αSS is a predefined/input parameter. The
timestep is constrained using Cvisch

2/ν as described in
Section 2.7. The advantage to this approach is that the
shear viscosity is set directly and does not depend on
the smoothing length. However, as found by Lodato &
Price (2010), it remains necessary to apply some bulk
viscosity to capture shocks and prevent particle pen-
etration of the disc midplane, so one should apply the
shock viscosity as usual. Using a shock-detection switch
(Section 2.2.9) means that this is usually not problem-
atic. This formulation of viscosity was used in Facchini
et al. (2013).

2.7 Navier-Stokes viscosity

Physical viscosity is implemented as described in
Lodato & Price (2010). Here, (23) and (24) are replaced
by the compressible Navier-Stokes equations, i.e.

dvi

dt
=− 1

ρ

∂SijNS

∂xj
+ Πshock + aext(r, t)

+ asink−gas + aselfgrav, (127)

du

dt
=− P

ρ
(∇ · v) + Λvisc + Λshock − Λcool, (128)

with the stress tensor given by

SijNS =

[
P −

(
ζ − 2

3
η

)
∂vk

∂xk

]
δij − η

(
∂vi

∂xj
+
∂vj

∂xi

)
(129)

where δij is the Kronecker delta, and ζ and η are
the bulk and shear viscosity coefficients, related to the
volume and kinematic shear viscosity coefficients by
ζv = ζ/ρ and ν ≡ η/ρ.

2.7.1 Physical viscosity using two first derivatives

As there is no clear consensus on the best way to im-
plement physical viscosity in SPH, Phantom currently
contains two implementations. The simplest is to use
two first derivatives, which is essentially that proposed
by Flebbe et al. (1994), Watkins et al. (1996) and Si-
jacki & Springel (2006). In this case, (127) is discretised

in the standard manner using

dvia
dt

=−
∑
b

mb

[
SijNS,a

Ωaρ2
a

∂Wab(ha)

∂xja
+
SijNS,b

Ωbρ2
b

∂Wab(hb)

∂xja

]
+ Πi

shock + aiext(r, t) + aisink−gas + aiselfgrav,

(130)

where the velocity gradients are computed during the
density loop using

∂via

∂xja
= − 1

Ωaρa

∑
b

mbv
i
ab∇jaWab(ha). (131)

Importantly, the differenced SPH operator is used in
(131) whereas (130) uses the symmetric gradient oper-
ator. The use of conjugate operators5 is a common re-
quirement in SPH in order to guarantee energy conser-
vation and a positive definite entropy increase from dis-
sipative terms (e.g. Price, 2010; Tricco & Price, 2012).
Total energy conservation means that

dE

dt
=
∑
a

ma

(
dua
dt

+ via
dvia
dt

)
= 0. (132)

This implies a contribution to the thermal energy equa-
tion given by

dua
dt

=
SijNS,a

Ωaρ2
a

∑
b

mbv
i
ab∇jaWab(ha), (133)

which can be seen to reduce to (24) in the inviscid case
(SijNS = Pδij), but in general is an SPH expression for

dua
dt

= −
SijNS,a

ρa

∂via

∂xja
. (134)

Using SijNS = SjiNS we have

dua
dt

= −1

2

SijNS,a

ρa

(
∂via

∂xja
+
∂vja
∂xia

)
, (135)

which, using (129), gives

Λvisc =

(
ζv,a −

2

3
νa

)
(∇ · v)2

a +
νa
2

(
∂via

∂xja
+
∂vja
∂xia

)2

.

(136)

By the square in the last term we mean the tensor sum-
mation

∑
j

∑
i TijTij , where Tij ≡ ∂via/∂xja + ∂vja/∂x

i
a.

The heating term is therefore positive definite provided
that the velocity gradients and divergence are computed
using the difference operator (131), both in (136) and
when computing the stress tensor (129).

The main disadvantage of the first derivatives ap-
proach is that it requires storing the strain tensor for
each particle, i.e. six additional quantities when taking
account of symmetries.

5The SPH difference operator is discretely skew-adjoint to the
symmetric operator (Cummins & Rudman, 1999).
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2.7.2 Physical viscosity with direct second
derivatives

The second approach is to use SPH second derivative
operators directly. Here we use modified versions of the
identities given by Español & Revenga (2003) (see also
Monaghan 2005; Price 2012a), namely

∇ [A(∇ · v)] ≈

−
∑
b

mb

[
Aa
ρa
Gab(ha) +

Ab
ρb
Gab(hb)

]
(vab · r̂ab)r̂ab,

(137)

∇ · (C∇v) ≈

−
∑
b

mb

[
Ca
ρa
Gab(ha) +

Cb
ρb
Gab(hb)

]
vab, (138)

where Gab ≡ −2Fab/|rab|, i.e. the scalar part of the ker-
nel gradient divided by the particle separation, which
can be thought of as equivalent to defining a new “sec-
ond derivative kernel” (Brookshaw, 1985, 1994; Price,
2012a; Price & Laibe, 2015a).

From the compressible Navier-Stokes equations, (127)
with (129), the coefficients in these two terms are

A ≡ 1

2

(
ζ +

η

3

)
, (139)

C ≡ 1

2
η, (140)

so that we can simply use(
dvia
dt

)
visc

=
∑
b

mb

ρab
(τa + τb)(vab · r̂ab)r̂iabGab

+
∑
b

mb

ρab
(κa + κb)v

i
abGab, (141)

where

τ =
5

2
A, (142)

κ =

(
C − A

2

)
. (143)

The corresponding heating terms in the thermal en-
ergy equation are given by

Λvisc =
τa
ρa

∑
b

mb(vab · r̂ab)2Gab(ha)

+
κa
ρa

∑
b

mb(vab)
2Gab(ha). (144)

This is the default formulation of Navier-Stokes vis-
cosity in the code since it does not require additional
storage. In practice we have found little difference be-
tween the two formulations of physical viscosity, but
this would benefit from a detailed study. In general one
might expect the two first derivatives formulation to of-
fer a less noisy estimate at the cost of additional storage.
However, direct second derivatives are the method used

in ‘Smoothed Dissipative Particle Dynamics’ (Español
& Revenga, 2003).

2.7.3 Timestep constraint

Both approaches to physical viscosity use explicit
timestepping, and therefore imply a constraint on the
timestep given by

∆tavisc ≡ Cvisc
h2
a

νa
, (145)

where Cvisc = 0.25 by default (Brookshaw, 1994). When
physical viscosity is turned on, this constraint is in-
cluded with other timestep constraints according to
(77).

2.7.4 Physical viscosity and the tensile instability

Caution is required in the use of physical viscosity at
high Mach number, since negative stress can lead to
the tensile instability (Morris, 1996b; Monaghan, 2000;
Gray et al., 2001). For subsonic applications this is usu-
ally not a problem since the strain tensor and velocity
divergence are small compared to the pressure. In the
current code we simply emit a warning if physical vis-
cosity leads to negative stresses during the calculation,
but this would benefit from a detailed study.

2.7.5 Physical viscosity and angular momentum
conservation

Neither method for physical viscosity exactly conserves
angular momentum because the force is no longer di-
rected along the line of sight joining the particles. How-
ever, the error is usually small (see discussion in Bonet
& Lok 1999, Section 5 of Price & Monaghan 2004b or Hu
& Adams 2006). Recently, Müller et al. (2015) have pro-
posed an algorithm for physical viscosity in SPH that
explicitly conserves angular momentum by tracking par-
ticle spin, which may be worth investigating.

2.8 Sink particles

Sink particles were introduced into SPH by Bate et al.
(1995) in order to follow star formation simulations be-
yond the point of fragmentation. In Phantom, these
are treated separately to the SPH particles, and inter-
act with other particles, including other sink particles,
only via gravity. The differences with other point mass
particles implemented in the code (e.g. dust, stars and
dark matter) are that i) the gravitational interaction
is computed using a direct N2 summation which is not
softened by default (i.e., the N−body algorithm is colli-
sional); ii) they are allowed to accrete gas; and iii) they
store the accreted angular momentum and other ex-
tended properties, such as the accreted mass. Sink par-
ticles are evolved in time using the RESPA algorithm
(Section 2.3.3), which is second order accurate, sym-
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plectic, and allows sink particles to evolve on shorter
timesteps compared to SPH particles.

2.8.1 Sink particle accelerations

The equations of motion for a given sink particle, i, are

dvi
dt

=−
Nsink∑
j=1

GMjφ
′
ij(ε)r̂ij

−
Npart∑
b=1

Gmbφ
′
ib(εib)r̂ib, (146)

where φ′ab is the usual softening kernel (Section 2.12.2),
Npart is the total number of gas particles, and Nsink is
the total number of sink particles. The sink-gas soften-
ing length, εib, is defined as the maximum of the (fixed)
softening length defined for the sink particles, ε, and
the softening length of the gas particle, εb. That is,
εib ≡ max(ε, εb). SPH particles receive a corresponding
acceleration

aasink−gas = −
Nsink∑
j=1

GMjφ
′
aj(εaj)r̂aj . (147)

Softening of sink-gas interactions is not applied if the
softening length for sink particles is set to zero, in which
case the sink-gas accelerations reduce simply to

aasink−gas = −
Nsink∑
j=1

GMj

|ra − rj |3
raj . (148)

This is the default behaviour when sink particles are
used in the code. Softening of sink-gas interactions is
useful to model a point mass particle that does not ac-
crete gas (e.g. by setting the accretion radius to zero).
For example, we used a softened sink particle to simu-
late the core of the red giant in Iaconi et al. (2017). The
sink-sink interaction is unsoftened by default (ε = 0),
giving the usual

aisink−sink = −
Nsink∑
j=1

GMj

|ri − rj |3
rij . (149)

Caution is required when integrating tight binary or
multiple systems when ε = 0 to ensure that the timestep
conditions (Section 2.3.2) are strict enough.

2.8.2 Accretion onto sink particles

Accretion of gas particles onto a sink particle occurs
when a gas particle passes a series of accretion checks
within the accretion radius racc of a sink particle (set
in the initial conditions or when the sink particle is cre-
ated; see Section 2.8.4). First, a gas particle is indis-
criminately accreted without undergoing any additional
checks if it falls within faccracc, where 0 ≤ facc ≤ 1 (de-
fault facc = 0.8). In the boundary region faccracc < r <
racc, a gas particle undergoes accretion if:

1. |Lai| < |Lacc|, that is, its specific angular momen-
tum is less than that of a Keplerian orbit at racc,

2. e =
v2ai

2 − GMi

rai
< 0, i.e., it is gravitationally bound

to the sink particle, and
3. e for this gas-sink pair is smaller than e with any

other sink particle, that is, out of all sink particles,
the gas particle is most bound to this one.

In the above conditions, Lai is the relative specific an-
gular momentum of the gas-sink pair, a− i, defined by

|L2
ai| ≡ |rai × vai|2

= r2
aiv

2
ai − (rai · vai)2

, (150)

while |Lacc| = r2
accΩacc is the angular momentum at

racc, where Ωacc =
√
GMi/r3

ai is the Keplerian angu-
lar speed at racc, vai and rai are the relative velocity
and position, respectively, and Mi is the mass of the
sink particle.

When a particle, a, passes the accretion checks, then
the mass, position, velocity, acceleration and spin angu-
lar momentum of the sink particle are updated accord-
ing to

ri =
(rama + riMi)

Mi +ma
, (151)

vi =
(vama + viMi)

Mi +ma
, (152)

ai =
(aama + aiMi)

Mi +ma
, (153)

Si = Si +
maMi

Mi +ma
[(ra − ri)× (va − vi)] , (154)

Mi = Mi +ma. (155)

This ensures that mass, linear momentum and angu-
lar momentum (but not energy) are conserved by the
accretion process. The accreted mass as well as the to-
tal mass for each sink particle is stored to avoid prob-
lems with round-off error in the case where the particle
masses are much smaller than the sink mass. Accreted
particles are tagged by setting their smoothing lengths
negative. Those particles with h ≤ 0 are subsequently
excluded when the kd-tree is built.

2.8.3 Sink particle boundary conditions

No special sink particle boundary conditions are imple-
mented in Phantom at present. More advanced bound-
ary conditions to regularise the density, pressure and
angular momentum near a sink have been proposed by
Bate et al. (1995) and used in Bate & Bonnell (1997),
and proposed again more recently by Hubber et al.
(2013b). While these conditions help to regularise the
flow near the sink particle, they can also cause problems
— particularly the angular momentum boundary con-
dition if the disc near the sink particle has complicated
structure such as spiral density waves (Bate, private
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communication 2014). Often it is more cost effective to
simply reduce the accretion radius of the sink. This may
change in future code versions.

2.8.4 Dynamic sink particle creation

As described in Bate et al. (1995), it is also possible to
create sink particles on-the-fly provided certain phys-
ical conditions are met and self-gravity is turned on
(Section 2.12). The primary conditions required for sink
particle formation are that the density of a given parti-
cle exceeds some threshold physical density somewhere
in the domain, and that this density peak occurs more
than a critical distance rcrit from an existing sink. Once
these conditions are met on a particular particle, a, the
creation of a new sink particle occurs by passing the
following conditions (Bate et al., 1995):

1. the particle is a gas particle,
2. ∇ · va ≤ 0, that is, gas surrounding the particle is

at rest or collapsing,
3. ha < racc/2, i.e., the smoothing length of the par-

ticle is less than half of the accretion radius,
4. all neighbours within racc are currently active,
5. the ratio of thermal to gravitational energy of par-

ticles within racc, αJ, satisfies αJ ≤ 1/2,
6. αJ + βrot ≤ 1, where βrot = |erot|/|egrav| is the ra-

tio of rotational energy to the magnitude of the
gravitational energy for particles within racc, and

7. etot < 0, that is, the total energy of particles
within racc is negative (i.e. the clump is gravita-
tionally bound).

8. the particle is at a local potential minimum, i.e.
Φ is less than Φ computed on all other particles
within racc (Federrath et al., 2010b)

A new sink particle is created at the position of par-
ticle a if these checks are passed, and immediately the
particles within racc are accreted by calling the routine
described in Section 2.8.2. The checks above are the
same as those in Bate et al. (1995), with the addition
of the additional check from Federrath et al. (2010b)
to ensure that sink particles are only created in a local
minimum of the gravitational potential.

The various energies used to evaluate the criteria
above are computed according to

ekin =
1

2

N<racc∑
b=1

mb(vb − va)2, (156)

etherm =

N<racc∑
b=1

mbub, (157)

egrav = − 1

2

N<racc∑
b=1

N<racc∑
c=b

Gmbmc,

× [φ(|rb − rc|, hb) + φ(|rb − rc|, hc)] , (158)

etot = ekin + etherm + egrav, (159)

erot ≡
√
e2

rot,x + e2
rot,y + e2

rot,z, (160)

erot,x ≡
1

2

N<racc∑
b=1

mb

L2
ab,x√

(ya − yb)2 + (za − zb)2
, (161)

erot,y ≡
1

2

N<racc∑
b=1

mb

L2
ab,y√

(xa − xb)2 + (za − zb)2
, (162)

erot,z ≡
1

2

N<racc∑
b=1

mb

L2
ab,z√

(xa − xb)2 + (ya − yb)2
, (163)

where Lab ≡ (ra − rb)× (va − vb) is the specific angu-
lar momentum between a pair of particles, and φ is the
gravitational softening kernel (defined in Section 2.12),
which has units of inverse length. Adding the contribu-
tion from all pairs, b− c, within the cloud is required
to obtain the total potential of the cloud.

2.8.5 Sink particle timesteps

Sink particles are integrated together with a global,
but adaptive, timestep, following the inner loop of the
RESPA algorithm given in (80)–(83) corresponding to a
second-order Leapfrog integration. The timestep is con-
trolled by the minimum of the sink-gas timestep, (75),
and a sink-sink timestep (Dehnen & Read, 2011)

∆tsink−sink ≡ min
i

(
CforceηΦ

√
|Φsink−sink
i |

|∇Φsink−sink
i |2

)
, (164)

where the potential and gradient include other sink par-
ticles, plus any external potentials applied to sink par-
ticles except the sink-gas potential. We set ηΦ = 0.05
by default, resulting in ∼ 300–500 steps per orbit for
a binary orbit with the default Cforce = 0.25 (see Sec-
tion 5.5.1).

More accurate integrators such as the fourth-order
Hermite scheme (Makino & Aarseth, 1992) or the fourth
order symplectic schemes proposed by Omelyan et al.
(2002) or Chin & Chen (2005) are not yet implemented
in Phantom, but it would be a worthwhile effort to
incorporate one of these in a future code version. See
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Hubber et al. (2013a) for a recent implementation of a
4th order Hermite scheme for sink particles in SPH.

2.9 Stellar physics

A tabulated equation of state (EOS) can be used to take
account of the departure from an ideal gas, for example
due to changes in ionization or molecular dissociation
and recombination. This tabulated EOS in Phantom is
adapted from the logPgas − T EOS tables provided with
the open source package Modules for Experiments in
Stellar Astrophysics mesa (Paxton et al., 2011). Details
of the data, originally compiled from blends of equations
of state from Saumon et al. (1995) (SCVH), Timmes &
Swesty (2000), Rogers & Nayfonov (2002, also the 2005
update), Potekhin & Chabrier (2010) and for an ideal
gas, are outlined by Paxton et al. (2011).

In our implementation (adapted from original rou-
tines for the Music code; Goffrey et al. 2016), we com-
pute the pressure and other required EOS variables
for a particular composition by interpolation between
sets of tables for different hydrogen abundance X =
0.0, 0.2, 0.4, 0.6, 0.8 and metallicity Z = 0.0, 0.02, 0.04.
Pressure is calculated with bicubic interpolation, and
Γ1 ≡ ∂ lnP/∂ ln ρ|s with bilinear interpolation, in log u
and log V ≡ log ρ− 0.7 log u+ 20. The tables are cur-
rently valid in the ranges 10.5 ≤ log u ≤ 17.5 and 0.0 ≤
log V ≤ 14.0. Values requested outside the tables are
currently computed by linear extrapolation. This trig-
gers a warning to the user.

We have not tested the thermodynamic consistency
of our interpolation scheme from the tables, but this is
an important consideration (Timmes & Arnett, 1999).

2.10 Magnetohydrodynamics

Phantom implements the smoothed particle magneto-
hydrodynamics (SPMHD) algorithm described in Price
(2012a) and Tricco & Price (2012, 2013), based on the
original work by Phillips & Monaghan (1985) and Price
& Monaghan (2004a,b, 2005). Phantom was previously
used to test a vector potential formulation (Price, 2010),
but this algorithm has been subsequently removed from
the code due to its poor performance (see Price 2010).

The important difference between Phantom and
the gadget implementation of SPMHD (Dolag &
Stasyszyn, 2009; Bürzle et al., 2011a,b), which also
implements the core algorithms from Price & Mon-
aghan (2004a,b, 2005), is our use of the divergence-
cleaning algorithm from Tricco & Price (2012, 2013)
and Tricco et al. (2016a). This is vital for preserving the
divergence-free (no monopoles) condition on the mag-
netic field.

For recent applications of Phantom to MHD prob-
lems, see e.g. Tricco et al. (2016b), Dobbs et al. (2016),

Bonnerot et al. (2017), Forgan et al. (2017) and Wurster
et al. (2016, 2017).

2.10.1 Equations of magnetohydrodynamics

Phantom solves the equations of magnetohydrody-
namics in the form

dvi

dt
= −1

ρ

∂M ij

∂xj
+ Πshock + f idivB + aiext

+ aisink−gas + aiselfgrav, (165)

du

dt
= −P

ρ
(∇ · v) + Λshock − Λcool, (166)

d

dt

(
B

ρ

)
=

1

ρ
[(B · ∇)v −∇ψ +Ddiss] , (167)

d

dt

(
ψ

ch

)
= −ch (∇ ·B)− 1

2

ψ

ch
(∇ · v)− ψ

chτc
, (168)

where B is the magnetic field, ψ is a scalar used to
control the divergence error in the magnetic field (see
Section 2.10.8, below), and Ddiss represents magnetic
dissipation terms (Sections 2.10.5 and 2.11, below). The
Maxwell stress tensor, Mij , is given by

M ij =

(
P +

1

2

B2

µ0

)
δij − BiBj

µ0
, (169)

where δij is the Kronecker delta and µ0 is the per-
meability of free space. A source term related to the
numerically-induced divergence of the magnetic field,
given by

f idivB ≡ −
Bi

ρ
(∇ ·B) , (170)

is necessary to prevent the tensile instability in SPMHD
(Phillips & Monaghan, 1985; Monaghan, 2000; Børve
et al., 2001; Price, 2012a). With this source term, the
equation set for ideal MHD in the absence of the di-
vergence cleaning field, ψ, is formally the same as in
the Powell et al. (1999) 8-wave scheme (Price, 2012a),
meaning that the divergence errors in the magnetic field
are advected by the flow, but not dissipated, unless
cleaning is used.

2.10.2 Discrete equations

The discrete version of (165) follows the same procedure
as for physical viscosity (Section 2.7), i.e.

dvia
dt

=−
∑
b

mb

[
M ij
a

Ωaρ2
a

∂Wab(ha)

∂xja
+
M ij
b

Ωbρ2
b

∂Wab(hb)

∂xja

]
+ Πa

shock + f idivB,a + aiext,a + aisink−gas

+ aiselfgrav, (171)

where M ij
a is defined according to (169), fdivB is a cor-

rection term for stability (discussed below), and accel-
erations due to external forces are as described in Sec-
tion 2.4.

PASA (2018)
doi:10.1017/pas.2018.xxx



22 Price et al.

Equations (167) and (168) are discretised according
to (Price & Monaghan, 2005; Tricco & Price, 2012;
Tricco et al., 2016a)

d

dt

(
B

ρ

)
a

=− 1

Ωaρ2
a

∑
b

mbvab [Ba · ∇aWab(ha)]

−
∑
b

mb

[
ψa

Ωaρ2
a

∇aWab(ha) +
ψb

Ωbρ2
b

∇aWab(hb)

]
+

1

ρa
Dadiss, (172)

d

dt

(
ψ

ch

)
a

=
cah

Ωaρa

∑
b

mbBab · ∇aWab(ha)

+
ψa

2cahΩaρa

∑
b

mbvab · ∇aWab(ha)− ψa
cahτ

a
c

.

(173)

The first term in (173) uses the divergence of the
magnetic field discretised according to

(∇ ·B)a = − 1

Ωaρa

∑
b

mb (Ba −Bb) · ∇aWab(ha),

(174)
which is therefore the operator we use when measuring
the divergence error (c.f. Tricco & Price 2012).

2.10.3 Code units

An additional unit is required when magnetic fields
are included to describe the unit of magnetic field. We
adopt code units such that µ0 = 1, as is common prac-
tice. The unit scalings for the magnetic field can be
determined from the definition of the Alfvén speed,

vA ≡
√
B2

µ0ρ
. (175)

Since the Alfvén speed has dimensions of length per
unit time, this implies a unit for the magnetic field,
umag, given by

umag =

(
µ0umass

udistutime

) 1
2

. (176)

Converting the magnetic field in the code to physical
units therefore only requires specifying µ0 in the rele-
vant unit system. In particular, it avoids the differences
between SI and cgs units in how the charge unit is de-
fined, since µ0 is dimensionless and equal to 4π in cgs
units but has dimensions that involve charge in SI units.

2.10.4 Tensile instability correction

The correction term fdivB is necessary to avoid the ten-
sile instability — a numerical instability where parti-
cles attract each other along field lines — in the regime
where the magnetic pressure exceeds the gas pressure,
that is, when plasma β ≡ P/ 1

2B
2 < 1 (Phillips & Mon-

aghan, 1985). The correction term is computed using

the symmetric divergence operator (Børve et al., 2001;
Price, 2012a; Tricco & Price, 2012)

f idivB,a = −B̂ia
∑
b

mb

[
Ba · ∇aWab(ha)

Ωaρ2
a

+
Bb · ∇aWab(hb)

Ωbρ2
b

]
. (177)

Since this term violates momentum conservation to the
extent that the ∇ ·B term is non-zero, several authors
have proposed ways to minimise its effect. Børve et al.
(2004) showed that stability could be achieved with
B̂i = 1

2B
i and also proposed a scheme for scaling this

term to zero for β > 1. Barnes et al. (2012) similarly
advocated using a factor of 1

2 in this term. However,
Tricco & Price (2012) showed that this could lead to
problematic effects (their Figure 12). In Phantom, we
use

B̂i =


Bi β < 2,

[(10− β)Bi]/8 2 < β < 10,

0 otherwise,

(178)

to provide numerical stability in the strong field regime
while maintaining conservation of momentum when β >
10. This also helps to reduce errors in the MHD wave
speed caused by the correction term (Iwasaki, 2015).

2.10.5 Shock capturing

The shock capturing term in the momentum equation
for MHD is identical to (39) and (40) except that the
signal speed becomes (Price & Monaghan, 2004a, 2005;
Price, 2012a)

vsig,a = αAV
a va + βAV|vab · r̂ab|, (179)

where

va =
√
c2s,a + v2

A,a (180)

is the fast magnetosonic speed. Apart from this, the
major difference to the hydrodynamic case is the addi-
tion of an artificial resistivity term to capture shocks
and discontinuities in the magnetic field (i.e. current
sheets). This is given by

Dadiss =
ρa
2

∑
b

mb

[
vBsig,a
ρ2
a

Fab(ha)

Ωa
+
vBsig,b
ρ2
b

Fab(hb)

Ωb

]
Bab,

(181)
where vBsig,a is an appropriate signal speed (see below)

multiplied by a dimensionless coefficient, αB . The cor-
responding contribution to the thermal energy from the
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resistivity term in (42) is given by

Λartres =− 1

4

∑
b

mb

[
vBsig,a
ρ2
a

Fab(ha)

Ωa

+
vBsig,b
ρ2
b

Fab(hb)

Ωb

]
(Bab)

2. (182)

As with the artificial viscosity, (181) and (182) are
the SPH representation of a physical resistivity term,
η∇2B, but with a coefficient that is proportional to res-
olution (Price & Monaghan, 2004a). The resistive dis-
sipation rate from the shock capturing term is given by

η ≈ 1

2
αBvBsig|rab|, (183)

where |rab| ∝ h.

2.10.6 Switch to reduce resistivity

Phantom previously used the method proposed by
Tricco & Price (2013) to reduce the dissipation in the
magnetic field away from shocks and discontinuities.
The signal velocity, vBsig, was set equal to the magne-
tosonic speed (Equation 180) multiplied by the dimen-
sionless coefficient αB , which was set according to

αBa = min

(
ha
|∇Ba|
|Ba|

, αBmax

)
, (184)

where αBmax = 1.0 by default and |∇Ba| is the 2-norm
of the gradient tensor, i.e. the root mean square of all
9 components of this tensor. Unlike the viscous dissipa-
tion, this is set based on the instantaneous values of h
and B and there is no source/decay equation involved,
as Tricco & Price (2013) found it to be unnecessary.
Since αB is proportional to resolution, from (183) we see
that this results in dissipation that is effectively second
order (∝ h2). When individual particle timesteps were
used, inactive particles retained their value of αB from
the last timestep they were active.

More recently we have found that a better approach,
similar to that used for artificial conductivity, is to sim-
ply set αB = 1 for all particles and set the signal speed
for artificial resistivity according to

vBsig = |vab × r̂ab|. (185)

We find that this produces better results on all of our
tests (Section 5.6), in particular, producing zero numer-
ical dissipation on the current loop advection test (Sec-
tion 5.6.5). As with the Tricco & Price (2013) switch,
it gives second-order dissipation in the magnetic field
(demonstrated in Section 5.6.1; Figure 26). This is now
the default treatment for artificial resistivity in Phan-
tom.

2.10.7 Conservation properties

The total energy when using MHD is given by

E =
∑
a

ma

(
1

2
v2
a + ua + Φa +

1

2

B2
a

µ0ρa

)
. (186)

Hence total energy conservation, in the absence of di-
vergence cleaning, corresponds to

dE

dt
=
∑
a

ma

[
va ·

dva
dt

+
dua
dt

+
dΦa
dt

+
B2
a

2µ0ρ2
a

dρa
dt

+
Ba

µ0
· d

dt

(
B

ρ

)
a

]
= 0. (187)

Neglecting the fdivB correction term for the moment,
substituting (171), (35) and (172) into (187) with the
ideal MHD and shock capturing terms included demon-
strates that the total energy is exactly conserved, using
the same argument as the one given in Section 2.2.6
(detailed workings can be found in Price & Monaghan
2004b). The total linear momentum is also exactly con-
served following a similar argument as in Section 2.2.11.
However, the presence of the fdivB correction term,
though necessary for numerical stability, violates the
conservation of both momentum and energy in the
strong field regime (in the weak field regime, it is
switched off and conservation is preserved). The sever-
ity of this non-conservation is related to the degree in
which divergence errors are present in the magnetic
field, hence inadequate divergence control (see below)
usually manifests as a loss of momentum conservation
in the code (see Tricco & Price, 2012, for details).

2.10.8 Divergence cleaning

We adopt the ‘constrained’ hyperbolic/parabolic di-
vergence cleaning algorithm described by Tricco &
Price (2012) and Tricco et al. (2016a) to preserve the
divergence-free condition on the magnetic field. This
formulation addresses a number of issues with earlier
formulations by Dedner et al. (2002) and Price & Mon-
aghan (2005).

The main idea of the scheme is to propagate di-
vergence errors according to a damped wave equation
(Dedner et al., 2002; Price & Monaghan, 2005). This is
facilitated by introducing a new scalar field, ψ, which
is coupled to the magnetic field in (167) and evolved
according to (168).

Tricco et al. (2016a) generalised the method of Ded-
ner et al. (2002) to include the case where the hyperbolic
wave speed, ch, varies in time and space. This is the ap-
proach we use in Phantom. The resulting ‘generalised
wave equation’ may be derived by combining the rel-
evant term in (167) with (168) to give (Tricco et al.,
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2016a)

d

dt

[
1√
ρch

d

dt

(
ψ√
ρch

)]
− ∇

2ψ

ρ

+
d

dt

[
1√
ρch

(
ψ√
ρchτc

)]
= 0.

(188)

When ch, ρ, τc and the fluid velocity are constant, this
reduces to the usual damped wave equation in the form

∂2ψ

∂t2
− c2h∇2ψ +

1

τc

∂ψ

∂t
= 0. (189)

The same equation holds for the evolution of ∇ ·B it-
self, i.e.,

∂2(∇ ·B)

∂t2
− c2h∇2(∇ ·B) +

1

τc

∂(∇ ·B)

∂t
= 0, (190)

from which it is clear that ch represents the speed at
which divergence errors are propagated and τc is the de-
cay timescale over which divergence errors are removed.

Tricco & Price (2012) formulated a ‘constrained’
SPMHD implementation of hyperbolic/parabolic clean-
ing which guarantees numerical stability of the clean-
ing. The constraint imposed by Tricco & Price (2012)
is that, in the absence of damping, any energy re-
moved from the magnetic field during cleaning must
be conserved by the scalar field, ψ. This enforces par-
ticular choices of numerical operators for ∇ ·B and
∇ψ in (172) and (173), respectively, in particular that
they form a conjugate pair of difference and symmetric
derivative operators. This guarantees that the change
of magnetic energy is negative definite in the presence
of the parabolic term (see below).

