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ABSTRACT
Toy Stars are gas masses where the compressibility is treated without approximations but
gravity is replaced by a force which, for any pair of masses, is along their line of centres and
proportional to their separation. They provide an invaluable resource for testing the suitability
of numerical codes for astrophysical gas dynamics. In this paper, we derive the equations for
both small-amplitude oscillations and non-linear solutions for rotating and pulsating Toy Stars
in two dimensions, and show that the solutions can be reduced to a small number of ordinary
differential equations. We compare the accurate solutions of these equations with Smoothed
Particle Hydrodynamics (SPH) simulations. The two-dimensional Toy Star solutions are found
to provide an excellent benchmark for SPH algorithms, highlighting many of the strengths and
also some weaknesses of the method.
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1 I N T RO D U C T I O N

A fundamental computational problem in astrophysics is the motion
of a cloud of gas forming a protostar in an ambient medium which is
typically lower in density by a factor of <1012. The ambient medium
can therefore be treated as a vacuum to an excellent approximation.
The simulation of such a gas cloud is more difficult than many of the
standard battery of test problems considered in computational as-
trophysics. Exact, or very accurate, solutions for the motion of these
gas clouds are rare and this creates further difficulties in assessing
the accuracy of a numerical algorithm.

In this paper, we fill this gap in test cases by studying solutions
and simulations for the class of models which we have called Toy
Stars. They are, first and foremost, a tool for studying the accuracy
of computational algorithms relevant to astrophysical gas dynam-
ics, but they also provide an interesting class of dynamical systems
where exact solutions can be found. The fundamental aspects of Toy
Stars and a variety of one-dimensional solutions have been discussed
by Monaghan & Price (2004). The key features are that they are gas
masses where compressibility is included without approximation,
but gravity is replaced by a force derived from the potential

� = ν

4

N∑
i=1

N∑
j=1

mi m j (r i − r j )
2, (1)

where ν is a constant, mi is the mass of particle i and it is assumed
that there are N masses. The equation of motion of particle j in the
absence of other forces is
dv j

dt
= −Mνr j , (2)
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where M is the total mass and the origin is the centre of mass.
Remarkably, as first noted by Newton (see Chandrasekhar 1995),
the particles move independently about the centre of mass of the
particle system. Two particles in a binary Toy Star system move
on orbits given by the solutions of the following equation for the
relative coordinate r = r 1 − r 2:

d2r
dt2

= −Mνr . (3)

These solutions are closed Lissajous figures which include elliptical
orbits.

The equations of motion of a gaseous system in a Toy Star force
are the acceleration equation

dv

dt
= − 1

ρ
∇ P − �2r , (4)

where �2 = Mν , P is the pressure and ρ is the density, and the
continuity equation

dρ

dt
= −ρ∇ · v. (5)

If P = Kρ2, this equation together with the continuity equation
is identical to the equation for small oscillations of water in a
lake with paraboloidal bottom. This equation has been studied by
Goldsbrough (1930) and Lamb (1932), but the most important con-
tributions were made by Ball (1963, 1965) and Holm (1991). In this
paper, we focus on the aspects of these equations which are most
important for astrophysical problems, and generalize to the case
where P = Kργ .

In the following, we first consider the small-amplitude oscilla-
tions of the Toy Star and compare the results to simulations using
Smoothed Particle Hydrodynamics (SPH). We then analyse the non-
linear motions for arbitrary γ and show that the equations reduce
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to a small set of ordinary differential equations which can be in-
tegrated with high accuracy. We then compare the results of these
integrations with SPH simulations.

2 S TAT I C S T RU C T U R E A N D O S C I L L AT I O N S

If P = Kργ , the density of the static model is given by

ργ−1 = ρ
γ−1
0

(
1 − r 2

r 2
e

)
, (6)

where the radius re is

r 2
e = 2Kγρ

γ−1
0

�2(γ − 1)
. (7)

The mass M is given by

M = 2π

∫ re

0

ρr dr = πr 2
e (γ − 1)ρ0

γ
. (8)

If |v| � cs, where cs is the unperturbed speed of sound, the
equations of motion can be linearized about the static structure. It
is convenient to define

R = ργ−1, (9)

and write R = R̄+η, where R̄ is R calculated using the unperturbed
density ρ̄. The equations of motion then become

∂v

∂t
= − Kγ

γ − 1
∇η, (10)

∂η

∂t
= −v · ∇ R̄ − (γ − 1)R̄∇ · v. (11)

We assume the time variation is eıσ t , and write

η = Deıσ t , (12)

v = V eıσ t . (13)

If these expressions are substituted into the linearized equations,
V can be eliminated to get the following equation for D:(

1 − r 2

r 2
e

)
∇2 D − 2r

r 2
e (γ − 1)

∇ D + σ 2

Kγρ
γ−1
0

D = 0. (14)

Assuming separable solutions, they must be of the form ζ (r ) sin θ

or ζ (r ) cos θ and the equation for ζ is(
1 − r 2

r 2
e

)(
d2ζ

dr 2
+ 1

r

dζ

dr
− s2ζ

r 2

)

− 2r

r 2
e (γ − 1)

dζ

dr
+ σ 2

Kγρ
γ−1
0

ζ = 0. (15)

The solutions of this equation determine the values of σ . While this
equation can be transformed into the equation for a Hypergeometric
function, it is more convenient to determine the solutions directly
using expansions in series following the method of Frobenius. We
thus take

ζ (r ) = Xc

∞∑
n=0

an Xn, (16)

where X = r/re. It is convenient to replace σ by ν according to

ν2 = σ 2r 2
e

Kγρ
γ−1
0

= 2σ 2

�2(γ − 1)
, (17)

using the definition of re. If the series is substituted into the equation
for ζ , we get the following recurrence relation for the coefficients

ak+2 = ak
k2 + 2ks + 2(k + s)/(γ − 1) − ν2

(k + 2 + s)2 − s2
(18)

The indicial equation gives c = s, and there is one solution with
a0 arbitrary and a1 zero. Because the equation is of second order,
there must be two arbitrary constants, but because the solutions of
the indicial equation differ by an integer (s is an integer) or are equal
(s = 0), the second arbitrary constant multiplies a solution contain-
ing ln x , and must be zero. The remaining series only converges
if

2σ 2
j

�2(σ − 1)
= ( j + s)

(
j + s + 2

γ − 1

)
− s2, (19)

where j is an integer and the associated value of σ is denoted by σ j .
The last term in the series for a given j is ajXj. For numerical work,
we write the velocity in the form

v = V cos (σ t), (20)

η = D sin (σ t). (21)

From equation (10)

V = Kγ

σ (γ − 1)
∇ D. (22)

Further details of the linear modes are given in Appendix A.

3 S P H S I M U L AT I O N S O F S TAT I C S T RU C T U R E
A N D L I N E A R O S C I L L AT I O N S

SPH (for a recent review, see Monaghan 2005) is a Lagrangian
particle method for solving the equations of fluid dynamics. Since a
primary application of SPH is to self-gravitating gas in astrophysical
systems, in most cases involving free boundaries, Toy Stars repre-
sent an ideal test of the algorithm’s capabilities on these systems.
Whilst the standard SPH algorithm (as described e.g. in Monaghan
1992) has been well tested and benchmarked, we use the opportu-
nity provided by the Toy Star solutions to benchmark more recent
improvements to the algorithm.

In particular, we formulate the SPH equations from a variational
principle such that the spatial variation of the smoothing length
according to the density variation is accounted for self-consistently
(Monaghan 2002; Springel & Hernquist 2002; Price 2004; Price
& Monaghan 2004). We also use the Toy Stars to test a reversible
time integration algorithm for SPH described in Monaghan (2005).
The specific implementation of the SPH algorithm used for the test
problems presented in this paper is described below.

3.1 SPH implementation

The SPH equations are formulated from a variational principle
which accounts for the spatial variation of the smoothing length
with density. Prior to the force evaluation, the density is calculated
via a direct summation over the particles which is iterated to self-
consistently determine both the smoothing length and the density
according to the relation

h = η

(
m

ρ

)1/2

, (23)

where η is a constant relating the smoothing length to the aver-
age particle spacing. The procedure for doing this is described in
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Price & Monaghan (2004) and Price (2004). Enforcing this rela-
tion tightly has been found to significantly sharpen the resolution
of a typical SPH simulation and in conjunction with the additional
terms in the momentum (and energy) equation(s), in general leads
to substantial improvements in accuracy (although perhaps, as we
will demonstrate in this paper, with a loss of robustness).

The pressure is calculated directly from the density using a poly-
tropic equation of state P = Kργ , and the standard cubic spline
kernel (Monaghan 1992) is used.

Damping towards the equilibrium solutions is achieved by apply-
ing a form of the SPH artificial viscosity used for shock capturing
(Monaghan 1997) together with a damping in the force equation
which is independent of resolution, given by

dv

dt
= −0.02v+ f , (24)

where f is the force per unit mass. Note that, since the pressure is
calculated directly from the density, the kinetic energy removed by
the artificial viscosity and damping terms is not deposited as thermal
energy but rather removed from the system.

In the linear and non-linear oscillation solutions to be described, a
small amount of dissipation is applied selectively using the artificial
viscosity switch described by Morris & Monaghan (1997). This
switch turns on the viscosity terms in response to the magnitude of
any negative divergence (i.e. convergence) in the velocity field. In
the oscillation solutions, this artificial viscosity is applied only to
approaching particles.

The time integration is achieved using a manifestly reversible,
second-order integrator described by Monaghan (2005) which in
particular is reversible in the case of a variable step size (as for ex-
ample when the step size is determined from the Courant condition).
At the present time, the reversibility condition only holds with the
density calculated by direct summation and the pressure determined
directly from the density, which is sufficient for the calculations pre-
sented here (although it is fairly straightforward to generalize the
integrator to the case in which the continuity and energy equations
are also evolved). The differences between using the reversible inte-
grator and a simple predictor–corrector method as commonly used
in SPH are found to be minor, although in the course of the Toy
Star tests we have found several aspects of the reversible integrator
which must be treated with caution.

3.2 Static structure

The simplest test case for the two-dimensional Toy Star is to verify
the static structure. This can be done in one of two ways: using
equal mass particles which are damped into an equilibrium configu-
ration or by varying the particle masses according to the equilibrium
density profile. In order to test the robustness of our algorithm, we
examine both methods. The calculations are performed using an
equation of state P = 1

4 ρ2.

3.2.1 Equal mass particles

In the equal mass particle case, we construct the initial conditions
by placing the particles on a lattice of square cells which is cropped
to retain only those particles with a radius less than unity (chosen
since it is the equilibrium radius of the Toy Star solution). Using a
lattice spacing of 0.05, this results in 1256 particles. The particles
are perturbed from the lattice with a random amplitude of up to 1/2
of the initial lattice spacing to remove any residual effects from the
initial regular particle arrangement in the equilibrium solution.

Figure 1. Toy Star static structure. We place 1000 equal mass SPH particles
on a lattice of square cells within the circle of unit radius and allow them to
evolve under the influence of the linear force. The SPH particles are shown by
the solid points after damping to an equilibrium distribution, whilst the solid
circle shows the radius of the exact solution. The particles adopt a hexagonal
lattice arrangement in the central regions and a ring-like arrangement at the
outer edges.

The system is then allowed to collapse under the influence of
the (axisymmetric) Toy Star force and damped until equilibrium
is reached (where typically we damp until E kin ∼ 10−10 E tot). The
equilibrium particle configuration is shown in Fig. 1 (where for
comparison the solid circle on this plot marks the exact solution
radius). The particles can be seen to adopt a reasonably isotropic
close-packed hexagonal lattice arrangement in the central regions
of the Toy Star, whilst at the edge tend to form discrete rings. Ex-
perimenting with different initial particle configurations (including
a completely random configuration) and different particle numbers
result in the same distinguishing features (although with a particular
caveat which is discussed below). The configuration adopted by the
particles is in general related to the shape of the interpolation kernel
used in the calculations. Thus, the isotropic nature of the particle
arrangement in the central regions results from the isotropy of the
cubic spline kernel. The density profile of the equilibrium config-
uration is shown in Fig. 2 and agrees well with the exact solution
given by the solid line. The discrete rings of particles formed at the
outer edges are also visible.

The equal particle mass also provides a useful illustration of
the ‘particle pairing’ instability which occurs for larger smoothing
lengths, specifically where the constant of proportionality in equa-
tion (23),η>1.2 (whereη>1.5 is found to be particularly unstable).
In these cases, the particles tend to initially form pairs, which then
begin to coalesce. Eventually, these pairs clump together at the same
location, with the resulting lattice adopting a close packed configura-
tion similar to that shown in Fig. 1 (albeit at half the resolution since
two particles effectively become one). This is a well-known defect
of the cubic spline kernel, resulting from the fact that the force tends
to zero at the origin (see e.g. Thomas & Couchman 1992; Swegle,
Hicks & Attaway 1995). Using η > 1.5 results in the closest
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Figure 2. Density profile in the Toy Star static structure with equal mass
particles. The SPH particles are shown by the solid points after damping to
an equilibrium distribution. The exact quadratic (ρ = 1 − r2) solution is
given by the solid line.

neighbour being placed on the turning point of the force curve (in
the isotropic, equilibrium configuration), thus moving inwards (and
therefore clumping) as the particles are compressed.