In Phantom, we set the cleaning speed, ch, equal
to the fast magnetosonic speed (Equation 180) so that
its timestep constraint is satisfied already by (72), as
recommended by Tricco & Price (2013). The decay
timescale is set according to

τac ≡
ha

σcch,a
, (191)

where the dimensionless factor σc sets the ratio of
parabolic to hyperbolic cleaning. This is set to σc = 1.0
by default, which was empirically determined by Tricco
& Price (2012) to provide optimal reduction of diver-
gence errors in three dimensions.

The divergence cleaning dissipates energy from the
magnetic field at a rate given by (Tricco & Price, 2012)(

dE

dt

)
cleaning

= −
∑
a

ma
ψ2
a

µ0ρac2h,aτ
a
c

. (192)

In general, this is so small compared to other dissipa-
tion terms (e.g. resistivity for shock capturing) that it
is not worth monitoring (Tricco et al., 2016a). This en-
ergy is not added as heat, but simply removed from the
calculation.

2.10.9 Monitoring of divergence errors and
over-cleaning

The divergence cleaning algorithm is guaranteed to ei-
ther conserve or dissipate magnetic energy, and cleans
divergence errors to a sufficient degree for most appli-
cations. However, the onus is on the user to ensure that
divergence errors are not affecting simulation results.
This may be monitored by the dimensionless quantity

εdivB ≡
h|∇ ·B|
|B| . (193)

The maximum and mean values of this quantity should
be used to check the fidelity of simulations that include
magnetic fields. A good rule-of-thumb is that the mean
should remain . 10−2 for the simulation to remain qual-
itatively unaffected by divergence errors.

The cleaning wave speed can be arbitrarily increased
to improve the effectiveness of the divergence cleaning
according to

ch,a = fcleanva, (194)

where fclean is an ‘over-cleaning’ factor (by default,
fclean = 1, i.e., no ‘over-cleaning’). Tricco et al. (2016a)
has shown that increasing fclean leads to further reduc-
tion in divergence errors, without affecting the qual-
ity of obtained results, but with an accompanying com-
putational expense associated with a reduction in the
timestep size.

2.11 Non-ideal magnetohydrodynamics

Phantom implements non-ideal magnetohydrodynam-
ics including terms for Ohmic resistivity, ambipolar
(ion-neutral) diffusion and the Hall effect. Algorithms
and tests are taken from Wurster et al. (2014, 2016). See
Wurster et al. (2016, 2017, 2018) for recent applications.
Our formulation of non-ideal SPMHD in Phantom is
simpler than the earlier formulation proposed by Hosk-
ing & Whitworth (2004) because we consider only one
set of particles, representing a mixture of charged and
uncharged species. Ours is similar to the implementa-
tion by Tsukamoto et al. (2013, 2015).

2.11.1 Equations of non-ideal MHD

We assume the strong coupling or ‘heavy ion’ approx-
imation (see e.g. Wardle & Ng, 1999; Shu et al., 2006;
Pandey & Wardle, 2008), which neglects ion pressure
and assumes ρi � ρn where the subscripts i and n refer
to the ionised and neutral fluids, respectively. In this
case, (167) contains three additional terms in the form

d

dt

(
B

ρ

)
nimhd

=
1

ρ
∇×

[
J

σe
+

J ×B

ene
+

(J ×B)×B

γADρi

]
,

(195)
where σe is the electrical conductivity, ne is the number
density of electrons, e is the charge on an electron and
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γAD is the collisional coupling constant between ions
and neutrals (Pandey & Wardle, 2008). We write this
in the form

d

dt

(
B

ρ

)
nimhd

=
1

ρ
∇×

[
ηOJ + ηHJ × B̂

+ ηAD(J × B̂)× B̂
]
, (196)

where B̂ is the unit vector in the direction of B such
that ηO, ηAD and ηHall are the coefficients for resistive
and ambipolar diffusion and the Hall effect, respectively,
each with dimensions of area per unit time.

To conserve energy, we require the corresponding re-
sistive and ambipolar heating terms in the thermal en-
ergy equation in the form(

du

dt

)
nimhd

=
ηO

ρ
J2 +

ηAD

ρ

[
J2 − (J · B̂)2

]
. (197)

The Hall term is non-dissipative, being dispersive rather
than diffusive, so does not enter the energy equation.

We currently neglect the ‘Biermann battery’ term
(Biermann, 1950) proportional to ∇Pe/(ene) in our
non-ideal MHD implementation, both because it is
thought to be negligible in the interstellar medium
(Pandey & Wardle, 2008) and because numerical im-
plementations can produce incorrect results (Graziani
et al., 2015). This term is mainly important in gener-
ating seed magnetic fields for subsequent dynamo pro-
cesses (e.g. Khomenko et al. 2017).

2.11.2 Discrete equations

Our main constraint is that the numerical implementa-
tion of the non-ideal MHD terms should exactly con-
serve energy, which is achieved by discretising in the
form (Wurster et al., 2014)

d

dt

(
B

ρ

)
nimhd,a

= −
∑
b

[
Da

Ωaρ2
a

×∇aWab(ha)

+
Db

Ωbρ2
b

×∇aWab(hb)

]
, (198)

where

D ≡ ηOJ + ηH(J × B̂) + ηAD[(J × B̂)× B̂]. (199)

The corresponding term in the energy equation is
given by (

dua
dt

)
nimhd

= −Da · Ja
ρa

, (200)

where the magnetic current density is computed along-
side the density evaluation according to

J =
1

Ωaρa

∑
b

mb(Ba −Bb)×∇aWab(ha). (201)

Non-ideal MHD therefore utilises a ‘two first deriva-
tives’ approach, similar to the formulation of physical

viscosity described in Section 2.7.1. This differs from
the ‘direct second derivatives’ approach used for our
artificial resistivity term, and in previous formulations
of physical resistivity (Bonafede et al., 2011). In prac-
tice the differences are usually minor. Our main reason
for using two first derivatives for non-ideal MHD is that
it is easier to incorporate the Hall effect and ambipolar
diffusion terms.

2.11.3 Computing the non-ideal MHD coefficients

To self-consistently compute the coefficients ηO, ηH and
ηAD from the local gas properties, we use the nicil li-
brary (Wurster, 2016) for cosmic ray ionisation chem-
istry and thermal ionisation. We refer the reader to
Wurster (2016) and Wurster et al. (2016) for details,
since this is maintained and versioned as a separate
package.

2.11.4 Timestepping

With explicit timesteps, the timestep is constrained in
a similar manner to other terms, using

∆t =
Cnimhdh

2

max(ηO, ηAD, |ηH|)
(202)

where Cnimhd = 1/(2π) by default. This can prove
prohibitive, so we employ the so-called ‘super-
timestepping’ algorithm from Alexiades et al. (1996) to
relax the stability criterion for the Ohmic and ambipo-
lar terms (only). The implementation is described in
detail in Wurster et al. (2016). Currently the Hall effect
is always timestepped explicitly in the code.

2.12 Self-gravity

Phantom includes self-gravity between particles. By
self-gravity we mean a solution to Poisson’s equation,

∇2Φ = 4πGρ(r), (203)

where Φ is the gravitational potential and ρ represents
a continuous fluid density. The corresponding accelera-
tion term in the equation of motion is

aselfgrav = −∇Φ. (204)

Since (203) is an elliptic equation, implying instant ac-
tion, it requires a global solution. This solution is ob-
tained in Phantom by splitting the acceleration into
‘short-range’ and ‘long-range’ contributions,

aaselfgrav = aashort + aalong, (205)

where the ‘short-range’ interaction is computed by di-
rect summation over nearby particles, and the ‘long-
range’ interaction is computed by hierarchical grouping
of particles using the kd-tree.

The distance at which the gravitational acceleration
is treated as ‘short-’ or ‘long-range’ is determined for
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each node-node pair, n-m, either by the tree opening
criterion,

θ2 <

(
sm
rnm

)2

, (206)

where 0 ≤ θ ≤ 1 is the tree opening parameter, or by
nodes whose smoothing spheres intersect,

r2
nm < [sn + sm + max(Rkernh

n
max, Rkernh

m
max)]

2
.

(207)
Here, s is the node size, which is the minimum radius
about the centre of mass that contains all the particles
in the node, and hmax is the maximum smoothing length
of the particles within the node. Node pairs satisfying ei-
ther of these criteria have the particles contained within
them added to a trial neighbour list, used for comput-
ing the short-range gravitational acceleration. Setting
θ = 0 therefore leads to the gravitational acceleration
computed entirely as ‘short-range’, that is, only via di-
rection summation, while θ = 1 gives the fastest possi-
ble, but least accurate, gravitational force evaluation.
The code default is θ = 0.5.

2.12.1 Short-range interaction

How to solve (203) on particles is one of the most widely
misunderstood problems in astrophysics. In SPH or col-
lisionless N-body simulations (i.e. stars, dark matter),
the particles do not represent physical point mass par-
ticles, but rather interpolation points in a density field
that is assumed to be continuous. Hence one needs to
first reconstruct the density field on the particles, then
solve (203) in a manner which is consistent with this
(e.g. Hernquist & Barnes, 1990).

How to do this consistently using a spatially adaptive
softening length was demonstrated by Price & Mon-
aghan (2007), since an obvious choice is to use the iter-
ative kernel summation in (3) to both reconstruct the
density field and set the softening length, i.e.6

ρa =
∑
b

mbWab(εa); εa = hfac(ma/ρa)1/3. (208)

It can then be shown that the gravitational potential
consistent with this choice is given by

Φa = −G
∑
b

mbφ(|ra − rb|, εa), (209)

where φ is the softening kernel derived from the density
kernel via Poisson’s equation (Section 2.12.2, below).
For a variable smoothing length, energy conservation
necessitates taking an average of the kernels, i.e.

Φa = −G
∑
b

mb

[
φab(εa) + φab(εb)

2

]
. (210)

6Strictly one should use the number density instead of the mass
density when computing the softening length via (208), but as
we enforce equal masses for each particle type in Phantom, the
two methods are equivalent.

Price & Monaghan (2007) showed how the equations
of motion could then be derived from a Lagrangian in
order to take account of the softening length gradient
terms, giving equations of motion in the form

aaselfgrav =−∇Φa,

=−G
∑
b

mb

[
φ′ab(εa) + φ′ab(εb)

2

]
r̂ab

− G

2

∑
b

mb

[
ζa
Ωεa
∇aWab(εa) +

ζb
Ωεb
∇aWab(εb)

]
,

(211)

where Ωε and ζ are correction terms necessary for en-
ergy conservation, with Ω as in (5) but with h replaced
by ε, and ζ defined as

ζa ≡
∂εa
∂ρa

∑
b

mb
∂φab(εa)

∂εa
. (212)

The above formulation satisfies all of the conservation
properties, namely conservation of linear momentum,
angular momentum, and energy.

The short range acceleration is evaluated for each par-
ticle in the leaf node n by summing (211) over the trial
neighbour list obtained by node-node pairs that satisfy
either of the criteria in (206) or (207). For particle pairs
separated outside the softening radius of either particle,
the short range interaction reduces to

aashort,r>Rkernε
= −G

∑
b

mb
ra − rb
|ra − rb|3

. (213)

We use this directly for such pairs to avoid unnecessary
evaluations of the softening kernel.

It is natural in SPH to set the gravitational softening
length equal to the smoothing length ε = h, since both
derive from the same density estimate. Indeed, Bate &
Burkert (1997) showed that this is a crucial requirement
to resolve gas fragmentation correctly. For pure N -body
calculations, Price & Monaghan (2007) also showed that
setting the (variable) softening length in the same man-
ner as the SPH smoothing length (Sections 2.1.3–2.1.4)
results in a softening that is always close to the ‘opti-
mal’ fixed softening length (Merritt, 1996; Athanassoula
et al., 2000; Dehnen, 2001). In collisionless N -body sim-
ulations, this has been found to increase the resolving
power, giving results at lower resolution comparable to
those obtained at higher resolution with a fixed soften-
ing length (Bagla & Khandai, 2009; Iannuzzi & Dolag,
2011). It also avoids the problem of how to ‘choose’ the
softening length, negating the need for ‘rules of thumb’
such as the one given by Springel (2005) where the soft-
ening length is chosen to be 1/40 of the average particle
spacing in the initial conditions.
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2.12.2 Functional form of the softening kernel

The density kernel and softening potential kernel are
related using Poisson’s equation (203), i.e.

W (r, ε) =
1

4πr2

∂

∂r

(
r2 ∂φ

∂r

)
, (214)

where r ≡ |r − r′|. Integrating this equation gives the
softening kernels used for the force and gravitational
potential. As with the standard kernel functions (Sec-
tion 2.1.5), we define the potential and force kernels in
terms of dimensionless functions of the scaled interpar-
ticle separation, q ≡ r/h, according to

φ(r, ε) ≡ 1

ε
φ̃(q), (215)

φ′(r, ε) ≡ 1

ε2
φ̃′(q), (216)

where the dimensionless force kernel is obtained from
the density kernel f(q) (Section 2.1.5–2.1.6) using

φ̃′(q) =
4π

q2
Cnorm

∫
f(q′)q′2dq′, (217)

with the integration constant set such that φ̃′(q) = 1/q2

at q = Rkern. The potential function is

φ̃(q) =

∫
φ̃′(q′)dq′. (218)

The derivative of φ with respect to ε required in (212)
is also written in terms of a dimensionless function, i.e.

∂φ(r, ε)

∂ε
≡ 1

ε2
h(q), (219)

where from differentiating (215) we have

h(q) = −φ̃(q)− qφ̃′(q). (220)

Included in the Phantom source code is a Python
script using the sympy library to solve (217), (218) and
(220) using symbolic integration to obtain the softening
kernel from the density kernel. This makes it straight-
forward to obtain the otherwise laborious expressions
needed for each kernel (expressions for the cubic spline
kernel are in Appendix A of Price & Monaghan 2007
and for the quintic spline in Appendix A of Hubber et al.
2011). Figure 3 shows the functional form of the soft-
ening kernels for each of the kernels available in Phan-
tom. The kernel function f(q) is shown for comparison
(top row in each case).

2.12.3 Softening of gravitational potential due to
stars, dark matter and dust

In the presence of collisionless components (e.g. stars,
dark matter and dust) we require estimates of the den-
sity in order to set the softening lengths for each compo-
nent. We follow the generalisation of the SPH density
estimate to multi-fluid systems described by Laibe &
Price (2012a) where the density (and hence the soft-
ening length and Ωε) for each component is computed
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Figure 3. Functional form of the softening kernel functions
−φ(r, h) and φ′(r, h) used to compute the gravitational force in

Phantom, shown for each of the available kernel functions w(r, h)

(see Figure 1). Dotted lines show the functional form of the un-
softened potential (−1/r) and force (1/r2) for comparison.

in the usual iterative manner (Section 2.1.4), but using
only neighbours of the same type (c.f. Section 2.13.3).
That is, the softening length for stars is determined
based on the local density of stars, the softening length
for dark matter is based on the local density of dark
matter particles, and so on. The gravitational inter-
action both within each type and between different
types is then computed using (211). This naturally sym-
metrises the softening between different types, ensuring
that momentum, angular momentum and energy are
conserved.

2.12.4 Long-range interaction

At long range, that is r > Rkernεa and r > Rkernεb,
the second term in (211) tends to zero since ζ = 0 for
q ≥ Rkern, while the first term simply becomes 1/r2.
Computing this via direct summation would have an
associated O(N2) computational cost, thus we adopt
the usual practice of using the kd-tree to reduce this
cost to O(N logN).

The main optimisation in Phantom compared to
a standard tree code (e.g. Hernquist & Katz 1989;
Benz et al. 1990) is that we compute the long-range
gravitational interaction once per leaf-node rather than
once per-particle and that we use Cartesian rather than
spherical multipole expansions to enable this (Dehnen,
2000b; Gafton & Rosswog, 2011).
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The long range acceleration on a given leaf node n
consists of a sum over distant nodes m that satisfy nei-
ther (206) nor (207),

an =
∑
m

anm. (221)

The acceleration along the node centres, between a
given pair n and m, is given (using index notation) by

ainm = −GMm

r3
ri +

1

r4

(
r̂kQmik −

5

2
r̂iQm

)
, (222)

where ri ≡ xin − xim is the relative position vector, r̂ is
the corresponding unit vector, Mm is the total mass
in node m, Qmij is the quadrupole moment of node m,
and repeated indices imply summation. We define the
following scalar and vector quantities for convenience:

Q ≡ r̂ir̂jQij , (223)

Qi ≡ r̂jQij . (224)

Alongside the acceleration, we compute the six inde-
pendent components of the first derivative matrix,

∂ain
∂rj

=
∑
m

∂ainm
∂rj

, (225)

where

∂ainm
∂rj

=
GMm

r3

[
3r̂ir̂j − δij

]
+

1

r5

[
Qmij +

(
35

2
r̂ir̂j − 5

2
δij

)
Qm

− 5r̂iQmj − 5r̂jQmi
]
, (226)

and the ten independent components of the second
derivatives, given by

∂2ainm
∂rj∂rk

=− 3GMm

r4

[
5r̂ir̂j r̂k − δjkr̂i − δikr̂j − δij r̂k

]
+

1

r6

[
− 5(r̂kQmij + r̂iQmjk + r̂jQmik)

− 315

2
r̂ir̂j r̂kQm

+
35

2

(
δij r̂

k + δikr̂
j + δjkr̂

i
)
Qm

+ 35
(
r̂j r̂kQmi + r̂ir̂kQmj + r̂ir̂jQmk

)
− 5(δijQmk + δikQmj + δjkQmi )

]
.

(227)

The acceleration on each individual particle inside the
leaf node n is then computed using a second-order Tay-
lor series expansion of annode about the node centre, i.e.

ailong,a = ain + ∆xj
∂ain
∂rj

+
1

2
∆xj∆xk

∂2ain
∂rj∂rk

, (228)

where ∆xia ≡ xia − xi0 is the relative distance of each
particle from the node centre of mass. Pseudo-code for
the resulting force evaluation is shown in Figure A5.

The quadrupole moments are computed during the
tree build using

Qij =
∑
a

ma

[
3∆xi∆xj − (∆x)2δij

]
, (229)

where the sum is over all particles in the node. Since Q
is a symmetric tensor, only six independent quantities
need to be stored (Qxx, Qxy, Qxz, Qyy, Qyz and Qzz).

The current implementation in Phantom is
O(Nleafnodes logNpart) rather than the O(N) treecode
implementation proposed by Dehnen (2000b) since we
do not currently implement the symmetric node-node
interactions required for O(N) scaling. Neither does our
treecode conserve linear momentum to machine preci-
sion, except when θ = 0. Implementing these additional
features would be desirable.

2.13 Dust-gas mixtures

Modelling dust-gas mixtures is the first step in the
‘grand challenge’ of protoplanetary disc modelling (Ha-
worth et al., 2016). The public version of Phantom im-
plements dust-gas mixtures using two approaches. One
models the dust and gas as two separate types of parti-
cles (two-fluid), as presented in Laibe & Price (2012a,b),
and the other, for small grains, using a single type of
particle that represents the combination of dust and
gas together (one-fluid), as described in Price & Laibe
(2015a). Various combinations of these algorithms have
been used in our recent papers using Phantom, includ-
ing Dipierro et al. (2015, 2016); Ragusa et al. (2017) and
Tricco et al. (2017) (see also Hutchison et al. 2016).

In the two-fluid implementation, the dust and gas are
treated as two separate fluids coupled by a drag term
with only explicit timestepping. In the one-fluid imple-
mentation, the dust is treated as part of the mixture,
with an evolution equation for the dust fraction.

2.13.1 Continuum equations

The two-fluid formulation is based on the continuum
equations in the form

∂ρg

∂t
+ (vg · ∇)ρg = −ρg(∇ · vg), (230)

∂ρd

∂t
+ (vd · ∇)ρd = −ρd(∇ · vd), (231)

∂vg

∂t
+ (vg · ∇)vg = −∇P

ρg
+
K

ρg
(vd − vg), (232)

∂vd

∂t
+ (vd · ∇)vd = −K

ρd
(vd − vg), (233)

∂u

∂t
+ (vg · ∇)u = − P

ρg
(∇ · vg) + Λdrag, (234)
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where the subscripts g and d refer to gas and dust prop-
erties, K is a drag coefficient and the drag heating is

Λdrag ≡ K(vd − vg)2. (235)

The implementation in Phantom currently neglects
any thermal coupling between the dust and the gas
(see Laibe & Price 2012a), aside from the drag heat-
ing. Thermal effects are important for smaller grains
since they control the heating and cooling of the gas
(e.g. Dopcke et al. 2011). Currently the internal energy
(u) of dust particles is simply set to zero.

2.13.2 Stopping time

The stopping time

ts =
ρgρd

K(ρg + ρd)
, (236)

is the characteristic timescale for the exponential de-
cay of the differential velocity between the two phases
caused by the drag. In the code, ts is by default specified
in physical units, which means that code units need to
be defined appropriately when simulating dust-gas mix-
tures.

2.13.3 Two-fluid dust-gas in SPH

In the two-fluid method, the mixture is discretised into
two distinct sets of ‘dust’ and ‘gas’ particles. In the
following, we adopt the convention from Monaghan &
Kocharyan (1995) that subscripts a, b and c refer to gas
particles while i, j and k refer to dust particles. Hence,
(230)–(231) are discretised with a density summation
over neighbours of the same type (c.f. Section 2.12.3),
giving

ρa =
∑
b

mbWab(ha); ha = hfact

(
ma

ρa

)1/3

, (237)

for a gas particle, and

ρi =
∑
j

mjWij(hi); hi = hfact

(
mi

ρi

)1/3

, (238)

for a dust particle. The kernel used for density is the
same as usual (Section 2.1.6). We discretise the equa-
tions of motion for the gas particles, (232), using(

dva
dt

)
drag

= −3
∑
j

mj
vaj · r̂aj

(ρa + ρj)tsaj
r̂ajDaj(ha),

(239)
and for dust, (233), using(

dvi
dt

)
drag

= −3
∑
b

mb
vib · r̂ib

(ρi + ρb)tsib
r̂ibDib(hb), (240)

where D is a ‘double hump’ kernel, defined in Sec-
tion 2.13.4, below. The drag heating term in the energy
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Figure 4. Double hump smoothing kernels D(r, h) available in
Phantom, used in the computation of the dust-gas drag force.

equation, (234), is discretised using

Λdrag = 3
∑
j

mj
(vaj · r̂aj)2

(ρa + ρj)tsaj
Daj(ha). (241)

Notice that gas properties are only defined on gas par-
ticles and dust properties are defined only on dust
particles, greatly simplifying the algorithm. Buoyancy
terms caused by dust particles occupying a finite volume
(Monaghan & Kocharyan, 1995; Laibe & Price, 2012a)
are negligible in astrophysics because typical grain sizes
(µm) are negligible compared to simulation scales of
∼au or larger.

2.13.4 Drag kernels

Importantly, we use a ‘double-hump’ shaped kernel
function D (Fulk & Quinn, 1996) instead of the usual
bell-shaped kernel W when computing the drag terms.
Defining D in terms of a dimensionless kernel function
as previously (c.f. Section 2.1.5),

D(r, h) =
σ

h3
g(q), (242)

then the double hump kernels are defined from the usual
kernels according to

g(q) = q2f(q), (243)

where the normalisation constant σ is computed by en-
forcing the usual normalisation condition∫

D(r, h)dV = 1. (244)
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Figure 4 shows the functional forms of the double hump
kernels used in Phantom. Using double hump kernels
for the drag terms was found by Laibe & Price (2012a)
to give a factor of 10 better accuracy at no additional
cost. The key feature is that these kernels are zero at
the origin putting more weight in the outer parts of the
kernel where the velocity difference is large. This also
solves the problem of how to define the unit vector in
the drag terms (239), (240) and (241) — it does not
matter since D is also zero at the origin.

2.13.5 Stopping time in SPH

The stopping time is defined between a pair of parti-
cles, using the properties of gas and dust defined on the
particle of the respective type, i.e.

tsaj =
ρaρj

Kaj(ρa + ρj)
. (245)

The default prescription for the stopping time in Phan-
tom automatically selects a physical drag regime ap-
propriate to the grain size, as described below and in
Laibe & Price (2012b). Options to use either a constant
K or a constant ts between pairs are also implemented,
useful for testing and debugging (c.f. Section 5.9).

2.13.6 Epstein drag

To determine the appropriate physical drag regime we
use the procedure suggested by Stepinski & Valageas
(1996) where we first evaluate the Knudsen number

Kn =
9λg

4sgrain
, (246)

where sgrain is the grain size and λg is the gas mean free
path (see Section 2.13.8, below, for how this is eval-
uated). For Kn ≥ 1, the drag between a particle pair
is computed using the generalised formula for Epstein
drag from Kwok (1975), as described in Paardekooper
& Mellema (2006) and Laibe & Price (2012b), giving

Kaj = ρagρ
j
d

4

3

√
8π

γ

s2
grain

mgrain
cas f, (247)

where

mgrain ≡
4

3
πρgrains

3
grain, (248)

and ρgrain is the intrinsic grain density, which is 3 g/cm3

by default. The variable f is a correction for supersonic
drift velocities given by (Kwok, 1975)

f ≡
√

1 +
9π

128

∆v2

c2s
, (249)

where ∆v ≡ |vd − vg| = vjd − vag . The stopping time is
therefore

ts =
ρgrainsgrain

ρcsf

√
πγ

8
, (250)
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Figure 5. Dependence of the drag stopping time ts on differ-

ential Mach number, showing the increased drag (decrease in

stopping time) as the velocity difference between dust and gas
increases. The black line shows the analytic approximation we

employ (Equation 250) which may be compared to the red line

showing the exact expression from Epstein (1924). The difference
is less than 1 per cent everywhere.

where ρ ≡ ρd + ρg. This formula, (250), reduces to the
standard expression for the linear Epstein regime in the
limit where the drift velocity is small compared to the
sound speed (i.e. f → 1). Figure 5 shows the difference
between the above simplified prescription and the exact
expression for Epstein drag (Epstein 1924; c.f. equa-
tions 11 and 38 in Laibe & Price 2012b) as a function
of ∆v/cs, which is less than 1 per cent everywhere.

2.13.7 Stokes drag

For Kn < 1, we adopt a Stokes drag prescription, de-
scribing the drag on a sphere with size larger than the
mean free path of the gas (Fan & Zhu, 1998). Here we
use (Laibe & Price, 2012b)

Kaj = ρagρ
j
d

1

2
CD

πs2
grain

mgrain
|∆v|, (251)

where the coefficient CD is given by (Fassio & Probstein,
1970) (see Whipple 1972; Weidenschilling 1977)

CD =


24R−1

e , Re < 1,

24R−0.6
e , 1 < Re < 800,

0.44, Re > 800,

(252)

where Re is the local Reynolds number around the grain

Re ≡
2sgrain|∆v|

ν
, (253)
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and ν is the microscopic viscosity of the gas (see be-
low; not to be confused with the disc viscosity). Simi-
lar formulations of Stokes drag can be found elsewhere
(see e.g. discussion in Woitke & Helling 2003 and refer-
ences therein). The stopping time in the Stokes regime
is therefore given by

ts =
8ρgrainsgrain

3ρ|∆v|CD
, (254)

where it remains to evaluate ν and λg.

2.13.8 Kinematic viscosity and mean free path

We evaluate the microscopic kinematic viscosity, ν, as-
suming gas molecules interact as hard spheres, following
Chapman & Cowling (1970). The viscosity is computed
from the mean free path and sound speed according to

ν =

√
2

πγ
csλg, (255)

with the mean free path defined by relating this expres-
sion to the expression for the dynamic viscosity of the
gas (Chapman & Cowling, 1970) given by

µν =
5m

64σs

√
π

γ
cs, (256)

with µν = ρgν, giving

λg =
5π

64
√

2

1

ngσs
, (257)

where ng = ρg/m is the number density of molecules
and σs is the collisional cross section. To compute this,
Phantom currently assumes the gas is molecular Hy-
drogen, such that the mass of each molecule and the
collisional cross section are given by

m = 2mH, (258)

σs = 2.367× 10−15cm2. (259)

2.13.9 Stokes/Epstein transition

At the transition between the two regimes, assuming
Re < 1, (254) reduces to

ts =
2ρgrains

2
grain

9ρcsλg

√
πγ

2
, (260)

which is the same as the Epstein drag in the subsonic
regime when λg = 4sgrain/9, i.e. Kn = 1. That this tran-
sition is indeed continuous in the code is demonstrated
in Figure 6, which shows the transition from Epstein to
Stokes drag and also through each of the Stokes regimes
in (252) by varying the grain size while keeping the
other parameters fixed. For simplicity, we assumed a
fixed ∆v = 0.01cs in this plot, even though in general
one would expect ∆v to increase with stopping time
(see Equation 270).
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Figure 6. Drag stopping time ts (in years) as a function of grain

size, showing the continuous transition between the Epstein and

Stokes drag regimes. The example shown assumes fixed density
ρ = 10−13g/cm3 and sound speed cs = 6× 104 cm/s with sub-

sonic drag ∆v = 0.01cs and material density ρgrain = 3g/cm3.

2.13.10 Self gravity of dust

With self-gravity turned on, dust particles interact in
the same way as stars or dark matter (Section 2.12.3),
with a softening length equal to the smoothing length
determined from the density of neighbouring dust par-
ticles. Dust particles can be accreted by sink particles
(Section 2.8.2), but a sink cannot currently be created
from dust particles (Section 2.8.4). There is currently no
mechanism in the code to handle the collapse of dust to
form a self-gravitating object independent of the gas.

2.13.11 Timestep constraint

For the two-fluid method, the timestep is constrained
by the stopping time according to

∆tadrag = min
j

(tajs ). (261)

This requirement, alongside the spatial resolution re-
quirement h . csts (Laibe & Price, 2012a), means the
two-fluid method becomes both prohibitively slow and
increasingly inaccurate for small grains. In this regime
one should switch to the one-fluid method, as described
below.

2.13.12 Continuum equations: One-fluid

In Laibe & Price (2014a), we showed that the two-fluid
equations, (230)–(234), can be rewritten as a single fluid
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mixture using a change of variables given by

ρ ≡ ρg + ρd, (262)

ε ≡ ρd/ρ, (263)

v ≡ ρgvg + ρdvd

ρg + ρd
, (264)

∆v ≡ vd − vg, (265)

where ρ is the combined density, ε is the dust fraction,
v is the barycentric velocity, and ∆v is the differential
velocity between the dust and gas.