We have also investigated this instability using the standard SPH
formalisms (Hernquist & Katz 1989; Benz et al. 1990), whereby a
simple average of either the particle smoothing lengths or the kernel
gradients is used in the equation of motion. In these cases, particles
are still observed to clump, although the lattice configuration tends
to retain defects due to the averaging procedure. With the new vari-
able smoothing length formalism, the particles thus appear to settle
more readily into minimum energy states because of the smoother
lattice configuration (Fig. 1). This means that the pairing instability
is slightly more pronounced in this case (although we have not made
a quantitative assessment).

A solution to this instability may easily be obtained by using a
kernel, where the force does not decrease towards the origin. How-
ever, the density estimate using such kernels is in general quite
poor. Thomas & Couchman (1992) suggest a compromise approach
in which the cubic spline kernel gradient is modified to remain con-
stant in the region between the usual minimum and the origin whilst
the unmodified cubic spline kernel is used in the density evaluation.
Whilst this approach seems promising, it also introduces additional
problems (for example, energy is not conserved exactly and the ker-
nel gradient is no longer normalized). In this paper, we simply use
η = 1.2 in all of the simulations, thus avoiding the instability, al-
though it is our intention to investigate the issue further elsewhere (in
particular to examine alternative kernels to the cubic spline which
have finite gradients at the origin but which do not lead to a signifi-
cant decrease in interpolation accuracy).

3.2.2 Unequal particle masses

In the second case, the particle masses were varied according to
the equilibrium density profile. As a first attempt, the particles were
arranged on a lattice of square cells, with masses corresponding to
the density profile at their radial position. To avoid problems with
very low mass particles at the outer edge, we excluded particles
within half of the initial lattice spacing of the equilibrium radius
(r = 1 in this case). Allowing the particle distribution to evolve

under the influence of the linear force, with damping applied as
described above, the particles at the outer edges of the configuration
at first shift slightly in order to give a more circular edge (rather
than the stepped edge given by the cropped lattice). When using the
iterated smoothing length updates, the particles were then observed
to gradually shift from the square lattice and attempt to adopt a
hexagonal-type arrangement. An equilibrium configuration which is
mutually satisfying for all of the particles then becomes very difficult
due to the unequal particle masses. The kinetic energy of the system
is initially damped (to around 10−6 E tot), but climbs at later times (to
around 10−5 E tot) as the particle disorder spreads through the system.
The particles at this stage appear to continually exchange between
shifting blocks which do not seem able to settle to a minimum
energy state (appearing not unlike the movement of shifting ice
floes). Our understanding of this phenomena is that the square lattice
configuration with η = 1.2 in equation (23) is a quasi-stable state
for the particles. This can be shown by a straightforward stability
analysis in two dimensions (Morris 1996; Børve, Omang & Trulsen
2004) which shows that the square lattice is unstable at certain ratios
of the smoothing length to the particle spacing (although stable at
η = 1.2). Given enough sensitivity to their configuration (through
the smoothing length iterations), the particles will shift into a more
isotropic arrangement similar to that observed in the equal mass
case, however, in this case a minimum energy configuration is more
difficult to obtain with unequal particle masses since the masses
have been set to correspond to the equilibrium density profile using
the initial particle configuration.

These results show that it is preferable to place the unequal mass
particles initially on a lattice of hexagonal cells since this is the
configuration to which they tend to evolve.

We therefore set up the particles in this manner, with the (hexag-
onal) lattice centred on the origin and again with the particle masses
set according to the equilibrium density profile. 1045 particles are
used. In this case, the lattice is able to damp to an equilibrium state
since the particles do not shift from the lattice apart from a small
initial adjustment at the outer edges (note that we also use a ρmin in
equation (23) as will be discussed in Section 3.3.1). The equilibrium
distribution in this case is shown in Fig. 3, and the density profile is
shown in Fig. 4.

3.2.3 Reversible time integration

The relaxation procedure for the Toy Star also revealed some per-
tinent aspects of the reversible integration algorithm. In particular,
if the time-step changes rapidly between steps, the energy in the re-
versible integrator could exhibit large oscillations and under some
circumstances become unstable. This is a result of the averaging
procedure used to determine the time-step. In this paper, we have
used the arithmetic average

δt1/2 = 1

2
(δt0 + δt1), (25)

where the superscripts 0, 1/2 and 1 refer to the step size calcu-
lated at the beginning, middle and end of a given time-step. This
expression is rearranged in order to determine the next time-step
δt1 from the previous time-step δt0 and the time-step determined
from the Courant condition at the half step δt1/2. The pitfall of this
method is that if the time-step changes rapidly (for example, from
a very short step to a very long step) then the time-step begins to
oscillate between two values (short–long–short–long). Also, there
is nothing to prevent the time-step δt1 from taking a negative value.
In this situation, the time advance is achieved by taking a long step
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Figure 3. Toy Star static structure with unequal particle masses. 1045 SPH
particles are set up in a hexagonal close packed lattice arrangement with
their masses set according to the equilibrium Toy Star density profile. The
particles are then allowed evolve under the influence of the linear force. The
SPH particles are shown by the solid points after damping to an equilibrium
distribution, whilst the solid circle shows the radius of the exact solution.

Figure 4. Density profile in the Toy Star static structure with 1045 unequal
mass particles. The SPH particles are shown by the solid points after damping
to an equilibrium distribution. The exact quadratic (ρ = 1 − r2) solution is
given by the solid line.

forward and a slightly shorter step back to achieve a small net for-
ward step. Whilst the specific problem of negative time-steps can be
fixed by using a different averaging procedure (for example using
the geometric mean), we have found that the oscillations can also
cause instability if δt1 greatly exceeds the Courant condition. This
can occur because a very short δt0 implies a very long δt1 (where
by definition δt1/2 meets the Courant condition). If the Courant con-
straint also changes between steps, the result can be that particles
are evolved on a time-step which is too large to capture the change
in physical quantities accurately, resulting in instability.

In practice, these oscillations can be largely avoided provided
that some care is taken in the set up and evolution. For example,
in the initial runs we began the integration as we had done for the
predictor–corrector method using a time-step of zero (which simply
runs through the force evaluation without evolving the particles). In
the reversible integrator, this immediately leads to time-step oscil-
lations since the zero time-step is then used in the averaging pro-
cedure. A second example is that it is common practice to reduce
the time-step before output dumps in order to reach the specified
time of output exactly. This means taking a shorter step just before
an output dump but for the reversible integrator this will again trig-
ger the time-step oscillations. Thus, an interpolation (rather than an
evolution) must be used to output the data at a specific time. Finally,
in order to prevent any potential instability, we place a check in the
time-stepping algorithm which resynchronizes δt0, δt1/2 and δt1 to
the current value of δt1/2 if δt1 exceeds the Courant condition (but
without a safety factor). This means using a reasonably low safety
factor for the Courant condition used to find δt1/2, in order to al-
low sufficient variation among δt0, δt1/2 and δt1. Obviously, any
time-step resychronization means that the evolution is no longer
globally reversible, although the sections of the evolution between
resynchronizations will be reversible.

It should be noted that methods do now exist for reversible in-
tegration of SPH-type systems which do not suffer from time-step
oscillation instabilities. These methods involve a rescaling of the
time variable so that the time-step is a continuously variable quan-
tity (Leimkuhler, private communication). The application of such
methods to SPH will be investigated elsewhere.

3.3 Linear oscillations

The linear oscillations of the two-dimensional Toy Star may be
examined by applying a velocity perturbation to the equilibrium
configuration. We examine both the equal mass and unequal par-
ticle mass cases for both the axisymmetric and non-axisymmetric
modes. The perturbation in each case is given to the velocity com-
ponents according to equation (22) (where the higher order modes
are calculated using the recursion relation 18) and normalized such
that the total kinetic energy

Ekin = 1

2
(0.05cs0)2, (26)

where cs0 is the sound speed at the origin.
The SPH simulations in each case were run for 10 periods of the

given mode. The frequencies of oscillation in the numerical solu-
tions may then be obtained from the kinetic energy evolution. The
simplest method is to measure the spacing of minima and maxima
in the kinetic energy. We use this method as well as calculating
the full power spectrum of the kinetic energy evolution using the
Lomb/Scargle periodogram for unevenly sampled data (Lomb 1976;
Scargle 1982) (see Press et al. 1992).

3.3.1 Axisymmetric modes

The linear, axisymmetric modes of the Toy Star are shown in Fig. 5,
where the numerical solution in the unequal particle mass case is
plotted for each mode after one oscillation period. The perturba-
tion solution in each case is given by the solid line. The modes
change rapidly near the boundary because the low-density material
responds to the push by getting a large velocity. This shows up in the
rapid change of the hypergeometric functions which describe this
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Figure 5. Axisymmetric (s = 0) modes j = 2, 4, 6, 8, 10, 12, 14, 16 and 18 after one (theoretical) oscillation period using 1045 particles with masses initially
varied to give the equilibrium density profile. The axisymmetric modes exhibit strong oscillations near the outer edges of the Toy Star which can be difficult to
capture numerically.

variation. However, these strong oscillations can be difficult to cap-
ture numerically. In the equal mass particle case at this resolution,
the modes are significantly damped by the artificial viscosity terms
which act preferentially on the outer regions of the Toy Star.1 In the
unequal particle mass case, the large fluctuations at the outer edges
are better resolved since the resolution is constant throughout the
Toy Star, however, some problems occur at the edges due to mixing
between particles of different masses caused by a combination of
the large smoothing length gradient at the outer edge, the velocity
fluctuations from the oscillations and the presence of very low mass
particles there (Fig. 6, left-hand panel).

The large smoothing length gradient at the edge of the Toy Star
is largely a defect of our use of equation (23) in the case of unequal
mass particles. Whilst the problem also occurs using standard SPH
formalisms, it is accentuated by our use of the variable smoothing
length formalism since the large gradients in the smoothing length
are explicitly incorporated into the force terms. Relation (23) may
cause problems in this case because, ideally, the smoothing length
should relate to the particle number density (or roughly, the number

1 Note that the SPH artificial viscosity has a kinematic viscosity coefficient
which has the form ∝ (hCs) which is constant near the edge since h ∝ 1/

√
ρ

and Cs ∝ √
ρ (when P ∝ ρ2). Whilst for other adiabatic equations of state,

the coefficient becomes infinite; in this case the damping is large in the outer
regions purely because the second derivatives of the velocity are very large.

Figure 6. Particle distribution in the unequal particle mass run after 10
oscillations of the axisymmetric j = 2 mode. In the unequal mass case using
h = η(m/ρ)1/2 can lead to large smoothing length gradients at the edge of
the Toy Star, causing some disruption at the outer edge (left-hand panel).
Using h = η[m/(ρ + ρmin)]1/2 (right-hand panel) prevents this problem
from occurring.

of neighbours) rather than the mass density. In the case of equal
mass particles, equation (23) indeed has this effect. The problem in
the unequal mass Toy Star is that where the smoothing length should
increase at the outer radius (due to the decrease in particle number
density), in practice the smoothing length in fact decreases at the
edge due to the drop-off in particle mass affecting the numerator in
equation (23). A simple fix to this problem is to modify the relation
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using a density floor, giving

h = η

(
m

ρ + ρmin

)1/2

, (27)

where ρmin = min(ρ prev), where ρ prev is the density on the particles
from the previous time-step. This modification prevents the smooth-
ing length gradients from becoming too large at the edge.

Using a density floor is not particularly desirable in general. In
fact, it is quite simple to derive a generalization of the variable
smoothing length formalism of Springel & Hernquist (2002) and
Monaghan (2002) in which the smoothing length is a function of
the particle number density rather than the mass density.2 However,
since this is a paper on Toy Stars rather than on SPH formalisms, the
detailed description of this formalism will be presented elsewhere
and we simply use equation (27) in this paper. In terms of the fre-
quency estimate, there is very little difference between the results
using equation (23) and those using the density floor. In fact, the
disruption seen in equation (6) is largely cosmetic for short simula-
tions since the very low mass particles do not have a strong influence
on the overall evolution. For longer simulations, the effect is more
problematic as the disruption in the particle distribution spreads to
the inner regions. It should also be noted, however, that these ef-
fects also become less significant as the total number of particles is
increased.

The density perturbation for the axisymmetric (s = 0) modes
is shown in Fig. 7 (and similarly for the j = 0 modes in Fig. 8).
The kinetic energy evolution in the first five axisymmetric modes
in the case of equal mass particles is shown in Fig. 9. The left-
hand panel shows the kinetic energy evolution, whilst the right-hand
panel shows the power spectrum of the left-hand panel, showing
the dominant frequency in each case. The modes show significant
damping although the dominant frequency is captured well by the
numerical solution up to the j = 10 mode which can be seen to
decay rapidly into the j = 8 mode.