In Laibe & Price (2014a) we derived the full set of
evolution equations in these variables, and in Laibe &
Price (2014c), implemented and tested an algorithm to
solve these equations in SPH. However, using a fluid ap-
proximation cannot properly capture the velocity dis-
persion of large grains, as occurs for example when
large planetesimals stream simultaneously in both di-
rections through the midplane of a protoplanetary disc.
For this reason, the one-fluid equations are better suited
to treating small grains, where the stopping time is
shorter than the computational timestep. In this limit
we employ the ‘terminal velocity approximation’ (e.g.
Youdin & Goodman, 2005) and the evolution equations
reduce to (Laibe & Price, 2014a; Price & Laibe, 2015a)

dρ

dt
= −ρ(∇ · v), (266)

dv

dt
= −∇P

ρ
+ aext, (267)

dε

dt
= −1

ρ
∇ · [ε(1− ε)ρ∆v] , (268)

du

dt
= −P

ρ
(∇ · v) + ε(∆v · ∇)u, (269)

where

∆v ≡ ts (ad − ag) , (270)

where ad and ag refers to any acceleration acting only
on the dust or gas phase, respectively. For the simple
case of pure hydrodynamics, the only difference is the
pressure gradient, giving

∆v ≡ ts
∇P
ρg

=
ts

(1− ε)
∇P
ρ
, (271)

such that (268) becomes

dε

dt
= −1

ρ
∇ · (εts∇P ) . (272)

Importantly, the one-fluid dust algorithm does not
result in any heating term in du/dt due to drag, because
this term is O(∆v2) and thus negligible (Laibe & Price,
2014a).

2.13.13 Visualisation of one-fluid results

Finally, when visualising results of one-fluid calcula-
tions, one must reconstruct the properties of the dust

and gas in post-processing. We use

ρg = (1− ε)ρ, (273)

ρd = ερ, (274)

vg = v − ε∆v, (275)

vd = v + (1− ε)∆v. (276)

To visualise the one-fluid results in a similar manner
to those from the two-fluid method we reconstruct a
set of ‘dust’ and ‘gas’ particles with the same positions
but with the respective properties of each type of fluid
particle copied onto them. We compute ∆v from (271)
using the pressure gradient computed using (34), mul-
tiplied by the stopping time and the gas fraction. See
Price & Laibe (2015a) for more details.

2.13.14 One-fluid dust-gas implementation

Our implementation of the one-fluid method in Phan-
tom follows Price & Laibe (2015a) with a few minor
changes and corrections7. In particular, we use the vari-
able s =

√
ερ described in Appendix B of Price & Laibe

(2015a) to avoid problems with negative dust fractions.
The evolution equation (268) expressed in terms of s is
given by

ds

dt
= − 1

2s
∇ ·
(
ρgρd

ρ
∆v

)
− s

2
(∇ · v), (277)

which for the case of hydrodynamics becomes

ds

dt
= − 1

2s
∇ ·
(
s2

ρ
ts∇P

)
− s

2
(∇ · v),

= −1

2
∇ ·
(
s

ρ
ts∇P

)
− ts

2ρ
∇P · ∇s− s

2
(∇ · v).

(278)

The SPH discretisation of this equation is implemented
in the form

dsa
dt

=− 1

2

∑
b

mbsb
ρb

(
ts,a
ρa

+
ts,b
ρb

)
(Pa − Pb)

F ab
|rab|

+
sa

2ρaΩa

∑
b

mbvab · ∇aWab(ha), (279)

where F ab ≡ 1
2 [Fab(ha) + Fab(hb)]. The thermal energy

equation, (269), takes the form

du

dt
= −P

ρ
(∇ · v) +

s2ts
ρρg
∇P · ∇u, (280)

the first term of which is identical to (35) and the second
term of which is discretised in Phantom according to

− ρa
2ρg
a

∑
b

mb
sasb
ρaρb

(
ts,a
ρa

+
ts,b
ρb

)
(Pa − Pb)(ua − ub)

F ab
|rab|

.

(281)

7One should be aware that we derived several of the above equa-
tions incorrectly in Appendix B of Price & Laibe (2015a) (see
Price & Laibe 2015b). The above equations are the correct ver-
sions and reflect what is implemented in Phantom.
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2.13.15 Conservation of dust mass

Conservation of dust mass with the one-fluid scheme is
in principle exact because (Price & Laibe, 2015a)

d

dt

(∑
a

ma

ρa
s2
a

)
=
∑
a

ma

(
2sa
ρa

dsa
dt
− s2

a

ρ2
a

dρa
dt

)
= 0.

(282)
In practice, some violation of this can occur because
although the above algorithm guarantees positivity of
the dust fraction, it does not guarantee that ε remains
less than unity. Under this circumstance, which occurs
only rarely, we set ε = max(ε, 1) in the code. However,
this violates the conservation of dust mass. This specific
issue has been recently addressed in detail in the study
by Ballabio et al. (2018). Therefore, in the latest code
there are two main changes:

• Rather than evolve s =
√
ερ, in the most re-

cent code we instead evolve a new variable s′ =√
ρd/ρg. This prevents the possibility of ε > 1.

• We limit the stopping time such that the timestep
from the one fluid algorithm does not severely re-
strict the computational performance

For details of these changes we refer the reader to Bal-
labio et al. (2018).

2.13.16 Conservation of energy and momentum

Total energy with the one-fluid scheme can be expressed
via

E =
∑
a

ma

[
1

2
v2
a + (1− εa)ua

]
, (283)

which is conserved exactly by the discretisation since∑
a

ma

[
va ·

dva
dt

+ (1− εa)
dua
dt

−ua
(

2sa
ρa

dsa
dt
− s2

a

ρ2
a

dρa
dt

)]
= 0. (284)

Conservation of linear and angular momentum also hold
since the discretisation of the momentum equation is
identical to the hydrodynamics algorithm.

2.13.17 Timestep constraint

For the one-fluid method, the timestep is constrained
by the inverse of the stopping time according to

∆tadrag = Cforce
h2

εtsc2s
. (285)

This becomes prohibitive precisely in the regime where
the one-fluid method is no longer applicable (ts > tCour;
see Laibe & Price 2014a), in which case one should
switch to the two-fluid method instead. There is cur-
rently no mechanism to automatically switch regimes,
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Figure 7. Emissivity, ΛE [erg s−1 cm3] as a function of temper-

ature for the ISM cooling assuming default abundances appropri-
ate for the Warm Neutral Medium (WNM). Note that as we treat

cooling from atomic hydrogen using a full non-equilibrium treat-

ment, the behaviour of ΛE close to 104 K is highly sensitive to the
electron fraction, which in the case shown here is much smaller

than it would be in collisional ionization equilibrium. Values of

ΛE below 104 K depend strongly on the current chemical state of
the gas and are not shown in this plot.

though this is possible in principle and may be imple-
mented in a future code version.

2.14 Interstellar medium (ISM) physics

2.14.1 Cooling function

The cooling function in Phantom is based on a set
of Fortran modules written by Glover & Mac Low
(2007), updated further by Glover et al. (2010). It in-
cludes cooling from atomic lines (H I), molecular excita-
tion (H2), fine structure metal lines (Si I, Si II, O I, C I,
C II), gas-dust collisions and polycyclic aromatic hydro-
carbon (PAH) recombination (see Glover & Mac Low
2007 for references on each process). Heating is pro-
vided by cosmic rays and the photoelectric effect. The
strength of the cooling is a function of the tempera-
ture, density, and various chemical abundances. Table 2
summarises these various heating and cooling processes.
Figure 7 shows the resulting emissivity ΛE(T ) for tem-
peratures between 104 and 108K. The cooling rate per
unit volume is related to the emissivity according to

Λcool ≡ n2ΛE(T ) erg s−1cm−3, (286)

where n is the number density. The cooling in the energy
equation corresponds to(

du

dt

)
cool

= −Λcool

ρ
. (287)
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Process Description Reference
H I (atomic) cooling Electron collisional excitation/ Sutherland & Dopita (1993)

resonance line emission
H2 (molecular) cooling Vibrational/rotational excitation cooling Le Bourlot et al. (1999)

by collisions with H, He and H2

Fine structure cooling C II, Si II and O I collisions with Glover & Jappsen (2007)
H, H2, free e− and H+

CO rotational cooling CO collisions with H2, H and free e− Neufeld & Kaufman (1993),
Neufeld et al. (1995)

Recombination cooling Free e− recombining with ionised gas Wolfire et al. (2003)
on PAH and dust grain surfaces

Gas-grain cooling Dust-gas collisional heat transfer Hollenbach & McKee (1989)
Cosmic-ray heating Energy deposition associated with Goldsmith & Langer (1978)

cosmic ray ionization
Photo-electric heating UV e− excitation from dust and PAH Wolfire et al. (2003)

Table 2 Heating and cooling processes in the Phantom cooling module.

Element Abundance
C 1.4× 10−4

O 3.2× 10−4

Si 1.5× 10−5

e− 2× 10−4

Table 3 Default fractional abundances for C, O, Si and e− in the

ISM cooling and chemistry modules. Abundances are taken from

Sembach et al. (2000) appropriate for the Warm Neutral Medium
(WNM). These are lower than solar because it is assumed some

fraction of the metals are locked up in dust rather than being

available in the gas phase.

These routines were originally adapted for use in sphng
(Dobbs et al., 2008) and result in an approximate two-
phase ISM with temperatures of 100 K and 10 000 K.
Note that the cooling depends on a range of parame-
ters (dust-to-gas ratio, cosmic ray ionisation rate, etc.),
many of which can be specified at runtime. Table 3
lists the default abundances, which are set to values
appropriate for the Warm Neutral Medium taken from
Sembach et al. (2000). The abundances listed in Ta-
ble 3, along with the dust-to-gas ratio, are the only
metallicity-dependent parameters that can be changed
at runtime. An option for cooling appropriate to the
zero-metallicity early universe is also available.

2.14.2 Timestep constraint from cooling

When cooling is used, we apply an additional timestep
constraint in the form

∆tacool = Ccool

∣∣∣∣ u

(du/dt)cool

∣∣∣∣ , (288)

where Ccool = 0.3 following Glover & Mac Low (2007).
The motivation for this additional constraint is to not
allow the cooling to completely decouple from the other
equations in the code (Suttner et al., 1997), and to avoid

cooling instabilities that may be generated by numerical
errors (Ziegler et al., 1996).

Cooling is currently implemented only with explicit
timestepping of (287), where u is evolved alongside ve-
locity in our leapfrog timestepping scheme. However,
the substepping scheme described below for the chemi-
cal network (Section 2.14.4) is also used to update the
cooling on the chemical timestep, meaning that the
cooling can evolve on a much shorter timestep than
the hydrodynamics when it is used in combination with
chemistry, which it is by default. Implementation of an
implicit cooling method, namely the one proposed by
Townsend (2009), is under development.

2.14.3 Chemical network

A basic chemical network is included for ISM gas that
evolves the abundances of H, H+, e−, and the molecules
H2 and CO. The number density of each species, nX , is
evolved using simple rate equations of the form

dnX
dt

= CX −DXnX , (289)

where CX and DX are creation and destruction coef-
ficients for each species. In general, CX and DX are
functions of density, temperature, and abundances of
other species. The number density of each species, X,
is time integrated according to

nX(t+ ∆t) = nX(t) +
dnX
dt

∆t. (290)

There are in effect only three species to evolve (H, H2

and CO), as the H+ and e− abundances are directly
related to the H abundance.

The chemistry of atomic hydrogen is effectively the
same as in Glover & Mac Low (2007). H is created by re-
combination in the gas phase and on grain surfaces, and
destroyed by cosmic ray ionisation and free electron col-
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lisional ionisation. H2 chemistry is based on the model
of Bergin et al. (2004), with H2 created on grain sur-
faces and destroyed by photo-dissociation and cosmic-
rays (see Dobbs et al. 2008 for computational details).

The underlying processes behind CO chemistry are
more complicated, and involve many intermediate
species in creating CO from C and O by interactions
with H species. Instead of following every intermedi-
ate step we use the model of Nelson & Langer (1997)
(see Pettitt et al. 2014 for computational details). CO
is formed by a gas phase reaction from an intermediate
CHZ step after an initial reaction of C+ and H2 (where
Z encompasses many similar type species). CO and CHZ

are subject to independent photodestruction, which far
outweighs the destruction by cosmic-rays. Abundances
of C+ and O are used in the CO chemistry, and their
abundance is simply the initial value excluding what has
been used up in CO formation. Glover & Clark (2012)
test this and a range of simpler and more complicated
models, and show that the model adopted here is suf-
ficient for large-scale simulations of CO formation, al-
though it tends to over-produce CO compared to more
sophisticated models.

The details for each reaction in the H, H2 and CO
chemistry are given in Table 4, with relevant references
for each process.

2.14.4 Timestep constraint from chemistry

H chemistry is evolved on the cooling timestep, since
the timescale on which the H+ abundance changes sig-
nificantly is generally comparable to or longer than the
cooling time. This is not true for H2 and CO. Instead,
these species are evolved using a chemical time-stepping
criterion, where (290) is subcycled during the main time
step at the interval ∆tchem. If the abundance is decreas-
ing then the chemical timestep is

∆tchem = − 1

10

nX
(CX −DXnX)

, (291)

i.e., 10 per cent of the time needed to completely deplete
the species. If the abundance is increasing,

∆tchem =
∆thydro

200
, (292)

where ∆thydro is the timestep size for the hydrodynam-
ics, and was found to be an appropriate value by test
simulations. These updated abundances feed directly
into the relevant cooling functions. Although the cooling
function includes Si I and C I, the abundances of these
elements are set to zero in the current chemical model.

2.15 Particle injection

We implement several algorithms for modelling inflow
boundary conditions (see Toupin et al. 2015b,a for re-
cent applications). This includes injecting SPH particles

in spherical winds from sink particles (both steady and
time dependent), in a steady Cartesian flow and for in-
jection at the L1 point between a pair of sink particles
to simulate the formation of accretion discs by Roche
Lobe overflow in binary systems.

3 Initial conditions

3.1 Uniform distributions

The simplest method for initialising the particles is
to set them on a uniform Cartesian distribution. The
lattice arrangement can be cubic (equal particle spac-
ing in each direction, ∆x = ∆y = ∆z), close-packed
(∆y =

√
3/4∆x, ∆z =

√
6/3∆x, repeated every 3 lay-

ers in z), hexagonal close-packed (as for close-packed
but repeated every two layers in z), or uniform ran-
dom. The close-packed arrangements are the closest to
a ‘relaxed’ particle distribution, but require care with
periodic boundary conditions due to the aspect ratio of
the lattice. The cubic lattice is not a relaxed arrange-
ment for the particles, but is convenient and sufficient
for problems where the initial conditions are quickly
erased (e.g. driven turbulence). For problems where ini-
tial conditions matter, it is usually best to relax the
particle distribution by evolving the simulation for a
period of time with a damping term (Section 3.6). This
is the approach used, for example, in setting up stars in
hydrostatic equilibrium (Section 3.4).

3.2 Stretch mapping

General non-uniform density profiles may be set up us-
ing ‘stretch mapping’ (Herant, 1994). The procedure
for spherical distributions is the most commonly used
(e.g. Fryer et al., 2007; Rosswog & Price, 2007; Ross-
wog et al., 2009), but we have generalised the method
for any density profile that is along one coordinate di-
rection (e.g. Price & Monaghan, 2004b). Starting with
particles placed in a uniform distribution, the key is
that a particle should keep the same relative position in
the mass distribution. For each particle with initial co-
ordinate x0 in the relevant coordinate system, we solve
the equation

f(x) =
M(x)

M(xmax)
− x0 − xmin

(xmax − xmin)
= 0, (293)

where M(x) is the desired density profile integrated
along the relevant coordinate direction, i.e.

M(x) ≡
∫ x

xmin

ρ(x′)dS(x′)dx′, (294)
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Reaction Description Reference
H+ + e− + grain→ H + grain Grain surface recombination Weingartner & Draine (2001)
H+ + e− → H + γ Gas-phase recombination Ferland et al. (1992)
H + e− → H+ + 2e− e− collisional ionisation Abel et al. (1997)
H + c.r.→ H+ + e− Cosmic ray ionisation Glover & Mac Low (2007)
H + H + grain→ H2 + grain Grain surface formation Bergin et al. (2004)
H2 + γ → 2H UV photodissociation Draine & Bertoldi (1996)
H2 + c.r.→ H+

2 + e− Cosmic ray ionisation∗ Bergin et al. (2004)

C+ + H2 → CH+
2 + γ Radiative association Nelson & Langer (1997)

CH+
2 + various→ CHX + various Rapid neutralisation† -

CHZ + O→ CO + H Gas phase formation -
CHZ + γ → C + H UV photodissociation -
CO + γ → C+ + O + e− UV photodissociation†† -

Table 4 Processes and references for the Phantom ISM chemistry module tracing the evolution of H, H2 and CO.
∗ H+

2 ions produced by cosmic ray ionisation of H2 are assumed to dissociatively recombine to H + H, so that the effective reaction in

the code is actually H2 + c.r.→ H + H.
† Process is intermediate and is assumed rather than fully represented.
†† C is not present in our chemistry, but is assumed to rapidly photoionise to C+.

where the area element dS(x′) depends on the geometry
and the chosen direction, given by

dS(x) =

1 Cartesian or cyl./sph. along φ, θ or z,
2πx cylindrical along r,
4πx2 spherical along r.

(295)
We solve (293) for each particle using Newton-Raphson
iterations

x = x− f(x)

f ′(x)
, (296)

where

f ′(x) =
ρ(x)dS(x)

M(xmax)
, (297)

iterating until |f(x)| < 10−9. The Newton-Raphson it-
erations have second order convergence, but may fail in
extreme cases. Therefore, if the root-finding has failed
to converge after 30 iterations, we revert to a bisection
method, which is only first order but guaranteed to con-
verge.

Stretch mapping is implemented in such a way that
only the desired density function need be specified, ei-
ther as through an analytic expression (implemented
as a function call) or as a tabulated dataset. Since the
mass integral in (294) may not be known analytically,
we compute this numerically by integrating the density
function using the trapezoidal rule.

The disadvantage of stretch mapping is that in spher-
ical or cylindrical geometry it produces defects in the
particle distribution arising from the initial Cartesian
distribution of the particles. In this case, the particle
distribution should be relaxed into a more isotropic
equilibrium state before starting the simulation. For
stars, for example, this may be done by simulating the

star in isolation with artificial damping added (Sec-
tion 3.6). Alternative approaches are to relax the simu-
lation using an external potential chosen to produce the
desired density profile in equilibrium (e.g. Zurek & Benz
1986; Nagasawa et al. 1988) or to iteratively ‘cool’ the
particle distribution to generate ‘optimal’ initial condi-
tions (Diehl et al., 2015).

3.3 Accretion discs

3.3.1 Density field

The accretion disc setup module uses a Monte-Carlo
particle placement (details in Section A.7) in cylindrical
geometry to construct density profiles of the form

ρ(x, y, z) = Σ0fs

(
R

Rin

)−p
exp

(−z2

2H2

)
, (298)

where Σ0 is the surface density at R = Rin (if fs = 1),
H ≡ cs/Ω is the scale height (with Ω ≡

√
GM/R3), p is

the power-law index (where p = 3/2 by default following
Lodato & Pringle 2007) and fs ≡ (1−

√
Rin/R) is an

optional factor to smooth the surface density near the
inner disc edge.

Several authors have argued that a more uniform par-
ticle placement is preferable for setting up discs in SPH
(Cartwright et al., 2009; Vanaverbeke et al., 2009). This
may be important if one is interested in transient phe-
nomena at the start of a simulation, but otherwise the
particle distribution settles to a smooth density distri-
bution within a few orbits (c.f. Lodato & Price 2010).
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3.3.2 Velocity field

The orbital velocities of particles in the disc are set by
solving the equation for centrifugal equilibrium, i.e.

v2
φ =

GM

R
− fp − 2vφfBH, (299)

where the correction from radial pressure gradients is
given by

fp = −c2s (R)

(
3

2
+ p+ q +

1

2fs

)
, (300)

where q is the index of the sound speed profile such that
cs(R) = cs,in(R/Rin)−q and fBH is a correction used for
discs around a spinning black hole (Nealon et al., 2015)

fBH = −2a

c3

(
GM

R

)2

, (301)

where a is the black hole spin parameter. The latter as-
sumes Lense-Thirring precession is implemented as in
Section 2.4.5. Where self-gravity is used, M is the en-
closed mass at a given radius M(< R), otherwise it is
simply the mass of the central object. Using the en-
closed mass for the self-gravitating case is an approxi-
mation since the disc is not spherically symmetric, but
the difference is small and the disc relaxes quickly into
the true equilibrium. Equation (299) is a quadratic for
vφ which we solve analytically.

3.3.3 Warps

Warps are applied to the disc (e.g. Lodato & Price,
2010; Nealon et al., 2015) by rotating the particles
about the y-axis by the inclination angle i [in general a
function of radius i ≡ i(R)], according to

x′ = x cos(i) + z sin(i), (302)

y′ = y, (303)

z′ = −x sin(i) + z cos(i), (304)

with the velocities similarly adjusted using

v′x = vx cos(i) + vz sin(i), (305)

v′y = vy, (306)

v′z = −vx sin(i) + vz cos(i). (307)

3.3.4 Setting an α-disc viscosity

The simplest approach to mimicking an α-disc viscos-
ity in SPH is to employ a modified shock viscosity term,
setting the desired αSS according to (124) as described
in more detail in Section 2.6.1. Since the factor 〈h〉/H
is dependent both on resolution and temperature pro-
file (i.e. the q-index), it is computed in the initial setup
by taking the desired αSS as input in order to give the
required αAV. Although this does not guarantee that
αSS is constant with radius and time (this is only true
with specific choices of p and q and if the disc is approx-

imately steady), it provides a simple way to prescribe
the disc viscosity.

3.4 Stars and binary stars

We implement a general method for setting up ‘real-
istic’ stellar density profiles, based on either analytic
functions (e.g. polytropes) or tabulated data files out-
put from stellar evolution codes (see Iaconi et al. 2017
for a recent application of this to common envelope evo-
lution).

The basic idea is to set up a uniform density sphere of
particles and set the density profile by stretch mapping
(see below). The thermal energy of the particles is set so
that the pressure gradient is in hydrostatic equilibrium
with the self-gravity of the star for the chosen equa-
tion of state. We then relax the star into equilibrium
for several dynamical times using a damping parameter
(Section 3.6), before re-launching the simulation with
the star on an appropriate orbit.

For simulating red giants it is preferable to replace the
core of the star by a sink particle (see Passy et al., 2012;
Iaconi et al., 2017). When doing so one should set the
accretion radius of the sink to zero and set a softening
length for the sink particle consistent with the original
core radius (see Section 2.8.1).

3.5 Galactic initial conditions

In addition to simulating ISM gas in galactic discs with
analytic stellar potentials, one may represent bulge-
halo-disc components by collisionless N -body particles
(see Section 2.12.3). To replace a potential with a re-
solved system requires care with the initial conditions
(i.e. position, velocity, mass). If setup incorrectly the
system will experience radial oscillations and undula-
tions in the rotation curve, which will have strong ad-
verse effects on the gas embedded within. We include al-
gorithms for initialising the static-halo models of Pettitt
et al. (2015) (which used the sphng SPH code). These
initial conditions require the NFW profile to be active
and care must be taken to ensure the mass and scale
lengths correspond to the rotation curve used to gener-
ate the initial conditions. Other codes may alternatively
be used to seed multi-component N -body disc galax-
ies (e.g. Kuijken & Dubinski 1995a; Boily et al. 2001;
McMillan & Dehnen 2007; Yurin & Springel 2014), in-
cluding magalie (Boily et al., 2001) and galic (Yurin
& Springel, 2014) for which we have implemented for-
mat readers.

The gas in galactic scale simulations can be setup
either in a uniform surface density disc, or according
to the Milky Way’s specific surface density. The latter
is based on the radial functions given in Wolfire et al.
(1995). As of yet we have not implemented a routine for
enforcing hydrostatic equilibrium (Springel et al., 2005;
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Wang et al., 2010); this may be included in a future
update.

3.6 Damping

To relax a particle distribution into equilibrium, we
adopt the standard approach (e.g. Gingold & Mon-
aghan, 1977) of adding an external acceleration in the
form

aaext,damp = −fdv, (308)

such that a percentage of the kinetic energy is removed
each timestep. The damping parameter, fd, is specified
by the user. A sensible value for fd is of order a few
percent (e.g. fd = 0.03) such that a small fraction of
the kinetic energy is removed over a Courant timescale.

4 Software Engineering

No code is completely bug-free (experience is the name
everyone gives to their mistakes; Wilde 1892). However,
we have endeavoured to apply the principles of good
software engineering to Phantom. These include:

1. a modular structure,
2. unit tests of important modules,
3. nightly builds,
4. automated nightly tests,
5. automated code maintenance scripts,
6. version control with git,
7. wiki documentation, and
8. a bug database and issue tracker.

Together these simplify the maintenance, stability
and usability of the code, meaning that Phantom can
be used direct from the development repository without
fear of regression, build failures or major bugs.

Specific details of how the algorithms described in
Section 2 are implemented are given in the Appendix.
Details of the test suite are given in Appendix A.9.

5 Numerical tests

Unless otherwise stated, we use the M6 quintic spline
kernel with hfac = 1.0 by default, giving a mean neigh-
bour number of 113 in 3D. Almost all of the test results
are similar when adopting the cubic spline kernel with
hfac = 1.2 (requiring ≈ 58 neighbours), apart from the
tests with the one-fluid dust method where the quintic
is required. Since most of the algorithms used in Phan-
tom have been extensively tested elsewhere, our aim is
merely to demonstrate that the implementation in the
code is correct, and to illustrate the typical results that
should be achieved on these tests when run by the user.
The input files used to run the entire test suite shown
in the paper are available on the website, so it should

be straightforward for even a novice user to reproduce
our results.

Unless otherwise indicated, we refer to dimensionless
L1 and L2 norms when referencing errors, computed
according to

L1 ≡
1

NC0

N∑
i=1

|yi − yexact|, (309)

L2 ≡

√√√√ 1

NC0

N∑
i=1

|yi − yexact|2, (310)

where yexact is the exact or comparison solution inter-
polated or computed at the location of each particle i
and N is the number of points. The norms are the stan-
dard error norms divided by a constant, which we set
to the maximum value of the exact solution within the
domain, C0 = max (yexact), in order to give a dimension-
less quantity. Otherwise quoting the absolute value of
L1 or L2 is meaningless. Dividing by a constant has no
effect when considering convergence properties. These
are the default error norms computed by splash (Price,
2007).

Achieving formal convergence in SPH is more com-
plicated than in mesh-based codes where linear consis-
tency is guaranteed (see Price, 2012a). The best that
can be achieved with regular (positive, symmetric) ker-
nels is second order accuracy away from shocks provided
the particles remain well ordered (Monaghan, 1992).
The degree to which this remains true depends on the
smoothing kernel and the number of neighbours. Our
tests demonstrate that formal second order convergence
can be achieved with Phantom on certain problems
(e.g. Section 5.6.1). More typically one obtains some-
thing between first and second order convergence in
smooth flow depending on the degree of spatial disor-
dering of the particles. The other important difference
compared to mesh-based codes is that there is no intrin-
sic numerical dissipation in SPH due to its Hamiltonian
nature — numerical dissipation terms must be explicitly
added. We perform all tests with these terms included.

We use timestep factors of CCour = 0.3 and Cforce =
0.25 by default for all tests (Section 2.3.2).

5.1 Hydrodynamics

5.1.1 Sod shock tube

Figure 8 shows the results of the standard Sod (1978)
shock tube test, performed in 3D using [ρ, P ] = [1, 1]
in the ‘left state’ (x ≤ 0) and [ρ, P ] = [0.125, 0.1] for
the ‘right state’ (x > 0) with a discontinuity initially at
x = 0 and zero initial velocity and magnetic field. We
perform the test using an adiabatic equation of state
with γ = 5/3 and periodic boundaries in y and z. While
many 1D solutions appear in the literature, only a hand-
ful of results on this test have been published for SPH

PASA (2018)
doi:10.1017/pas.2018.xxx



Phantom 39

d
en
si
ty

-0.4 -0.2 0 0.2 0.4

0.5

1
t=0.2

v
x

-0.4 -0.2 0 0.2 0.4

0

0.5

x

u

-0.4 -0.2 0 0.2 0.4

1

1.5

2

x

p
re
ss
u
re

-0.4 -0.2 0 0.2 0.4

0.5

1

Figure 8. Results of the Sod shock tube test in 3D, showing projection of all particles (black dots) compared to the analytic solution
(red line). The problem is set up with [ρ, P ] = [1, 1] for x ≤ 0 and [ρ, P ] = [0.125, 0.1] for x > 0 with γ = 5/3, with zero velocities and

no magnetic field. The density contrast is initialised using equal mass particles placed on a close packed lattice with 256× 24× 24
particles initially in x ∈ [−0.5, 0] and 128× 12× 12 particles initially in x ∈ [0, 0.5]. The results are shown with constant αAV = 1.

d
en
si
ty

-0.4 -0.2 0 0.2 0.4

0.5

1
t=0.2

v
x

-0.4 -0.2 0 0.2 0.4

0

0.5

x

u

-0.4 -0.2 0 0.2 0.4

1

1.5

2

x

α

-0.4 -0.2 0 0.2 0.4
0

0.5

1

Figure 9. As in Figure 8, but with code defaults for all dissipation terms (αAV ∈ [0, 1]; αu = 1). These leave more noise in the velocity
field behind the shock but provide second order convergence in smooth flow. The lower right panel in this case shows the resultant

values for the viscosity parameter αAV.
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Figure 10. Results of the 3D blast wave test, showing projection of all particles (black dots) compared to the analytic solution (red
line). The problem is set up with [ρ, P ] = [1, 1000] for x ≤ 0 and [ρ, P ] = [1, 0.1] for x > 0 with γ = 7/5, with zero velocities and no

magnetic field. We use equal mass particles placed on a close packed lattice with 800× 12× 12 particles initially in x ∈ [−0.5, 0.5].
Results are shown with constant αAV = 1
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Figure 11. As in Figure 10 but with code defaults for dissipation switches (αAV ∈ [0, 1]; αu = 1). As in Figure 9 the velocity field
behind the shock is more noisy with switches applied, but the switches reduce the numerical dissipation away from shocks.
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Figure 12. Relative error in energy conservation for the 3D blast
wave test. Energy is conserved to an error of 10−6 in this test.

in 3D (e.g. Dolag et al. 2005; Hubber et al. 2011; Beck
et al. 2016; a 2D version is shown in Price 2012a). The
tricky part in a 3D SPH code is how to set up the den-
sity contrast. Setting particles on a cubic lattice is a
poor choice of initial condition since this is not a stable
arrangement for the particles (Morris, 1996b,a; Lom-
bardi et al., 1999; Børve et al., 2004). The approach
taken in Springel (2005) (where only the density was
shown, being the easiest to get right) was to relax the
two halves of the box into a stable arrangement using
the gravitational force run with a minus sign, but this
is time consuming.

Here we take a simpler approach which is to set the
particles initially on a close-packed lattice (Section 3.1),
since this is close to the relaxed arrangement (e.g. Lom-
bardi et al., 1999). To ensure continuity of the lattice
across periodic boundaries we fix the number of parti-
cles in the y (z) direction to the nearest multiple of 2
(3) and adjust the spacing in the x−direction accord-
ingly to give the correct density in each subdomain. We
implement the boundary condition in the x-direction
by tagging the first and last few rows of particles in
the x direction as boundary particles, meaning that
their particle properties are held constant. The results
shown in Figure 8 use 256× 24× 24 particles initially in
x ∈ [−0.5, 0] and 128× 12× 12 particles in x ∈ [0, 0.5]
with code defaults for the artificial conductivity (αu = 1
with vusig given by equation 43) and artificial viscosity

(αAV = 1, βAV = 2). The results are identical whether
global or individual particle timesteps (Section 2.3.4)
are used. Figure 9 shows the results when code de-
faults for viscosity are also employed, resulting in a
time-dependent αAV (see lower right panel). There is
more noise in the velocity field around the contact dis-
continuity in this case, but the results are otherwise
identical.