The frequencies in the numerical solutions are shown in Fig. 10.
The top panel shows the absolute frequency for each axisymmetric
mode plotted as a function of the mode number j. The frequency
plotted in each case is the dominant frequency measured from the
power spectrum of the kinetic energy evolution for the simulation of
that particular mode. The exact frequencies are given by the crosses,
where a solid connecting line has been drawn for clarity. Results
using equal mass particles are given by the open circles (with a
dashed connecting line for clarity), whilst the unequal particle mass
results are indicated by the filled circles (with a dotted connecting
line). The lower panel shows the error in the numerical frequency
(shown as a fractional deviation from the exact value) in each case.
The unequal particle mass simulations at this resolution show errors
of �2 per cent for all modes up to j = 18. The results using equal
mass particles have comparable accuracy up to the j = 6 mode,
but thereafter show errors of ∼10 per cent. One interesting point
to note in the equal particle mass case is that the j = 10 mode
seems to decay to the j = 8 mode and correspondingly the j = 20
mode seems to decay to the j = 16 mode. The frequencies obtained
with the time-reversible integrator are indistinguishable from those
obtained using the predictor–corrector method, provided that the

2 A similar formalism was described by Ott & Schnetter (2003) and de-
rived self-consistently in Price (2004), but has the disadvantage of also
modifying the density evaluation which we have found to be somewhat
problematic.

time-step does not change rapidly between time-steps as discussed
in Section 3.2.

3.4 Non-axisymmetric oscillations

3.4.1 j = 0 modes

The two-dimensional Toy Star can also oscillate non-
axisymmetrically. The density perturbation in the j = 0 modes
( j = 0, s = 2, 4, 6, etc.) is shown in Fig. 8. As in Fig. 10, the absolute
frequencies are shown in the top panel whilst the fractional error
is shown in the bottom panel. Using unequal mass particles (filled
circles, dashed line), the frequencies in the numerical solutions
show good agreement with the exact solutions (errors �2 per cent)
for modes up to s = 16, above which the modes are damped out. The
results using equal mass particles (open circles, dotted line) show
somewhat lower errors (�0.6 per cent), but only the modes up to
s = 8 are captured in this case.

3.4.2 Mixed modes

Finally, the Toy Star can oscillate with modes which have both
j �= 0 and s �= 0. The density perturbation in the modes with 2 �
j � 12 and 2 � s � 12 is shown in Fig. 12. The numerical frequen-
cies of the perturbations show similar accuracy to the symmetric
modes.

4 E X AC T, N O N - L I N E A R S O L U T I O N S

As mentioned earlier, one of the most useful features of the Toy
Star is that it is possible to get exact, or very accurate solutions of
the full non-linear equations. These provide excellent tests of the
ability of a numerical code to follow a surface into a region devoid
of matter. We assume that the velocity field is a linear function of
the Cartesian coordinates

vx = V 11x + V 12 y, (28)

vy = V 21x + V 22 y, (29)

and that the density is given by the following second-degree function
of the coordinates

ργ−1 = H (t) − [C(t)x2 + 2B(t)xy + D(t)y2]. (30)

4.1 Axisymmetric non-linear solutions

For this case, we choose V 11 = V 22 = α(t) and V 12 = −V 21 =
−β(t) in which case the velocity field can be written as

v = α(t)r + β(t)ẑ × r , (31)

where the first term produces an axisymmetric expansion or contrac-
tion, and the second term gives a rigid rotation with angular velocity
β(t)ẑ, where ẑ is a unit vector in the z direction. The motion takes
place so that, at any time, each element of fluid has the same angu-
lar velocity. The reader will appreciate that the solution has many
features in common with the symmetric pulsation of a polytropic
star, for example a model white dwarf, under gravity.

For this axisymmetric case, C = D, B = 0, so that

ργ−1 = H (t) − C(t)r 2. (32)
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Figure 7. Density perturbations in the axisymmetric (s = 0) modes j = 2, 4, 6, 8, 10, 12, 14, 16 and 18 using 10 053 unequal mass particles. The difference
between the density and the equilibrium density profile is plotted for each mode after 1.25 oscillation periods.

Figure 8. Density perturbations in the j = 0 modes with s = 2, 4, 6, 8, 10, 12, 14, 16 and 18 using 10 053 unequal mass particles. The difference between the
density and the equilibrium density profile is plotted for each mode after 1.25 oscillation periods.
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Figure 9. Time evolution of the first few axisymmetric (s = 0) modes (from top to bottom j = 2, 4, 6, 8 and 10) using 1000 equal mass particles. The left-hand
side shows the time evolution of the kinetic energy over 10 periods for each mode, whilst the right-hand side shows the dominant frequencies of oscillation
from the power spectrum (periodogram). From this plot, we can see that the modes up to j = 8 are captured well at this resolution (although the amplitudes
are somewhat damped), whilst the higher order modes (in this case j > 10) tend to decay into their lower order counterparts. Note that two oscillations of the
kinetic energy correspond to one oscillation period.

Figure 10. Frequencies of the axisymmetric modes at a resolution of 1000
particles. The top panel shows the absolute frequencies, whilst the bottom
panel shows the fractional error in the numerical solution. The simulations
using unequal particle masses, denoted by filled circles [a connecting line
(dashed) has been plotted for clarity], are within 2 per cent of the correct
frequencies for modes up to j = 20. The results using equal mass particles
(open circles, dotted line) show errors of up to 10 per cent for modes above
j = 6 although the general trend is still observed.

Figure 11. Frequencies of the j = 0 modes at a resolution of 1000 particles.
The top panel shows the absolute frequencies, whilst the bottom panel shows
the fractional error in the numerical solution. The simulations using unequal
particle masses, denoted by filled circles [where again a connecting line
(dashed) has been plotted for clarity], are within 2 per cent of the correct
frequencies for modes up to s = 16. The results using equal mass particles
(open circles, dotted line) show somewhat lower errors but only for modes
up to s = 8 above which the modes are largely damped out.
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Figure 12. Density perturbations for the mixed modes using 10 053 unequal mass particles. From left to right, the radial mode number varies from j = 2
(leftmost column) to j = 12 (rightmost column), whilst from top to bottom the angular mode number varies from s = 2 (top row) to s = 12 (bottom row). The
difference between the density and the equilibrium density profile is plotted for each mode after 1.25 oscillation periods.