The L2 errors for the solutions shown in Figure 8 are
0.0090, 0.0022, 0.0018 and 0.0045 for the density, veloc-
ity, thermal energy and pressure, respectively. With dis-
sipation switches turned on (Figure 9) the correspond-
ing errors are 0.009, 0.0021, 0.0019 and 0.0044 respec-
tively. That is, our solutions are within 1 per cent of
the analytic solution for all four quantities in both cases,
with the density profile showing the strongest difference
(mainly due to smoothing of the contact discontinuity).

Puri & Ramachandran (2014) compared our shock
capturing algorithm with other SPH variants, including
Godunov SPH. Our scheme was found to be the most
robust of those tested.

5.1.2 Blast wave

As a more extreme version of the shock test, Figures 10
and 11 shows the results of the blast wave problem from
Monaghan (1997), set up initially with [ρ, P ] = [1, 1000]
for x ≤ 0 and [ρ, P ] = [1.0, 0.1] for x > 0 and with γ =
1.4 (appropriate to air). As previously we set the par-
ticles on a close-packed lattice with a discontinuous
initial pressure profile. We employ 800× 12× 12 par-
ticles in the domain x ∈ [−0.5, 0.5]. Results are shown
at t = 0.01. This is a more challenging problem than the
Sod test due to the higher Mach number. As previously,
we show results with both αAV = 1 (Figure 10) and
with the viscosity switch α ∈ [0, 1]. Both calculations
use αu = 1 with (43) for the signal speed in the artifi-
cial conductivity. For the solution shown in Figure 10,
we find normalised L2 errors of 0.057, 0.063, 0.051 and
0.018 in the density, velocity, thermal energy and pres-
sure, respectively, compared to the analytic solution.
Employing switches (Figure 11), we find corresponding
L2 errors of 0.056, 0.059, 0.052 and 0.017. That is, our
solutions are within 6 per cent of the analytic solution
at this resolution.

The main source of error is that the contact disconti-
nuity is over-smoothed due to the artificial conductivity,
while the velocity profile shows a spurious jump at the
location of the contact discontinuity. This glitch is a
startup error caused by our use of purely discontinuous
initial conditions — it could be removed by adopting
smoothed initial conditions but we prefer to perform
the more difficult version of this test. There is also noise
in the post-shock velocity profile because the viscosity
switch does not apply enough dissipation here. As in
the previous test, this noise can be reduced by increas-
ing the numerical viscosity, e.g. by adopting a constant
αAV (compare Figures 10 and 11).

Figure 12 quantifies the error in energy conservation,
showing the error in the total energy as a function of
time, i.e |E − E0|/|E0|. Energy is conserved to a relative
accuracy of better than 2× 10−6.
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Figure 13. Evolution of the relative error in total energy for the

Sedov blast wave problem. Resolutions are given in the legend;
solid lines use individual timestepping while dotted lines show

global timestepping.

5.1.3 Sedov blast wave

The Sedov-Taylor blast wave (Taylor, 1950a,b; Sedov,
1959) is a similar test to the previous but with a spher-
ical geometry. This test is an excellent test for the in-
dividual timestepping algorithm, since it involves prop-
agating a blast wave into an ambient medium of ‘inac-
tive’ or ‘asleep’ particles, which can cause severe loss
of energy conservation if they are not carefully awoken
(Saitoh & Makino, 2009). For previous uses of this test
with SPH, see e.g. Springel & Hernquist (2002); Ross-
wog & Price (2007) and for a comparison between SPH
and mesh codes on this test see Tasker et al. (2008).

We set up the problem in a uniform periodic box
x, y, z ∈ [−0.5, 0.5], setting the thermal energy on the
particles to be non-zero in a barely-resolved sphere
around the origin. We assume an adiabatic equation
of state with γ = 5/3. The total energy is normalised
such that the total thermal energy in the blast is
E0 =

∑
amaua = 1, distributed on the particles within

r < Rkernh0 using the smoothing kernel, i.e.

ua =

{
E0W (r, h0), r/h0 ≤ Rkern

0 r/h0 > Rkern

(311)

where r =
√
x2 + y2 + z2 is the radius of the particle

and we set h0 to be twice the particle smoothing length.
We simulate the Sedov blast wave using both global

and individual timesteps at several different resolutions.
Figure 13 shows the evolution of the relative error in
total energy for our suite, while Figure 14 shows the
density at t = 0.1 compared to the analytical solution
given by the solid line. Energy is conserved to better
than 1 per cent in all cases. Using higher spatial resolu-
tion results in a better match of the post-shock density
with the analytic solution. The scatter at the leading
edge of the shock is a result of the default artificial con-

ductivity algorithm. Given the initial strong gradient in
thermal energy, artificial conductivity is also important
for reducing the noise on this problem, as first noted by
Rosswog & Price (2007).

5.1.4 Kelvin-Helmholtz instability

Much has been written about Kelvin-Helmholtz insta-
bilities with SPH (e.g. Agertz et al., 2007; Price, 2008;
Abel, 2011; Valdarnini, 2012; Read & Hayfield, 2012;
Hubber et al., 2013c). For the present purpose it suf-
fices to say that the test problems considered by Agertz
et al. (2007) and Price (2008) are not well posed. That
is, the number of small-scale secondary instabilities will
always increase with numerical resolution because high
wavenumber modes grow fastest in the absence of phys-
ical dissipation or other regularising forces such as mag-
netic fields or surface tension. The ill-posed nature of
the test problem has been pointed out by several au-
thors (Robertson et al., 2010; McNally et al., 2012;
Lecoanet et al., 2016), who have each proposed well-
posed alternatives.

We adopt the setup from Robertson et al. (2010), sim-
ilar to the approach by McNally et al. (2012), where the
initial density contrast is smoothed using a ramp func-
tion. This should suppress the formation of secondary
instabilities long enough to allow a single large scale
mode to grow. The density and shear velocity in the y
direction are given by

ρ(y) = ρ1 +R(y)[ρ2 − ρ1], (312)

and

vx(y) = v1 +R(y)[v2 − v1], (313)

where ρ1 = 1, ρ2 = 2, v1 = −0.5 and v2 = 0.5 with con-
stant pressure P = 2.5, γ = 5/3. The ramp function is
given by

R(y) ≡ [1− f(y)] [1− g(y)] , (314)

where

f ≡ 1

1 + exp [2(y − 0.25)/∆]
,

g ≡ 1

1 + exp [2(0.75− y)/∆]
, (315)

and we set ∆ = 0.25. Finally, a perturbation is added
in the velocity in the y direction, given by

vy = 0.1 sin(2πx). (316)

The setup in Robertson et al. (2010) is 2D, but since
Phantom is a 3D code, we instead set up the prob-
lem using a thin three dimensional box. We first set up
a uniform close packed lattice in a periodic box with
dimensions 1× 1×

√
24/nx, where nx is the initial res-

olution in the x direction such that the box thickness is
set to be exactly 12 particle spacings in the z direction
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Figure 14. Density as a function of radius in the Sedov blast wave problem at three resolutions. All particles are placed initially on

a closepacked lattice, are evolved using individual timesteps and we use the quintic kernel. The analytic solution is given by the solid

line, and the bottom panels show the residuals compared to the analytical solution.
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Figure 15. Results of the well-posed Kelvin-Helmholtz instability test from Robertson et al. (2010), shown at a resolution of (from

top to bottom) 64× 74× 12, 128× 148× 12 and 256× 296× 12 equal mass SPH particles. We use stretch mapping (Section 3.2) to
achieve the initial density profile, consisting of a 2:1 density jump with a smoothed transition.
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Figure 16. Growth of the amplitude of the seeded mode for the

Kevin-Helmholtz instability test. The amplitude at t = 2 between
the nx = 128 and nx = 256 calculations is within 4 per cent.

independent of the resolution used in the x and y direc-
tion. The box is set between [0, 1] in x and y, consistent
with the ramp function. We then set up the density pro-
file by stretch-mapping in the y direction using (312) as
the input function (c.f. Section 3.2).

Figure 15 shows the results of this test, showing a
cross section of density at z = 0 for three different reso-
lutions (top to bottom) and at the times corresponding
to those shown in Robertson et al. (2010). We compute
the quantitative difference between the calculations by
taking the root mean square difference of the cross sec-
tion slices shown above interpolated to a 1024 × 1024
pixel map. The error between the nx = 64 calculation
and the nx = 256 calculation is 1.3× 10−3, while this
reduces to 4.9× 10−4 for the nx = 128 calculation. Fig-
ure 16 shows the growth of the amplitude of the mode
seeded in (316). We follow the procedure described in
McNally et al. (2012) to calculate the mode ampli-
tude. At t = 2, the amplitude between the nx = 128 and
nx = 256 calculations is within 4 per cent. The artifi-
cial viscosity and conductivity tend to slow convergence
on this problem, so it is a good test of the dissipation
switches (we use the default code viscosity switch as
discussed in Section 2.2.9).

5.2 External forces

5.2.1 Lense-Thirring precession

We test the implementation of the Lense-Thirring pre-
cession by computing the precession induced on a
pressure-less disc of particles, as outlined in Nealon
et al. (2015). This disc is simulated for one orbit at the
outer edge such that the inner part of the disc has pre-
cessed multiple times but the outer region has not yet
completed a full precession. The precession timescale is
estimated by measuring the twist as a function of time
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Figure 17. Lense-Thirring precession test from a disc inclined

by 30◦. Here the precession time-scale is measured from the cu-
mulative twist in the disc and the exact solution, tp = R3/2a is

represented by the red line.

for each radial bin; in the inner region this is the time
taken for the twist to go from a minimum (zero twist)
to a maximum (fully twisted) and in the outer region
the gradient of the twist against time is used to calcu-
late the equivalent time. Figure 17 shows the precession
timescale measured from the simulation as a function
of the radius compared to the analytically derived pre-
cession timescale, with uncertainties derived from the
calculation of the gradient.

5.2.2 Poynting-Robertson drag

Figure 18 shows the trajectory of a spherical assembly
of 89 pressureless SPH particles subject to Poynting-
Robertson drag with a fixed value of βPR = 0.1, assum-
ing a central neutron star of mass 1.4M� and 10 km
radius and a particle initially orbiting at R = 200 km
with initial vφ of 0.9 times the Keplerian orbital speed.
We compare this to the trajectory of a test particle pro-
duced by direct numerical integration of the equations
of motion, (106), with a 4th order Runge Kutta scheme.
As shown in Figure 18, there is no significant difference
between the codes. We therefore expect that the be-
haviour of SPH gas or dust particles under the influence
of any given β will be correct.

5.2.3 Galactic potentials

Figure 19 shows 6 calculations with gas embedded
within different galactic potentials (Section 2.4.4). We
set up an isothermal gas disc with T = 10 000K, with
a total gas mass of 1× 109 M� set up in a uniform
surface density disc from 0–10 kpc in radius. A three-
part potential model for the Milky Way provides the
disc with an axisymmetric rotation curve (bulge plus
disc plus halo, the same as Pettitt et al. 2014). The top

PASA (2018)
doi:10.1017/pas.2018.xxx



Phantom 45

−300 −200 −100 0 100 200

x (km)

−200

−150

−100

−50

0

50

100

150

200

250

y
 (
km

)

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

∆
r 
(m

)

Figure 18. Inspiral of a test particle subjected to Poynting-

Robertson drag using Phantom (blue curve) compared to the
expected solution (red curve). For clarity, only some of the points

are plotted. The results are indistinguishable on this scale. Bot-

tom panel shows the distance (∆r) between the PHANTOM par-
ticle and the test code particle. This demonstrates that the imple-

mentation of Poynting-Robertson drag in Phantom is consistent
with a 4th order numerical solution to (106).

row shows gas exposed to spiral potentials of Cox &
Gómez (2002) with three different arm numbers (2, 3,
4), while the bottom row shows simulations within the
bar potential of Wada & Koda (2001) at three differ-
ent pattern speeds (40, 60 and 80 km s−1 kpc−1). All
models are shown after approximately one full disc ro-
tation (240 Myr). Gas can be seen to trace the different
spiral arm features, with the two armed model in par-
ticular showing branches characteristic of such density
wave potentials (e.g. Martos et al. 2004). The bars drive
arm features in the gas, the radial extent of which is a
function of the pattern speed. Also note the inner ellip-
tical orbits of the bar at the location of the Lindblad
resonance which is an effect of the peaked inner rotation
curve resulting from the central bulge.

5.3 Accretion discs

SPH has been widely used for studies of accretion discs,
ever since the first studies by Artymowicz & Lubow
(1994, 1996); Murray (1996) and Maddison et al. (1996)
showed how to use the SPH artificial viscosity term to
mimic a Shakura & Sunyaev (1973) disc viscosity.

5.3.1 Measuring the disc viscosity

The simplest test is to measure the disc viscosity from
the diffusion rate of the disc surface density. Figure 20
shows the results of an extensive study of this with
Phantom perfomed by Lodato & Price (2010). For this
study we set up a disc from Rin = 0.5 to Rout = 10 with
surface density profile

Σ = Σ0R
−p

(
1−

√
Rin

R

)
, (317)

and a locally isothermal equation of state cs = cs,0R
−q.

We set p = 3/2 and q = 3/4 such that the disc is uni-
formly resolved, i.e. h/H ∼ constant (Lodato & Pringle,
2007), giving a constant value of the Shakura & Sun-
yaev (1973) α parameter according to (124). We set cs,0
such that the aspect ratio is H/R = 0.02 at R = 1. We
used 2 million particles by default, with several addi-
tional calculations perfomed using 20 million particles.
The simulation is performed to t = 1000 in code units.

The diffusion rate is measured by fitting the sur-
face density evolution obtained from Phantom with
the results of a ‘ring code’ solving the standard 1D
diffusion equation for accretion discs (Lynden-Bell &
Pringle, 1974; Pringle, 1981, 1992). Details of the fit-
ting procedure are given in Lodato & Price (2010). In
short, we use Newton-Raphson iterations to find the
minimum error between the 1D code and the surface
density profile from Phantom at the end of the simu-
lation, which provides the best fit (αfit) and error bars.
Figure 20 shows that the measured diffusion rates agree
with the expected values to within the error bars. The
exception is for low viscosity discs with physical vis-
cosity, where contribution from artificial viscosity be-
comes significant. Triangles in the figure show the re-
sults with disc viscosity computed from the artificial
viscosity (Section 2.6.1), while squares represent simu-
lations with physical viscosity set according to (126).

This test demonstrates that the implementation of
disc viscosity matches the analytic theory to within
measurement errors. This also demonstrates that the
translation of the artificial viscosity term according to
(124) is correct.

5.3.2 Warp diffusion

A more demanding test of disc physics involves the dy-
namics of warped discs. Extensive analytic theory ex-
ists, starting with the linear theory of Papaloizou &
Pringle (1983), subsequent work by Pringle (1992), and

PASA (2018)
doi:10.1017/pas.2018.xxx



46 Price et al.

1 kpc

-3.2

-3

-2.8

lo
g
 c

o
lu

m
n
 d

en
si

ty
 [

g
/c

m
2
]

Figure 19. Gas in a galactic disc under the effect of different galactic potentials. Top row shows models with a 2, 3, and 4 armed
spiral (left to right) with a pitch angle of 15◦ and pattern speed of 20 km s−1 kpc−1. Bottom row shows a bar potential with pattern

speeds of 40, 60 and 80 km s−1 kpc−1 (left to right).

culminating in the work by Ogilvie (1999) which pro-
vides the analytic expressions for the diffusion rate of
warps in discs for non-linear values of both disc viscos-
ity and warp amplitude. Importantly, this theory ap-
plies in the ‘diffusive’ regime where the disc viscosity
exceeds the aspect ratio, α > H/R. For α . H/R the
warp propagation is wave-like and no equivalent non-
linear theory exists (see Lubow & Ogilvie, 2000; Lubow
et al., 2002).
Phantom was originally written to simulate warped

discs — with our first study in Lodato & Price (2010)
designed to test the Ogilvie (1999) theory in 3D simula-
tions. Figure 21 shows the results of this study, showing
the measured warp diffusion rate as a function of disc
viscosity. The setup of the simulations is as in the pre-
vious test but with a small warp added to the disc, as
outlined in Section 3.3 of Lodato & Price (2010). De-
tails of the fitting procedure used to measure the warp
diffusion rate are also given in Section 4.2 of that pa-
per. The dashed line shows the non-linear prediction of
Ogilvie (1999), namely

α2 =
1

2α

4(1 + 7α2)

4 + α2
. (318)

Significantly, the Phantom results show a measurable
difference between the predictions of the non-linear the-

ory and the prediction from linear theory (Papaloizou &
Pringle, 1983) of α2 = 1/(2α), shown by the solid black
line.

In addition to the results shown in Figure 21, Phan-
tom also showed a close match to both the predicted
self-induced precession of the warp and to the evolution
of non-linear warps (see Figures 13 and 14 in Lodato
& Price 2010, respectively). From the success of this
initial study we have used Phantom to study many
aspects of disc warping, either with isolated warps or
breaks (Lodato & Price, 2010; Nixon et al., 2012a),
warps induced by spinning black holes (Nixon et al.,
2012b; Nealon et al., 2015, 2016) and warps in circumbi-
nary (Nixon et al., 2013; Facchini et al., 2013) or cir-
cumprimary (Doğan et al., 2015; Martin et al., 2014a,b)
discs. In particular, Phantom was used to discover the
phenomenon of ‘disc tearing’ where sections of the disc
are ‘torn’ from the disc plane and precess effectively in-
dependently (Nixon et al., 2012b, 2013; Nealon et al.,
2015).

5.3.3 Disc-planet interaction

Although there is no ‘exact’ solution for planet-disc in-
teraction, an extensive code comparison was performed
by de Val-Borro et al. (2006). Figure 22 shows the col-
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Figure 20. Calibration of the disc viscosity in Phantom, com-

paring the input value of the Shakura-Sunyaev α from (124)

(x−axis) with the measured diffusion rate of the surface den-
sity by fitting to a 1D code (y-axis). Triangles indicate simula-

tions with the disc viscosity computed using the artificial viscosity

(Section 2.6.1), while squares represent simulations using physi-
cal viscosity (Section 2.7.1). All simulations use 2 million particles

except for the green, cyan and red triangles which use 20 million

particles. Figure taken from Lodato & Price (2010).

umn density of a 3D Phantom calculation, plotted in
r-φ with the density integrated through the z direction,
comparable to the ‘viscous Jupiter’ setup in de Val-
Borro et al. (2006).

Two caveats apply when comparing our results with
those in Figure 10 of de Val-Borro et al. (2006). The first
is that the original comparison project was performed
in 2D and mainly with grid-based codes with specific
‘wave damping’ boundary conditions prescribed. We
chose simply to ignore the prescribed boundary condi-
tions and two dimensionality and instead modelled the
disc in 3D with a central accretion boundary at r = 0.25
with a free outer boundary, with the initial disc set up
from r = 0.4 to r = 2.5. We used 106 SPH particles.
Second, the planetary orbit was prescribed on a fixed
circular orbit with no accretion onto either the planet
or the star. Although we usually use sink particles in
Phantom to model planet-disc interaction (e.g. Dip-
ierro et al., 2015), for this test we thus employed the
fixed binary potential (Section 2.4.2) to enable a direct
comparison. We thus used M = 10−3 in the binary po-
tential, corresponding to the ‘Jupiter’ simulation in de
Val-Borro et al. (2006) with the planet on a fixed cir-
cular orbit at r = 1.

0 0.1 0.2 0.3 0.4 0.5

0

2

4

6

8

10

Figure 21. Warp diffusion rate as a function of disc viscos-

ity, showing the Phantom results compared to the non-linear

theory of Ogilvie (1999) (dashed line). The linear prediction,
α2 = 1/(2α), is shown by the solid line, highlighting the agree-

ment of Phantom with the non-linear theory. Colouring of points

is as in Figure 20. Figure taken from Lodato & Price (2010).

As per the original comparison project, we imple-
mented Plummer softening of the gravitational force
from the planet,

φplanet = −−mplanet√
r2 + ε2

, (319)

where ε = 0.6H. We also implemented the prescribed
increase of planet mass with time for the first 5 orbits
according to

mplanet = sin2

(
πt

10Porbit

)
, (320)

where Porbit is the orbital period (2π in code units),
though we found this made little or no difference to
the results in practice. We assumed a locally isother-
mal equation of state, cs ∝ R−0.5, such that H/R ≈
0.05 ≈ constant. We assumed an initially constant sur-
face density, Σ0 = 0.002M∗/(πa

2). We also employed
a Navier-Stokes viscosity with ν = 10−5 on top of the
usual settings for shock dissipation with the viscos-
ity switch, namely αAV ∈ [0, 1] and βAV = 2. We use
the Navier-Stokes viscosity implementation described
in Section 2.7.2, which is the code default. We also em-
ployed the cubic spline kernel (with hfac = 1.2) rather
than the quintic to reduce the computational expense
(using the quintic made no difference to the results).

Despite the different assumptions, the results in Fig-
ure 22 are strikingly similar to those obtained with most
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Figure 22. Planet-disc interaction in 3D, showing the ‘viscous

Jupiter’ calculation comparable to the 2D results shown with var-
ious grid and SPH codes in Figure 10 of de Val-Borro et al. (2006).

The dotted lines shows the estimated position of the planetary

shocks from Ogilvie & Lubow 2002. The offset between this solu-
tion and the numerical shock position is due to the approximate

nature of the analytic solution (see de Val-Borro et al. 2006).

of the grid-based codes in de Val-Borro et al. (2006).
The main difference is that our gap is shallower, which
is not surprising since this is where resolution is lowest
in SPH. There is also some difference in the evolution
of the surface density, particularly at the inner bound-
ary, due to the difference in assumed boundary condi-
tions. However, the dense flow around the planet and in
the shocks appear well resolved compared to the other
codes. What is interesting is that the SPH codes used in
the original comparison performed poorly on this test.
This may be simply due to the low resolution employed,
as the two SPH calculations used 250 000 and 300 000
particles, respectively, (though performed only in 2D
rather than 3D), but given the extent of other differ-
ences between adopted setup and SPH algorithms, it is
hard to draw firm conclusions.

As per the original comparison, Figure 22 shows the
estimated position of the planetary shocks from Ogilvie
& Lubow (2002) plotted as dotted lines, namely

φ(r, t) =

{
t− 2

3ε

(
r3/2 − 3

2 ln r − 1
)

; r > rplanet;

t+ 2
3ε

(
r3/2 − 3

2 ln r − 1
)

; r < rplanet,

(321)
where ε = 0.05 is the disc aspect ratio. The disagree-
ment between the shock position and the Ogilvie &
Lubow (2002) solution seen in Figure 22 was also found
in every simulation shown in de Val-Borro et al. (2006),
so more likely reflects the approximate nature of the
analytic solution rather than numerical error.

We found this to be a particularly good test of the
viscosity limiter, since there is both a shock and a shear
flow present. Without the limiter in (46), we found the
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Figure 23. Test of physical Navier-Stokes viscosity in the Taylor-

Green vortex using kinematic shear viscosity ν = 0.05, 0.1, 0.2.

The exponential decay rate of kinetic energy may be compared
to the analytic solution in each case (solid black lines), demon-

strating that the calibration of physical viscosity in Phantom is

correct.

shock viscosity switch would simply trigger to αAV ≈ 1.
The original Morris & Monaghan (1997) switch (Sec-
tion 2.2.9) also performs well on this test, suggesting
that the velocity divergence is better able to pick out
shocks in differentially rotating discs compared to its
time derivative.

5.4 Physical viscosity

5.4.1 Taylor-Green vortex

The Taylor-Green vortex (Taylor & Green, 1937) con-
sists of a series of counter-rotating vortices. We per-
form this test using four vortices set in a thin 3D
slab. The initial velocity fields are given by: vx =
v0 sin(2πx) cos(2πy), vy = −v0 cos(2πx) sin(2πy) with
v0 = 0.1. The initial density is uniform ρ = 1, and an
isothermal equation of state is used (P = c2sρ) with
speed of sound cs = 1. Viscosity will cause each com-
ponent of the velocity field to decay at a rate ∝
exp(−16π2νt), where ν is the kinematic shear viscos-
ity.

Figure 23 shows the kinetic energy for a series of
calculations using ν = 0.05, 0.1, 0.2. In each case, the
kinetic energy exponentially decays by several orders
of magnitude. The corresponding analytic solutions are
shown by the solid black lines for comparison, demon-
strating that the implementation of physical viscosity
in Phantom is correct.
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5.5 Sink particles

5.5.1 Binary orbit

Figure 24 shows the error in total energy conserva-
tion ∆E/|E0| for a set of simulations consisting of
two sink particles set up in a binary orbit, a com-
mon test of N -body integrators (e.g. Hut et al.,
1995; Quinn et al., 1997; Farr & Bertschinger, 2007;
Dehnen & Read, 2011). We fix the initial semi-
major axis a = 1 with masses m1 = m2 = 0.5 and with
the two sink particles initially at periastron, corre-
sponding to x1 = [−m2/(m1 +m2)∆, 0, 0] and x2 =
[m1/(m1 +m2)∆, 0, 0] where ∆ = a(1− e) is the ini-
tial separation. The corresponding initial velocities are
v1 = [0,−m2/(m1 +m2)|v|, 0] and v2 = [0,m1/(m1 +
m2)|v|, 0], where |v| =

√
a(1− e2)(m1 +m2)/∆. The

orbital period is thus P =
√

4π2a3/(G(m1 +m2)) =
2π in code units for our chosen parameters. Impor-
tantly, we use an adaptive timestep which is not time-
symmetric so there remains some drift in the energy
error which is absent if the timestep is constant (see
e.g. Hut et al. 1995; Quinn et al. 1997 and Dehnen &
Read 2011 for discussion of this issue).

Figure 24 shows the error in total energy as a function
of time for the first 1000 orbits for calculations with ini-
tial eccentricities of e = 0.0 (a circular orbit), 0.3, 0.5,
0.7 and 0.9. Energy conservation is worse for more ec-
centric orbits, as expected, with ∆E/|E0| ∼ 6% after
1000 orbits for our most extreme case (e = 0.9). The en-
ergy error can be reduced arbitrarily by decreasing the
timestep, so this is mainly a test of the default settings
for the sink particle timestep control. For this problem
the timestep is controlled entirely by (76), where by de-
fault we use ηΦ = 0.05, giving 474 steps per orbit for
e = 0.9. For simulations with more eccentric orbits we
recommend decreasing Cforce from the default setting of
0.25 to obtain more accurate orbital dynamics.

In addition to calibrating the timestep constraint,
Figure 24 also validates the sink particle substepping
via the RESPA algorithm (Section 2.3.3) since for this
problem the “gas” timestep is set only by the desired
interval between output files (to ensure sufficient out-
put for the figure we choose ∆tmax = 1, but we also
confirmed that this choice is unimportant for the resul-
tant energy conservation). This means that increasing
the accuracy of sink particle interactions adds little or
no cost to calculations involving gas particles.

The corresponding plot for angular momentum con-
servation (not shown) merely demonstrates that an-
gular momentum is conserved to machine precision
(∆L/|L| ∼ 10−15), as expected. Importantly, angular
momentum remains conserved to machine precision
even with adaptive timestepping.
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Figure 24. Errors in energy conservation in a sink particle binary

integration with code default parameters for the timestep control,
showing the energy drift caused by the adaptive timestepping.

Angular momentum is conserved to machine precision.

5.5.2 Restricted three-body problem

Chin & Chen (2005) proposed a more demanding test of
N -body integrators, consisting of a test particle orbit-
ing in the potential of a binary on a fixed circular orbit.
We set up this problem with a single sink particle with
x = [0, 0.0580752367, 0] and v = [0.489765446, 0, 0], us-
ing the time-dependent binary potential as described
in Section 2.4.2 with M = 0.5. This is therefore a good
test of the interaction between a sink particle and ex-
ternal potentials in the code, as well as the sink particle
timestepping algorithm. For convenience we set the sink
mass m = 1 and accretion radius racc = 0.1, although
both are irrelevant to the problem.

Figure 25 shows the resulting orbit using the default
code parameters, where we plot the trajectory of the
sink particle up to t = 27π, as in Figures 1 and 2 of
Chin & Chen (2005). Considering that we use only
a second-order integrator, the orbital trajectory is re-
markably accurate, showing no chaotic behaviour and
only a slight precession consistent or better than the
results with some of the fourth order schemes shown in
their paper (albeit computed with a larger timestep).
We are thus satisfied that our time integration scheme
and the associated timestep settings can capture com-
plex orbital dynamics with sufficient accuracy.

5.6 Magnetohydrodynamics

5.6.1 3D circularly polarised Alfvén wave

Tóth (2000) introduced the circularly polarised Alfvén
wave test, an exact non-linear solution to the MHD
equations which can therefore be performed using a
wave of arbitrarily large amplitude. Most results of
this test are shown in 2D (e.g. Price & Monaghan,
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Figure 25. Orbit of a sink particle in the restricted 3-body prob-

lem from Chin & Chen (2005) using default code parameters.
This tests both the time-integrator for sink particles and the in-

teraction with a time-dependent binary potential (Section 2.4.2).

The trajectory of the sink is plotted every timestep for 3 periods
(t = 27π).

2005; Rosswog & Price, 2007; Price, 2012a; Tricco
& Price, 2013). Here we follow the 3D setup out-
lined by Gardiner & Stone (2008). We use a peri-
odic domain of size L× L/2× L/2 where L = 3, with
the wave propagation direction defined using angles
a and b where sin a = 2/3 and sin b = 2/

√
5, with

the unit vector along the direction of propagation
given by r = [cos a cos b, cos a sin b, sin a]. We use an
initial density ρ = 1, an adiabatic equation of state
with γ = 5/3 and P = 0.1. We perform the ‘travel-
ling wave test’ from Gardiner & Stone (2008), where
the wavelength λ = 1 and the vectors [v1, v2, v3] =
[0, 0.1 sin(2πx1/λ), 0.1 cos(2πx1/λ)] and [B1, B2, B3] =
[1, 0.1 sin(2πx1/λ), 0.1 cos(2πx1/λ)] are projected back
into the x, y and z components using the transforma-
tions given by (Gardiner & Stone, 2008)

x = x1 cos a cos b− x2 sin b− x3 sin a cos b,

y = x1 cos a sin b+ x2 cos b− x3 sin a sin b,

z = x1 sin a+ x3 cos a. (322)

Figure 26 shows the results of this test using 32×
18× 18, 64× 36× 39 and 128× 74× 78 particles ini-
tially set on a close packed lattice, compared to the
exact solution given by the red line (the same as the
initial conditions for the wave). We plot the transverse
component of the magnetic field B2 as a function of x1,
where B2 ≡ (By − 2Bx)/

√
5 and x1 ≡ (x+ 2y + 2z)/3

for our chosen values of a and b. There is both a disper-
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Figure 26. Results of the 3D circularly polarised Alfven wave test

after 5 periods, showing perpendicular component of the magnetic
field on all particles (black dots) as a function of distance along

the axis parallel to the wave vector. Results are shown using 32×
18× 18, 64× 36× 39 and 128× 74× 78 particles (most to least
damped, respectively), compared to the exact solution given by

the solid red line. Convergence is shown in Figure 27.

sive and dissipative error, with the result converging in
both phase and amplitude towards the undamped exact
solution as the resolution is increased.

Figure 27 shows a convergence study on this problem,
showing, as in Gardiner & Stone (2008), the L1 error as
a function of the number of particles in the x−direction.
The convergence is almost exactly second order. This
is significant because we have performed the test with
code defaults for all dissipation and divergence clean-
ing terms. This plot therefore demonstrates the second
order convergence of both the viscous and resistive dissi-
pation in Phantom (see Sections 2.2.9 and 2.10.6). By
comparison, the solution shown by Price & Monaghan
(2005) (Figure 6 in their paper) was severely damped
when artificial resistivity was applied.

As noted by Price & Monaghan (2005) and illustrated
in Figure 12 of Price (2012a), this problem is unstable
to the SPMHD tensile instability (e.g. Phillips & Mon-
aghan, 1985) in the absence of force correction terms
since the plasma β ≡ P/ 1

2B
2 ≈ 0.2. Our results demon-

strate that the correction term (Section 2.10.2) effec-
tively stabilises the numerical scheme without affecting
the convergence properties.

5.6.2 MHD shock tubes

The classic Brio & Wu (1988) shock tube test gener-
alises the Sod shock tube (Section 5.1.1) to MHD. It
has provoked debate over the years (e.g. Wu 1988; Dai
& Woodward 1994a; Falle & Komissarov 2001; Taka-
hashi et al. 2013) because of the presence of a compound
slow shock and rarefaction in the solution, which is sta-
ble only when the magnetic field is coplanar and there
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Figure 27. Convergence in the 3D circularly polarised Alfven
wave test, showing the L1 error as a function of the number of

particles along the x-axis, nx alongside the expected slope for

second order convergence (dotted line). Significantly, this demon-
strates second order convergence with all dissipation switched on.

is no perturbation to the tangential (Bz) magnetic field
(Barmin et al., 1996). Whether or not such solutions can
exist in nature remains controversial (e.g. Feng et al.
2007). Nevertheless it has become a standard bench-
mark for numerical MHD (e.g. Stone et al., 1992; Dai &
Woodward, 1994a; Balsara, 1998; Ryu & Jones, 1995).
It was first used to benchmark SPMHD by Price &
Monaghan (2004a,b) and 1.5D results on this test with
SPMHD, for comparison, can be found in e.g. Price &
Monaghan (2005); Rosswog & Price (2007); Dolag &
Stasyszyn (2009); Price (2010) and Vanaverbeke et al.
(2014), with 2D versions shown in Price (2012a), Tricco
& Price (2013) and Tricco et al. (2016a). We handle
the boundary conditions by setting the first and last
few planes of particles to be ‘boundary particles’ (Sec-
tion A.2), meaning that the gas properties on these par-
ticles are fixed.

Figure 28 shows the results of the Brio & Wu (1988)
problem using Phantom, performed in 3D with 256×
24× 24 particles initially in x ∈ [−0.5, 0] and 128×
12× 12 particles initially in x ∈ [0, 0.5] set on close
packed lattices with purely discontinuous initial con-
ditions in the other variables (see caption). The projec-
tion of all particles onto the x-axis are shown as black
dots, while the red lines shows a reference solution taken
from Balsara (1998). Figure 28 shows the results when
a constant αAV = 1 is employed, while Figure 29 shows
the results with default code parameters, giving second
order dissipation away from shocks. For constant αAV

(Figure 28), we find the strongest deviation from the ref-
erence solution is in vx, with L1 = 0.015 and L2 = 0.065
at this resolution. The remaining L2 errors are within

5 per cent of the reference solution, while the L1 norms
are all smaller than 1.5 per cent in the other variables.
Similar errors are found with code defaults (Figure 29),
with L2 = 0.074 in vx and L1 norms smaller than 1.6
per cent in all variables. That is, our solutions are within
1.6 per cent of the reference solution. Using the default
Courant factor of 0.3, total energy is conserved to bet-
ter than 0.5%, with maximum |∆E|/|E0| = 4.2× 10−3

up to t = 0.1.
Figure 30 shows the result of the “7 discontinuity”

test from Ryu & Jones (1995). This test is particu-
larly sensitive to over-dissipation by resistivity given
the sharp jumps in the transverse magnetic and veloc-
ity fields. A reference solution with intermediate states
taken from the corresponding table in Ryu & Jones
(1995) is shown by the red lines for comparison. Here
the boundary particles are moved with a fixed velocity
in the x-direction. The largest deviation from the ref-
erence solution is in the vy component, mainly due to
the over-dissipation of the small spikes, with L1 = 0.02
and L2 = 0.07 at this resolution. The remaining L2 er-
rors are within 3% of the reference solution while the
L1 norms are smaller than 0.9% in all other variables.

Finally, Figure 31 shows the results of shock tube
1a from Ryu & Jones (1995). This test is interesting
because it has historically proven to be a difficult test
for SPMHD codes in more than 1D. In particular, to
obtain reasonable results on this problem Price & Mon-
aghan (2005) had to employ both an explicit shear vis-
cosity term and a large neighbour number. Even then
the jumps were found to show significant deviation from
the analytic solution (see figure 10 in Price & Mon-
aghan 2005). We did find that using hfac = 1.2 signif-
icantly improved the results of this test compared to
our default hfac = 1.0 for the quintic kernel. Likewise
we found the results with the cubic spline kernel could
be noisy. However, Figure 31 demonstrates that with
only this change to the default code parameters we can
obtain results with L1 errors of better than 4.4% in vy
and less than 0.9% in all other variables at this reso-
lution. The bottom left panel shows the errors induced
in Bx, with the largest error (L∞) only 0.6%. This is a
substantial improvement over the 2D results shown in
Price & Monaghan (2005).

5.6.3 Orszag-Tang vortex

The Orszag-Tang vortex (Orszag & Tang, 1979;
Dahlburg & Picone, 1989; Picone & Dahlburg, 1991)
has been used widely to test astrophysical MHD codes
(e.g. Stone et al., 1992; Ryu et al., 1995; Dai & Wood-
ward, 1998; Tóth, 2000; Londrillo & Del Zanna, 2000).
Similar to our hydrodynamic tests, we perform a 3D
version of the original 2D test problem, similar to the
‘thin box’ setup used by Dolag & Stasyszyn (2009). Ear-
lier results on this test with 2D SPMHD can be found
in Price & Monaghan (2005), Rosswog & Price (2007),
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Figure 28. Results of the Brio & Wu (1988) shock tube test in 3D, showing projection of all particles (black dots) compared to the
reference solution (red line). The problem is set up with [ρ, P,By , Bz ] = [1, 1, 1, 0] for x ≤ 0 and [ρ, P,By , Bz ] = [0.125, 0.1,−1, 0] for

x > 0 with zero initial velocities, Bx = 0.75 and γ = 2. The density contrast is initialised using equal mass particles placed on a close
packed lattice with 256× 24× 24 particles initially in x ∈ [−0.5, 0] and 128× 12× 12 particles initially in x ∈ [0, 0.5].
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Figure 29. As in Figure 28 but using code defaults which give second order convergence away from shocks. Some additional noise in

the velocity field is visible, while otherwise the solutions are similar.
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Figure 30. Results of the 7-discontinuity MHD shock tube test 2a from Ryu & Jones (1995) in 3D, showing projection of all

particles (black dots) compared to the reference solution (red line). The problem is set up with [ρ, P, vx, vy , vz , Bx, By , Bz ] =
[1.08, 0.95, 1.2, 0.01, 0.5, 2/

√
4π, 3.6/

√
4π, 2/

√
4π] for x ≤ 0 and [ρ, P, vx, vy , vz , Bx, By , Bz ] = [1, 1, 0, 0, 0, 2/

√
4π, 4/

√
4π, 2/

√
4π] for

x > 0 with γ = 5/3. The density contrast is initialised using equal mass particles placed on a close packed lattice with 379× 24× 24
particles initially in x ∈ [−0.5, 0] and 238× 12× 12 particles initially in x ∈ [0, 0.5].

Tricco & Price (2012, 2013), Tricco et al. (2016a) and
Hopkins & Raives (2016) and in 3D by Dolag & Sta-
syszyn (2009) and Price (2010).

The setup is a uniform density, periodic box
x, y ∈ [−0.5, 0.5] with boundary in the z direc-
tion set to ±2

√
6/nx, where nx is the initial

number of particles in x, in order to setup the
2D problem in 3D (c.f. Section 5.1.4). We use
an initial plasma β0 = 10/3, initial Mach number
M0 = v0/cs,0 = 1, initial velocity field [vx, vy, vz] =
[−v0 sin(2πy′), v0 sin(2πx′), 0] and magnetic field
[Bx, By, Bz] = [−B0 sin(2πy′), B0 sin(4πx′), 0], where
v0 = 1, B0 = 1/

√
4π, x′ ≡ x− xmin and y′ ≡ y − ymin;

giving P0 = 1
2B

2
0β0 ≈ 0.133 and ρ0 = γP0M0 ≈ 0.221.

We use an adiabatic equation of state with γ = 5/3.
Figure 32 shows the results at t = 0.5 (top row) and at

t = 1 (bottom) at resolutions of nx = 128, 256, and 512
particles (left to right). At t = 0.5, the main noticeable
change as the resolution is increased is that the shocks
become more well defined, as does the dense filament
consisting of material trapped in the reconnecting layer
of magnetic field in the centre of the domain. This cur-
rent sheet eventually becomes unstable to the tearing
mode instability (e.g. Furth et al., 1963; Syrovatskii,
1981; Priest, 1985), seen by the development of small
magnetic islands or ‘beads’ at t = 1 at high resolution

(bottom right panel; c.f. Politano et al. 1989). The ap-
pearance of these islands occurs only at high resolution
and when the numerical dissipation is small (compare
to the results using Euler potentials in 2D shown in
Figure 13 of Tricco & Price 2012), indicating that our
implementation of artificial resistivity (Section 2.10.6)
and divergence cleaning (Section 2.10.2) are effective in
limiting the numerical dissipation.

One other feature worth noting is that the slight ‘ring-
ing’ behind the shock fronts visible in the results of Price
& Monaghan (2005) is absent from the low resolution
calculation. This is because the Cullen & Dehnen (2010)
viscosity switch does a better job of detecting and re-
sponding to the shock compared to the previous Morris
& Monaghan (1997)-style switch used in that paper.
It is also worth noting that the results on this test,
in particular the coherence of the shocks, are notice-
ably worse without artificial resistivity, indicating that
a small amount of dissipation in the magnetic field is
necessary to capture MHD shocks correctly in SPMHD
(c.f. Price & Monaghan, 2004a, 2005; Tricco & Price,
2012).

Figure 33 shows horizontal slices of the pressure at
t = 0.5, showing cuts along y = 0.3125 (top) and y =
0.4277 (bottom) following (e.g.) Londrillo & Del Zanna
(2000) and Stone et al. (2008). The main difference at
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Figure 31. Results of the MHD shock tube test 1a from Ryu & Jones (1995) in 3D, showing projection of all particles (black dots) com-

pared to the reference solution (red line). The problem is set up with [ρ, P, vx, vy , vz , Bx, By , Bz ] = [1.0, 20.0, 10, 0, 0, 5/
√

4π, 5/
√

4π, 0]
for x ≤ 0 and [ρ, P, vx, vy , vz , Bx, By , Bz ] = [1, 1,−10, 0, 0, 5/

√
4π, 5/

√
4π, 0] for x > 0 with γ = 5/3. We show results using 652× 12×

12 particles. This has historically proven difficult for SPMHD codes. We find L1 within 1% of the reference solution except in vy (5%).

higher resolution is that the shocks become sharper and
more well defined. Most of the smooth flow regions are
converged with nx = 256 (i.e. the red and black lines
are indistinguishable), but the parts of the flow where
dissipation is important are can be seen to converge
more slowly. This is expected.

5.6.4 MHD rotor problem

Balsara & Spicer (1999) introduced the ‘MHD rotor
problem’ to test the propagation of rotational discon-
tinuities. Our setup follows Tóth (2000)’s ‘first ro-
tor problem’ as used by Price & Monaghan (2005),
except that we perform the test in 3D. A rotating
dense disc of material with ρ = 10 is set up with
cylindrical radius R = 0.1, surrounded by a uniform
periodic box [x, y] ∈ [−0.5, 0.5] with the z boundary
set to [−

√
6/(2nx),

√
6/(2nx)], or 12 particle spacings

on a close packed lattice. The surrounding medium
has density ρ = 1. Initial velocities are vx,0 = −v0(y −
y0)/r and vy,0 = v0(x− x0)/r for r < R, where v0 =

2 and r =
√
x2 + y2. The initial pressure P = 1 ev-

erywhere while the initial magnetic field is given by
[Bx, By, Bz] = [5/

√
4π, 0, 0] with γ = 1.4. We set up

the initial density contrast unsmoothed, as in Price &
Monaghan (2005), by setting up two uniform lattices of
particles masked to the initial cylinder, with the parti-
cle spacing adjusted inside the cylinder by the inverse
cube root of the density contrast. At a resolution of
nx = 256 particles for the closepacked lattice, this pro-
cedure uses 1 145 392 particles, equivalent to a 2D res-
olution of ∼ 3002, inbetween the 2002 results shown in
Tóth (2000) and Price & Monaghan (2005) and the 4002

used in Stone et al. (2008).
Figure 34 presents the results of this test, showing 30

contours in density, pressure, Mach number and mag-
netic pressure using limits identical to those given in
Tóth (2000). The symmetry of the solution is preserved
by the numerical scheme and the discontinuities are
sharp, as discussed in Stone et al. (2008). The contours
we obtain with Phantom are noticeably less noisy than
the earlier SPMHD results given in Price & Monaghan
(2005), a result of the improvement in the treatment of
dissipation and divergence errors in SPMHD since then
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Figure 32. Density in a z = 0 cross section of the Orszag-Tang vortex test performed in 3D. Results are shown at t = 0.5 (top) and

t = 1 (bottom) at a resolution of 128× 148× 12, 256× 296× 12 and 512× 590× 12 particles (left to right). Compare e.g. to Figure 4
in Dai & Woodward (1994b) or Figure 22 in Stone et al. (2008), while improvements in the SPMHD method over the last decade can

be seen by comparing to Figure 14 in Price & Monaghan (2005).
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Figure 33. Horizontal slices of pressure shown at t=0.5 in the

Orszag-Tang vortex test. We show cuts along y = 0.3125 (top)
and y = 0.4277 (bottom) in the z = 0 plane for three different
numerical resolutions (see legend).

(c.f. Section 2.10; see also recent results in Tricco et al.
2016a)

5.6.5 Current loop advection

The current loop advection test was introduced by Gar-
diner & Stone (2005, 2008), and regarded by Stone et al.
(2008) as the most discerning of their code tests. We
perform this test in 3D, as in the ‘first 3D test’ from
Stone et al. (2008) by using a thin 3D box with non-
zero vz. The field setup is with a vector potential Az =
A0(R− r) for r < R, giving Bx = −A0y/r, By = A0x/r

and Bz = 0 where r =
√
x2 + y2, R = 0.3 and we use

A0 = 10−3, ρ0 = 1, P0 = 1 and an adiabatic equation
of state with γ = 5/3. We use a domain [x, y, z] ∈ [−1 :
1,−0.5 : 0.5,−

√
6/(2nx) :

√
6/(2nx)] with [vx, vy, vz] =

[2, 1, 0.1/
√

5]. The test is difficult mainly because of the
cusp in the vector potential gradient at r = R leading to
a cylindrical current sheet at this radius. The challenge
is to advect this infinite current without change (in nu-
merical codes the current is finite but with a magnitude
that increases with resolution). We choose the resolu-
tion to be comparable to Stone et al. (2008).

For SPMHD, this is mainly a test of the shock dissi-
pation and divergence cleaning terms, since in the ab-
sence of these terms the advection can be computed to
machine precision (c.f. 2D results shown in Rosswog &
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Figure 34. Density, pressure, Mach number and magnetic pressure shown in a z = 0 cross section at t = 0.15 in the 3D MHD rotor

problem, using nx = 256, equivalent to ∼ 3002 resolution elements in 2D. The plots show 30 contours with limits identical to those
given by Tóth (2000); 0.483 < ρ < 12.95, 0.0202 < P < 2.008, 0 < |v|/cs < 1.09 and 0 < 1

2
B2 < 2.642.

Price 2007 and Figure 11 of Price 2012a, shown after
one thousand crossings of the computational domain).
Figure 35 shows the results of this test in Phantom
with 128× 74× 12 particles after two box crossings,
computed with all dissipation and divergence cleaning
terms switched on, precisely as in the previous tests in-
cluding the shock tubes (Sections 5.6.2–5.6.4). Impor-
tantly, our implementation of artificial resistivity (Sec-
tion 2.10.6) guarantees that the dissipation is identi-
cally zero when there is no relative velocity between the
particles, meaning that simple advection of the current
loop is not affected by numerical resistivity. However,
the problem remains sensitive to the divergence clean-
ing (Section 2.10.2), in particular to any spurious diver-
gence of B that is measured by the SPMHD divergence
operator, (174). For this reason the results using the
quintic kernel, (19), are substantially better than those
using the cubic spline, because the initial measurement

of ∇ ·B is smaller and so the evolution is less affected
by the divergence cleaning.

5.6.6 MHD blast wave

The MHD blast wave problem consists of an over-
pressurised central region that expands preferentially
along the strong magnetic field lines. Our setup uses
the 3D initial conditions of Stone et al. (2008), which
follows from the work of Londrillo & Del Zanna (2000)
and Balsara & Spicer (1999). For a recent applica-
tion of SPMHD to this problem, see Tricco & Price
(2012) and Tricco et al. (2016a). Set in a periodic box
[x, y, z] ∈ [−0.5, 0.5], the fluid has uniform ρ = 1 and
B = [10/

√
2, 0, 10/

√
2]. The pressure is set to P = 1,

using γ = 1.4, except for a region in the centre of radius
R = 0.125 which has its pressure increased to P = 100.
This yields initial plasma beta β = 2 inside the blast
and β = 0.02 outside. The particles are arranged on a
close-packed triangular lattice using nx = 256.
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Figure 35. Magnitude of the current density |∇ ×B| in the cur-
rent loop advection test performed in 3D, showing comparing

the initial conditions (top) to the result after two (middle) and

five (bottom) crossings of the box, using 128× 74× 12 particles.
Full dissipation, shock capturing and divergence cleaning terms

were applied for this test, without which the advection is exact

to machine precision. The advection is affected mainly by the
divergence cleaning acting on the outer (infinite) current sheet.

Figure 36 shows slices through y = 0 of density, pres-
sure, magnetic energy density and kinetic energy den-
sity, which may be directly compared to results in Gar-
diner & Stone (2008). The shock positions and overall
structure of the blast wave in all four variables show ex-
cellent agreement with the results shown in their paper.
The main difference is that their solution appears less
smoothed, suggesting that the overall numerical dissi-
pation is lower in Athena.

5.6.7 Balsara-Kim supernova-driven turbulence

We reproduce the ‘test problem’ of Balsara & Kim
(2004) (hereafter BK04) modelling supernova-driven
turbulence in the interstellar medium. BK04 used this
test to argue strongly against the use of divergence
cleaning for problems involving strong shocks. Specif-
ically, they compared three different divergence clean-
ing schemes against a constrained transport method,
finding that divergence cleaning was unusable for such
problems, with all three divergence cleaning schemes
producing strong temporal fluctuations in magnetic en-
ergy during the growth phase of the supernova-driven
dynamo. The problems were attributed to issues with
the non-locality of divergence cleaning.

We follow the setup in BK04 as closely as possible,
but several issues make a direct comparison difficult.
Chief among these is their use of a physical ISM cooling
prescription. We implement a similar algorithm (Sec-
tion 2.14), but our cooling prescription is not identi-
cal (e.g. our implementation includes live chemistry and
thus the possibility for a cold phase of the ISM, which
theirs does not). Secondly, they give the setup parame-
ters for the problem in computational units, but the use
of ISM cooling requires the physical units of the prob-
lem to be specified. Since these are not stated in their
paper, one must guess the units by reading descriptions
of the same problem in physical units given in Kim et al.
(2001), Balsara et al. (2004) and Mac Low et al. (2005).

We set up the problem as follows. Particles are ini-
tialised on a close-packed lattice in a periodic box with
x, y, z ∈ [−0.1, 0.1], with ρ = 1 and the initial thermal
pressure set to P = 0.3 (all in code units; as specified
in BK04). We infer a length unit of kpc since this is
described as a ‘200 pc3 box’ in their other papers. We
employ an adiabatic equation of state with γ = 5/3 and
turn on interstellar cooling and chemistry in the code
with default initial abundances (i.e. atomic Hydrogen
everywhere). We choose the mass unit such that a den-
sity of 2.3× 10−23 g/cm3, as described in Kim et al.
(2001), corresponds to ρ = 1 in code units as described
in BK04. Finally, we set the time unit such that G = 1
in code units (a common choice, even though grav-
ity is not involved in the problem). We compute the
problem using resolutions of 64× 74× 78 particles and
128× 148× 156 particles.

Supernovae are injected into the simulation every
0.00125 in code units at the positions listed in Table 1
of BK04. We infer this to correspond to the ‘12× Galac-
tic’ rate described in Balsara et al. (2004), i.e. 12 times
faster than 1 per 1.26 Myr. We inject supernovae follow-
ing the description in BK04 by setting the pressure to
P = 13649.6 on particles within a distance of 0.005 code
units from the injection site (corresponding to a radius
of 5 pc in physical units). Our choice of units means
that this corresponds to an energy injection within a
few percent of 1051 ergs in physical units, correspond-
ing to the description given in their other papers. How-
ever, this is only true if the density equals the initial
value, since BK04 specify pressure rather than the en-
ergy. We follow the description in BK04 (i.e., we set the
pressure), even though this gives an energy not equal
to 1051 ergs if injected in a low or high density part of
the computational domain.

The initial magnetic field is uniform in the x-direction
with Bx = 0.056117, as stated in BK04. We could not
reconcile this with the magnetic energy plotted in their
paper, which show an initial magnetic energy of 10−6.
Nor could we reconcile this with the statement in Bal-
sara et al. (2004) that “the magnetic energy is 10−6

times smaller than the thermal energy”. So any com-
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t=0.02ρ P

|B|2/2 ρ |v|2/2

Figure 36. Slices through y = 0 for the MHD blast wave problem showing density (top left), gas pressure (top right), magnetic energy

density (bottom left) and kinetic energy density (bottom right). The plot limits are ρ ∈ [0.19, 2.98], P ∈ [1, 42.4], [25.2, 64.9] for the

magnetic energy density and [0, 33.1] for the kinetic energy density. These are directly comparable to Figure 8 in Gardiner & Stone
(2008).

parison is approximate. Nevertheless, BK04 state that
the problems caused by divergence cleaning are not de-
pendent on specific details of the implementation.

Figure 37 shows the evolution of the column density
in the lowest resolution calculation using 64× 74× 78
particles. The combination of supernovae injection and
cooling drives turbulence and significant structure in
the density field.

To specifically address the issues found by BK04, Fig-
ure 38 show a cross section slice of the magnetic pressure
at a time similar to the one shown in Figure 3 of BK04
(they do not indicate which slice they plotted; we chose
z = 0.0936). The magnetic pressure in the interior of
the supernovae shells is smooth, and does not display
any of the large scale artefacts of the type found in their
paper.

Figure 39 shows the time evolution of the magnetic
energy in the low resolution calculation. The magnetic

energy rises monotonically up to t ≈ 0.02 before the
magnetic energy saturates, similar to what was found
by BK04 for their staggered mesh / constrained trans-
port scheme (compare with Figure 2 in their paper).
There are no large temporal fluctuations in the mag-
netic energy of the kind they report for their divergence
cleaning methods.

In summary, the results we obtain for the magnetic
field energy and structure within supernova-driven tur-
bulence in the interstellar medium matchs closest the
constrained transport result of BK04. There is no evi-
dence that our simulations experience the numerical is-
sues encountered by BK04 with their divergence clean-
ing schemes, suggesting that the problems they reported
are primarily code dependent rather than being fun-
damental. The most probable reason our results are
of the same quality as BK04’s constrained transport
result is our use of constrained divergence cleaning,
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which guarantees that energy removed from the mag-
netic field is negative definite. A follow up study to ex-
amine this in more depth would be worthwhile. For our
present purposes, we can conclude that our divergence
cleaning algorithm is sufficiently robust — even in ‘real
world’ problems — to be useful in practice (see also
Section 6.3).

5.7 Non-ideal MHD

The following tests demonstrate the non-ideal MHD al-
gorithms (Section 2.11). We adopt periodic boundary
conditions for both tests, initialising the particles on
a close-packed lattice with an isothermal equation of
state, P = c2sρ, and using the C4 Wendland kernel.

5.7.1 Wave damping test

To test ambipolar diffusion in the strong coupling ap-
proximation, we follow the evolution of decaying Alfvén
waves, as done in (e.g.) Choi et al. (2009) and Wurster
et al. (2014).

In arbitrary units, the initial conditions are a box of

size Lx ×
√

3
2 Lx ×

√
6

2 Lx with Lx = 1, a density of ρ = 1,
magnetic field of B = B0x̂ with B0 = 1, sound speed of
cs = 1, and velocity of v = v0 sin(kx)ẑ where k = 2π/Lx

is the wave number and v0 = 0.01vA where vA is the
Alfvén velocity. We adopt an ambipolar diffusion coef-
ficient of ηAD = 0.01v2

A. All artificial dissipation terms
are turned off. We use nx = 128 particles.

The solution to the dispersion relation for Alfvén
waves (Balsara, 1996) is

ω2 + ηADk
2ωi− v2

Ak
2 = 0, (323)

where ω = ωR + ωIi is the complex angular frequency
of the wave, giving a damped oscillation in the form

h(t) = h0 |sin (ωRt)| eωIt. (324)

In our test, h(t) corresponds the the root-mean-square

of the magnetic field in the z-direction,
〈
B2

z

〉1/2
, and

h0 = v0B0/(vA

√
2).

Figure 40 shows the time evolution of
〈
B2

z

〉1/2
to

t = 5 for both the numerical results (blue line) and
the analytic solution (red line). At the end of the test,
the L2 error is 7.5× 10−5 (evaluated at intervals of
dt = 0.01), demonstrating close agreement between the
numerical and analytical results.

Given that, by design, there is motion of the par-
ticles and that we have excluded artificial dissipation,
the particles tend to ‘break’ from the initial lattice. For
both the M6 quintic kernel and the C4 Wendland ker-
nel on a cubic lattice, the particles fall off the lattice at
t ≈ 0.75. Prior to this, however, the L2 error is smaller
than that calculated using the C4 Wendland kernel and
a close-packed lattice, thus there is a trade off between
accuracy and long-term stability.

5.7.2 Standing shock

To test the Hall effect, we compare our solutions against
the 1D isothermal steady-state equations for the the
strong Hall effect regime. The numerical solution to
this problem is given in Falle (2003) and O’Sullivan &
Downes (2006), and also summarised in Appendix C1.2
of Wurster et al. (2016).

The left- and right-hand side of the shock are
initialised with (ρ0, vx,0, vy,0, vz,0, Bx,0, By,0, Bz,0) =
(1.7942,−0.9759,−0.6561, 0.0, 1.0, 1.74885, 0.0) and
(1.0,−1.751, 0.0, 0.0, 1.0, 0.6, 0.0), respectively, with the
discontinuity at x = 0. We use boundary particles at
the x-boundary, superseding the periodicity in this
direction. To replicate inflowing boundary conditions
in the x-direction, when required, the initial domain
of interest xl < x < xr is automatically adjusted to
x′l < x < x′r where x′r = xr − v0tmax, where tmax is the
end time of the simulation. Note that for inflowing
conditions, xr and v0 will have opposite signs. Thus, at
the end of the simulation, the entire range of interest
will still be populated with particles.

The non-ideal MHD coefficients are ηOR =
1.12× 10−12, ηHE = −3.53× 10−2B, and ηAD =
7.83× 10−3v2

A. We include all artificial dissipation
terms using their default settings. We initialise
512× 14× 15 particles in x < 0 and 781× 12× 12
particles in x ≥ 0, with the domain extending from
xl = x′l = −2 to xr = 2 with x′r = 3.75.

Figure 41 shows vx and By for both the numerical and
analytical results, which agree to within 3 per cent at
any given position. On the left-hand side of the shock in-
terface, the numerical results are lower than the analyt-
ical solution because of the artificial dissipation terms,
which are required to properly model a shock. These
results do not depend on either the kernel choice or the
initial particle lattice configuration.

5.8 Self-gravity

5.8.1 Polytrope

The simplest test of self-gravity is to model a spher-
ical polytrope in hydrostatic equilibrum. Similar tests
have been shown for SPH codes dating back to the orig-
inal papers of Gingold & Monaghan (1977, 1978, 1980).
Modern calculations have used these simple models in
more complex applications, ranging from common en-
velope evolution (Iaconi et al., 2017) to tidal disrup-
tion events (Coughlin & Nixon, 2015; Coughlin et al.,
2016b,a; Bonnerot et al., 2016, 2017).

The equation of state is P = Kργ , with γ = 1 + 1/n
where n is the polytropic index. The exact hydrostatic
solution is given by

γK

4πG (γ − 1)

d2

dr2

(
rργ−1

)
+ rρ = 0. (325)
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t=6×10-3 t=0.012

0.2 0.4 0.6
column density

t=0.023

Figure 37. Balsara-Kim supernova-driven turbulence, showing column density at three different times at a resolution of 64× 74× 78
particles. Supernovae are injected every 0.00125 in code units, leading to a series of interacting blast waves. Interstellar chemistry and

cooling is turned on, producing a dense filaments in a turbulent interstellar medium.
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Figure 38. Cross-section slice of magnetic pressure at t = 0.006

in the Balsara-Kim supernova-driven turbulence test using 128×
148× 156 particles. No large scale artefacts in magnetic energy

are visible, indicating that the simulation is not corrupted by
divergence cleaning.

Our initial setup uses a solution scaled to a radius R =
1, for a polytropic index of n = 3/2, corresponding to
γ = 5/3, with K = 0.4244. We solve (325) numerically.
We place the particles initially on a hexagonal close-
packed lattice, truncated to a radius of R = 1, which
we then stretch map (see Section 3.2) such that the
initial radial density profile matches the exact solution.

The relaxation time depends on the initial density
profile and on how far the initial particle configuration
is from equilibrium. Figure 42 shows the solution at

Time

E
m

ag

0 0.01 0.02 0.03

10-5

10-4

10-3

64 x 74 x 78

Figure 39. Magnetic energy as a function of time in the Balsara-

Kim supernova-driven turbulence problem. The magnetic energy

increases monotonically by approximately an order of magnitude
before reaching its saturation value at t ≈ 0.02. There are no spu-

rious spikes in magnetic energy caused by divergence cleaning, in

contrast to what was found by Balsara & Kim (2004).

t = 100 in code units. The polytrope relaxes within a
few dynamical times, with only a slight rearrangement
of the particles from the stretched lattice. The density
profile at all times is equal to within 3 per cent of the
exact solution for r ≤ 0.7 and the polytrope remains in
hydrostatic equilibrium.