Substitution of the assumed forms for v and ρ into the acceler-
ation and continuity equations, with P = Kργ and replacing the
Lagrangian derivative by the Eulerian according to

d

dt
= ∂

∂t
+ (v · ∇), (33)

and equating powers of x and y we get

α̇ = −α2 + β2 + 2C Kγ

γ − 1
− �2, (34)

β̇ = −2αβ, (35)

Ḣ = −2α(γ − 1)H , (36)

Ċ = −2Cαγ, (37)

where the ȧ denotes the time derivative of any function a.
If γ = 2, a further derivative of equation (34) with respect to

time using equation (35) to remove the derivative of β results in the

following equation for α:

α̈ + 6αα̇ + 4α3 + 4α�2 = 0. (38)

If α is sufficiently small, this equation can be approximated by

α̈ + 4α�2 = 0, (39)

with solution α = A sin (2�t + c), where c is an arbitrary constant.
An exact solution of the full non-linear equation can also be found.
The analysis is given in Appendix B.

The set of ordinary differential equations (34)–(37) can be inte-
grated with high accuracy using any standard integrator.

4.1.1 Conserved quantities

The total mass is

M = πH γ /(γ−1)

C

γ − 1

γ
, (40)

and must be conserved by the set of equations (34)–(37). To see that
this is the case we eliminate α from the last two of these equations
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to get

dH

dC
= (γ − 1)H

γ C
, (41)

from which H γ ∝ Cγ−1 showing that M is constant. The angular
momentum Jz should also be conserved by the equations. Jz is given
by

Jz =
∫ ∫

ρ(xvx − yvy) dx dy = 2πβ

∫ (
H − Cr 2

) 1
γ−1 r 3 dr .

(42)

Completing the integration shows that

Jz = 2πβ
H (2γ−1)/(γ−1)

C2

(γ − 1)2

2γ (2γ − 1)
. (43)

However, from equations (35) and (37), we findβγ ∝C . Substitution
into equation (43) and noting that H γ ∝ Cγ−1, we find Jz is constant.
Of course, the system must conserve M and Jz, and the foregoing
analysis merely confirms that the equations we have derived are
correct.

4.2 The Lagrangian description

In this section, we consider the solutions in terms of the change in
the functions H, C and β for a given element of fluid. Defining the
function S(t) by

S(t) = exp

(
−

∫ t

0

α dt

)
. (44)

We can write

β = β0 S2, (45)

H = H0 S2(γ−1), (46)

C = C0 S2γ , (47)

and from the continuity equation (5),

ρ = ρ0 S2, (48)

where we assume the motion begins at t = 0. These equations can
be interpreted in the following Lagrangian way. For any element
of fluid (particle), the initial value of one of these functions, say β,
is denoted by β 0. The equation for β in terms of S gives its value
for that particle at any time. Similarly, for the other quantities, this
also enables one quantity to be written in terms of the others. For
example, we deduce Hβ ∝ C . The x , y coordinates of a particle
can be obtained from the velocity according to

dx

dt
= αx − β y, (49)

dy

dt
= αy + βx . (50)

From these equations, we easily deduce that the radial coordinate r
and angular coordinate θ of the particle are given by

r 2 = r 2
0 S−2, (51)

θ =
∫ t

0

β(t) dt, (52)

from which we deduce that for any particle Cr 2 ∝ H as is required
by the density equations (32) and (48).

Figure 13. Density and radial velocity in the non-linear Toy Star solution
after 100 oscillation periods. The SPH particles are indicated by the solid
points, whilst the exact solution is given by the solid line.

A further useful result is that equations (34) and (35) can be
combined together with the relation C = σβγ , to give

dα

dβ
= 1

2αβ

(
α2 + �2 − β2 − 2γ K

γ − 1
σβγ

)
. (53)

This equation can be integrated exactly taking α2 as a new dependent
variable to give a linear differential equation. In this way, we find

α2 + β2 + �2 = − 2Kγ C

(γ − 1)2
+ kβ, (54)

where k is an integration constant. This equation can also be derived
from the constancy of energy. Equation (54) defines a closed curve
in the α–β plane showing that the motion is a periodic oscillation
(demonstrated in the following Section).

4.3 SPH simulations of the non-linear axisymmetric motion

The non-linear axisymmetric Toy Star is set up by perturbing the
equilibrium solution with a velocity of the form (31), where the
parameters α(0) and β(0) specify the amplitudes of the initial ex-
pansion and rotation, respectively.

Since the axisymmetric mode given by (31) is a non-linear, exact
solution, the choice of amplitudes is completely arbitrary. We chose
for simplicity, α0 = 1 and β 0 = π. This means that the expansion
velocity is everywhere supersonic (i.e. highly non-linear) and that
initially the rotation rate was equal to the oscillation period (note
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that the actual rotation period during the evolution depends on the
periodic manner in which β varies). The SPH simulation was run
by perturbing the equal mass particle equilibrium configuration. No
artificial viscosity was applied during the evolution. The density and
radial velocity are shown in Fig. 13 after 100 oscillation periods.
The agreement with the exact solution after 100 periods is extremely
good, with both the density and velocity profiles maintained almost
exactly.

The time evolution of the total kinetic energy in the simulation
is shown in Fig. 14, showing only the first 20 periods for clarity.
The amplitude of the oscillation is maintained exactly by the SPH
solution.

Finally, it is useful to plot the evolution of the Lagrangian quanti-
ties α and β in the numerical solution. In order to do so, we calculate
αi = (v · r̂ )i and βi = (r̂ ×v)z,i , for each particle i after every time-
step, and then compute the average over all the particles. These
average values of α and β are plotted in Fig. 15, where each point
in the plot corresponds to the values at a given time-step. The curve
agrees exactly with the analytic solution given by equation (54).

The results of this simulation demonstrate that SPH has extremely
good conservation properties and can maintain an accurate evolu-
tion of a non-linear system over long time intervals. We have ex-
perimented with a range of values for α0 and β 0 all of which show
similar results. In practice, the necessary addition of artificial vis-
cosity into SPH algorithms in order to handle shocks leads to un-
physical damping of self-similar motion such as that which occurs
in the non-linear Toy Star. This test would therefore be an excellent

Figure 14. Time evolution of the non-linear axisymmetric mode of the
Toy Star using 1000 equal mass particles, where initially α = 1 and β = π.
For clarity, only the first 20 oscillation periods are plotted. The amplitude is
maintained exactly by the SPH solution for more than 1000 periods.

Figure 15. The Lagrangian quantities α and β measured from the SPH
solution using 1000 equal mass particles. The average values of α and β

on the particles have been plotted every time-step for over 1000 oscillation
periods (t = 3200, 72 863 time-steps).

benchmark for switches designed to turn off the artificial viscosity
away from shocks where it is not needed.