Once the static solution is obtained, we tested the
energy conservation by giving the star a radial pertur-
bation. That is, we applied a velocity perturbation of
the form vr = 0.2r to the N ≈ 105 model, and evolved
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Figure 40. Wave damping test showing the decay of Alfvén waves

in the presence of ambipolar diffusion, using the coefficient ηAD =

0.01v2
A. The L2 error between the analytic and numerical solution

is 7.5× 10−5.
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Figure 41. Hall-dominated standing shock using ηOR = 1.12×
10−12, ηHE = −3.53× 10−2B, and ηAD = 7.83× 10−3v2

A. The
numerical and analytical results agree to within 3 per cent ev-

erywhere.

the polytrope for 100 time units. We turned off the ar-
tificial viscosity for this test. The total energy — in-
cluding contributions from thermal, kinetic and gravi-
tational energy — remained conserved to within 3 per
cent.

5.8.2 Binary polytrope

Next, we placed two initially unrelaxed, identical poly-
tropes, each with N = 104 particles in a circular orbit
around each other with a separation of 6R and evolved
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1

1.5

N=106

exact

Figure 42. Polytrope static structure using 106 particles (black),

compared to the exact solution (red), shown at t = 100.
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Figure 43. y- and x-positions of the centre of mass of one star

of a binary system (top and bottom, respectively). Each star is

a polytrope with mass and radius of unity, and N = 104 parti-
cles; the initial separation is 6.0 in code units. After ∼ 15 orbits,

the separation remains within 1 percent, and the period remains

constant within the given time resolution. The red line represents
the analytical position with respect to time, and the black line

represents the numerical position.

for ∼ 15 orbits (1000 code units). Figure 43 demon-
strates that the separation remains within 1 per cent of
the initial separation over 15 orbits, and that the orbital
period remains constant. After the initial relaxation, to-
tal energy is conserved to within 0.06 per cent.

The stars are far enough apart that any tidal de-
formation as they orbit is insignificant. The final den-
sity profile of each star agrees with the expected profile
within 3 per cent for r ≤ 0.7.

5.8.3 Evrard collapse

A more complex test, relevant especially for star forma-
tion, is the so-called ‘Evrard collapse’ (Evrard, 1988)
modelling the adiabatic collapse of a cold gas sphere.
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Figure 44. Thermal, kinetic, total and potential energies as a

function of time during the Evrard collapse (Evrard, 1988). Green

lines are calculated using a 1D PPM code, taken from Figure
6 of Steinmetz & Mueller (1993), while remaining colours show

SPH simulations of different resolutions. Both energy and time

are given in code units, where R = M = G = 1.

It has been used many times to test SPH codes with
self-gravity, e.g. Hernquist & Katz (1989), Steinmetz
& Mueller (1993), Thacker et al. (2000), Escala et al.
(2004) and many others.

Following the initial conditions of Evrard (1988), we
setup the particles initially in a sphere of radius R = 1
and mass M = 1, with density profile

ρ(r) =
M(R)

2πR2

1

r
. (326)

The density profile is created using the same stretch
mapping method as for the polytrope (see Section
5.8.1). The sphere is initially isothermal, with the spe-
cific internal energy set to u = 0.05GM/R with an adi-
abatic index of γ = 5/3. The sphere initially undergoes
gravitational collapse.

In the literature, the results of the Evrard collapse
are typically normalised to a characteristic value. Here,
we simply show the results in code units (Section 2.2.3),
since these units already represent a normalised state.
A distance unit of R = 1 and mass unit M(R) = 1 is
adopted, with the time unit set such that G ≡ 1, where
G is the gravitational constant.

Figure 44 shows the kinetic, thermal, total and po-
tential energies as a function of time, at four different
numerical resolutions. The green line shows the refer-
ence solution, computed using a 1D piecewise parabolic
method (PPM) code using 350 zones, which we tran-
scribed from Figure 6 of Steinmetz & Mueller (1993).
As the number of particles increases, the energies for
t . 1.5 converge to the results obtained from the PPM
code. At t & 2, the SPH results appear to converge to
energies that differ slightly from the PPM code. Given
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Figure 45. Radial profile of the Evrard collapse (Evrard, 1988)

at t = 0.77; red lines are taken from Figure 7 of Steinmetz &
Mueller (1993), with panels showing density (top) and radial ve-

locity (bottom) as a function of (log) radius. All values are given

in code units, where R = M = G = 1. The outward propagating
shock at r ≈ 0.1 is sharper at high resolution.

that we are not able to perform a comparable conver-
gence study with the PPM code, we are unable to assess
whether or not this discrepancy is significant.

Figure 45 shows enclosed mass, density, thermal en-
ergy and radial velocity as a function of radius at
t = 0.77, where the SPH results may be compared to the
PPM results presented by Steinmetz & Mueller (1993)
shown with the red line in the Figure. At this time, the
outward propagating shock is at r ≈ 0.1, with the shock
profile in agreement with the reference solution at high
resolution.

5.9 Dust-gas mixtures

The SPH algorithms used in Phantom for dust-gas
mixtures have been extensively benchmarked in Laibe
& Price (2012a,b) (for the two-fluid method) and in
Price & Laibe (2015a) (for the one-fluid method; here-
after PL15). Here we merely demonstrate that the im-
plementation of these algorithms in Phantom gives
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satisfactory results on these tests. For recent applica-
tions of Phantom to more realistic problems involving
dust/gas mixtures see Dipierro et al. (2015, 2016), Ra-
gusa et al. (2017) and Tricco et al. (2017).

5.9.1 Dustybox

Figure 46 shows the results of the dustybox prob-
lem (Monaghan & Kocharyan, 1995; Paardekooper &
Mellema, 2006; Laibe & Price, 2011). We setup a uni-
form, periodic box x, y, z ∈ [−0.5, 0.5] with 32× 36× 39
gas particles set on a close-packed lattice and 32× 36×
39 dust particles also set on a close-packed lattice. The
gas particles are initially at rest while the dust is given a
uniform velocity vx = 1 in the x-direction. We employ
an isothermal equation of state with cs = 1, uniform
gas and dust densities of ρg = ρd = 1, using the cubic
spline kernel for the SPH terms and the double-hump
cubic spline kernel (Section 2.13.4) for the drag terms,
following Laibe & Price (2012a).

The red dashed lines in Figure 46 show the exact so-
lution for kinetic energy as a function of time. For our
chosen parameters the barycentric velocity is vx = 0.5,
giving vg(t) = 0.5[1 + ∆vx(t)], vd(t) = 0.5[1−∆vx(t)],
where ∆vx(t) = exp (−2Kt) (Laibe & Price, 2011) and
the red lines show Ekin(t) = 1

2 [vg(t)2 + vd(t)2]. The
close match between the numerical and analytic solu-
tions (L2 ∼ 3× 10−4) demonstrates that the drag terms
are implemented correctly.

The dustybox test is irrelevant for the one-fluid
method (Section 2.13.14) since this method implicitly
assumes that the drag is strong enough so that the ter-
minal velocity approximation holds — implying that
the relative velocites are simply the barycentric values
at the end of the dustybox test.

5.9.2 Dustywave

Maddison (1998) and Laibe & Price (2011) derived the
analytic solution for linear waves in a dust-gas mixture:
the ‘dustywave’ test. The corresponding dispersion re-
lation is given by (Maddison, 1998; Laibe & Price, 2011,
2012a)

ω3 + iK

(
1

ρg
+

1

ρd

)
ω2 − c2sk2ω − iK k2c2s

ρd
= 0, (327)

which can be more clearly expressed as

(ω2 − c2sk2) +
i

ωts
(ω2 − c̃2sk2) = 0, (328)

where c̃s = cs(1 + ρd/ρg)−1/2 is the modified sound
speed (e.g. Miura & Glass, 1982). This demonstrates
the two important limits i) ts →∞, giving undamped
sound waves in the gas and ii) ts → 0, giving undamped
sound waves in the mixture propagating at the modi-
fied sound speed. In between these limits, the mixture
is dissipative and waves are damped by the imaginary
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Figure 46. Decay of kinetic energy as a function of time in the

dustybox test, involving a uniformly translating mixture of gas
and dust coupled by drag. Solid lines show the Phantom results

for drag coefficients K = 0.01, 0.1, 1.0, 10 and 100 (top to bot-

tom), which may be compared to the corresponding analytic so-
lutions given by the dashed red lines.

term. This is seen in the analytic solutions shown in
Figure 47.

Two-fluid. We perform this test first with the two-
fluid algorithm, using 64× 12× 12 gas particles and
64× 12× 12 dust particles set up on a uniform, close-
packed lattice in a periodic box with x ∈ [−0.5, 0.5] and
the y and z boundaries set to correspond to 12 parti-
cle spacings on the chosen lattice. The wave is set to
propagate along the x−axis with vg = vd = A sin(2πx),
ρ = ρ0[1 +A sin(2πx)] with ρ0 = 1 and A = 10−4. The
density perturbation is initialised using stretch mapping
(Section 3.2; see also Appendix B in Price & Monaghan
2004b). We perform this test using an adiabatic equa-
tion of state with cs,0 = 1. We adopt a simple, constant
K drag prescription, choosing K = 0.5, 5, 50 and 500
such that the stopping time given by (236) is a multiple
of the wave period (ts = 1, 0.1, 0.01 and 0.001, respec-
tively).

The left panels in Figure 47 show the results of this
test using the two-fluid method, showing velocity in
each phase compared to the analytic solution after 4.5
wave periods (the time is chosen to give a phase offset
between the phases). For stopping times ts & 0.1 the nu-
merical solution matches the analytic solution to within
4 per cent. For short stopping times, Laibe & Price
(2012a) showed that the resolution criterion h . csts
needs to be satisfied to avoid overdamping of the mix-
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Figure 47. Velocity of gas (solid) and dust (circles) at t = 4.5 in the dustywave test, using the two-fluid method (left; with 64× 12× 12

gas particles, 64× 12× 12 dust particles) and the one-fluid method (right; with 64× 12× 12 mixture particles) and a dust-to-gas ratio

of unity. Panels show results with K = 0.5, 5, 50 and 500 (top to bottom), corresponding to the stopping times indicated. The two-fluid
method is accurate when the stopping time is long (top three panels in left figure) but requires h . csts to avoid overdamping (bottom

two panels on left; Laibe & Price 2012a). The one-fluid method should be used when the stopping time is short (right figure).

ture. For the chosen number of particles, the smoothing
length is h = 0.016, implying in this case that the cri-
terion is violated when ts . 0.016. This is evident from
the lower two panels in Figure 47, where the numer-
ical solution is overdamped compared to the analytic
solution.

This problem is not unique to SPH codes, but repre-
sents a fundamental limitation of two-fluid algorithms
in the limit of short stopping times due to the need
to resolve the physical separation between the phases
(which becomes ever smaller as ts decreases) when they
are modelled with separate sets of particles (or with a
grid and a physically separate set of dust particles). The
need to resolve a physical length scale results in first-
order convergence of the algorithm in the limit of short
stopping times, as already noticed by Miniati (2010) in
the context of grid-based codes. The problem is less se-
vere when the dust fraction is small (Lorén-Aguilar &
Bate, 2014), but is difficult to ameliorate fully.

One-fluid. The limit of short stopping time (small
grains) is the limit in which the mixture is well described
by the one-fluid formulation in the terminal velocity ap-
proximation (Section 2.13.12). To compare and contrast
the two methods for simulating dust in Phantom, the
right half of Figure 47 shows the results of the dusty-
wave test computed with the one-fluid method. To per-
form this test we set up a single set of 64× 12× 12 ‘mix-
ture’ particles placed on a uniform closepacked lattice,
with an initially uniform dust fraction ε = 0.5. The par-

ticles are given a mass corresponding to the combined
mass of the gas and dust, with the density perturbation
set as previously.

The one-fluid solution is accurate precisely where the
two-fluid method is inaccurate, and vice-versa. For short
stopping times (ts = 0.001; bottom row) the numerical
solution is within 1.5 per cent of the analytic solution,
compared to errors greater than 60 per cent for the two-
fluid method (left figure). For long stopping times (ts .
1; top two rows) the one-fluid method is both inaccurate
and slow, but this is precisely the regime in which the
two-fluid method (left figure) is explicit and therefore
cheap. Thus, the two methods are complementary.

5.9.3 Dust diffusion

A simple test of the one-fluid dust diffusion algorithm
is given by PL15. For this test we set up the particles
on a uniform cubic lattice in a 3D periodic box x, y, z ∈
[−0.5, 0.5] using 32× 32× 32 particles with an initial
dust fraction set according to

ε(r, 0) =

ε0
[
1−

(
r
rc

)2
]
, r < rc,

0, elsewhere,
(329)

with ε0 = 0.1 and rc = 0.25. We then evolve the dust
diffusion equation, (272), discretised according to (279),
while setting the acceleration and thermal energy evo-
lution to zero and assuming P = ρ, with the stopping
time set to a constant ts = 0.1 and the computational
timestep set to ∆t = 0.05. Figure 48 shows the evolu-
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Figure 48. Dust diffusion test from Price & Laibe (2015a), show-

ing the evolution of the dust fraction on the particles (black dots)

as a function of radius at 6 different times (top to bottom), which
may be compared to the analytic solution given by the red lines.

tion of the dust fraction ε ≡ ρd/ρ as a function of radius
at various times, showing the projection of all particles
in the box (points) compared to the exact solution (red
lines) at t = 0.0, 0.1, 0.3, 1.0 and 10.0 (top to bottom).
The solution shows a close match to the analytic so-
lution, with agreement to within 0.3 per cent of the
analytic solution at all times.

5.9.4 Dust settling

We perform the dust settling test from PL15 in order
to directly compare the Phantom solutions to those
produced in PL15 with the ndspmhd code. To simplify
matters we do not consider rotation but simply adapt
the 2D problem to 3D by using a thin Cartesian box (as
for several of the MHD tests in Section 5.6). Our setup
follows PL15, considering a slice of a protoplanetary
disc at R0 = 50 au in the r − z plane (corresponding to
our x and y Cartesian coordinates, respectively) with
density in the ‘vertical’ direction (y) given by

ρ(y) = ρ0 exp

(−y2

2H2

)
, (330)

where we choose H/R0 = 0.05 giving H = 2.5 au. We
use an isothermal equation of state with sound speed
cs ≡ HΩ where Ω ≡

√
GM/R3

0, corresponding to an or-
bital time torb ≡ 2π/Ω ≈ 353 yrs. We adopt code units
with a distance unit of 10 au, mass in solar masses and
time units such that G = 1, giving an orbital time of
≈ 70.2 in code units. We apply an external acceleration
in the form

aext = − GMy√
R2

0 + y2
, (331)

where G = M = 1 in code units.

The particles are placed initially on a close-packed
lattice using 32× 110× 24 = 84 480 particles in the do-
main [x, y, z] ∈ [±0.25,±3H,±

√
3/128]. We then use

the stretch mapping routine (Section 3.2) to give the
density profile according to (330). We set the mid-plane
density to 10−3 in code units, or ≈ 6× 10−13g/cm3.
The corresponding particle mass in code units is 1.13×
10−9. We use periodic boundaries, with the boundary
in the y direction set at ±10H to avoid periodicity in
the vertical direction.

Following the procedure in PL15 we relax the den-
sity profile by evolving for 15 orbits with gas only with
damping switched on. We then restart the calculation
with either i) a dust fraction added to each particle
(one-fluid), or ii) a corresponding set of dust particles
duplicated from the gas particles (two-fluid). For the
dust we assume 1 mm grains with an Epstein drag
prescription, such that the stopping time is given by
(250). Since ∆v is not available when computing ts
with the one-fluid method, we set the factor f = 1 in
(250) when using this method (this is a valid approxima-
tion since by definition ∆v is small when the one-fluid
method is applicable). The dimensionless stopping time
tsΩ = 8.46× 10−3 initially at the disc midplane. After
adding dust we continued the simulation for a further
50 orbits.

Figure 49 shows the dust density at intervals of 10
torb, showing the cross section slice through the z = 0
plane of the 3D box which may be directly compared
to the 2D solutions shown in PL15. Settling of the dust
layer proceeds as expected, with close agreement be-
tween the one-fluid (top row) and two-fluid (bottom
row) methods, though the two-fluid method is much
slower for this test because of the timestep constraint
imposed by the stopping time, c.f. (261). The dust reso-
lution is higher in the two-fluid calculation because the
set of dust particles follow the dust mass rather than
the total mass (for the one-fluid method).

5.10 ISM cooling and chemistry

Figure 50 shows the behaviour of the various cooling
and chemistry modules used when modelling the ISM.
These plots were made from the data from a simulation
of gas rings embedded in a static background potential
giving a flat rotation curve (Binney & Tremaine, 1987).
Gas is setup in a ring of constant surface density from
5 kpc to 10 kpc in radius, initially at 10 000 K, with
a total gas mass of 2× 109 M�. The top panels show
a temperature and pressure profile of all gas particles.
The temperature plateaus around 10 000 K and forms a
two phase medium visible in the ‘knee’ in the pressure
profile, as expected for ISM thermal models (Wolfire
et al., 1995). Much lower temperatures can be reached
if the gas is given a higher surface density or if self-
gravity is active. In the case of the latter, some energy
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Figure 49. 3D version of the dust settling test from Price & Laibe (2015a), showing the dust density in the ‘r-z’ plane of a protoplanetary
disc. We assume mm-sized grains with a 1% initial dust-to-gas ratio in a stratified disc atmosphere with H/R0 = 0.05 with R0 = 50 au

in (331).

delivery scheme, or the inclusion of a large number of
sink particles, is needed to break apart the cold knots.

The bottom two panels of Figure 50 show the chem-
ical abundances of H2 and CO. The exact form of the
molecular abundance profiles are a function of many
variables that are set at run time, with the data in
the figure made from the default values. The molecu-
lar abundances are strong functions of total gas density,
with the CO being a strong function of H2 abundance. If
a higher gas mass (e.g. ×10 the value used here) or self-
gravity is included then abundances reach a maximum
of either 0.5 for H2 or the primordial carbon abundance
for CO. See Dobbs et al. (2008) for a detailed discussion
of the features of these abundance curves.

6 Example applications

Phantom is already a mature code, in the sense that
we have always developed the code with specific appli-
cations in mind. In this final section we demonstrate five
example applications for which the code is well suited.
The setup for each of these applications are provided
in the wiki documentation so they can be easily repro-

duced by the novice user. We also plan to incorporate
these examples into an ‘optimisation suite’ to bench-
mark performance improvements to the code.

6.1 Supersonic turbulence

Our first example application employs the turbulence
forcing module described in Section 2.5. Figure 51 shows
the gas column density in simulations of isothermal
supersonic turbulence driven to an rms Mach num-
ber of M≈ 10, identical to those performed by Price
& Federrath (2010). The calculations use 2563 parti-
cles and were evolved for 10 turbulent crossing times,
tc = L/(2M). This yields a crossing time of tc = 0.05
in code units. The gas is isothermal with sound speed
cs = 1 in code units. The initial density is uniform
ρ0 = 1.

The gas column density plots in Figure 51 may
be directly compared to the panels in Figure 3 of
Price & Federrath (2010). Figure 52 shows the time-
averaged probability distribution function (PDF) of
s ≡ ln(ρ/ρ0). This demonstrates the characteristic sig-
nature of isothermal supersonic turbulence, namely the
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Figure 50. Temperature and pressure profiles resulting from the ISM heating and cooling functions (top) and the abundances of H2

and CO as a function of gas density (bottom). The behaviour of the H2 and CO fractions close to n = 10 cm−3 is a consequence of

H2 self-shielding: in gas which was initially molecular, this remains effective down to lower densities than is the case in gas which was
initially atomic. This behaviour is discussed in much greater detail in Dobbs et al. (2008).
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Figure 51. Gas column density in Phantom simulations of driven, isothermal, supersonic turbulence at Mach 10, similar to the
calculations performed by Price & Federrath (2010). We show the numerical solutions at t = 1, 2 and 3 crossing times (left to right,

respectively). The colour scale is logarithmic between 10−1 and 10 in code units.
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Figure 52. Time-averaged PDF of s = ln(ρ/ρ0) for supersonic
Mach 10 turbulence, with the shaded region representing the stan-

dard deviation of the averaging. The PDF is close to a log-normal

distribution, shown by the dashed red line.

appearance of a log-normal PDF in s (e.g. Vazquez-
Semadeni, 1994; Nordlund & Padoan, 1999; Ostriker
et al., 1999). Indeed, Phantom was used in the study
by Price, Federrath & Brunt (2011) to confirm the rela-
tionship between the standard deviation and the Mach
number in the form

σ2
s = ln

(
1 + b2M2

)
, (332)

where b = 1/3 for solenoidally driven turbulence, as ear-
lier suggested by Federrath et al. (2008, 2010a).

6.2 Star cluster formation

SPH has been used to study star formation since the
earliest studies by Gingold & Monaghan (1982a, 1983);
Phillips (1982, 1986a,b) and Monaghan & Lattanzio
(1986, 1991), even motivating the original development
of MHD in SPH by Phillips & Monaghan (1985). The
study by Bate et al. (2003) represented the first sim-
ulation of ‘large scale’ star cluster formation, resolved
to the opacity limit for fragmentation (Rees, 1976; Low
& Lynden-Bell, 1976). This was enabled by the earlier
development of sink particles by Bate et al. (1995), al-
lowing star formation simulations to continue beyond
the initial collapse (Bonnell et al., 1997; Bate & Bon-
nell, 1997). This heritage is present in Phantom which
inherits many of the ideas and algorithms implemented
in the sphng code.

Figure 53 shows a series of snapshots taken from a
recent application of Phantom to star cluster forma-
tion by Liptai et al. (2017). The initial setup follows
Bate et al. (2003) — a uniform density sphere of 0.375
pc in diameter with a mass of 50 M�. The initial ve-
locity field is purely solenoidal, generated on a 643 uni-
form grid in Fourier space to give a power spectrum
P (k) ∝ k−4 consistent with the Larson (1981) scaling
relations, and then linearly interpolated from the grid to
the particles. The initial kinetic energy is set to match

the gravitational potential energy, (3/5GM2/R), giv-
ing a root mean square Mach number ≈ 6.4. We set
up 3.5× 106 particles in the initial sphere placed in a
uniform random distribution. We evolve the simulation
using a barotropic equation of state P = Kργ in the
form

P

ρ
=



c2s,0, ρ < ρ1,

c2s,0

(
ρ
ρ1

)(γ1−1)

, ρ1 ≤ ρ < ρ2,

c2s,0

(
ρ2
ρ1

)(γ1−1) (
ρ
ρ1

)(γ2−1)

, ρ2 ≤ ρ < ρ3,

c2s,0

(
ρ2
ρ1

)(γ1−1) (
ρ3
ρ2

)(γ2−1) (
ρ
ρ3

)(γ3−1)

, ρ ≥ ρ3,

(333)
where we set the initial sound speed cs,0 = 2× 104 cm
s−1 and set [ρ1, ρ2, ρ3] = [10−13, 10−10, 10−3] g cm−3

and [γ1, γ2, γ3] = [1.4, 1.1, 5/3], as in Bate et al. (2003).
We turn on automatic sink particle creation with a
threshold density of 10−10 g cm−3, with sink particle
accretion radii set to 5 au and particles accreted with-
out checks at 4 au. No sink particles are allowed to be
created within 10 au of another existing sink. The cal-
culations satisfy the Bate & Burkert (1997) criterion
of resolving the minimum Jeans mass in the calcula-
tion (known as the opacity limit for fragmentation; Rees
1976; Low & Lynden-Bell 1976) by at least the number
of particles contained within one smoothing sphere.

The snapshots shown in Figure 53 show a similar evo-
lution to the original calculation of Bate et al. (2003).
The evolution is not identical since we used a differ-
ent realisation of the initial turbulent velocity field. A
more quantitative comparison can be found in Liptai
et al. (2017) where we performed 7 different realisa-
tions of the collapse in order to measure a statistically
meaningful initial mass function (IMF) from the cal-
culations, finding an IMF in agreement with the one
found by Bate (2009a) in a much larger (500 M�) cal-
culation. The IMF produced with a barotropic equa-
tion of state does not match the observed local IMF in
the Milky Way (e.g. Chabrier 2005), tending to over-
produce low mass stars and brown dwarfs. This is a
known artefact of the barotropic equation of state (e.g.
Matzner & Levin, 2005; Krumholz, 2006; Bate, 2009b),
since material around the stars remains cold rather than
being heated. It can be fixed by implementing radia-
tive feedback, for example by implementing radiation
hydrodynamics in the flux-limited diffusion approxima-
tion (Whitehouse & Bate, 2004; Whitehouse et al., 2005;
Whitehouse & Bate, 2006). This is not yet implemented
in Phantom but it is high on the agenda.

6.3 Magnetic outflows during star formation

Phantom may also be used to model the formation
of individual protostars. We present an example fol-
lowing the initial setup and evolution of Price et al.
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Figure 53. Star cluster formation with Phantom, showing snapshots of gas column density during the gravitational collapse of a 50
M� molecular cloud core, following Bate et al. (2003). Snapshots are shown every 0.2 tff (left to right, top to bottom), with the panels

after t > tff zoomed in to show the details of the star formation sequence. As in Bate et al. (2003), we resolve the fragmentation to the

opacity limit using a barotropic equation of state.

(2012). A molecular cloud core with initial density
ρ0 = 7.4× 10−18 g cm−3 is embedded in pressure equi-
librium with ambient medium of density 2.5× 10−19 g
cm−3. The barotropic equation of state given by (333)
is used, setting cs = 2.2× 104 cm s−1. The radius of
the core is 4× 1016 cm (≈ 2700 au), with the length
of the cubic domain spanning [x, y, z] = ±8× 1016 cm.
The core is in solid body rotation with angular speed
Ω = 1.77× 10−13 rad s−1. The magnetic field is uniform

and aligned with the rotation axis with a mass-to-flux
ratio µ = 5, corresponding to B0 ≈ 163 µG. A sink par-
ticle is inserted once the gas reaches a density of 10−10 g
cm−3, with an accretion radius of 5 au. Thus, this calcu-
lation models only the evolution of the first hydrostatic
core phase of star formation. The core is composed of
1, 004, 255 particles, with 480, 033 particles in the sur-
rounding medium.
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Figure 54. Magnetically propelled jet of material bursting out of the first hydrostatic core phase of star formation.

Figure 54 shows the evolution of a magnetised, colli-
mated bipolar jet of material, similar to that given by
Price et al. (2012). Infalling material is ejected due to
the wind up of the toroidal magnetic field. The sink
particle is inserted at t ≈ 25 400 yrs, shortly before the
jet begins. The jet continues to be driven while material
continues to infall, lasting for several thousand years.

6.4 Galaxy merger

To provide a realistic test of the collisionless N -body
and SPH implementations, we performed a comparison
study where we modelled a galaxy merger, comparing
the Phantom results with the Hydra N -body/SPH
code (Couchman et al., 1995; Thacker & Couchman,
2006). This test requires gravity along with multiple
particle types — gas, stars and dark matter. Gas in-
teracts hydrodynamically only with itself, and all three
particle types interact with each other via gravity (c.f.
Table A1).

To create a Milky Way-like galaxy, we used Galac-
tICs (Kuijken & Dubinski, 1995b; Widrow & Dubinski,
2005; Widrow et al., 2008) to first create a galaxy con-

sisting of a stellar bulge, stellar disc and a dark matter
halo. To create the gas disc, the stellar disc was then du-
plicated and reflected in the x = y plane to avoid coin-
cidence with the star particles. Ten percent of the total
stellar mass was then removed and given to the gas disc.
Although the gas disc initially has a scale height larger
than physically motivated, this will quickly relax into a
disc that physically resembles the Milky Way. Next, we
added a hot gas halo embedded within the dark matter
halo. The hot gas halo has an observationally motivated
β-profile (e.g. Cavaliere & Fusco-Femiano, 1976) and a
temperature profile given by Kaufmann et al. (2007);
the mass of the hot gas halo is removed from the dark
matter particles to conserve total halo mass. The mass
of each component, as well as particle numbers and par-
ticle masses are given in Table 5. To model the major
merger, the galaxy is duplicated and the two galaxies
are placed 70 kpc apart on a parabolic trajectory. These
initial conditions are identical to those used in Wurster
& Thacker (2013b,a). To simplify the comparison, there
is no star formation recipe, no black holes and no feed-
back from active galactic nuclei (there are currently no
plans to implement cosmological recipes in Phantom).
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M/M� m/M� N
(1010) (105)

Dark matter halo 89.92 89.92 100 000
Hot gas halo 0.60 2.77 21 619
Stellar bulge 1.34 18.10 7 407
Stellar disc 3.56 18.10 19 662
Gas disc 0.54 2.77 19 662

Table 5 Component breakdown for each galaxy. For each compo-

nent, the total mass is M , the particle mass is m, and the number

of particles is N .

Thus, only the SPH and gravity algorithms are being
compared.

Figure 55 shows the gas column density evolution
from t = 100 Myr to t = 1.4 Gyr, comparing Phantom
(left) to Hydra (right), and Figure 56 shows the evo-
lution of the separation of the galaxies and the mean
and maximum gas density in each model. The evolution
of the two galaxy mergers agree qualitatively with one
another, with slight differences in the trajectories, evo-
lution times and gas densities between the two codes.
Using the centre of mass of the star particles that were
assigned to each galaxy as a proxy for the galaxy’s cen-
tre, the maximum separation at t ≈ 450 Myr is 59 and
61 kpc for Hydra and Phantom, respectively. Second
periapsis occurs at 875 and 905 Myr for Hydra and
Phantom, respectively, which is a difference of 3.4 per
cent since the beginning of the simulation. The max-
imum gas density is approximately 2 times higher in
Phantom prior to the merger, and about 1.2 times
higher after the merger; the average gas densities typi-
cally differ by less than a factor of 1.2 both before and
after the merger.

There are several differences in the algorithms used in
Hydra compared to Phantom. The first is the gravity
solver. The long-range gravity in Hydra uses an adap-
tive particle-mesh algorithm (Couchman, 1991), while
Phantom uses a kd-tree (c.f. Section 2.12.4). For the
short-range gravity, Hydra uses a fixed S2 softening
length for all particles, where the S2 softening is scaled
to an equivalent Plummer softening such that εS2 =
2.34εPlummer; for this simulation, εi ≡ εPlummer = 300
pc. In Phantom, εi = hi for each particle, where hi
is calculated using only the particles of the same type
as particle i.

A second difference is the treatment of the smoothing
length in high density regions. In Hydra, as is common
in most galactic and cosmological codes, the smoothing
length is limited such that hi = max(hi, hmin), where
hmin = εPlummer/8 (= 37.5 pc). In Phantom, hi is al-

Phantom

100 Myr

170 Myr

480 Myr

860 Myr

990 Myr

1400 Myr

Hydra

0

2

Figure 55. Evolution of the gas column density in a major

merger of two Milky Way-sized galaxies, comparing Phantom

to the Hydra code. Times shown are from the onset of the simu-
lation, with each frame (100 kpc)2. The colour bar is log (Column
density / (M� pc−1)).
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Figure 56. Top: The evolution of the separation of the galax-
ies, using centre of mass of the star particles that were assigned

to each galaxy as a proxy for the galaxy’s centre; the stars are

sufficiently mixed after 1000 Myr, thus a meaningful separation
cannot be calculated. Bottom: The evolution of the maximum

(solid) and mean (dashed) gas densities for each model.

ways calculated self-consistently and thus has no im-
posed lower limit.

Finally, Phantom contains an artificial conductivity
term (Section 2.2.8) that acts to ensure continuous pres-
sure fields across contact discontinuities (Price, 2008).

In Wurster & Thacker (2013b), the Hydra major
merger model was compared to a simulation run us-
ing the publicly available version of Gadget2 (Springel
et al., 2001; Springel & Hernquist, 2002). As here, the
comparison was simplified such that only the gravity
and SPH solvers were being compared. They found that
the galaxies in each simulation followed similar trajec-
tories and both models reached second periapsis within
0.2 per cent of one another, as measured from the be-
ginning of the simulation. Note that both Hydra and
Gadget2 were both written primarily to solve galactic
and cosmological models.

The quantitive difference in results may be attributed
to the improved SPH algorithms in Phantom com-
pared to Hydra. The higher density in Hydra is con-
sistent with the results in Richardson et al. (2016), who
found higher densities in Hydra compared to the adap-
tive mesh refinement code Ramses (Teyssier, 2002). It
was determined that this was a result of a combination
of the artificial viscosity, hmin and the suppression of

‘mixing’ (which occurs when no thermal conductivity is
applied).

6.5 Gap opening in dusty discs

Our final example is taken from Dipierro et al. (2016)
and builds on our recent studies of dust dynamics
in protoplanetary discs with Phantom (e.g. Dipierro
et al., 2015; Ragusa et al., 2017). We perform calcula-
tions using the two-fluid approach, setting up a disc
with 500 000 gas particles and 100 000 dust parti-
cles with Σ ∝ r−0.1 between 1 and 120 au with a to-
tal disc mass of 2× 10−4 M�. The disc mass is chosen
to place the mm dust particles in a regime where the
Stokes number is greater than unity. The initial dust-
to-gas ratio is 0.01 and we assume a locally isothermal
equation of state with cs ∝ r−0.35, normalised such that
H/R = 0.05 at 1 au. We use the minimum disc viscosity
possible, setting αAV = 0.1.

Figure 57 shows the results of two calculations em-
ploying planets of mass 0.1 MJupiter (top row) and 1.0
MJupiter (bottom) embedded in a disc around a 1.3 M�
star. Left and right panels show gas and dust surface
densities, respectively. While the theory of gap open-
ing in gaseous discs is relatively well understood as a
competition between the gravitational torque from the
planet trying to open a gap and the viscous torques try-
ing to close it (e.g. Goldreich & Tremaine, 1979, 1980),
gap opening in dusty discs is less well understood (see
e.g. Paardekooper & Mellema, 2004, 2006). In Dipierro
et al. (2016) we identified two regimes for gap open-
ing in dusty discs where gap opening in the dust disc
is either resisted or assisted by the gas-dust drag. The
top row of Figure 57 demonstrates that low mass plan-
ets can carve a gap which is visible only in the dust
disc, while for high mass planets (bottom row) there is
a gap opened in both gas and dust but it is deeper in
the dust. Moreover, the gap opening mechanism by low
mass planets has been further investigated in Dipierro
& Laibe (2017). They derived a grain size-dependent
criterion for dust gap opening in discs, an estimate of
the location of the outer edge of the dust gap and an
estimate of the minimum Stokes number above which
low-mass planets are able to carve gaps which appear
only in the dust disc. These predictions has been tested
against Phantom simulations of planet-disc interaction
in a broad range of dusty protoplanetary discs, finding
a remarkable agreement between the theoretical model
and the numerical experiments.

Interestingly, our prediction of dust gaps that are not
coincident with gas gaps for low mass planets appears to
be observed in recent observations of the TW Hya pro-
toplanetary disc, by comparing VLT-SPHERE imaging
of the scattered light emission from small dust grains
(van Boekel et al. 2017; tracing the gas) to ALMA im-
ages of the mm dust emission (Andrews et al., 2016).
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Figure 1.Gap opening via Mechanism I, where low mass planets carve a gap in the dust but not the gas. Plots show gas (left) and millimetre dust grain (centre)
surface densities in a dusty disc hosting planets of mass 0.05 MJ (top row) and 0.1 MJ (bottom row). While the 0.05 MJ creates a depletion of dust at the
planet location, the 0.1MJ planet is able to carve a gap in the dust. Neglecting the gravity between the planet and the dust (right panels) shows that the gap is
opened by the tidal torque. The drag torque acts to close the gap due to the radial migration of dust particles from the outer disc (top centre panel).

2.2 Initial conditions

We setup a disc as in Lodato & Price (2010). We assume a central
star of mass 1.3 M⊙ surrounded by a gas disc made of 5 × 105 gas
particles and a dust disc made of 3 × 105 dust particles. The two
discs extend from rin = 1 au to rout = 120 au. Wemodel the initial
surface density profiles of the discs using power-laws of the form
Σ(r) = Σin(r/rin)

−p. We adopt p = 0.1 and set Σin such that the
total gas mass contained between rin and rout is 0.0002 M⊙. We
assume 1 mm dust grains with a corresponding Stokes number (the
ratio between the stopping time and the orbital timescale), St ∼ 10.
The initial dust-to-gas ratio is 0.01 and St ∝ 1/Σg ∼ r0.1 in the
disc. We simulate only the inner part of the disc since this is what
can be observed with ALMA e.g. in HL Tau. If the gas phase were
to extend to rout = 1000 au, the total mass of the system is≃ 0.01
M⊙. We assume a vertically isothermal equation of state P = c2

sρ
with cs(r) = cs,in(r/rin)

−0.35 and an aspect ratio of the disc that
is 0.05 at 1 au. We set an SPH viscosity parameter αAV = 0.1 giv-
ing an effective Shakura & Sunyaev (1973) viscosity αSS ≈ 0.004.
We setup a planet located at 40 au and evolve the simulations over
40 planetary orbits. This is sufficient to study the physics of dust
gap opening with our assumed grain size, though we caution that
further evolution occurs over longer timescales. We vary the planet
mass in the range [0.05, 0.1, 0.5, 1] MJ to evaluate the relative con-
tributions of the tidal and drag torques.

3 RESULTS

Gap formation is a competition between torques. In a gas disc the
competition is between the tidal torque from the planet trying to
open a gap and the viscous torque trying to close it. Dust, by con-
trast, is pressureless and inviscid, and the competition is between
the tidal torque and the aerodynamic drag torque.

Dust efficiently settles to the midplane in our simulations,
forming a stable dust layer with dust to gas scale height ratio of
∼

√
αSS/St ∼ 0.02, consistent with the Dubrulle et al. (1995)

model and other SPH simulations of dusty discs (e.g. Laibe et al.
2008). Settling of grains is expected to slightly reinforce the con-
tribution from the tidal torque by local geometric effects.

3.1 Mechanism I — low mass planets

Fig. 1 demonstrates gap-opening when the planet is not massive
enough to carve a gap in the gas disc. The gas shows only a weak
one-armed spiral density wake supported by pressure, as predicted
by linear density wave theory (Ogilvie & Lubow 2002).

The general expression for the drag torque is

Λd = −r
K

ρd
(vφ

d − vφ
g ), (1)

where K is the drag coefficient, ρd is the dust density and vφ
d
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Figure 3. Gap opening via Mechanism II, where high mass planets carve a partial or total gap in the gas, and the dust is evacuated from the gap via drag and
tidal torques. Plots are as in Fig. 1, but with planet masses 0.5 MJ (top) and 1 MJ (bottom). Although the tidal torque modifies the structure of the gap and
stabilises the corotation region, the structure in the dust phase is dominated by the drag torque (comparing centre and right panels).
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Figure 4. Azimuthally averaged surface density of the gas corresponding to the simulations of Fig 3. The dotted vertical line indicates the planet’s location.
Gaps are created in both the gas and the dust phases.

of the gap forms narrow ridges just outside the orbit of the planet
(Ayliffe et al. 2012; Picogna & Kley 2015). This effect does not oc-
cur inside of the orbital radius of the planet because the drag torque
is strong enough to efficiently damp any resonances that develop
(Fouchet et al. 2007; Ayliffe et al. 2012), similar to what occurs in
the whole disc in Mechanism I. For our 1MJ planet, the outer edge
of the dust gap is close to the 3:2 resonance (r ∼ 52 au), inducing
a double peaked outer edge in the dust density profile (see Fig. 4).

The right panel of Figs 3 and 4 shows that for high mass plan-

ets, the formation of a gap in the dust can be recovered simply by
considering drag effects and neglecting the action of the gravita-
tional potential of the planet. However, the detailed structure of the
gap is still different when the tidal torque is included: the gap is
wider, deeper, with a corotation region, sharper edges and more
asymmetries due to external resonances.

MNRAS 000, 1–5 (2016)

Figure 57. Gap opening in dusty protoplanetary discs with Phantom (from Dipierro et al. 2016), showing surface density in gas

(left) and mm dust grains (right) in two simulations of planet-disc interaction with planet masses of 0.1 MJupiter (top) and 1 MJupiter

(bottom) in orbit around a 1.3 M� star. In the top case a gap is opened only in the dust disc, while in the bottom row the gap is

opened in both gas and dust. The colour bar is logarithmic surface density in cgs units.

7 Summary

We have outlined the algorithms and physics currently
implemented in the Phantom smoothed particle hy-
drodynamics and magnetohydrodynamics code in the
hope that this will prove useful to both users and devel-
opers of the code. We have also demonstrated the per-
formance of the code as it currently stands on a series
of standard test problems, most with known or analytic
solutions. While no code is ever ‘finished’ nor bug-free,
it is our hope that the code as it stands will prove use-
ful to the scientific community. Works in progress for
future code releases include radiation hydrodynamics,
continuing development of the dust algorithms, and an
implementation of relativistic hydrodynamics.
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Nordlund Å. K., Padoan P., 1999, in Franco J., Carram-

inana A., eds, Interstellar Turbulence. Cambridge;
CUP, p. 218 (arXiv:astro-ph/9810074)

O’Sullivan S., Downes T. P., 2006, MNRAS, 366, 1329
Ogilvie G. I., 1999, MNRAS, 304, 557
Ogilvie G. I., Lubow S. H., 2002, MNRAS, 330, 950
Omelyan I. P., Mryglod I. M., Folk R., 2002, Computer

Physics Communications, 146, 188
Orszag S. A., Tang C.-M., 1979, J. Fluid Mech., 90, 129
Ostriker E. C., Gammie C. F., Stone J. M., 1999, ApJ,

513, 259
Paardekooper S.-J., Mellema G., 2004, A&A, 425, L9
Paardekooper S.-J., Mellema G., 2006, A&A, 453, 1129
Pandey B. P., Wardle M., 2008, MNRAS, 385, 2269
Papaloizou J. C. B., Pringle J. E., 1983, MNRAS, 202,

1181
Passy J.-C., et al., 2012, ApJ, 744, 52
Paxton B., Bildsten L., Dotter A., Herwig F., Lesaffre

P., Timmes F., 2011, ApJS, 192, 3
Pettitt A. R., Dobbs C. L., Acreman D. M., Price D. J.,

2014, MNRAS, 444, 919
Pettitt A. R., Dobbs C. L., Acreman D. M., Bate M. R.,

2015, MNRAS, 449, 3911
Phillips G. J., 1982, PASA, 4, 371
Phillips G. J., 1986a, MNRAS, 221, 571
Phillips G. J., 1986b, MNRAS, 222, 111
Phillips G. J., Monaghan J. J., 1985, MNRAS, 216, 883
Pichardo B., Martos M., Moreno E., Espresate J., 2003,

ApJ, 582, 230
Picone J. M., Dahlburg R. B., 1991, Physics of Fluids

B, 3, 29
Plummer H. C., 1911, MNRAS, 71, 460
Politano H., Pouquet A., Sulem P. L., 1989, Physics of

Fluids B, 1, 2330
Potekhin A. Y., Chabrier G., 2010, Contributions to

Plasma Physics, 50, 82
Powell K. G., Roe P. L., Linde T. J., Gombosi T. I., de

Zeeuw D. L., 1999, J. Comp. Phys., 154, 284
Press W. H., Teukolsky S. A., Vetterling W. T., Flan-

nery B. P., 1992, Numerical recipes in FORTRAN.
The art of scientific computing. Cambridge: Univer-
sity Press

Price D. J., 2004, PhD thesis, University of Cambridge,
Cambridge, UK. astro-ph/0507472

Price D. J., 2007, PASA, 24, 159
Price D. J., 2008, J. Comp. Phys., 227, 10040
Price D. J., 2010, MNRAS, 401, 1475
Price D. J., 2012a, J. Comp. Phys., 231, 759
Price D. J., 2012b, MNRAS, 420, L33

PASA (2018)
doi:10.1017/pas.2018.xxx

http://dx.doi.org/10.1016/j.newast.2006.06.003
http://adsabs.harvard.edu/abs/2006NewA...12..124M
http://dx.doi.org/10.1088/2041-8205/790/2/L34
http://adsabs.harvard.edu/abs/2014ApJ...790L..34M
http://dx.doi.org/10.1088/2041-8205/792/2/L33
http://adsabs.harvard.edu/abs/2014ApJ...792L..33M
http://dx.doi.org/10.1111/j.1365-2966.2004.07850.x
http://adsabs.harvard.edu/abs/2004MNRAS.350L..47M
http://dx.doi.org/10.1086/430813
http://adsabs.harvard.edu/abs/2005ApJ...628..817M
http://dx.doi.org/10.1111/j.1365-2966.2007.11753.x
http://adsabs.harvard.edu/abs/2007MNRAS.378..541M
http://dx.doi.org/10.1088/0067-0049/201/2/18
http://adsabs.harvard.edu/abs/2012ApJS..201...18M
http://adsabs.harvard.edu/abs/2012ApJS..201...18M
http://dx.doi.org/10.1086/117980
http://adsabs.harvard.edu/abs/1996AJ....111.2462M
http://dx.doi.org/10.1111/j.1745-3933.2010.00978.x
http://adsabs.harvard.edu/abs/2011MNRAS.411L...1M
http://dx.doi.org/10.1111/j.1365-2966.2012.22035.x
http://adsabs.harvard.edu/abs/2012MNRAS.427.2022M
http://dx.doi.org/10.1086/186955
http://adsabs.harvard.edu/abs/1993ApJ...413L..43M
http://dx.doi.org/10.1016/j.jcp.2010.01.034
http://adsabs.harvard.edu/abs/2010JCoPh.229.3916M
http://dx.doi.org/10.1098/rspa.1982.0107
http://dx.doi.org/10.1098/rspa.1982.0107
http://adsabs.harvard.edu/abs/1982RSPSA.382..373M
http://adsabs.harvard.edu/abs/1975PASJ...27..533M
http://dx.doi.org/10.1016/0021-9991(89)90032-6
http://adsabs.harvard.edu/abs/1989JCoPh..82....1M
http://dx.doi.org/10.1146/annurev.aa.30.090192.002551
http://adsabs.harvard.edu/abs/1992ARA%26A..30..543M
http://dx.doi.org/10.1006/jcph.1997.5732
http://adsabs.harvard.edu/abs/1997JCoPh.136..298M
http://dx.doi.org/10.1006/jcph.2000.6439
http://adsabs.harvard.edu/abs/2000JCoPh.159..290M
http://dx.doi.org/10.1046/j.1365-8711.2002.05678.x
http://adsabs.harvard.edu/abs/2002MNRAS.335..843M
http://dx.doi.org/10.1088/0034-4885/68/8/R01
http://adsabs.harvard.edu/abs/2005RPPh...68.1703M
http://dx.doi.org/10.1146/annurev-fluid-120710-101220
http://dx.doi.org/10.1146/annurev-fluid-120710-101220
http://adsabs.harvard.edu/abs/2012AnRFM..44..323M
http://dx.doi.org/10.1016/0010-4655(94)00174-Z
http://dx.doi.org/10.1016/0010-4655(94)00174-Z
http://adsabs.harvard.edu/abs/1995CoPhC..87..225M
http://adsabs.harvard.edu/abs/1985A%26A...149..135M
http://adsabs.harvard.edu/abs/1986A%26A...158..207M
http://dx.doi.org/10.1086/170179
http://adsabs.harvard.edu/abs/1991ApJ...375..177M
http://dx.doi.org/10.1046/j.1365-8711.2001.04742.x
http://adsabs.harvard.edu/abs/2001MNRAS.328..381M
http://dx.doi.org/10.1111/j.1365-2966.2005.09783.x
http://adsabs.harvard.edu/abs/2006MNRAS.365..991M
http://adsabs.harvard.edu/abs/1996PASA...13...97M
http://dx.doi.org/10.1006/jcph.1997.5690
http://adsabs.harvard.edu/abs/1997JCoPh.136...41M
http://dx.doi.org/10.1016/j.jcp.2014.10.017
http://dx.doi.org/10.1016/j.jcp.2014.10.017
http://adsabs.harvard.edu/abs/2015JCoPh.281..301M
http://adsabs.harvard.edu/abs/1996MNRAS.279..402M
http://adsabs.harvard.edu/abs/1988PASJ...40..691N
http://dx.doi.org/10.1086/177173
http://adsabs.harvard.edu/abs/1996ApJ...462..563N
http://dx.doi.org/10.1093/mnras/stv014
http://adsabs.harvard.edu/abs/2015MNRAS.448.1526N
http://adsabs.harvard.edu/abs/2015MNRAS.448.1526N
http://dx.doi.org/10.1093/mnrasl/slv149
http://dx.doi.org/10.1093/mnrasl/slv149
http://adsabs.harvard.edu/abs/2016MNRAS.455L..62N
http://dx.doi.org/10.1086/304167
http://adsabs.harvard.edu/abs/1997ApJ...482..796N
http://dx.doi.org/10.1046/j.1365-8711.2000.03478.x
http://adsabs.harvard.edu/abs/2000MNRAS.315..570N
http://adsabs.harvard.edu/abs/2000MNRAS.315..570N
http://dx.doi.org/10.1086/173388
http://adsabs.harvard.edu/abs/1993ApJ...418..263N
http://dx.doi.org/10.1086/192211
http://adsabs.harvard.edu/abs/1995ApJS..100..132N
http://adsabs.harvard.edu/abs/1995ApJS..100..132N
http://dx.doi.org/10.1111/j.1365-2966.2012.20814.x
http://adsabs.harvard.edu/abs/2012MNRAS.422.2547N
http://dx.doi.org/10.1088/2041-8205/757/2/L24
http://adsabs.harvard.edu/abs/2012ApJ...757L..24N
http://adsabs.harvard.edu/abs/2012ApJ...757L..24N
http://dx.doi.org/10.1093/mnras/stt1136
http://adsabs.harvard.edu/abs/2013MNRAS.434.1946N
http://arxiv.org/abs/astro-ph/9810074
http://dx.doi.org/10.1111/j.1365-2966.2005.09898.x
http://adsabs.harvard.edu/abs/2006MNRAS.366.1329O
http://dx.doi.org/10.1046/j.1365-8711.1999.02340.x
http://adsabs.harvard.edu/abs/1999MNRAS.304..557O
http://dx.doi.org/10.1046/j.1365-8711.2002.05148.x
http://adsabs.harvard.edu/abs/2002MNRAS.330..950O
http://dx.doi.org/10.1016/S0010-4655(02)00451-4
http://dx.doi.org/10.1016/S0010-4655(02)00451-4
http://adsabs.harvard.edu/abs/2002CoPhC.146..188O
http://dx.doi.org/10.1017/S002211207900210X
http://adsabs.harvard.edu/abs/1979JFM....90..129O
http://dx.doi.org/10.1086/306842
http://adsabs.harvard.edu/abs/1999ApJ...513..259O
http://dx.doi.org/10.1051/0004-6361:200400053
http://adsabs.harvard.edu/abs/2004A%26A...425L...9P
http://dx.doi.org/10.1051/0004-6361:20054449
http://adsabs.harvard.edu/abs/2006A%26A...453.1129P
http://dx.doi.org/10.1111/j.1365-2966.2008.12998.x
http://adsabs.harvard.edu/abs/2008MNRAS.385.2269P
http://adsabs.harvard.edu/abs/1983MNRAS.202.1181P
http://adsabs.harvard.edu/abs/1983MNRAS.202.1181P
http://dx.doi.org/10.1088/0004-637X/744/1/52
http://adsabs.harvard.edu/abs/2012ApJ...744...52P
http://dx.doi.org/10.1088/0067-0049/192/1/3
http://adsabs.harvard.edu/abs/2011ApJS..192....3P
http://dx.doi.org/10.1093/mnras/stu1075
http://adsabs.harvard.edu/abs/2014MNRAS.444..919P
http://dx.doi.org/10.1093/mnras/stv600
http://adsabs.harvard.edu/abs/2015MNRAS.449.3911P
http://adsabs.harvard.edu/abs/1982PASAu...4..371P
http://adsabs.harvard.edu/abs/1986MNRAS.221..571P
http://adsabs.harvard.edu/abs/1986MNRAS.222..111P
http://adsabs.harvard.edu/abs/1985MNRAS.216..883P
http://dx.doi.org/10.1086/344592
http://adsabs.harvard.edu/abs/2003ApJ...582..230P
http://dx.doi.org/10.1063/1.859953
http://dx.doi.org/10.1063/1.859953
http://adsabs.harvard.edu/abs/1991PhFlB...3...29P
http://adsabs.harvard.edu/abs/1911MNRAS..71..460P
http://dx.doi.org/10.1063/1.859051
http://dx.doi.org/10.1063/1.859051
http://adsabs.harvard.edu/abs/1989PhFlB...1.2330P
http://dx.doi.org/10.1002/ctpp.201010017
http://dx.doi.org/10.1002/ctpp.201010017
http://adsabs.harvard.edu/abs/2010CoPP...50...82P
http://dx.doi.org/10.1006/jcph.1999.6299
http://adsabs.harvard.edu/abs/1999JCoPh.154..284P
http://dx.doi.org/10.1071/AS07022
http://adsabs.harvard.edu/abs/2007PASA...24..159P
http://dx.doi.org/10.1016/j.jcp.2008.08.011
http://adsabs.harvard.edu/abs/2008JCoPh.22710040P
http://dx.doi.org/10.1111/j.1365-2966.2009.15763.x
http://adsabs.harvard.edu/abs/2010MNRAS.401.1475P
http://dx.doi.org/10.1016/j.jcp.2010.12.011
http://adsabs.harvard.edu/abs/2012JCoPh.231..759P
http://dx.doi.org/10.1111/j.1745-3933.2011.01187.x
http://adsabs.harvard.edu/abs/2012MNRAS.420L..33P


78 Price et al.

Price D. J., Bate M. R., 2007, MNRAS, 377, 77
Price D. J., Bate M. R., 2009, MNRAS, 398, 33
Price D. J., Federrath C., 2010, MNRAS, 406, 1659
Price D. J., Laibe G., 2015a, MNRAS, 451, 5332
Price D. J., Laibe G., 2015b, MNRAS, 454, 2320
Price D. J., Monaghan J. J., 2004a, MNRAS, 348, 123
Price D. J., Monaghan J. J., 2004b, MNRAS, 348, 139
Price D. J., Monaghan J. J., 2005, MNRAS, 364, 384
Price D. J., Monaghan J. J., 2007, MNRAS, 374, 1347
Price D. J., Federrath C., Brunt C. M., 2011, ApJ, 727,

L21
Price D. J., Tricco T. S., Bate M. R., 2012, MNRAS,

423, L45
Priest E. R., 1985, Reports on Progress in Physics, 48,

955
Pringle J. E., 1981, ARA&A, 19, 137
Pringle J. E., 1992, MNRAS, 258, 811
Puri K., Ramachandran P., 2014, J. Comp. Phys., 256,

308
Quinn T., Katz N., Stadel J., Lake G., 1997, ArXiv

Astrophysics e-prints,
Quinn T., Perrine R. P., Richardson D. C., Barnes R.,

2010, AJ, 139, 803
Ragusa E., Lodato G., Price D. J., 2016, MNRAS, 460,

1243
Ragusa E., Dipierro G., Lodato G., Laibe G., Price

D. J., 2017, MNRAS, 464, 1449
Read J. I., Hayfield T., 2012, MNRAS, 422, 3037
Rees M. J., 1976, MNRAS, 176, 483
Rein H., Tremaine S., 2011, MNRAS, 415, 3168
Richardson M. L. A., Scannapieco E., Devriendt J., Slyz

A., Thacker R. J., Dubois Y., Wurster J., Silk J.,
2016, ApJ, 825, 83

Robertson B. E., Kravtsov A. V., Gnedin N. Y., Abel
T., Rudd D. H., 2010, MNRAS, 401, 2463

Rogers F. J., Nayfonov A., 2002, ApJ, 576, 1064
Rosotti G. P., Lodato G., Price D. J., 2012, MNRAS,

425, 1958
Rosswog S., 2009, New A Rev., 53, 78
Rosswog S., 2015, MNRAS, 448, 3628
Rosswog S., Price D., 2007, MNRAS, 379, 915
Rosswog S., Ramirez-Ruiz E., Hix W. R., 2009, ApJ,

695, 404
Ryu D., Jones T. W., 1995, ApJ, 442, 228
Ryu D., Jones T. W., Frank A., 1995, ApJ, 452, 785
Saitoh T. R., Makino J., 2009, ApJ, 697, L99
Saitoh T. R., Makino J., 2010, PASJ, 62, 301
Saumon D., Chabrier G., van Horn H. M., 1995, ApJS,

99, 713
Schmidt W., Hillebrandt W., Niemeyer J. C., 2006,

Computers & Fluids, 35, 353
Schoenberg I. J., 1946, Q. Appl. Math., 4, 45
Schwarzschild K., 1916, Sitzungsberichte der Königlich

Preußischen Akademie der Wissenschaften (Berlin),
1916, Seite 189-196,

Sedov L. I., 1959, Similarity and Dimensional Methods
in Mechanics. New York; Academic Press

Sembach K. R., Howk J. C., Ryans R. S. I., Keenan
F. P., 2000, ApJ, 528, 310

Sembolini F., et al., 2016, MNRAS, 457, 4063
Shakura N. I., Sunyaev R. A., 1973, A&A, 24, 337
Shu F. H., Galli D., Lizano S., Cai M., 2006, ApJ, 647,

382
Sijacki D., Springel V., 2006, MNRAS, 371, 1025
Sod G. A., 1978, J. Comp. Phys., 27, 1
Sofue Y., 2012, PASJ, 64, 75
Springel V., 2005, MNRAS, 364, 1105
Springel V., 2010, ARA&A, 48, 391
Springel V., Hernquist L., 2002, MNRAS, 333, 649
Springel V., Yoshida N., White S. D. M., 2001, New A,

6, 79
Springel V., Di Matteo T., Hernquist L., 2005, MNRAS,

361, 776
Steinmetz M., Mueller E., 1993, A&A, 268, 391
Stepinski T. F., Valageas P., 1996, A&A, 309, 301
Stone J. M., Hawley J. F., Evans C. R., Norman M. L.,

1992, ApJ, 388, 415
Stone J. M., Gardiner T. A., Teuben P., Hawley J. F.,

Simon J. B., 2008, ApJS, 178, 137
Sutherland R. S., Dopita M. A., 1993, ApJS, 88, 253
Suttner G., Smith M. D., Yorke H. W., Zinnecker H.,

1997, A&A, 318, 595
Syrovatskii S. I., 1981, ARA&A, 19, 163
Takahashi K., Yamada S., Yamada 2013, Journal of

Plasma Physics, 79, 335
Tasker E. J., Brunino R., Mitchell N. L., Michielsen D.,

Hopton S., Pearce F. R., Bryan G. L., Theuns T.,
2008, MNRAS, 390, 1267

Taylor G., 1950a, Proceedings of the Royal Society of
London Series A, 201, 159

Taylor G., 1950b, Proceedings of the Royal Society of
London Series A, 201, 175

Taylor G. I., Green A. E., 1937, Proceedings of the
Royal Society of London Series A, 158, 499

Tejeda E., Rosswog S., 2013, MNRAS, 433, 1930
Teyssier R., 2002, A&A, 385, 337
Thacker R. J., Couchman H. M. P., 2006, Computer

Physics Communications, 174, 540
Thacker R. J., Tittley E. R., Pearce F. R., Couchman

H. M. P., Thomas P. A., 2000, MNRAS, 319, 619
Thomas P. A., Couchman H. M. P., 1992, MNRAS, 257,

11
Timmes F. X., Arnett D., 1999, ApJS, 125, 277
Timmes F. X., Swesty F. D., 2000, ApJS, 126, 501
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A Details of code implementation

Figure A1 shows the basic structure of the code. The core of
the code is the timestepping loop, while the most time con-
suming part are the repeated calls to evaluate density and
acceleration on the particles via sums over neighbouring par-
ticles. Further details of these steps are given in Section A.3.

A.1 Smoothing kernels

A Python script distributed with Phantom can be used to
generate the code module for alternative smoothing kernels,
including symbolic manipulation of piecewise functions us-
ing sympy to obtain the relevant functions needed for gravi-
tational force softening (see below). Pre-output modules for
the six kernels described in Section 2.1.6 are included in
the source code, and the code can be recompiled with any
of these replacing the default cubic spline on the command
line, e.g. make KERNEL=quintic.

The double hump kernel functions used in the two-
fluid dust algorithm (Section 2.13.4) can be generated au-
tomatically from the corresponding density kernel by the
kernels.py script distributed with Phantom, as described
in Section 2.12.2. The pre-generated modules implementing
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Figure A1. Flowchart showing the basic structure of Phantom. To the user what appears is a sequence of output files written at

discrete time intervals. The core of the code is the timestepping loop, while most of the computational cost is spent building the tree

and evaluating density and acceleration by summing over neighbours.

each of the kernels described in Section 2.1.6 hence automat-
ically contain the corresponding double hump kernel func-
tion, which is used to compute the drag terms.

A.2 Particle types

Particles can be assigned with a ‘type’ from the list (see Ta-
ble A1 in the appendix). The main use of this is to be able to
apply different sets of forces to certain particle types (see de-
scription for each type). Densities and smoothing lengths are
self-consistently computed for all of these types except for
‘dead’ particles which are excluded from the tree build and
boundary particles whose properties are fixed. However, the
kernel interpolations used for these involve only neighbours
of the same type. Particle masses in Phantom are fixed to
be equal for all particles of the same type, to avoid problems
with unequal mass particles (e.g. Monaghan & Price 2006).
We use adaptive gravitational force softening for all particle
types, both SPH and N -body (see Section 2.12.3). Sink par-

ID Type Description
1 gas default type, all forces applied
2 dust drag, external & gravitational forces
3 boundary velocity and gas properties fixed
4 star external and gravitational forces
5 dark matter same as star, but different mass
6 bulge same as star, but different mass
0 unknown usually dead particles

Table A1 Particle types in Phantom. The density and smooth-

ing length of each type is computed only from neighbours of the
same type (c.f. Section 2.13.3). Sink particles are handled sepa-

rately in a different set of arrays.

ticles are handled separately to these types, being stored in
a separate set of arrays, carry only a fixed softening length
which is set to zero by default and compute their mutual
gravitational force without approximation (see Section 2.8).
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construct_root_node(rootnode,bounds)

push_onto_stack(rootnode,bounds)

number on stack = 1

do while (number on stack > 0)

pop_off_stack(node,bounds)

construct_node(node,bounds,boundsl,boundsr)

if (node was split)

push_onto_stack (leftchild,boundsl)

push_onto_stack (rightchild,boundsr)

number on stack += 2

endif

enddo

Figure A2. Pseudo-code for the tree build. The construct node

procedure computes, for a given node, the centre of mass, size,

maximum smoothing length, quadrupole moments, and the child
and parent pointers and the boundaries of the child nodes.