4.4 Non-axisymmetric solutions

If the expressions (28)–(30) for the velocity and ρ1/(γ−1) are sub-
stituted into the equations of motion and the coefficients of powers
of x and y and xy, the following equations are obtained from the
acceleration equation:

dV 11

dt
= 2γ K

γ − 1
C − (V 11)2 − V 12V 21 − �2, (55)

dV 22

dt
= 2γ K

γ − 1
D − (V 22)2 − V 12V 21 − �2, (56)

dV 12

dt
= 2γ K

γ − 1
B − V 12(V 11 + V 22), (57)

dV 21

dt
= 2γ K

γ − 1
B − V 21(V 11 + V 22), (58)

and from the continuity equation we get

dH

dt
= − (γ − 1) (V 11 + V 22)H , (59)

dC

dt
= −2CV 11 − (γ − 1) C(V 11 + V 22) − 2BV 21, (60)

dD

dt
= −2DV 22 − (γ − 1) D(V 11 + V 22) − 2BV 12, (61)

dB

dt
= −CV 12 − DV 21 − γ B(V 11 + V 22). (62)

These eight ordinary differential equations describe the system.
They can be integrated as accurately as desired using standard meth-
ods for differential equations.

4.4.1 Conserved Quantities

The mass is given by

M =
∫ ∫

[H − (Cx2 + 2Bxy + Dy2)]1/(γ−1) dx dy. (63)

This integral can be evaluated by rotating the coordinate system
so that the quadratic form in the integrand is reduced to a sum of
squares. The final result is

M = π

(
γ − 1

γ

)
H γ /(γ−1)

√
C D − B2

. (64)

From the differential equations, we find

d(C D − B2)

dt
= −2γ (C D − B2)(V 11 + V 22), (65)

which combined with equation (59) shows that M is conserved.
The angular momentum Jz is given by

Jz =
∫ ∫

[H − (Cx2 + 2Bxy + Dy2)]1/(γ−1) X dx dy, (66)

where we have defined

X ≡ x2V 21 + xy(V 22 − V 11) − y2V 12. (67)
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Rotating the coordinate system as before the integral reduces to

Jz = π(γ − 1)2

γ (2γ − 1)

H (2γ−1)/(γ−1)

(C D − B2)3/2
ϒ, (68)

where we define

ϒ ≡ V 21 D − V 12C − B(V 22 − V 11). (69)

From the differential equations above, it is possible to show that the
quantity ϒ satisfies the equation

dϒ

dt
= −(γ + 1)ϒ(V 11 + V 22). (70)

In terms of the variable T defined by

T = exp

[
−

∫ t

0

(V 11 + V 22) dt

]
, (71)

we can write from equations (59), (65) and the previous equation

H = H0T (γ−1), (72)

C D − B2 = (C D − B2)0T 2γ , (73)

ϒ = ϒ0T γ+1. (74)

When these results are substituted into the previous expression for
Jz, it is found to be constant, as expected. As in the axisymmetric
case, proving the constancy of M and Jz from our set of differential
equations merely confirms that they are correct.

Another conserved quantity is the circulation. The circulation
around any loop for this two-dimensional fluid is given by

C =
∮

v · dl =
∫ ∫

∇ × v · ẑdx dy. (75)

This is a constant of the motion so that its time derivative

dC
dt

= d

dt

∫ ∫
∇ × v · ẑdx dy =

∫ ∫
d

dt

(∇ × v

ρ

)
· ẑρ dx dy

(76)

must vanish. Noting that ∇ × v = (V 21 − V 12)ẑ and that from the
equations of motion

V 21 − V 12 = (V 21 − V 12)0T , (77)

and

ρ = ρ0T , (78)

we see that (∇ × v)/ρ is unchanged following the motion and C is
conserved.

4.5 SPH simulations of the non-linear
non-axisymmetric motion

The non-axisymmetric exact solutions present a more demanding
test problem since the Toy Star changes shape throughout the os-
cillation. This changing shape must then be followed through the
expansion and contraction phases, maintaining the free boundary.
The non-axisymmetric Toy Star therefore presents an ideal prob-
lem for numerical codes designed to simulate astrophysical systems
with changing geometries and free boundaries.

The simulation is set up by again perturbing the equilibrium so-
lution, in this case with a velocity of the form (28) and (29). The
four parameters V11, V12, V21 and V22 specify the amplitude and
geometry of the perturbation. Due to the changing shape the SPH
solution in this case requires some artificial viscosity in order to

prevent particle interpenetration during the compression phase. We
apply this using the Morris & Monaghan (1997) switch as discussed
in Section 3.1.

The particle distribution during the evolution of the exact, non-
axisymmetric mode is shown in Fig. 16, where initially V 11 = 1,
V 12 = 1/2, V 21 = 1 and V 22 = 1/4. For comparison with the exact
solution, we solve equations (55)–(62) using a simple second-order
modified Euler predictor–corrector method, using the conservation
of mass (64) as a check on the quality of the integration. The solid
line shown in Fig. 16 is the curve corresponding to the edge of the
Toy Star (i.e. where ρ = 0) at the appropriate times. The SPH par-
ticles adjust to the changing shape quite well apart from a damping
of the amplitude with time caused by the application of artificial
viscosity. We have performed a range of simulations using different
values of the initial parameters which in general show very similar
results.

For simulations with very strong compression, the particles can
clump together in the manner described in Section 3.2 due to the
force being zero at the origin of the cubic spline kernel used in
the calculations, despite using h = 1.2(m/ρ)1/2. This is because a
strong compression can push the particles neighbours close enough
to be in the region of the kernel where the force decreases towards
the origin, causing a clumping instability for positive pressures in
compression similar in its effect to the well-known instability for
negative stresses in tension (Swegle et al. 1995). As discussed in
Section 3.2, the remedy for this is to use a kernel with non-zero
derivative at the origin, an investigation of which will be performed
elsewhere.

5 S U M M A RY A N D D I S C U S S I O N

The primary aim of this paper has been to provide a set of bench-
marks for simulations of gaseous discs of the kind that arise in star
formation. The systems, which we call Toy Stars, are similar to
their astrophysical counterparts in that they consist of compressible
gas, held together by an attractive force which results in the gas
having an outer surface where the density and pressure fall to zero.
They therefore provide tests which are quite different to the usual
tests based on flow in periodic rectangular regions. Furthermore, not
only can the linear modes be found in terms of known functions,
but non-linear solutions can be found in terms of a small number of
differential equations.

The results described and discussed in this paper can be summa-
rized as follows.

(i) The static structure has been simulated using SPH with a vari-
ety of initial configurations using both equal mass and unequal mass
particles. The calculations use approximately 1000 particles. With
this number of particles, the agreement of the static model with the-
ory is very good. The final arrangement of the particles is different
depending on whether they are of equal mass or of unequal mass.
Recommendations concerning damping the particles to equilibrium
are contained in the text.

(ii) The SPH simulations use the equations which result from
using a variational principles and taking the resolution length to be
a function of the density. The form of this relation and effects that
occur for different choices of parameters is discussed in detail.

(iii) The theoretical linear modes of oscillation have been derived
and they have been calculated using SPH. Because the resolution
of the SPH calculations is not high, the simulation would not be
expected to recover high-order modes. In fact, with 1000 parti-
cles the particle spacing is typically 0.06 (though larger near the
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Figure 16. Particle distribution during the evolution of the non-linear, non-axisymmetric mode of the Toy Star using 1000 equal mass particles, where initially
V 11 = 1, V 12 = 1/2, V 21 = 1 and V 22 = 1/4. A small damping of the amplitude may be observed in the SPH solution due to the artificial viscosity applied
to prevent particle interpenetration during the compression phase.

edge in the case of equal mass particles). Accordingly, since several
particle spacing between nodes is normally required to give reason-
able accuracy, the linear modes of the Toy Star with mode number
greater than about 3 would not be expected to be accurate. Re-
markably, the SPH simulations give good frequencies for radial and
azimuthal mode numbers (s) much larger than this. The modes, how-
ever, are not simulated as accurately. We note, in particular, that in
the outer layers of the Toy Stars where the density and speed of
sound falls to zero, the modes vary rapidly, and they would only be
reproduced accurately by a simulation with many more particles (as
e.g. in Figs 7, 8 and 12 used to illustrate the higher order modes).

(iv) Our analysis of a class of non-linear modes reduces the partial
differential equations to a set of eight non-linear ordinary differential
equations. These have been derived, with a different interpretation,
in the context of the oscillation of water in basins. The equations
describe a rotating oscillating ellipse of gas which is similar to what
would be expected when the attractive force is gravity. The SPH
simulation of this system is in good agreement with the accurate
integration of the ordinary differential equations.

(v) Our results show that SPH simulations of compact rotating
masses of gas are very satisfactory. The actual accuracy depends,
of course, on the resolution and therefore the number of particles
used.
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A P P E N D I X A : L I N E A R M O D E S

A1 Axisymmetric modes

For the axisymmetric modes, s = 0. The lowest axisymmetric mode
has j = 2 and setting

a0 = f ρ
γ−1
0 , (A1)

we find

ζ = f ργ−1
o

(
1 − γ

γ − 1
X 2

)
, (A2)

V = − f

[
�2

σ (γ − 1)

]
r , (A3)

For the next mode ( j = 4)

ζ = f ρ
γ−1
0

[
1 − 1

4
ν2

4 X 2 + ν2
4 (3γ − 2)

16(γ − 1)
X 4

]
, (A4)

V = − f
�2ν2

4

4σ

[
1 − 3γ − 2

2(γ − 1)

r 2

r 2
e

]
r , (A5)

where ν2
4 = 4(4 γ − 2)/(γ − 1). Higher order terms can be obtained

easily using the recurrence relation for the ak.

A2 Non-axisymmetric modes

The non-axisymmetric case s = 1 is the shift of the system. To see
this in the simplest case, we note that the lowest mode has j = 0,
and the spatial part of the perturbation η for the choice sin θ for the
angular variation has the form

D = a0r sin θ = aox, (A6)

so that the x component of the centre of mass becomes∫ ∫ [
ρ̄ + (ρ̄)2−γ

γ − 1
η

]
xr dr dθ. (A7)

When s = 1, D is an odd function in x so the x component of the
centre of mass is non-zero. This mode therefore corresponds to the
centre of mass shifting back and forth in the x direction which is
impossible for an isolated object. On the other hand, it is entirely
possible in a lake of water perturbed by tidal forces or a glass of
wine moved back and forth. It can be shown that, this mode (s = 1

and j = 0 ) results in the surface of the wine, or the lake, remaining
flat. If we choose the angular variation cos θ for the modes the shift
in the centre of mass is in the y direction. All modes with s = 1
produce a shift in the centre of mass because they are odd in either
x or y. For our astrophysical problem, we therefore jettison the s =
1 modes as being unphysical.

The first non-axisymmetric mode which is physical has s = 2.
The case j = 0 has

ζ (r ) = a0

(
r

re

)2

. (A8)

The next s = 2 mode has j = 2 and

ζ (r ) = a0 X 2

[
1 − 3γ − 2

3(γ − 1)
X 2

]
, (A9)

with ν2
2 = 4(3 γ − 1)/(γ − 1). For this case, the velocity components

are

vx = f �2

σ
y

[
1 − 3γ − 2

3(γ − 1)

3x2 + y2

r 2
e

]
, (A10)

vy = f �2

σ
x

[
1 − 3γ − 2

3(γ − 1)

x2 + 3y2

r 2
e

]
. (A11)

A P P E N D I X B : E X AC T S O L U T I O N F O R
N O N - L I N E A R , A X I S Y M M E T R I C E VO L U T I O N

In this Appendix, we give the outline of the solution of the equation

α̈ + 6αα̇ + 4α3 + 4�2α = 0 (B1)

which applies to the axisymmetric, non-linear oscillation when
γ = 2.

Let V = α̇ and q = (1/2)α2. The equation becomes

V
dV

dq
= −(4�2 + 6V + 8q). (B2)

Define a new variable ζ = 4 �2 + 8q and substitute into the previous
equation. The resulting homogeneous equation can be solved by
setting V = Fζ and solving for F. We find

ζ
(2F + 1)2

4F + 1
= c, (B3)

where c is a constant. Returning to the variable V , and after some
algebra, we get

V = dα

dt
= 1

2
[c − ζ ±

√
c(c − ζ )]. (B4)

Recalling that ζ = 4(�2 + α2), we can write α in terms of ζ . Next
we use a new variable η = √

c − ζ in place of ζ and finally set
x = η + √

c. This reduces the integral into the form

−
∫

dx

x
√

−4�2 + 2x
√

c − x2
, (B5)

which can be integrated and combined with the transformed (B4) to
give

8�2 − 2x
√

c

x
√

4c − 16�2
= sin [2�(t + t0)]. (B6)
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Transforming back to η, solving the resulting equation for η2 and
then converting this to an equation for α2, we get

4α2 = (σc − σ 2) cos θ2

(
√

c + √
σ sin θ )2

, (B7)

where σ = c − 4�2, and θ = 2�(t + t 0). Finally,

α = � cos θ
√

c − 4�2

√
c + sin θ

√
c − 4�2

. (B8)

By a suitable choice of t0, the cosine and sine can be interchanged.
Furthermore, from equation (B3) it can be shown that if α is small
then

√
c − 4�2 is small. In this case, the solution reduces to that

given after equation (39).
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