A.3 Evaluating density and acceleration

A.3.1 Tree build

Phantom uses a kd-tree for nearest neighbour finding and
to compute long range gravitational accelerations. The pro-
cedure for the tree build is given in Figure A2. We use a
stack, rather than recursive subroutines, for efficiency and
to aid parallelisation (the parallelisation strategy for the tree
build is discussed further in Section A.4.2). The stack ini-
tially contains only the highest level node for each thread (in
serial this would be the root node). We loop over all nodes on
the stack and call a subroutine to compute the node prop-
erties, namely the centre of mass position, the node size,
s, which is the radius of a sphere containing all the parti-
cles centred on the centre of mass, the maximum smoothing
length for all the particles contained within the node, point-
ers to the two node children and the parent node, and, if
self-gravity is used, the total mass in the node as well as the
quadrupole moment (see Section 2.12). The construct_node
subroutine also decides whether or not the node should be
split (i.e. if the number of particles > Nmin) and returns the
indices and boundaries of the resultant child nodes.

We access the particles by storing an integer array
containing the index of the first particle in each node
(firstinnode), and using a linked list where each particle
stores the index of the next particle in the node (next), with
an index of zero indicating the end of the list. During the tree
build we start with only the root node, so firstinnode is
simply the first particle that is not dead or accreted and the
next array is filled to contain the next non-dead-or-accreted
particle using a simple loop. In the construct_node routine
we convert this to a simple list of the particles in each node
and use this temporary list to update the linked list when
creating the child nodes (i.e., by setting firstinnode to zero
for the parent nodes, and filling firstinnode and next for
the child nodes based on whether the particle position is to
the ‘left’ or the ‘right’ of the bisected parent node).

The tree structure itself stores 8 quantities without self-
gravity, requiring 52 bytes per particle (x,y,z,size,hmax: 5
x 8-byte double precision; leftchild, rightchild, parent:

rcut = size(node) + radkern*hmax(node)

add_to_stack(root node)

number on stack = 1

do while (number on stack > 0)

nodem = stack(nstack)

distance = node - nodem

if (distance < rcut + size(nodem))

if (node is leaf node)

ipart = firstinnode(nodem)

do while(ipart > 0)

add particle to neighbour list

nneigh = nneigh + 1

if (nneigh <= cache size)

cache positions

endif

ipart = next(ipart)

enddo

else

add_to_stack(leftchild)

add_to_stack(rightchild)

number on stack += 2

endif

endif

enddo

Figure A3. Pseudo-code for the neighbour search (referred to as

the get neigh routine in Figure A4).

3 x 4-byte integer). With self-gravity we store 15 quanti-
ties (mass and quads(6), i.e. 7 additional 8-byte doubles)
requiring 108 bytes per particle. We implement the node in-
dexing scheme outlined by Gafton & Rosswog (2011) where
the tree nodes on each level l are stored starting from 2l−1,
where level 1 is the ‘root node’ containing all the particles,
to avoid the need for thread locking when different sections
of the tree are built in parallel. However, the requirement of
allocating storage for all leaf nodes on all levels regardless of
whether or not they contain particles either limits the max-
imum extent of the tree or can lead to prohibitive memory
requirements, particularly for problems with high dynamic
range, such as star formation, where a small fraction of the
particles collapse to high density. Hence, we use this index-
ing scheme only up to a maximum level (maxlevel_indexed)

which is set such that 2maxlevel_indexed is less than the
maximum number of particles (maxp). We do, however, allow
the tree build to proceed beyond this level, whereupon the
leftchild, rightchild and parent indices are used and ad-
ditional nodes are added in the order that they are created
(requiring limited thread locking).

A.3.2 Neighbour search

The neighbour search for a given ‘leaf node’, n, proceeds
from the top down. As with the tree build, this is imple-
mented using a stack, which initially contains only the root
node. The procedure is summarised in Figure A3. We loop
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over the nodes on the stack, checking the criterion

r2
nm < (sn + sm +Rkernh

n
max)2 (A1)

where r2
nm ≡ (xn − xm)2 + (yn − ym)2 + (zn − zm)2 is the

square of the separation between the node centres and s is
the node size. Any node m satisfying this criteria, that is
not a leaf node, has its children added to the stack and the
search continues. If node m is a leaf node, then the list of
particles it contains are added to the trial neighbour list
and the positions cached. The end product is a list of trial
neighbours (listneigh), its length nneigh and a cache con-
taining the trial neighbour positions (xyzcache) up to some
maximum size (12 000 by default, the exact size not being
important except that it is negligible compared to the num-
ber of particles). Trial neighbours exceeding this number are
retrieved directly from memory during the density calcula-
tion rather than from the cache. This occurs rarely, but the
overflow mechanism allows for the possibility of a few par-
ticles with a large number of neighbours, as happens under
certain circumstances.

A.3.3 Density and force calculation

Once the neighbour list has been obtained for a given leaf
node, we proceed to perform density iterations for each
member particle. The neighbours only have to be re-cached
if the smoothing length of a given particle exceeds hmax for
the node, which is sufficiently rare so as not to influence
the code performance significantly. In the original version of
Phantom (on the nogravity branch) this neighbour cache
was re-used immediately for the force calculation but this is
no longer the case on the master branch (see Section A.3.4).
Figure A4 summarises the resulting procedure for calculat-
ing the density.

The corresponding force calculation is given in Figure A5.

A.3.4 SPH in a single loop

A key difference in the force calculation compared to the
density calculation (Section 2.1.2) is that computation of
the acceleration (Equation 34) involves searching for neigh-
bours using both ha and hb. One may avoid this requirement,
and the need to store various intermediate quantities, by
noticing that the hb term can be computed by ‘giving back’
a contribution to one’s neighbours. In this way the whole
SPH algorithm can be performed in a single giant outer
loop, but with multiple loops over the same set of neigh-
bours, following the outline in Figure A4. This also greatly
simplifies the neighbour search, since one can simply search
for neighbours within a known search radius (2ha) without
needing to search for neighbours that ‘might’ contribute if
their hb is large. Hence a simple fixed grid can be used to
find neighbours, as already discussed in Section 2.1.7, and
the same neighbour positions can be efficiently cached and
re-used (one or more times for the density iterations, and
once for the force calculation). This is the original reason
we decided to average the dissipation terms as above, since
at the end of the density loop one can immediately compute
quantities that depend on ρa (i.e. Pa and qaab) and use these
to ‘give back’ the b contribution to ones neighbours. This
means that the density and force calculations can be done
in a single subroutine with effectively only one neighbour

!$omp parallel do

do node = 1, number of nodes

if (node is leaf node)

call get_neigh(node,listneigh,nneigh)

i = firstinnode(node)

do while (i > 0)

do while not converged

if (h > hmax(node)) call get_neigh

do k=1,nneigh

j = listneigh(k)

if (n <= cache size)

get j position from cache

else

get j position from memory

endif

if (actual neighbour)

evaluate kernel and dwdh

add to density sum

add to gradh sum

add to div v sum

endif

enddo

update h

check convergence

enddo

i = next(i)

enddo

endif

enddo

!$omp end parallel do

Figure A4. Pseudo-code for the density evaluation in Phantom,

showing how Eqs. 3, 4 and 5 are computed. The force evaluation

(evaluating Eqs. 34 and 35) is similar except that get neigh re-
turns neighbours within the kernel radius computed with both hi
and hj and there is no need to update/iterate h (see Figure A5).

call, in principle saving a factor of two in computational
cost.

The two disadvantages to this approach are i) that parti-
cles may receive simultaneous updates in a parallel calcula-
tion, requiring locking which hurts the overall scalability of
the code and ii) that when using individual timesteps only
a few particles are updated at any given timestep, but with
the simple neighbour search algorithms one is required to
loop over all the inactive particles to see if they might con-
tribute to an active particle. Hence, although we employed
this approach for a number of years, we have now aban-
doned it for a more traditional approach, where the density
and force calculations are done in separate subroutines and
the kd-tree is used to search for neighbours checking both
ha and hb for the force calculation.
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!$omp parallel do

do node = 1, number of nodes

if (node is leaf node)

call get_neigh(node,listneigh,nneigh,fnode)

i = firstinnode(node)

do while (i > 0)

do n=1,nneigh

j = listneigh(n)

if (n <= cache size)

get j position from cache

else

get j position from memory

endif

if (dr < Rkern*hi or dr < Rkern*hj)

evaluate kernel and softening

add to force sum

else

add 1/r^2 forces to force sum

endif

enddo

get i distance from node centre

expand fnode at position of i

add long range terms to force sum

i = next(i)

enddo

endif

enddo

!$omp end parallel do

Figure A5. Pseudo-code for the force calculation, showing how

the short and long-range accelerations caused by self-gravity are
computed. The quantity fnode refers to the long-range gravita-

tional force on the node computed from interaction with distant

nodes not satisfying the tree-opening criterion.

A.4 OpenMP parallelisation

A.4.1 Density and force calculation

Shared memory parallelisation of the density and force cal-
culation is described in pseudo-code in Figure A4. The
parallelisation is done over the ‘leaf nodes’, each con-
taining around 10 particles. Since the leaf nodes can be
done in any order, this can be parallelised with a simple
$omp parallel do statement. The neighbour search is per-
formed once for each leaf node, so each thread must store a
private cache of the neighbour list. This is not an onerous
requirement, but care is required to ensure that sufficient
per-thread memory is available. This usually requires set-
ting the OMP_STACKSIZE environment variable at runtime.
No thread locking is required during the density or force
evaluations (unless the single loop algorithm is employed; see
Section A.3.4) and the threads can be scheduled at runtime
to give the best performance using either dynamic, guided
or static scheduling (the default is dynamic). Static schedul-
ing is faster when there are few density contrasts and the
work per node is similar, e.g. for subsonic turbulence in a
periodic box (c.f. Price 2012b).

A.4.2 Parallel tree build

We use a domain decomposition to parallelise the tree build,
similar to Gafton & Rosswog (2011). That is, we first build
the tree nodes as in Figure A2, starting from the root-level
node and proceeding to its children and so forth, putting
each node into a queue until the number of nodes in the
queue is equal to the number of OpenMP threads. Since
the queue itself is executed in serial, we parallelise the loop
over the particles inside the construct_node routine during
the construction of each node. Once the queue is built, each
thread proceeds to build its own sub-tree independently.

By default we place each new node into a stack, so the
only locking required during the build of each sub-tree is
to increment the stack counter. We avoid this by adopting
the indexing scheme proposed by Gafton & Rosswog (2011)
(discussed in Section 2.1.7) where the levels of the tree are
stored contiguously in memory. However, to avoid excessive
memory consumption we only use this scheme while 2nlevel <
npart. For levels deeper than this we revert to using a stack
which therefore requires a (small) critical section around the
increment of the stack counter.

A.4.3 Performance

Figure A6 shows strong scaling results for the pure OpenMP
code. For the scaling tests we wanted to employ a more rep-
resentative problem than the idealised tests shown in Sec-
tion 5. With this in mind we tested the scaling using a prob-
lem involving the collapse of a molecular cloud core to form
a star, as described in Section 6.3. We used 106 particles in
the initial sphere, corresponding to 1.44 million particles in
total. We recorded the wall time of each simulation evolved
for one free-fall time of the collapsing sphere, corresponding
to t = 0.88 in code units.

To show scaling of the OpenMP code to a reasonable
number of cpus, we performed the test on the Knights
LandingTM (KNL) nodes of the Raijin supercomputer (the
main supercomputer of the National Computational Infras-
tructure in Australia). Each CPU of this machine is an
Intel R© Xeon PhiTM CPU 7230 with a clock speed of 1.30
GHz and a 1024 kB cache size. The results shown in Fig-
ure A6 demonstrate strong scaling to 64 CPUs on this ar-
chitecture. We used the Intel R© Fortran Compiler to compile
the code. Timings are also shown for the same calculation
performed on two different nodes of the Swinstar supercom-
puter, namely the ‘largemem’ queue, consisting of up to 32
CPUs using Intel R© XeonTM E7-8837 chips running at 2.66
GHz with cache size 24 576 kB, and the ‘normal’ queue, con-
sisting of up to 16 Intel R© XeonTM E5-2660 chips running
at 2.20 GHz with cache size 20 480 kB. Our shortest wall
time is achieved on the largemem queue using 32 CPUs. Fig-
ure A7 shows the corresponding speedup (wall time on single
cpu divided by wall time on multiple cpus) for each archi-
tecture. We find the best scaling on the Swinstar ‘normal’
nodes, which show super-linear scaling and 100% parallel ef-
ficiency on 16 cpus. The parallel efficiency on KNL is 60%
on 64 cpus.
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Figure A6. Strong scaling results for the pure OpenMP code for
the magnetised star formation problem, showing wall time as a

function of the number of OpenMP threads.
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Figure A7. Strong scaling results for the pure OpenMP code
for the magnetised star formation problem, showing speedup as

a function of the number of OpenMP threads.

A.5 MPI parallelisation

The code has been recently parallelised for distributed
memory architecture using the Message Passing Interface
(MPI), using a hybrid mpi-OpenMP implementation. How-
ever, Phantom does not yet compete with gadget variants
in terms of the ability to use large numbers of particles (e.g.
the most recent calculations by Bocquet et al. (2016) em-
ployed more than 1011 particles), since almost all of our
published simulations to date have been performed with the
OpenMP code. Nevertheless, we describe the implementa-
tion below.

We decompose the domain using the kd-tree in a similar
manner to the OpenMP parallelisation strategy described
above. That is, we build a global tree from the top down

until the number of tree nodes exceeds the number of MPI
threads. Storing a global tree across all MPI threads is not
too memory intensive since there are only as many nodes in
the global tree as there are MPI threads. Each thread then
proceeds to build its own independent subtree. During the
neighbour search (performed for each leaf node of the tree)
we then flag if a node hits parts of the tree that require
remote contributions. If this is the case, we send the infor-
mation for all active particles contained within the leaf node
to the remote processor. Once all nodes have computed den-
sity (or force) on their local particles, they proceed to com-
pute the contributions of local particles to the density sums
of particles they have received. The results of these partial
summations are then passed back to their host processors.

Particles are strictly assigned to a thread by their loca-
tion in the tree. During the tree build we exchange particles
between threads to ensure that all particles are hosted by
the thread allocated to their subdomain.

Within each MPI domain the OpenMP parallelisation
then operates as usual. That is, the OpenMP threads de-
compose the tree further into sub-trees for parallelisation.

A.6 Timestepping algorithm

When employing individual particle timesteps, we assign
particles to bins numbered from zero, where zero would indi-
cate a particle with ∆t = ∆tmax, such that the bin identifier
is

ibin,a = max

{
int

[
log2

(
2∆tmax

∆ta

)
− εtiny

]
, 0

}
, (A2)

where εtiny is a small number to prevent round-off error
(equal to the epsilon function in Fortran). The timestep
on which the particles move is simply

∆t =
∆tmax

2nmax
, (A3)

where nmax is the maximum bin identifier over all the par-
ticles. Each timestep increments a counter, istepfrac, which
if the timestep hierarchy remains fixed simply counts up to
2nmax . If nmax changes after each step, then istepfrac is ad-
justed accordingly (istepfrac = istepfrac/2

(nmax,old−nmax,new)).
A particle is active if

mod
[
istepfrac, 2

(nmax−ibin,a)
]

= 0. (A4)

Active particles are moved onto a smaller timestep at any
time (meaning any time that they are active and hence have
their timesteps re-evaluated), but can only move onto a
larger timestep if it is synchronised with the next-largest
bin, determined by the condition

mod
[
istepfrac, 2

(nmax−ibin,a+1)
]

= 0. (A5)

In keeping with the above, particles are only allowed to move
to a larger timestep by one bin at any given time.

We interpolate the positions of inactive particles by keep-
ing all particles synchronised in time at the beginning and
end of the timestep routine. This is achieved by storing an
additional variable per particle, twas. All particles begin the
calculation with twas set to half of their initial timestep, that
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is

twas,a =
1

2

(
∆tmax

ibin,a

)
. (A6)

To be consistent with the RESPA algorithm (Section 2.3.3)
we first update all particles to their half timestep. These
velocities are then used to move the particle positions ac-
cording to the inner loop of the RESPA algorithm (Equa-
tions 80–83). We then interpolate all velocities to the current
time in order to evaluate the SPH derivative, finishing with
the Leapfrog corrector step. Figure A8 shows the resulting
pseudo-code for the entire timestepping procedure.

In particular, the first and last steps in the above
(involving twas) interpolate the velocity to the current
time. All other variables defined on the particles, includ-
ing the thermal energy, magnetic field and dust fraction, are
timestepped following the velocity field.

To prevent scenarios were active particles quickly flow
into an inactive region (e.g. the Sedov blast wave; see Sec-
tion 5.1.3), inactive particles can be woken at any time. On
each step, particles who should be woken up will be iden-
tified by comparing the ibin(i) of the active particles to
ibin(j) of all i’s neighbours, both active and inactive. If
ibin(i)+1 > ibin(j), then j will be woken up to ensure
that its timestep is within a factor of two of its neighbours.
At the end of the step, these particles will have their ibin(j)
adjusted as required, and their twas(j) will be reset to
the value of a particle with ibin that has perpetually been
evolved on that timestep. Finally, the predicted timestep will
be replaced with dt av=dt evolved(j)+0.5dt(j), where
dt evolved(j) is the time between the current time and the
time the particle was last active, and dt(j) is the particle’s
new timestep.

A.7 Initial conditions: Monte Carlo particle
placement

For setting up the surface density profile in discs, we use a
Monte Carlo particle placement (Section 3.3.1). This is im-
plemented as follows: We first choose the azimuthal angle as
a uniform random deviate u1 ∈ [φmin, φmax] (0→ 2π by de-
fault). We then construct a power-law surface density profile
Σ ∝ R−p using the rejection method, choosing a sequence of
random numbers u2 ∈ [0, fmax] and iterating until we find a
random number that satisfies

u2 < f, (A7)

where f ≡ RΣ = R1−p and fmax = R1−p
in (or fmax = R1−p

out if
p ≤ 1). Finally, the z position is chosen with a third ran-
dom number u3 ∈ [−zmax, zmax] such that u3 < g, where
g = exp[−z2/(2H2)] and zmax =

√
6H.

A.8 Runtime parameters in Phantom in
relation to this paper

Table A2 lists a dictionary of compile-time and runtime pa-
rameters used in the code in relation to the notation used
in this paper.

init_step:

t = 0

do i=1,n

twas(i) = 0.5*dt(i)

enddo

step:

dt_long = min(dt(1:n))

do i=1,n

v(i) = v(i) + (twas(i)-t)*asph(i)

enddo

t1 = t + dt_long

do while (t < t1)

t = t + dt_short

do i=1,n

v(i) = v(i) + 0.5*dt_short*aext(i)

x(i) = x(i) + dt_short*v(i)

enddo

get_external_force(x,aext,dtshort_new)

get_vdependent_external_force(x,v,aext)

do i=1,n

v(i) = v(i) + 0.5*dt_short*aext(i)

enddo

dt_short = min(dtshort_new, t1-t)

enddo

do i=1,n

vstar(i) = v(i) + (t-twas(i))*asph(i)

dtold(i) = dt(i)

enddo

get_sph_force(x,vstar,asph,dt)

do i=1,n

if (active)

dt_av = 0.5*(dtold(i)+dt(i))

v(i) = v(i) + dt_av*asph(i)

twas(i) = twas(i) + dt_av

endif

v(i) = v(i) + (t - twas(i))*asph(i)

wake_inactive_particles(ibin(i),twas(i),dt_av)

enddo

Figure A8. Pseudo-code for the timestepping routine, show-
ing how the interaction between individual timestepping and

the RESPA algorithm is implemented. External forces and sink-

gas interactions are computed on the fastest timescale ∆tshort ≡
∆text. Additional quantities defined on the particles follow the

velocity terms. The variable twas stores the last time the par-
ticle was active and is used to interpolate and synchronise the
velocities at the beginning and end of each timestep.

A.9 The Phantom testsuite

Most numerical codes in astrophysics are tested entirely by
their performance on physical problems with known solu-
tions, with solutions that can be compared with other codes
and by maintenance of various conservation properties at
runtime (see Section 5). We also unit test code modules. This
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Quantity Code variable Description Reference
hfact hfact Ratio of smoothing length to particle spacing 2.1.2
1/Ωa gradh Smoothing length gradient correction term 2.1.2
εh tolh Tolerance in smoothing length-density iterations 2.1.4
Fab grkern Scalar part of kernel gradient 2.1.5
∂Wab(h)/∂ha dwdh Derivative of kernel with respect to smoothing length 2.1.5
K polyk Polytropic constant used for barotropic equations of state 2.2.2
utime utime Code time unit (cgs) 2.2.3
umass umass Code mass unit (cgs) 2.2.3
udist udist Code distance unit (cgs) 2.2.3
Eq. 24 ipdv_heating Option to turn on/off PdV work term in energy equation 2.2.5
Λshock ishock_heating Option to turn on/off shock heating in energy equation 2.2.5
σdecay avdecayconst decay constant in artificial viscosity switch 2.2.9
εv tolv Tolerance on velocity error during timestepping 2.3.1
∆tmax dtmax Maximum time between output files 2.3.4
Racc accradius1 accretion radius for central potential 2.4.1
M binarymassr binary mass ratio for fixed binary potential 2.4.2
Racc,2 accradius2 accretion radius for secondary in fixed binary potential 2.4.2
k0 RadiationPressure Radiation pressure in Poynting-Robertson drag 2.4.7
k1 Redshift Gravitational redshift in Poynting-Robertson drag 2.4.7
k2 TransverseDrag Transverse component of Poynting-Robertson drag 2.4.7
Em st_energy Energy in turbulent stirring pattern 2.5
tdecay st_decay Decay time in turbulent stirring pattern 2.5
w st_solweight Solenoidal fraction in turbulent stirring pattern 2.5
kmin st_stirmin Minimum wavenumber in turbulent stirring pattern 2.5
kmax st_stirmax Minimum wavenumber in turbulent stirring pattern 2.5
fsol st_solweightnorm Solenoidal weighting in turbulent stirring pattern 2.5
ε h_soft_sinksink fixed gravitational softening length between sink particles 2.8.1
σc psidecayfac dimensionless ratio of parabolic to hyperbolic ∇ ·B cleaning 2.10.8
fclean overcleanfac multiplier on maximum speed in divergence cleaning 2.10.9
ρgrain graindenscgs intrinsic dust density in cgs units 2.13.6
fd damp damping parameter for relaxing initial particle distributions 3.6

Table A2 Various runtime parameters in the code and their relation to this paper

allows issues to be identified at a much earlier stage in de-
velopment. The tests are wrapped into the nightly testsuite.
When a bug that escapes the testsuite has been discovered,
we have endeavoured to create a unit test to prevent a future
recurrence.

A.9.1 Unit tests of derivative evaluations

The unit test of the density and force calculations checks
that various derivatives evaluate to within some tolerance
of the expected value. To achieve this, the test sets up
100× 100× 100 SPH particles in a periodic, unit cube, and
specifies the input variables in terms of known functions. For
example, the evaluation of the pressure gradient is checked
by setting the thermal energy of each particle according to

ua(x, y, z) =
1

2π

[
3 + sin

(
2πx

Lx

)
+ cos

(
2πy

Ly

)

+ sin

(
2πz

Lz

)]
, (A8)

where Lx, Ly and Lz are the length of the domain in each
direction and the positions are relative to the edge of the

box. We then compute the acceleration according to (34)
with the artificial viscosity and other terms switched off,
assuming an adiabatic equation of state (Equation 25) with
ρ = constant. We then test that numerical acceleration on all
106 particles is within some tolerance of the analytic pressure
gradient expected from (A8), namely

− ∇Pa

ρa
(x, y, z) = −(γ − 1)∇ua(x, y, z), (A9)

where typically we use a tolerance of 10−3 in the relative
error E(x) = |x− xexact|/xexact.

This procedure is repeated for the various derivatives of
velocity, including the velocity divergence, curl and all com-
ponents of the strain tensor. We also test the artificial vis-
cosity terms this way — checking that they translate cor-
rectly according to (119) — as well as the magnetic field
derivatives and time derivatives, magnetic forces, artificial
resistivity terms, physical viscosity terms, time derivatives
of the dust fraction and the time derivative of the veloc-
ity divergence required in the viscosity switch. We perform
each of these tests also for the case where derivatives are
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evaluated on only a subset of the particles, as occurs when
individual particle timesteps are employed.

We additionally check that various conservation proper-
ties are maintained. For example, energy conservation for
hydrodynamics requires (37) to be satisfied. Hence, we in-
clude a test that checks that this summation is zero to ma-
chine precision. Similar tests are performed for magnetic
fields, and for subsets of the forces that balance subsets of
the thermal energy derivatives (e.g. the artificial viscosity
terms).

A.9.2 Unit tests of sink particles

Unit tests for sink particles include i) integrating a sink par-
ticle binary for 1000 orbits and checking that this conserves
total energy to a relative error of 10−6 and linear and an-
gular momentum to machine precision; ii) setting up a cir-
cumbinary disc of gas particles evolved for a few orbits to
check that linear and angular momentum and energy are
conserved; iii) checking that circular orbits are correct in
the presence of sink-sink softening; iv) checking that accret-
ing a gas particle onto a sink particle conserves linear and
angular momentum, and that the resulting centre of mass
position, velocity and acceleration are set correctly (c.f. Sec-
tion 2.8.2); and v) checking that sink particle creation from a
uniform sphere of gas particles (Section 2.8.4) succeeds and
that the procedure conserves linear and angular momentum.

A.9.3 Unit tests of external forces

For external forces we implement general tests that can be
applied to any implemented external potential: i) we check
that the acceleration is the gradient of the potential by
comparing a finite difference derivative of the potential, Φ,
in each direction to the acceleration returned by the ex-
ternal force routine; and ii) we check that the routines to
solve matrix equations for velocity dependent forces (e.g.
Sections 2.4.5–2.4.7) agree with an iterative solution to the
Leapfrog corrector step (Equation 69).

A.9.4 Unit tests of neighbour finding routines

In order to unit test the neighbour finding modules, (Sec-
tion 2.1.7), we set up particles in a uniform random distri-
bution with randomly assigned smoothing lengths. We then
check that the neighbour list computed with the treecode
agrees with a brute-force evaluation of actual neighbours.
We also perform several sanity checks: i) that no dead or
accreted particles appear in the neighbour list; ii) that all
particles can be reached by traversing the tree or link list
structure; iii) that nodes tagged as active contain at least one
active particle and conversely that iv) inactive cells contain
only inactive particles; v) that there is no double counting
of neighbours in the neighbour lists and vi) that the cached
and uncached neighbour lists are identical. We further check
that particle neighbours are found correctly in pathological
configurations, e.g. when all particles lie in a one dimensional
line along each of the coordinate axes.

A.9.5 Unit tests of timestepping and periodic
boundaries

As a simple unit test of both the timestepping and periodic
boundaries we set up 50× 50× 50 particles in a uniform pe-

riodic box with a constant velocity (vx = vy = vz = 1) along
the box diagonal. We then evolve this for 10 timesteps and
check that the density on each particle remains constant and
that the acceleration and other time derivatives remain zero
to machine precision.

A.9.6 Unit tests of file read/write

We check that variables written to the header of the (binary)
output files are successfully recovered by the corresponding
read routine, and similarly for the particle arrays written to
the body of the file. This quickly and easily picks up mistakes
made in reading/writing variables from/to the output file.

A.9.7 Unit tests of kernel module

We ensure that calls to different kernel routines return the
same answer, and check that gradients of the kernel and ker-
nel softening functions returned by the routines are within
some small tolerance of a finite difference evaluation of these
gradients.

A.9.8 Unit tests of self-gravity routines

In order to unit test the treecode self-gravity computation
(Section 2.12), we i) check that the Taylor series expansion
of the force on each leaf node matches the exact force for
a particle placed close to the node centre ii) that the Tay-
lor series expansion of the force and potential around the
distant node are within a small (∼ 10−5) tolerance of the
exact values; iii) that the combined expansion about both
the local and distant nodes produces a force within a small
tolerance of the exact value and finally iv) that the gravi-
tational force computed on the tree for a uniform sphere of
particles is within a small tolerance (∼ 10−3) of the force
computed by direct summation.

A.9.9 Unit tests of dust physics

We unit test the dust modules by first performing sanity
checks of the dust-gas drag routine — namely that the
transition between Stokes and Epstein drag is continuous
and that the initialisation routine completes without er-
ror. We then perform a low-resolution dustybox test (Sec-
tion 5.9.1), checking the solution matches the analytic so-
lution as in Figure 46. For one-fluid dust we perform a low
resolution version of the dust diffusion test (Section 5.9.3),
checking against the solution at every timestep is within a
small tolerance of the analytic solution. Dust mass, gas mass
and energy conservation in the one-fluid dust derivatives are
also checked automatically.

A.9.10 Unit tests of non-ideal MHD

We perform three unit tests on non-ideal MHD. The first
is the wave damping test (see Section 5.7.1). This test also
uses the super-timestepping algorithm to verify the diffusive
(Eqn 202 but considering only Ohmic resistivity and am-
bipolar diffusion) and minimum stable timesteps (Eqn 72),
but then evolves the system on the smallest of the two
timesteps. The second test is the standing shock test (see
Section 5.7.2). This test is also designed as a secondary
check on boundary particles. Both tests used fixed coeffi-
cients for the non-ideal terms, and for speed, both tests are
performed at much lower resolutions than presented in the
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paper. The third test self-consistently calculates the non-
ideal coefficients for given gas properties.

A.9.11 Other unit tests

Various other unit tests are employed, including sanity
checks of individual timestepping utility routines; checking
that the barotropic equation of state is continuous; of the
Coriolis and centrifugal force routines; checks of conserva-
tion in the generalised Newtonian potential (Section 2.4.6);
of the routine to revise the tree; and of the fast inverse square
root routines.

A.9.12 Sedov unit test

As a final “real” unit test the code performs a low-resolution
(163) version of the Sedov blast wave test (Section 5.1.3). We
check that energy and momentum are conserved at a preci-
sion appropriate to the timestepping algorithm (for global
timesteps this means momentum conservation to machine
precision and energy conservation to ∆E/E0 < 5× 10−4; for
individual timesteps we ensure linear momentum conserva-
tion to 2× 10−4 and energy conservation to 2× 10−2.
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